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Abstract

We consider the problem

−div(p(x)∇u) = λ|u|q−2u+ |u|2
∗−2u, u ∈ H1

0 (Ω),

where Ω ⊂ RN is a bounded smooth domain, N ≥ 4, 2∗ = 2N/(N − 2),
2 ≤ q < 2∗. Under some suitable conditions on the continuous potential
p(x) and on the parameter λ > 0, we obtain one nodal solution for q = 2
and one positive solution for 2 < q < 2∗.

2000 Mathematics Subject Classification : 35J50, 35B33, 58E05.
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1 Introduction

In this paper we address the existence of solutions for the semilinear problem

(P )

{
−div(p(x)∇u) = λ|u|q−2u+ |u|2∗−2u, x ∈ Ω,
u = 0, in ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, N ≥ 4, 2∗ = 2N/(N − 2) is the
critical Sobolev exponent, 2 ≤ q < 2∗, λ > 0 and p is a continuous function. We
are interested here in positive and sign changing solutions.

∗The first author was partially supported by CNPq/Brazil
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In the case p(x) ≡ 1 the above problem becomes

−∆u = λ|u|q−2u+ |u|2
∗−2u, u ∈ H1

0 (Ω).

In the seminal paper [4], Brezis and Nirenberg considered this the above problem
and proved that, at least for for q = 2, the existence of positive solution is
related with the interaction of λ with the spectrum of −∆. More specifically, if
we denote by λ1 the first eigenvalue of (−∆, H1

0 (Ω)), they obtained:

• if N ≥ 3 there is no positive solution if λ ≥ λ1;

• if N ≥ 4 the problem has a positive solution provided 0 < λ < λ1;

• if N = 3 there exists λ∗ > 0 such that the problem has a positive solution
provided λ∗ < λ < λ1.

In the case 2 < q < 2∗ they obtained positive solution for any λ > 0. The
nonexistence result above holds only for positive solution. Actually, Capozzi,
Fortunato and Palmieri proved in [7] that the above equation has a sign changing
solution whenever q = 2, N ≥ 4 and λ ≥ λ1. After these papers, problems with
critical growth has been extensively studied. Since it is impossible to give a
complete reference list we just cite [6, 5, 2, 1, 9, 11, 15, 10, 13, 16, 8] and
references there in.

In [12], Hadiji and Yazidi consider the case of non constant potential. As-
suming continuity for p, they proved that the existence of positive solutions
depends, besides the parameter λ, on the behaviour of p near its minima. More
specifically, they assumed that the function p satisfies the following conditions:

(p1) p ∈ H1(Ω) ∩ C(Ω);

(p2) there exists a ∈ Ω such that

p(a) = p0 := min{p(x) : x ∈ Ω} > 0;

(p3) there exist k > 0, βk > 0 and θ such that, is a small neighborhood of a,
there holds

p(x) = p0 + βk|x− a|k + θ(x)|x− a|k,

with limx→a θ(x) = 0.

As in the case of the Brezis and Nirenberg problem, it is important to consider
the linearized problem

(LP ) −div(p(x)∇u) = λu, u ∈ H1
0 (Ω).

If we denote by λ1,p > 0 the first eigenvalue of the above problem we can state
some of the results of [12] as follows:

• if N ≥ 4 and k > 0, there is no positive solution if λ ≥ λ1;
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• if N ≥ 4 and k > 2, the problem has a positive solution provided 0 < λ <
λ1,p;

• if N ≥ 4 and k = 2, there exists λ∗ = λ∗(N) > 0 such that the problem
has a positive solution provided λ∗ < λ < λ1,p.

The authors also present some existence results for the case N = 3. The above
results shows that the critical value for k is exactly k = 2. All the results in [12]
deals with the case q = 2 and they can viewed as the version of the Brezis and
Nirenberg results for the non constant potential equation (P ).

The aim of this paper is to complement the results of [12] in two senses:
firstly considering the existence of sign changing solution for q = 2 and λ ≥ λ1,p

and secondly dealing with superlinear perturbations of the critical term. We
stated in what follows the mains results of this paper.

