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Abstract. We obtain existence of solutions for the system{
−∆u + V (x)u = Fv(x, u, v), x ∈ RN ,

−∆v + V (x)v = Fu(x, u, v), x ∈ RN ,

where N ≥ 3, V ∈ C(RN , (0,∞)) is periodic and F ∈ C1(RN × R2,R) is

superquadratic at infinity. We consider the case that F is periodic and asymp-
totically periodic. In the proofs we apply variational techniques.

1. Introduction

In this paper we prove existence of solutions for the following Hamiltonian system{
−∆u+ V (x)u = Fv(x, u, v), x ∈ RN ,

−∆v + V (x)v = Fu(x, u, v), x ∈ RN ,
(1.1)

where N ≥ 3, F ∈ C1(RN × R2,R) and Fu, Fv stand for the partial derivatives of
F with respect to the second and third variable.

Recently, many authors have used variational techniques to study the system
(1.1) and its variants. For the bounded domain case we refer the reader to [4, 6, 7,
11, 12] and references therein, while for the whole space RN we quote the papers
[2, 5, 8, 13, 18, 22], among others. In these works, a huge machinery is needed to
obtain existence and multiplicity of solutions: fractional Sobolev spaces, reduction
methods, the generalized Mountain Pass Theorem, radial approaches and many
others.

One of the main difficulties in dealing with (1.1) relies on the lack of compactness
due to the unboundedness of the domain. In some of the above quoted papers this
difficulty was overcome by imposing periodicity both on the potential V and on
the nonlinearity F . Here, we consider not only the periodic case for F , but also
the asymptotically periodic case. The main assumption on V ∈ C(RN ,R) is the
following

(V0) V (x) = V (x1, . . . , xN ) is positive and 1-periodic in the variables x1, · · · , xN .

In our fist result, we consider the periodic problem. We start by assuming the
following growth conditions on the nonlinearity F :

(F0) F (x, z) is 1-periodic in the variables x1, x2, · · · , xN ;
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(F1) there exist c > 0 and p ∈ (2, 2N/(N − 2)) such that

|Fz(x, z)| ≤ c(1 + |z|p−1), for each (x, z) ∈ RN × R2,

where Fz(x, z) = (Fu(x, z), Fv(x, z)) ∈ R2;
(F2) Fz(x, z) = o(|z|) as |z| → 0, uniformly for x ∈ RN .

We are interested in the case that F is superquadratic at infinity. Since the seminal
work of Ambrosetti and Rabinowitz [1], superquadratic problems (at infinity) are
subject to intensive studies. The superlinear condition introduced in [1] read as

(AR) there exists µ > 2 such that, for each x ∈ RN , z ∈ R2 \ {0}, there holds

0 < µF (x, z) ≤ Fz(x, z) · z,

where the dot stands for the scalar product in R2. It is well known that is condition
provides boundedness for the Palais-Smale sequences of the energy functional. A
straightforward calculation shows that (AR) implies F (x, z) ≥ c|z|µ for large values
of |z|, and therefore it is natural to consider the weaker assumption

(F3) F (x,z)
|z|2 →∞ as |z| → ∞, uniformly for x ∈ RN .

There are many results concerning the scalar version of (1.1) and considering
the above superquadratic growth condition instead of (AR). Most of them use
the Nehari approach for which the authors assume a monotonicity condition for
f(x, t)/t. In our first result, we follow an analogous approach and therefore we
need a version of this monotonicity condition for the nonlinearity F . We assume
that

(F4) there exists g : RN × R+ → [0,+∞) increasing in the second variable such
that

Fz(x, z) = g(x, |z|)z, for each (x, z) ∈ RN × R2.

We recall that, for some suitable Banach space E (see Section 3), the weak
solutions of problem (1.1) are critical points of the C1-functional

I(z) =

∫
RN

(∇u · ∇v + V (x)uv) dx−
∫
RN

F (x, z)dx,

for any z = (u, v) ∈ E. We say that z0 ∈ E is a least energy solution if

I(z0) = inf {I(z) : z ∈ E \ {0} is a weak solution of (1.1)}

In our first result, we prove the existence of this kind of solution.

Theorem 1.1. Suppose that V satisfies (V0) and F satisfies (F0)− (F4). Then the
problem (1.1) has a least energy solution.

Due to the Hamiltonian nature of our system, the functional associated to the
problem (1.1) is strongly indefinite. Hence, the usual Nehari approach can not be
used. In [17], Pankov introduced a generalized Nehari manifold and imposed some
technical assumptions on the nonlinearity in order to obtain regularity. However,
with the weaker conditions imposed here, we cannot prove this regularity and there-
fore that argument does not work. Recently, Szulkin and Weth [19] developed a
new approach based on a reduction method which allows one to prove that mini-
mizers of the functional I on the the generalized Nehari manifold are critical points
of the unconstrained functional. We follow the ideas of this last paper in the proof
of Theorem 1.1.
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Let us now give a concrete example which fits with Theorem 1.1. Let a ∈
C(RN ,R) be positive and 1-periodic in x1, . . . , xN and consider

F (x, z) :=


a(x)

4

[
2(|z|2 − 1) ln(1 + |z|) + 2|z| − |z|2 + 4 ln(2)− 3

]
, if |z| ≥ 1,

a(x)

4
[−2|z|2 + 2(1 + |z|2) ln(1 + |z|2)], if |z| < 1.