Theorem 1.1. Suppose that q = 2 and p satisfies (p1)−(p3). Then the problem
(P ) has a sign changing solution if one of the below conditions holds

1. N ≥ 4, k > 2 and λ ≥ λ1,p;

2. N ≥ 5, k = 2 and λ ≥ max{λ1,p, ϑ(N)} where

ϑ(N) =

{
4β2, if N = 4,
ϑ0β2, if N ≥ 5,

β2 > 0 is given in (p3) and

ϑ0 = (N − 2)2

(∫
RN

|y|4

(1 + |y|2)N
dy

)(∫
RN

1

(1 + |y|2)N−2
dy

)−1

.

3. N = 4, k = 2, λ ≥ max{λ1,p, ϑ(N)} and there exists l0 > 0 such that∫
B(a,l0)

θ(x)

|x− a|4
dx <∞.

Theorem 1.2. Suppose that 2 < q < 2∗ and p satisfies (p1) − (p3). Then the
problem (P ) has a positive solution for any λ > 0.

The technical restrictions on λ presented in Theorem 1.1 show that, even on
the case of sign changing solution, the number k = 2 behaves like a critical value.
The proof of the first result will be done as an application of the generalized
Mountain Pass Theorem. The main difficult relies on some trick calculations to
correct localize the minimax level of the associated functional. For the second
result we apply the usual Mountain Pass Theorem. Again, we need to perform
some careful estimates.

The paper contains three more sections: in the first one we fix some notation
and present the variational framework to deal with the problem (P ). In Section
3 we prove Theorem 1.1 and the final section is devoted to the proof of Theorem
1.2.
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2 The variational setting

Throughout the paper we suppose that the function p satisfies (p1)− (p3). For
save notation, we write only

∫
Ω
u instead of

∫
Ω
u(x)dx. For any 1 ≤ t ≤ ∞, |u|t

denotes the norm in Lt(Ω).
Let H be the Hilbert space H1

0 (Ω) endowed with the norm ‖u‖ = (|∇u|22)1/2.
In view of the conditions (p1) and (p2) we can also consider the norm

‖u‖p =

(∫
p(x)|∇u|2

)1/2

, u ∈ H,

which is equivalent to ‖ · ‖.
The problem (P ) is variational in nature. Standard calculations show that

its weak solutions are precisely the critical points of the C1-functional I : H → R
given by

I(u) :=
1

2

∫
p(x)|∇u|2 − λ

2

∫
u2 − 1

2∗

∫
|u|2

∗
, u ∈ H.

We start this section with a local compactness result for the functional just
defined. In what follows, the number S stands for the best constant of the
Sobolev embedding H ↪→ L2∗(Ω), namely S = inf{|∇u|22 : |u|2∗ = 1}.

We say that I satisfies the (PS)c condition if any sequence (un) ⊂ H such
that I(un)→ c and I ′(un)→ 0 has a convergent subsequence.

Lemma 2.1. I satisfies the (PS)c condition for any c < c∗ := (p0S)N/2/N .

Proof. Suppose (un) ⊂ H verifies I ′(un) → 0 and I(un) → c < c∗. Let β > 0
be such that (1/2∗) < β < (1/2). We have that

on(1) + c+ on(1)‖un‖ = I(un)− βI ′(un)un

= β0‖un‖2p − λβ0|un|22 + β1|un|2
∗

2∗ ,

where β0 = (1/2−β), β1 = (β−1/2∗) and on(1) stands for a quantity approach-
ing zero as n → +∞. Given ε > 0, it follows from Young’s inequality and the
Sobolev embedding that, for some c1, c2 > 0,

|un|2 ≤ c1|un|2∗ ≤ ε|un|2
∗/2

2∗ + c2.

Hence,

on(1) + c+ on(1)‖un‖ ≥ p0β0‖un‖2 − λβ0(ε|un|2
∗/2

2∗ + c2)2 + β1|un|2
∗

2∗

≥ p0β0‖un‖2 − λβ0c3ε
2|un|2

∗

2∗ − c4 + β1|un|2
∗

2∗ ,

with c3, c4 > 0. By choosing 0 < ε <
√
β1(λβ0c3)−1/2, we obtain

1 + c+ on(1)‖un‖ ≥ p0β0‖un‖2 − c4,

and therefore (un) is bounded in H.
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Along a subsequence, we have that un ⇀ u weakly in H, un → u strongly
in Ls(Ω) for any 2 ≤ s < 2∗ and un(x) → u(x) a.e. in Ω. This, the Lebesgue
Theorem and a standard calculation show that I ′(u) = 0, and therefore

I(u) = I(u)− 1

2
I ′(u)u =

1

N
|u|2

∗

2∗ ≥ 0. (2.1)

If we set vn := un − u, we can use the Brezis-Lieb’s lemma [3] to get

on(1) = I ′(un)un = I ′(u)u+ ‖vn‖2p − λ|vn|22 − |vn|2
∗

2∗ + on(1)

= ‖vn‖2p − |vn|2
∗

2∗ + on(1),

and therefore, for some b ≥ 0, we have that

lim
n→+∞

‖vn‖2p = lim
n→+∞

|vn|2
∗

2∗ = b. (2.2)

It follows from the definition of S and p that∫
p(x)|∇vn|2 ≥ p0

∫
|∇vn|2 ≥ p0S|vn|22∗ .

Taking the limit we conclude that b ≥ p0Sb
2/2∗ . Suppose that b 6= 0. Then

b ≥ (p0S)N/2 > 0. Using the Brezis-Lieb’s lemma again we can compute

c+ on(1) = I(un) = I(u) +
1

2
‖vn‖2p −

1

2∗
|vn|2

∗

2∗ + on(1).

Letting n→ +∞ and using (2.1) and (2.2) we obtain

c = I(u) +

(
1

2
− 1

2∗

)
≥ 1

N
b ≥ 1

N
(p0S)N/2,

which does not make sense. This shows that b = 0, from which it follows that
‖un − u‖2p = on(1). The lemma follows from the equivalence between ‖ · ‖p and
the usual norm.

3 Nodal solution for q = 2 and λ ≥ λ1,p

In this section we present the proof of Theorem 1.1 as an application of the
generalized Moutain Pass Theorem [14] (see also [17, Theorem 2.12, pg. 43]).

Theorem 3.1. Let X be a real Banach space with X = Y ⊕Z and dimY <∞.
Suppose I ∈ C1(X, R) satisfies

(I1) there exist ρ, σ > 0 such that I|∂Bρ(0)∩Z ≥ σ ;

(I2) there exist e ∈ ∂B1(0) ∩ Z and R > ρ such that,

I|∂Q ≤ 0,

with
Q := (BR(0) ∩ Y )⊕ {te : 0 < t < R}.
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Let
c := inf

γ∈Γ
max
u∈Q

I(γ(u)) ≥ σ > 0, (3.1)

where Γ :=
{
γ ∈ C(Q,X) : γ ≡ Id on ∂Q

}
. If I satisfies the (PS)c condition,

then c is a critical value of I.

In order to present the decomposition of the space H we recall that, from
the spectral theory for compact operators, the eigenvalue problem

−div(p(x)∇u) = λu, u ∈ H1
0 (Ω),

has a sequence of eigenvalues

0 < λ1,p < λ2,p ≤ λ3,p ≤ ... ≤ λn,p ≤ λn+1,p →∞,

and associated eigenfunctions (ϕk,p)k∈N. Let n ∈ N be such that λn,p ≤ λ <
λn+1,p and define

Y := span {ϕ1,p, ϕ2,p, ..., ϕn,p} , Z := Y ⊥. (3.2)

The variational characterization of eigenvalues provides the following inequali-
ties ∫

p(x)|∇u|2 ≤ λn,p
∫
u2, ∀u ∈ Y (3.3)

and ∫
p(x)|∇u|2 ≥ λn+1,p

∫
u2, ∀u ∈ Z. (3.4)

The next proposition plays a crucial rule in the proof of Theorem 1.1. We
postpone its proof to the end of the section.

Proposition 3.2. If λ ∈ [λn,p, λn+1,p) satisfies the hypotheses of Theorem 1.1,
then there exists z ∈ Z \ {0} such that

max
u∈Y⊕Rz

I(u) < c∗ =
1

N
(p0S)N/2.

Assuming the above result we can prove our first theorem as follows:

Proof of Theorem 1.1. We shall apply Theorem 3.1 with the decomposition
H = Y ⊕ Z, the spaces Y and Z defined above and e = z/‖z‖, where the
function z ∈ Z \ {0} comes from Proposition 3.2.