We can see that this nonlinearity satisfies (F0)− (F4) with

g(x, t) :=

{
a(x) ln(1 + t), if t ≥ 1,

a(x) ln(1 + t2), if 0 ≤ t < 1.

However, it does not satisfy the hypothesis (AR).
Secondly, we consider the case in which F is non periodic. In this new setting

we need to introduce the auxiliary function

F̂ (x, z) :=
1

2
Fz(x, z) · z − F (x, z),

for (x, z) ∈ RN × R2 and require the following assumptions:

(F5) there exists δ0 > 0 such that, for any r ∈ (0, δ0), there holds

q(r) := inf{F̂ (x, z) : x ∈ RN , |z| ≥ r} > 0;

(F6) there exist c0, R0 > 0 and τ > N/2 such that

|Fz(x, z)|τ ≤ c0|z|τ F̂ (x, z) for each x ∈ RN , |z| ≥ R0.

In order to make precise the definition of asymptotically periodic, let us denote
by F the class of all functions ϕ ∈ C(RN ) ∩ L∞(RN ) such that, for any ε > 0,
the set {x ∈ RN : |ϕ(x)| ≥ ε} has finite Lebesgue measure. The next hypothesis
provides the asymptotic behavior of the nonlinearity F :

(F7) there exist p∞ ∈ (2, 2∗), ϕ ∈ F and F∞ ∈ C1(RN × R2,R) such that
(i) F∞ satisfies (F0)− (F4);
(ii) F (x, z) ≥ F∞(x, z) for each (x, z) ∈ RN × R2;

(iii) |Fz(x, z)− F∞,z(x, z)| ≤ ϕ(x)|z|p∞−1 for each (x, z) ∈ RN × R2.

Our second main result is the following:

Theorem 1.2. Suppose that V satisfies (V0) and F satisfies (F2) and (F5)− (F7).
Then the problem (1.1) has a nonzero solution.

In the proof we apply a version of the Linking Theorem due to Li and Szulkin
[14] to obtain a Cerami sequence for the associated functional. After proving that
the sequence is bounded, we prove that its weak limit is a solution of (1.1). The
main difficulty is to prove that this weak limit is nonzero. Indeed, since we are not
able to prove that I satisfies the usual compactness condition, we need to use an
indirect argument and prove a local version of the Linking Theorem. To state this
version, we need to introduce some notations and assumptions and we prefer to
postpone its statement to Section 2 (see Theorem 2.3). We are confident that this
new abstract result may be used in other problems related with functionals affected
by a lack of compactness.

Condition (F7) was introduced by Lins and Silva [15] in the study of a Schrödinger
equation. As far we know, condition (F6) was introduced by Ding and Lee [9] as
an alternative to the (AR) condition. There the authors considered a Schrödinger
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equation with indefinite potential and showed that (AR) and (F1) imply (F6). This
condition is also used in [20]. We also mention the paper of Zhang et al. [22] where
the authors considered the periodic case of (1.1) with an indefinite potential. The
technical condition (F5) is important in the proof of the boundedness of Cerami se-
quences (see [10] for closely related results) and it is clearly satisfied in the periodic
case.

2. Preliminary results

In this section we present some abstract results that will be used in our proofs.
We will denote by E a real Hilbert space with scalar product 〈·, ·〉 and associated
norm ‖ · ‖. We assume that there is an orthogonal decomposition E = E− ⊕ E+,
in such way that any element z ∈ E has a unique decomposition z = z+ + z−, with
z± ∈ E±. Given r > 0, we define the sets

Nr := {z ∈ E+ : ‖z‖ = r}, S+ := N1 = {z ∈ E+ : ‖z‖ = 1}, (2.1)

E(z) := Rz ⊕ E− ≡ Rz+ ⊕ E−,
and

Ê(z) := R+z ⊕ E− ≡ R+z+ ⊕ E−.
Suppose that the functional I ∈ C1(E,R) verifies the following assumptions:

(N1) I can be written as

I(z) =
1

2
‖z+‖2 − 1

2
‖z−‖2 − J (z), (2.2)

with J ∈ C1(E,R) weakly lower semicontinuous, J (0) = 0 and, for each
z 6= 0, there holds

J ′(z)z > 2J (z) > 0;

(N2) for each z ∈ E\E− the restriction of I to the set Ê(z) has a unique nonzero
critical point m̂(z) which is a global maximum point of this restriction;

(N3) there exists δ > 0 such that ‖m̂(z)+‖ ≥ δ, for each z ∈ E \ E−. Moreover,
if K ⊂ E \E− is compact, then there exists cK such that ‖m̂(z)‖ ≤ cK, for
each z ∈ K.

We introduce the generalized Nehari manifold of I by setting

M := {z ∈ E \ E− : I ′(z)z = 0 and I ′(z)w = 0 for all w ∈ E−}.
Notice that, if z 6= 0 is a critical point of I, then we can use (N1) to get

I(z) = I(z)− 1

2
I ′(z)z =

1

2
J ′(z)z − J (z) > 0.

Since I ≤ 0 on E−, the above inequality shows thatM contains all nonzero critical
points of I. Moreover, by using (N2) and the definition ofM, we can construct the
map

m̂ : E \ E− →M, m̂(z) :=
{

the unique global maximum point of I|Ê(z)

}
.