It follows from (3.4), p(x) ≥ p0 > 0 and the embedding H ↪→ L2∗(Ω) that,
for any u ∈ Z, there holds

I(u) ≥ 1

2

(
1− λ

λn+1,p

)
p0‖u‖2 −

1

2∗

∫
|u|2

∗
≥ c1‖u‖2 − c2‖u‖2

∗

with c1, c2 > 0. Since 2∗ > 2 the above equation implies that the condition (I1)
of Theorem 3.1 holds for some ρ, σ > 0.
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In order to check (I2) we first consider u ∈ Y and use (3.3) to get

I(u) ≤ (λn,p − λ)

2

∫
u2 − 1

2∗

∫
|u|2

∗
≤ 0.

Moreover, since Y ⊕Rz has finite dimension, we have that all norms in this space
are equivalent. So, there exist c2, c3, c4 > 0 such that, for any u ∈ Y ⊕ Rz,
there holds

I(u) ≤ 1

2
c2‖u‖2 −

λ

2
c3‖u‖2 −

1

2∗
c4‖u‖2

∗
,

and therefore I(u) → −∞ whenever ‖u‖ → +∞, with u ∈ Y ⊕ Rz. Thus, the
condition (I2) holds for some R > ρ sufficiently large.

All the geometric conditions of the generalized Moutain Pass Theorem are
satisfied. Moreover, Proposition 3.2 and the definition of c in (3.1) imply that
c < c∗. Hence I satisfies the (PS)c condition and it follows from Theorem 3.1
that there exists u ∈ H such that I ′(u) = 0 and I(u) = c ≥ σ > 0.

It remains to check that u is a sign changing solution. Indeed, if this is not
the case, it follows from u 6≡ 0 and the Maximum Principle that u > 0 (or u < 0)
in Ω. But this contradicts the nonexistence result proved in [12, Theorem 1.1],
since λ ≥ λ1,p. The theorem is proved. �

We devote the rest of this section to the proof of Proposition 3.2. For any
ε > 0 we consider the function

wε(x) :=
ψ(x)ε

N−2
4

[ε+ |x− a|2](N−2)/2
, (3.5)

where ψ ∈ C∞0 (Ω) is such that 0 ≤ ψ ≤ 1, ψ ≡ 1 in B(a, l), ψ ≡ 0 in Ω\B(a, 2l)
and l > 0 satisfies B(a, 2l) ⊂ Ω. We also consider the ratio

Qλ,p(u) :=
‖u‖2p − λ|u|22
|u|22∗

, u ∈ H \ {0}.

The following estimates are proved in [12, Lemma 3.2].

Lemma 3.3. As ε→ 0+, we have that

Qλ,p(wε) ≤



p0S − λK3

K2
ε+ o(ε), N ≥ 5, k > 2;

p0S −
(
λ− A2

K3
β2

)
K3

K2
ε+ o(ε), N ≥ 5 e k = 2;

p0S − λ ω4

2K2
ε| log ε|+ o(ε| log ε|), N = 4 e k > 2;

p0S − (λ− 4β2) ω4

2K2
ε| log ε|+ o(ε| log ε|), N = 4, k = 2,

where ω4 is the area of the unitary sphere of R4,

K2 :=
1

S
(N − 2)2

∫
RN

|y|2

[1 + |y|2]
dy, K3 :=

∫
RN

1

[1 + |y|2]N−2
dy
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and

A2 := (N − 2)2

∫
RN

|y|4

(1 + |y|2)N
dy.

We divide the proof of Proposition 3.2 in two distinct cases depending on λ
be or not to be an eigenvalue.

Case 1. λn,p < λ < λn+1,p

In this first case we define

zε := wε −
n∑
i=1

(∫
wεϕi,p

)
ϕi,p,

where ϕi,p are the eigenfunctions of (LP ). We shall prove Proposition 3.2 for
z = zε with ε small.

For any u ∈ H \ {0}, a straightforward computation shows that

max
t≥0

I(tu) ≤ 1

N
Qλ,p(u)N/2.

Since Y ⊕ Rwε = Y ⊕ Rzε it suffices to prove that

mε := max
u∈Σε

(
‖u‖2p − λ|u|22

)
< p0S

where the set Σε is defined as below

Σε := {u = y + twε; y ∈ Y, t ∈ R, |u|2∗ = 1} . (3.6)

In what follows we present some estimates which will provide the desired in-
equality mε < p0S.

Lemma 3.4. As ε→ 0+, we have the following

|wε|2
∗−1

2∗−1 = O(ε
N−2

4 ), |wε|1 = O(ε
N−2

4 ) (3.7)

and

max

{
|〈y, wε〉p| ,

∣∣∣∣∫ ywε

∣∣∣∣} = |y|2O(ε
N−2

4 ), ∀ y ∈ Y. (3.8)

Proof. Since 0 ≤ ψ ≤ 1 and ψ ≡ 0 outside B(a, 2l), it follows that

|wε|2
∗−1

2∗−1 ≤ ε(N+2)/4

∫
B(a,2l)

1

(ε+ |x− a|2)(N+2)/2
dx

= ε(N−2)/4

∫
B2l/

√
ε(0)

1

[1 + |y|2]
(N+2)/2

dy = O(ε
N−2

4 ).
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Moreover,

|wε|1 ≤ ε(N−2)/4

∫
B(a,2l)

1

[ε+ |x− a|2](N−2)/2
dx

≤ ε(N−2)/4

∫
B(a,2l)

1

|x− a|(N−2)
dx = O(ε

N−2
4 ),

since the last integral is finite.
In order to verify (3.8) we take y =

∑n
i=1 βiϕi,p ∈ Y . It follows from (3.7)

that

|〈y, wε〉p| =

∣∣∣∣∣∣
〈

n∑
i=1

βiϕi,p, wε

〉
p

∣∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

λi,pβi

∫
ϕi,pwε

∣∣∣∣∣
≤ c3

(
n∑
i=1

|βi|

)∫
wε ≤

(
n∑
i=1

|βi|

)
O(ε

N−2
4 ),

(3.9)

with c3 = λn,p max{|ϕ1,p|∞, . . . , |ϕn,p|∞}. The equivalence on the norms in Y
implies that

∑n
i=1 |βi| ≤ c4|y|2. This and (3.9) provides

|〈y, wε〉p| ≤ |y|2O(ε
N−2

4 ).

The argument for |
∫
ywε| is analogous and we omit it.

Lemma 3.5. If u = y + twε ∈ Σε, then t = O(1) as ε→ 0+.

Proof. Let
A(u) := |u|2

∗

2∗ − |y|2
∗

2∗ − |twε|2
∗

2∗ .

Since Y is finite dimensional and the eigenfunctions of (LP ) are regular, we can
use the Mean Value Theorem to get

A(u) = 2∗
∫ ∫ 1

0

(|twε + sy|2
∗−2(twε + sy)− |sy|2

∗−2sy)ds

= 2∗(2∗ − 1)

∫ ∫ 1

0

|sy + twεη(x)|2
∗−2twεyds,

where 0 ≤ η(x) ≤ 1 is measurable, and therefore

|A(u)| ≤ c12∗(2∗ − 1)

(∫ ∫ 1

0

|s|2
∗−2|y|2

∗−1|twε|ds+

∫ ∫ 1

0

|twεη|2
∗−2twεyds

)
.

The equivalence of the norms in Y and the previous lemma provide

|A(u)| ≤ c2

{
|y|2

∗−1
∞ |t||wε|1 + |y|∞|t|2

∗−1|wε|2
∗−1

2∗−1

}
≤ c3

{
|y|2

∗−1
2∗ |t|O(ε

N−2
4 ) + |y|2∗ |t|2

∗−1O(ε
N−2

4 )
}
.

(3.10)
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For ξ > 0, we can use Young’s inequality to get

|y|2
∗−1

2∗ |t|O(ε
N−2

4 ) ≤ ξ|y|2
∗

2∗ + c4|t|2
∗
O(ε

N−2
4 )

2N
N−2

and
|y|2∗ |t|2

∗−1O(ε
N−2

4 ) ≤ ξ|y|2
∗

2∗ + c5|t|2
∗
O(ε

N−2
4 )

2N
N+2 .

Picking ξ < 1/(4c3), we can use (3.10) and the inequalities above to assure that

|A(u)| ≤ 1

2
|y|2

∗

2∗ + |t|2
∗
{
O(ε

N
2 ) +O(ε

N(N−2)
2(N+2) )

}
. (3.11)

Recalling that (see [4] or [17, pg. 35])

|wε|2
∗

2∗ = [N(N − 2)]−2∗SN/2 +O(ε
N
2 ),

using the definition of A(u) and (3.11), it follows that

1 = |u|2
∗

2∗ ≥ |twε|2
∗

2∗ +
1

2
|y|2

∗

2∗ + |t|2
∗
{
O(ε

N
2 ) +O(ε

N(N−2)
2(N+2) )

}
≥ |t|2

∗
{

[N(N − 2)]−2∗SN/2 +O(ε
N
2 ) +O(ε

N(N−2)
2(N+2) )

}
,

and therefore t = O(1) as ε→ 0+.