We shall denote by m the restriction of this map to the set S+, that is,

m := m̂|S+ .

We collect in the following result the main properties of the above maps, whose
proofs can be found in a series of lemmas from [19].

Lemma 2.1. If I ∈ C1(E,R) satisfies (N1)− (N3) then
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(i) m̂ is continuous and m : S+ →M is an homeomorphism;

(ii) the functional Ψ̂ : E+ \{0} → R given by Ψ̂(z) := I(m̂(z)) is of class C1. The

same holds for Ψ := Ψ̂|S+ , with

Ψ′(z)w = ‖m(z)+‖I ′(m(z))w, for each w ∈ Tz(S+);

(iii) if (zn) ⊂ S+ is a Palais-Smale sequence for Ψ, then (m(zn)) ⊂M is a Palais-
Smale sequence for I. If (wn) ⊂ M is a bounded Palais-Smale sequence for
I, then (m−1(wn)) ⊂ S+ is a Palais-Smale sequence for Ψ;

(iv) infS+ Ψ = infM I.

In order to present our next abstract result we need to introduce a new topology
in the space E. We take a total orthonormal sequence (ek) in E−, set

‖z‖τ := max

{
‖z+‖,

∞∑
k=1

1

2k
|〈z−, ek〉|

}
and call τ -topology the topology induced by this norm. It can be proved that, in
bounded sets, its coincides with the topology of E that is weak is on E− and strong

on E+. Hence, for a bounded sequence (zn) ⊂ (E, τ), we have that zn
τ→ z in E

if, and only if z+
n → z+ and z−n ⇀ z− weakly in E. We refer to [12, Section 2] for

others properties of the τ -topology.
Given a set M ⊂ E, an homotopy h : [0, 1]×M → E is said to be admissible if

(i) h is τ -continuous, that is, if tn → t and zn
τ→ z then h(tn, zn)

τ→ h(t, z);
(ii) for each (t, z) ∈ [0, 1]×M there is a neighborhood U of (t, z) in the product

topology of [0, 1] and (E, τ) such that the set {w − h(t, w) : (t, w) ∈ U ∩
([0, 1]×M)} is contained in a finite dimensional subspace of E.

The symbol Γ will denote the following class of admissible maps

Γ := { h ∈ C([0, 1]×M,E) : h is admissible,h(0, ·) = IdM ,

I(h(t, z)) ≤ max{I(z),−1} for all (t, z) ∈ [0, 1]×M}.
The following version of the Linking Theorem was proved in [14, Theorem 2.1]:

Theorem 2.2. Suppose that I ∈ C1(E,R) satisfies

(L1) I can be written as in (2.2) with J bounded from below, weakly sequentially
lower semicontinuous and J ′ weakly sequentially continuous;

(L2) there exists z0 ∈ E+\{0}, α > 0 and R > r > 0 such that

inf
z∈Nr

I(z) ≥ α, sup
z∈∂M

I(z) ≤ 0,

where M = M(z0, R) stands for

M := {z = tz0 + z− : z− ∈ E−, ‖z‖ ≤ R, t ≥ 0}
and ∂M denotes the boundary of M relative to Rz0 ⊕ E−. If we define

c := inf
h∈Γ

sup
z∈M

I(h(1, z)),

then there exists (zn) ⊂ E such that

I(zn)→ c ≥ α, (1 + ‖zn‖)‖I ′(zn)‖ → 0.

Actually, to prove Theorem 1.2, we can not directly apply Theorem 2.2. For this
purpose, we need the following local version:
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Theorem 2.3. Under the same hypotheses of Theorem 2.2, suppose additionally
that there exists h0 ∈ Γ such that

c = sup I(h0(1,M)). (2.3)

Then I possesses a nonzero critical point z ∈ h0(1,M) such that I(z) = c.

Proof. Suppose, by contradiction, that D := h0(1,M) contains no critical points of
I at level c. This implies that there exist ε, δ > 0 such that

‖I ′(z)‖ ≥ 8ε

δ
for any z ∈ I−1([c− 2ε, c+ 2ε]) ∩Dτ

2δ, (2.4)

where Dτ
2δ stands for the τ -closed set {z ∈ E : ‖z − w‖τ ≤ 2δ, for any w ∈ D}.

Indeed, otherwise we obtain a sequence (zn) such that zn ∈ Dτ
2/
√
n

and

c− 2

n
≤ I(zn) ≤ c+

2

n
, ‖I ′(zn)‖ ≤ 2√

n
,

an therefore it follows that I(zn) → c and I ′(zn) → 0. The definition and bound-
edness of M , together with the convergence properties of the τ -topology, presented
just before the definition of admissible homotopy, show that M is τ -compact. The
same occurs with D, since h0 is τ -continuous. It follows that Dτ

2 is τ -compact,

and therefore we may assume that zn
τ→ z ∈ D. This implies that z+

n → z+

and z−n ⇀ z− weakly in E. Hence, the regularity assumption on I ′ implies that
I ′(z) = 0. These last convergences, the lower semicontinuity of the norm, and
the fact that J is weakly sequentially lower semicontinuous, imply that I(z) ≥ c.
Moreover, since z ∈ D ⊂ Ic = {w ∈ E : I(w) ≤ c}, we also have that I(z) ≤ c.
Hence, we conclude that z ∈ D is a critical point at level c, which is absurd.