We are now able to present the

Proof of Proposition 3.2 (for λn,p < λ < λn+1,p). Given u = y + twε ∈ Σε, we
can use (3.8) and Lemma 3.5 to get

‖u‖2p = ‖y + twε‖2p ≤ ‖y‖2p + |y|2O(ε
N−2

4 ) + ‖twε‖2p.

The same argument for |u|22 = |y + twε|22, the above inequality and (3.3) imply
that

‖u‖2p − λ|u|22 ≤ (λn,p − λ)|y|22 + |y|2O(ε
N−2

4 ) +Qλ,p(twε)|twε|22∗ .

For a < 0, we have that ar2 + br ≤ −b2/4a, for any b, r ∈ R. Thus, recalling
that (λn,p − λ) < 0, we have that

‖u‖2p − λ|u|22 ≤
1

4(λ− λn,p)
O(ε

N−2
2 ) +Qλ,p(wε)|twε|22∗ . (3.12)

On the other hand, the Mean Value Theorem provides a (bounded) measur-
able function ξ, such that

1 =

∫ (
|twε|2

∗
+ 2∗|twε + ξ(x)y|2

∗−2(twε + ξ(x)y)y
)

≥ |twε|2
∗

2∗ + 2∗
∫
|twε|2

∗−1|y| ≥ |twε|2
∗

2∗ − |y|2O(ε
N−2

4 ),
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from which we conclude that

|twε|2
∗

2∗ ≤ 1 + |y|2O(ε
N−2

4 ).

If we now suppose that N ≥ 5 and k > 2, we can use use the first inequality
in Lemma 3.3, the above expression and (3.12) to obtain d < 0 such that

‖u‖2p − λ|u|22 ≤ p0S + ε

(
d+

1

4(λ− λn,p)
O(ε

N−2
4 ) + o(1)

)
,

and therefore, for ε > 0 small, we have that

‖u‖2p − λ|u|22 ≤ γ < p0S, ∀u ∈ Σε.

The other three cases presented in the estimate of Lemma 3.3 can be handled
with similar arguments. We omit the details and finish the proof of Proposition
3.2 in the case λn,p < λ < λn+1,p. �

We consider now the complementary case:

Case 2. λ = λn,p.

We define
w̃ε := wε − 〈wε, ϕn,p〉pϕn,p,

and we shall verify that

m̃ε = max
u∈Σ̃ε

(
‖u‖2p − λn,p|u|22

)
< p0S,

where
Σ̃ε = {u = y + tw̃ε; y ∈ Y, t ∈ R, |u|2∗ = 1} .

Lemma 3.6. As ε→ 0+, we have that

|w̃ε|2
∗−1

2∗−1 = O(ε
N−2

4 ), |w̃ε|1 = O(ε
N−2

4 ),

max

{
|〈y, w̃ε〉p|,

∣∣∣∣∫ yw̃ε

∣∣∣∣} ≤ |y|2O(ε
N−2

4 ),

and

Qλ,p(w̃ε) = Qλ,p(wε) +
O(ε

N−2
2 )

|wε|22∗ +O(ε
N−2

2 )
.

Proof. By using Lemma 3.4 we have that

|w̃ε|2
∗−1

2∗−1 ≤ c1

∫
|wε|2

∗−1 + c2|〈wε, ϕn,p〉p|2
∗−1

∫
|ϕn,p|2

∗−1

= O(ε
N−2

4 ) +O(ε
N−2

4 )
N+2
N−2 = O(ε

N−2
4 ).
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The second and third inequality follows from a similar argument. The proof of
the last one is more delicate. We first notice that

‖w̃ε‖2p = ‖wε‖2p+ 〈wε, ϕn,p〉2p‖ϕn,p‖2p−2〈wε, ϕn,p〉2p = ‖wε‖2p+O(ε
N−2

2 ), (3.13)

and also
|w̃ε|22 ≤ |wε|22 +O(ε

N−2
2 ). (3.14)

Moreover,

|w̃ε|2
∗

2∗ − |wε|2
∗

2∗ =

∫ ∫ 1

0

d

ds
|wε − s〈wε, ϕn,p〉pϕn,p|2

∗
ds

≤ c2|〈wε, ϕn,p〉p|
∫
|wε|2

∗−1 + c3|〈wε, ϕn,p〉p|2
∗
∫
|ϕn,p|2

∗

= O(ε
N−2

4 )O(ε
N−2

4 ) +O(ε
N−2

4 )2∗ = O(ε
N−2

2 ),

where we have used Lema 3.4 again. For some ξ ∈ (0, 1) it holds

|w̃ε|22∗ = (|w̃ε|2
∗

2∗)
2/2∗ =

(
|wε|2

∗

2∗ +O(ε
N−2

2 )
)2/2∗

= (|wε|2
∗

2∗)
2/2∗ +

2

2∗

(
|wε|2

∗

2∗ + ξO(ε
N−2

2 )
) 2

2∗−1

O(ε
N−2

2 ).

Since 0 < limε→0+ |wε|2∗ <∞, we conclude that

|w̃ε|22∗ = |wε|22∗ +O(ε
N−2

2 ).

This, (3.13) and (3.14) provide

Qλ,p(w̃ε) ≤
‖wε‖2p − λ|wε|22 +O(ε

N−2
2 )

|wε|22∗ +O(ε
N−2

2 )
= Qλ,p(wε) +

O(ε
N−2

2 )

|wε|22∗ +O(ε
N−2

2 )
,

and the proof is finished.

Proof of Proposition 3.2 (for λ = λn,p). Given u = y+ tw̃ε ∈ Σ̃ε, we can rewrite
y ∈ Y as

y = ỹ + 〈y, ϕn,p〉pϕn,p.
In this way 〈ϕn,p, w̃ε〉p =

∫
ϕn,pw̃ε = 0 and ‖ϕn,p‖2p = λn,p|ϕn,p|22. Hence

‖u‖2p − λn,p|u|22 = ‖ỹ‖2p − λn,p|ỹ|22 + 2〈ỹ, tw̃ε〉p − 2λn,p

∫
tỹw̃ε +Qλ(tw̃ε)|tw̃ε|22∗ .

It follows from Lemma 3.6 that

‖u‖2p − λn,p|u|22 ≤
1

4(λn−1,p − λn,p)
O(ε

N−2
2 ) +Qλ(w̃ε)|tw̃ε|22∗ .

Since t = O(1) as ε→ 0+, we can use Lemma 3.5 and argue as in the first case
to obtain, for ε > 0 small enough,

‖u‖2p − λ|u|22 < p0S, ∀u ∈ Σ̃ε,

and this concludes the proof. �
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4 Positive solution for 2 < q < 2∗ and λ > 0

We prove in this section Theorem 1.2. Since we are looking for positive solution
we redefine the functional I as follows

I(u) :=
1

2

∫
p(x)|∇u|2 − λ

q

∫
(u+)q − 1

2∗

∫
(u+)2∗ ,

where u+(x) := max{u(x), 0}.
It is standard to check that there exist ρ, σ > 0 such that I |∂Bρ(0)≥ σ as

well as e ∈ H verifying ‖e‖ ≥ ρ and I(e) < 0. Hence, if we define

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

with
Γ := {γ ∈ C([0, 1], H) : γ(0) = 0, γ(1) = e} .

Arguing as in the proof of Lemma 2.1 we can check that I satisfies (PS)d for
any d < c∗. Hence, if

c < c∗ =
1

N
(p0S)N/2, (4.1)

we can apply the Mountain Pass Theorem to obtain a nonzero critical point
u ∈ H. Testing the derivative I ′(u) with u− = min{u(x), 0} we conclude that
u ≥ 0. By the Maximum Principle the solution is positive.

We devote the rest of this section to prove that (4.1) holds. We first recall
that the minimax level c can also be characterized by (see [17, Theorem 4.2]),

c = inf
u∈H\{0}

max
t≥0

I(tu).

Hence, it suffices to prove the following

Proposition 4.1. There exists v ∈ H \ {0} such that

sup
t≥0

I(tv) <
1

N
(p0S)N/2.

Proof. Let ψ ∈ C∞0 (Ω) be such that 0 ≤ ψ ≤ 1, ψ ≡ 1 in B(a, l), ψ ≡ 0 in
Ω \B(a, 2l) and l > 0 verifies B(a, 2l) ⊂ Ω. For ε > 0 we set

uε(x) :=
ψ(x)

[ε+ |x− a|2]
N−2

2

, vε :=
uε
|uε|2∗

.