In view of (2.4) and the regularity assumptions on I, we can use a version of the
deformation lemma proved in [3, Lemma 8] (see also [21, Lemma 6.8]), to obtain
an admissible homotopy η : [0, 1]×M → E such that

η(1, D) ⊂ Ic−ε = {w ∈ E : I(w) ≤ c− ε}.
We now define h : [0, 1]×M → E by

h(t, z) :=

{
h0(2t, z),

η(2t− 1, h0(1, z)).

Then h ∈ Γ and, for any z ∈M , there holds

I(h(1, z)) = I(η(1, h0(1, z))) ≤ c− ε,
since h0(1, z) ∈ D. This inequality contradicts the definition of c and concludes the
proof. �

3. The periodoc case

In this section, we will apply Lemma 2.1 and a minimization argument to obtain
a nonzero solution for problem (1.1). In what follows, we denote by E the Hilbert
space H1(RN )×H1(RN ) endowed with the norm

‖(u, v)‖2 :=

∫
(|∇u|2 + V (x)u2) +

∫
(|∇v|2 + V (x)v2).

We consider the following decomposition of the space E:

E± := {(u,±u) : u ∈ H1(RN )}.
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We have that E+ and E− are orthogonal in E and also in L2(RN )× L2(RN ). For
z = (u, v) ∈ E we set

z+ :=

(
u+ v

2
,
u+ v

2

)
and z− :=

(
u− v

2
,−u− v

2

)
.

Then z± ∈ E± and z = z+ + z−. Thus, E = E+ ⊕ E− and we can compute∫
(∇u∇v + V (x)uv) =

1

2
(‖z+‖2 − ‖z−‖2).

By using (F1) and (F2) we can check that, for any given ε > 0, there exists
Cε > 0 such that

max{|F (x, z)|, |Fz(x, z) · z|} ≤ ε|z|2 + Cε|z|p , (3.1)

for each (x, z) ∈ RN × R2. Hence, it is well defined the associated functional

I(z) :=
1

2
(‖z+‖2 − ‖z−‖2)− J (z), (3.2)

where J (z) :=
∫
F (x, z). Moreover, I belongs to C1(E,R) with

I ′(z)w = 〈z+, w+〉 − 〈z−, w−〉 −
∫
Fz(x, z) · w, ∀ z, w ∈ E.

Hence, the critical points of I are weak solutions of problem (1.1).
Since we aim to apply Lemma 2.1, we prove in the sequel that I satisfies condi-

tions (N1)− (N3).

Lemma 3.1. Suppose that F satisfies (F2) and (F4). Then, for each z 6= 0 we
have that

1

2
Fz(x, z) · z > F (x, z) > 0.

Moreover, J (0) = 0 and J is weakly lower semicontinuous.

Proof. By (F2) we get F (x, 0) = 0 and therefore J (0) = 0. Given z 6= 0, it follows
from (F4) that

F (x, z) =

∫ 1

0

d

dt
[F (x, tz)]dt =

∫ 1

0

Fz(x, tz) · zdt = |z|2
∫ 1

0

g(x, t|z|)tdt > 0. (3.3)

This identity, (F4) and the monotonicity of g(x, ·) imply that

1

2
Fz(x, z) · z − F (x, z) = |z|2

(∫ 1

0

[g(x, |z|)− g(x, t|z|)]tdt
)
> 0.

In order to check the last statement, let (zn) ⊂ E be such that zn ⇀ z weakly
in E. Up to a subsequence, we have that zn(x) → z(x) a.e. in RN . Since F is
nonnegative, Fatou’s lemma provides

lim inf
n→∞

J (zn) = lim inf
n→∞

∫
F (x, zn) ≥

∫
F (x, z) = J (z)

and we have done. �

The next lemma is essential in order to get condition (N2).

Lemma 3.2. Suppose that F satisfies (F2)− (F4). Let s ≥ −1 and v, z ∈ R2 with
w = sz + v 6= 0. Then, for each x ∈ RN , there holds

Fz(x, z) ·
(
s(
s

2
+ 1)z + (s+ 1)v

)
+ F (x, z)− F (x, z + w) < 0.
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Proof. Let y = y(s) := w + z = (1 + s)z + v and define, for s ≥ −1,

β(s) := Fz(x, z) ·
(
s(
s

2
+ 1)z + (s+ 1)v

)
+ F (x, z)− F (x, z + w).

If z = 0, it follows from (F2) and Lemma 3.1 that β(s) = −F (x, y) < 0. Hence, we
may suppose that z 6= 0 and consider two distinct cases:

Case 1: z · y ≤ 0

In this case we notice that, by (F4), Fz(x, z)y = g(x, |z|)z · y ≤ 0. Thus, recalling
that v = y − (1 + s)z, using Lemma 3.1 and s ≥ −1, we obtain

β(s) = −
(
s2

2
+ s+ 1

)
Fz(x, z) · z + (s+ 1)Fz(x, z) · y + F (x, z)− F (x, y)

< −1

2
(s+ 1)2Fz(x, z) · z + (s+ 1)Fz(x, z) · y − F (x, y) < 0.