We define, for t ≥ 0, the function

h(t) := I(tvε).

Let tε > 0 be the unique critical point of h in (0,+∞). Since vε ≥ 0, we have
that

0 = h′(tε) = tε‖vε‖2p − λtq−1
ε |vε|qq − t2

∗−1
ε |vε|2

∗

2∗ .
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Moreover, since |vε|2
∗

2∗ = 1 and λ > 0, we get

‖vε‖2p = λtq−2
ε |vε|qq + t2

∗−2
ε ≥ t2

∗−2
ε ,

We set

t̂ := ‖vε‖
2

2∗−2
p ≥ tε

and

g(t) :=
1

2
t2 t̂ 2∗−2 − 1

2∗
t2
∗
, t ≥ 0.

Since g′(t) = t(t̂ 2∗−2 − t2∗−2), the function g is increasing in [0, t̂ ]. Recalling
that |vε|2∗ = 1 we can use the definition of t̂ to compute

I(tεvε) = g(tε)−
λ

q
tqε|vε|qq ≤ g(t̂)− λ

q
tqε|vε|qq =

1

N
(‖vε‖2p)N/2 −

tqε
q
λ|vε|qq. (4.2)

As ε→ 0+, we have that

|uε|qq =

∫
B(a,l)

1

(ε+ |x− a|2)q(N−2)/2
dx+O(1)

=

∫
B(l/

√
ε,0)

ε
N
2

(ε+ ε|y|2)q(N−2)/2
dy +O(1)

= ε
N
2 −

q(N−2)
2

∫
B(l/

√
ε,0)

1

(1 + |y|2)q(N−2)/2
dy +O(1).

Since q > 2 we have that −q(N − 2) + N < 0, and therefore the last integral
above is O(1), in such way that

|uε|qq = O
(
ε
N
2 −

q(N−2)
2

)
+O(1). (4.3)

On the other hand, as proved in (cf. [2, pg 444]), we have that

|uε|22∗ = K2ε
−N−2

2 +O(ε),

with K2 = K2(N) > 0. Thus,

|uε|q2∗ =
(
|uε|22∗

) q
2 =

(
K2ε

− (N−2)
2 +O(ε)

) q
2

= O(ε−
q(N−2)

4 ) +O(1). (4.4)

Since uε = |uε|2∗vε, and Q0,p(uε) = Q0,p(|uε|2∗vε) = ‖vε‖2p, it follows from
the calculations presented in the proof of [12, Lemma 3.2] that

‖vε‖2p =

{
p0S +O(ε), N ≥ 5;

p0S +O(ε| log ε|), N = 4.
(4.5)

Hence ‖vε‖2p = p0S +O(ε| log ε|) and we conclude that(
‖vε‖2p

)N/2
= (p0S)N/2 +O(ε| log ε|).
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We claim that there exists C0 > 0 such that tqε ≥ qC0 for any ε > 0.
Indeed, suppose by contradiction that, for some sequence εn → 0+, we have
that tεn → 0. Then

‖tεnvεn‖2p = t2εn‖vεn‖
2
p = t2εn(p0S +O(εn| log εn|)) = on(1),

and therefore tεnvεn → 0 in H. This would imply

0 < c ≤ sup
t≥0

I(tvεn) = I(tεnvεn)→ I(0) = 0,

which is absurd.
The boundedness of (tn), (4.2) and (4.5) imply that

I(tεvε) ≤
1

N
(p0S)

N
2 +O(ε| log ε|)− C0λ|vε|qq

=
1

N
(p0S)

N
2 + ε| log ε|

(
O(1)− λC0

|vε|qq
ε| log ε|

)
.

It suffices now to prove that

lim
ε→0+

|vε|qq
ε| log ε|

= +∞. (4.6)

By (4.3) and (4.4) we get

|vε|qq =
|uε|qq
|uε|q2∗

=
O
(
ε
N
2 −

q(N−2)
4

)
1 +O

(
ε
q(N−2)

4

) +O(1).

or, equivalently,

|vε|qq
ε| log ε|

=
O
(
ε1−N2 +

q(N−2)
4 | log ε|

)−1

1 +O
(
ε
q(N−2)

4

) +O(1).

Since q > 2, a direct calculation provides 1 − (N/2) + q(N − 2)/4 > 0 and
therefore (4.6) holds. The proposition is proved.
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