(3.4)

Case 2: z · y > 0

Using Lemma 3.1 we get

β(−1) = −1

2
Fz(x, z) · z + F (x, z)− F (x, y) < −F (x, y) < 0.

It follows from (F4) that Fz(x, z)·z = g(x, |z|)|z|2 > 0, and therefore, using (3.4) we
get lims→∞ β(s) = −∞. Hence, β attains its maximum at some point s0 ∈ [−1,∞).
If s0 = −1 the result follows from the above inequality. If s0 > −1, we have that

0 = β′(s0) = Fz(x, z) · y − Fz(x, y) · z.

By using (F4), we obtain g(x, |z|)z · y = g(x, |y|)y · z and hence |z| = |y|. It follows
from (3.3) that F (x, z) = F (x, y). Moreover,

Fz(x, z) · y = g(x, |z|)z · y ≤ g(x, |z|)|z|2 = Fz(x, z) · z,

and therefore

β(s) = −s
2

2
Fz(x, z) · z + (s+ 1)(Fz(x, z) · y − Fz(x, z) · z) ≤ −

s2

2
Fz(x, z) · z < 0.

This finishes the proof. �

Lemma 3.3. Suppose that F satisfies (F1)− (F4). If z ∈M, then for each w 6= 0

such that z + w ∈ Ê(z) there holds

I(z + w) < I(z).

In particular, z is the unique global maximum point of I|Ê(z).

Proof. Let z ∈M and w 6= 0 with z +w ∈ Ê(z). By the definition of Ê(z) we can
write z + w = (1 + s)z + v, with s ≥ −1 and v ∈ E−. Since z ∈ M, if we define
φ := s( s2 + 1)z + (s+ 1)v ∈ E(z), we have that

0 = I ′(z)φ = s(
s

2
+ 1)(‖z+‖2 − ‖z−‖2)− (s+ 1)〈z−, v〉 −

∫
Fz(x, z) · φ.
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Hence,

I(z + w)− I(z)

= s
(s

2
+ 1
)

(‖z+‖2 − ‖z−‖2)− (s+ 1)〈z−, v〉 − 1

2
‖v‖2 +

∫
[F (x, z)− F (x, z + w)]

= −1

2
‖v‖2 +

∫ [
Fz(x, z) ·

(
s(
s

2
+ 1)z + (s+ 1)v

)
+ F (x, z)− F (x, z + w)

]
.

Since w 6= 0, it follows from Lemma 3.2 that I(z + w) < I(z).
Let us show that this last inequality implies that z is the unique maximum point

of the restriction I|Ê(z). Indeed, given tz + y ∈ Ê(z) \ {z}, it is enough to consider

w = (t − 1)z + y to obtain tz + y = z + w. Notice that, if w = 0, then t = 1 and
y = 0, which cannot occurs since tz + y 6= z. Thus, w 6= 0 and we conclude that
I(tz + y) < I(z). �

Lemma 3.4. Suppose that F satisfies (F1) − (F2). Then, for each z ∈ E \ E−,

we have that Ê(z) ∩M has a unique element, which is exactly the unique global
maximum of I|Ê(z).

Proof. By Lemma 3.3, it suffices to prove that M∩ Ê(z) 6= ∅ for each z ∈ E \E−.

Moreover, since Ê(z) = Ê( z+

‖z+‖ ), we may assume that z ∈ S+.

Claim: the exists R > 0 such that I(w) ≤ 0, whenever w ∈ Ê(z) \BR(0).

Indeed, if this is not the case, we can obtain a sequence (wn) ⊂ Ê(z) such that
‖wn‖ → ∞ and I(wn) > 0. Setting zn := wn/‖wn‖ we may assume that zn ⇀ z0

weakly in E. If z0 6= 0, we infer from Fatou’s lemma and (F3) that

0 ≤ I(wn)

‖wn‖2
=

1

2
‖z+
n ‖2 −

1

2
‖z−n ‖2 −

∫
F (x,wn)

|wn|2
|zn|2 → −∞,

which is absurd. Thus, z0 = 0. Since F ≥ 0 we can use the above estimate to
obtain ‖z+

n ‖ ≥ ‖z−n ‖. Hence, recalling that ‖zn‖ = 1, we conclude that ‖z+
n ‖ ≥

1/
√

2. Since z ∈ S+, we can use this last inequality to write z+
n = snz, with

1/
√

2 ≤ sn ≤ 1. Up to a subsequence, z+
n → sz in E with s > 0, which contradicts

zn ⇀ 0. The claim is proved.
By using (F2) and standard calculations we get I(sz) = 1

2s
2 + o(s2) as s → 0.

This, the claim and (F1) show that 0 < supÊ(z) I < ∞. Since I is lower weakly

semicontinuous in Ê(z) ∩ BR(0), we can use the fact that I ≤ 0 in Ê(z) ∩ E−, to

conclude that the maximum is attained in some point z̃ ∈ Ê(z) such that z̃+ 6= 0.
Thus, z̃ ∈M and we have done. �

We now define the following minimizer

c := inf
z∈M

I(z).

Among other things, the next result relates the number c with the infimum of I on
the set Nr defined in (2.1):

Lemma 3.5. Suppose that F satisfies (F1)− (F2). Then

(i) there exists r > 0 such that

c ≥ inf
z∈Nr

I(z) > 0;
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(ii) for each z ∈M, there holds ‖z+‖ ≥ max{‖z−‖,
√

2c}.

Proof. If z ∈ E+, then I(z) = 1
2‖z‖

2−
∫
F (x, z). Hence, we can use (F1)− (F2), to

conclude that
∫
F (x, z) = o(‖z‖2) as ‖z‖ → 0, from which it follows that infNr I > 0

for any r > 0 small. Moreover, if z ∈M, Lemma 3.3 provides

I(z) ≥ I
(
r
z+

‖z+‖

)
≥ inf

Nr
I,

and therefore c ≥ infNr I. Finally, for any z ∈M, we get

c ≤ 1

2
(‖z+‖2 − ‖z−‖2)−

∫
F (x, z) ≤ 1

2
(‖z+‖2 − ‖z−‖2),

and this establishes (ii). �

Lemma 3.6. Suppose that F satisfies (F1)− (F2). If K ⊂ E \E− is compact, then
there exists cK > 0 such that ‖m̂(z)‖ ≤ cK, for each z ∈ K.

Proof. As in the proof of Lemma 3.4 we may assume that K ⊂ S+. Suppose,
by contradiction, that there exists (zn) ⊂ K such that ‖m̂(zn)‖ → ∞. Since

m̂(zn) ∈ Ê(zn), we can write wn := m̂(zn)/‖m̂(zn)‖ = snzn + w−n . Arguing as in

the proof of Lemma 3.4 we can show that 1/
√

2 ≤ sn ≤ 1 and sn ≥ ‖w−n ‖. This and
the compactness of K imply that, up to a subsequence, sn → s > 0, zn → z 6= 0 and
w−n ⇀ w− weakly in E. We may also assume that wn(x)→ w(x) := sz(x) +w−(x)
a.e. in RN , with w 6= 0 and

lim
n→∞

|m̂(zn)(x)| =∞ a.e. in Ω := {x ∈ RN : w(x) 6= 0}.

By (F3) and Fatou’s lemma we obtain

0 ≤ I(m̂(zn))

‖m̂(zn)‖2
=

1

2

s2
n

‖m̂(zn)‖2
− 1

2

‖w−n ‖2

‖m̂(zn)‖2
−
∫
F (x, m̂(zn))

‖m̂(zn)‖2

≤ 1

2
−
∫

Ω

F (x, m̂(zn))

|m̂(zn)|2
|wn|2dx→ −∞,

which does not make sense. The lemma is proved. �

Lemma 3.7. Suppose that F satisfies (F1) − (F3). Then I is coercive on M. In
particular, any (PS)c-sequence (zn) ⊂M is bounded.

Proof. Suppose, by contradiction, that there exists (zn) ⊂M satisfying I(zn) ≤ d
e limn→∞ ‖zn‖ = ∞. Setting wn := zn/‖zn‖ we have that, up to a subsequence,
wn ⇀ w weakly in E and wn(x) → w(x) a.e. in RN . The same argument of the
last proof show that we cannot have w 6= 0. Hence w = 0.

We claim that w+
n 6→ 0 in Lp(RN )×Lp(RN ), where p ∈ (2, 2∗) comes from (F1).

If this is true, we can use a lemma due to Lions [16, Lemma I.1] to obtain the
existence of β > 0 and a sequence (yn) ⊂ RN satisfying∫

B1(yn)

|w+
n |2dx ≥ β > 0. (3.5)

With no loss of generality, we may assume that (yn) ∈ ZN and by translation if
necessary, that (yn) is bounded. Taking the limit in (3.5) we conclude that w+ 6= 0,
which does not make sense.
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It remains to check the claim. If w+
n → 0 in Lp(RN )×Lp(RN ), we can use (3.1)

to conclude that
∫
F (x, sw+

n ) → 0. So, recalling that sw+
n ∈ Ê(zn), Lemma 3.3

implies

d ≥ I(zn) ≥ I(sw+
n ) ≥ 1

4
s2 −

∫
F (x, sw+

n ) =
1

4
s2 + o(1),

which is absurd, since s > 0 is arbitrary. The lemma is proved. �

We are now in the position to prove our first result.

Proof of Theorem 1.1: All together, the above lemmas show that the functional
I verifies (N1) − (N3) and therefore the conclusions of Lemma 2.1 hold. With
that notation, let (wn) ⊂ S+ be such that Ψ(wn) → infS+ Ψ. By the Ekeland
Variational Principle we may suppose that Ψ′(wn)→ 0. So, by Lemma 2.1(iii) we
have that I ′(zn) → 0, where zn = m(wn) ∈ M. In view of Lemma 3.7 we may
assume that zn ⇀ z weakly in E and zn(x)→ z(x) a.e. in RN . Condition (F1) and
straightforward calculations show that I ′(z) = 0.

If zn → 0 in Lp(RN ) × Lp(RN ) we can use (3.1) and (F1) to conclude that∫
Fz(x, zn)zn = o(1). Hence

o(‖zn‖) = I ′(zn)zn = ‖z+
n ‖2 − ‖z−n ‖2 −

∫
Fz(x, zn) · zn ≤ ‖z+

n ‖2 + o(1).

Thus z+
n → 0. But this contradicts Lemma 3.5(ii), and therefore zn 6→ 0 in

Lp(RN )× Lp(RN ). This implies that∫
B1(yn)

|zn|2dx ≥ β > 0,

for some β > 0 and (yn) ⊂ ZN . Since I is invariant by integer translations the
sequence z̃n := zn(· − yn) weakly converges to a nonzero critical point z̃. Recalling
that I has no nonzero critical points in E−, we conclude that z̃ ∈M.

It remains to prove that I(z̃) = c = infM I. For simplicity, we denote by zn the
Palais-Smale sequence which weakly converges to a nonzero critical point z ∈ M.
Since we may suppose that zn(x) → z(x) a.e. in RN , it follows from Lemma 3.1
and Fatou’s lemma that

c+ o(1) = I(zn)− 1

2
I ′(zn)zn =

∫
F̂ (x, zn)

≥
∫
F̂ (x, z) + o(1) = I(z)− 1

2
I ′(z)z + o(1)

= I(z) + o(1),

which implies c ≥ I(z). The reverse inequality follows from z ∈ M, and therefore
I(z) = c and the theorem is proved. �

4. The asymptotically periodic case

In this section, we consider the case when F is asymptotically periodic. We start
by introducing the limit functional I∞ : E → R given by

I∞(z) :=
1

2
‖z+‖2 − 1

2
‖z−‖2 −

∫
F∞(x, z),
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where F∞ is the asymptotic limit of the function F provided by condition (F7).
Since F∞ satisfies (F0)− (F4), we can use Theorem 1.1 to guarantee the existence
of a least energy solution z∞ ∈ E of the periodic problem

{
−∆u+ V (x)u = F∞,v(x, u, v), x ∈ RN ,

−∆v + V (x)v = F∞,u(x, u, v), x ∈ RN .

We use this solution to define our link set in the following way

MR,z0 := {z = tz0 + z− : z− ∈ E−, ‖z‖ ≤ R, t ≥ 0},

where z0 := z+
∞. Since MR,z0 ⊂ Ê(z0) = Ê(z∞), it follows from Lemma 3.3 that

sup
z∈MR,z0

I∞(z) ≤ I∞(z0). (4.1)

In order to obtain a solution for the problem (1.1), we need to find a nonzero
critical point for the function I defined in (3.2). We notice that, since we do not
directly impose subcritical growth for F , we need first to show that the functional
is well defined. This is a consequence of the following lemma.

Lemma 4.1. Suppose that F satisfies (F2), (F6) and (F7). Then, for any given
ε > 0, there exist Cε > 0 and q ∈ (2, 2∗) such that

|Fz(x, z)| ≤ ε|z|+ Cε|z|q−1, |F (x, z)| ≤ ε|z|2 + Cε|z|q, (4.2)

for each (x, z) ∈ RN × R2.

Proof. For ε > 0, we can use (F2) to obtain δ > 0 such that

|Fz(x, z)| ≤ ε|z|, ∀x ∈ RN , |z| ≤ δ. (4.3)

By (F6), there exists R0 > 0 satisfying

|Fz(x, z)|τ ≤ c0|z|τ F̂ (x, z) ≤ c0
2
|z|τ+1|Fz(x, z)|, ∀x ∈ RN , |z| ≥ R0.

Setting q := 2τ/(τ − 1), we can use τ > N/2 to conclude that 2 < q < 2∗.
Furthermore,

|Fz(x, z)| ≤ C|z|
τ+1
τ−1 = C|z|q−1, ∀x ∈ RN , |z| ≥ R. (4.4)

Since F∞,z is continuous and periodic, there exists M > 0 such that

|F∞,z(x, z)| ≤M, x ∈ RN , δ ≤ |z| ≤ R0.

By using (F7), we get

|Fz(x, z)| ≤
(
|ϕ|∞ +

M

δp∞−1

)
|z|p∞−1, ∀x ∈ RN , δ ≤ |z| ≤ R0.

This, (4.3) and (4.4) prove the first inequality in (4.2). The second one follows from
the Mean Value Theorem. �

In the next result, we obtain the geometry of the Linking Theorem.

Lemma 4.2. Suppose that F satisfies (F2) and (F5)− (F7). Then

(i) there exist r, α > 0, such that I|Nr ≥ α;
(ii) there exists R > r such that I|∂MR,z0

≤ 0.
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Proof. The first statement is an easy consequence of (F2) and Lemma 4.1. For the
second one, we take z = ρz0 + z− ∈ ∂MR,z0 . If ‖z‖ ≤ R and ρ = 0, we have that
z = z− ∈ E−, and therefore we can use (F7) to get

I(z) = I(z−) = −1

2
‖z−‖2 −

∫
F (x, z−) ≤ 0.

So, it is suffices to consider the case ‖z‖ = R and ρ > 0. We argue by contradiction.
If the result is false, there exists a sequence (zn) such that zn = ρnz0 + z−n , ρn > 0,
‖zn‖ = Rn →∞ and I(zn) > 0. Then

I(zn)

‖zn‖2
=

1

2

(
ρ2
n‖z0‖2

‖zn‖2
− ‖z

−
n ‖2

‖zn‖2

)
−
∫
F (x, zn)

‖zn‖2
> 0

Since F is nonnegative, we have that ρn‖z0‖ ≥ ‖z−n ‖. Noticing that

ρ2
n‖z0‖2

‖zn‖2
+
‖z−n ‖2

‖zn‖2
= 1,

it follows that 1√
2‖z0‖

≤ ρn
‖zn‖ ≤

1
‖z0‖ and z−n /‖zn‖ is bounded. Hence, going to a

subsequence, we may assume that

ρn
‖zn‖

→ ρ > 0,
z−n
‖zn‖

⇀ w ∈ E− and
z−n (x)

‖zn‖
→ w(x) for a.e. x ∈ RN ,

where we have used the fact that E− is weakly closed. Since ‖zn‖ → ∞, this implies
that ρn →∞ and therefore,

lim |zn(x)| =∞ a.e. in Ω := {x ∈ RN : ρz0(x) + w(x) 6= 0}.

Since ρ > 0 and w ∈ E−, we have that Ω has positive measure. Hence, taking the
lim sup as n→ +∞ in the inequality

0 <
I(zn)

‖zn‖2
≤ 1

2

(
ρ2
n‖z0‖2

‖zn‖2
− ‖z

−
n ‖2

‖zn‖2

)
−
∫

Ω

F (x, zn)

|zn|2
|zn|2

‖zn‖2
dx,

using Fatou’s lemma and (F7), we conclude that

0 ≤ 1

2

(
ρ2‖z0‖2 − ‖w‖2

)
−
∫

Ω

lim inf
n→∞

F (x, zn)

|zn|2
|zn|2

‖zn‖2
dx = −∞.

This contradiction concludes the proof. �

We recall that (zn) ⊂ E is called a (Ce)c-sequence for I if I(zn) → c and
(1 + ‖zn‖)‖I ′(zn)‖ → 0. In the next result, we prove the boundedness of such
sequences.

Lemma 4.3. Suppose that F satisfies (F2) and (F5)− (F7). If (zn) ⊂ E is a (Ce)c
sequence, then it is bounded.

Proof. If (zn) ⊂ E is a (Ce)c-sequence for I then

c+ o(1) = I(zn)− 1

2
I ′(zn)zn =

∫
F̂ (x, zn). (4.5)

Arguing by contradiction, we suppose that, up to a subsequence, ‖zn‖ → ∞. Then

o(1) =
I ′(zn)(z+

n − z−n )

‖zn‖2
= 1−

∫
Fz(x, zn) · (z+

n − z−n )

‖zn‖2
.
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Setting wn := zn/‖zn‖, it follows that

lim
n→+∞

∫
Fz(x, zn) · (w+

n − w−n )

‖zn‖
= 1. (4.6)

If R0 > 0 is given by condition (F6), for any x ∈ RN and |z| > R0 there holds

c0F̂ (x, z) ≥
(
|Fz(x, z)|
|z|

)τ
≥
(

2F (x, z)

|z|2

)τ
.

In the last inequality we have used the positivity of F̂ (x, z), which comes from (F6),
and Cauchy-Schwarz inequality. The above relation and the first two statements in

(F7) imply that F̂ (x, z) → ∞ as |z| → ∞, uniformly for x ∈ RN . Hence, recalling

that q(r) = inf{F̂ (x, z) : x ∈ RN , |z| ≥ r} and noticing that q is nondecreasing, we
can use (F5) to conclude that q(r) > 0 for each r > 0 and q(r)→∞ as r →∞.

For 0 ≤ a < b, we set

Ωn(a, b) := {x ∈ RN : a ≤ |zn(x)| < b}.

By using (4.5) we obtain

c+ o(1) =

∫
Ωn(0,a)

F̂ (x, zn)dx+

∫
Ωn(a,b)

F̂ (x, zn)

|zn|2
|zn|2dx+

∫
Ωn(b,∞)

F̂ (x, zn)dx

≥
∫

Ωn(0,a)

F̂ (x, zn)dx+
q(a)

b2

∫
Ωn(a,b)

|zn|2dx+ q(b)|Ωn(b,∞)|,

and therefore there exists C1 > 0 such that

max


∫

Ωn(0,a)

F̂ (x, zn)dx,
q(a)

b2

∫
Ωn(a,b)

|zn|2dx, q(b)|Ωn(b,∞)|

 ≤ C1. (4.7)

The above inequality implies that |Ωn(b,∞)| ≤ C1/q(b). Since q(b) → +∞ as
b→ +∞, we conclude that

lim
b→+∞

|Ωn(b,∞)| = 0. (4.8)

Let µ ∈ [2, 2∗). By Hölder’s inequality and the Sobolev embeddings, we obtain the
existence of a constant C2 > 0 satisfying∫

Ωn(b,∞)

|wn|µdx ≤

(∫
Ωn(b,∞)

|wn|2
∗
dx

)µ/2∗
|Ωn(b,∞)|(2

∗−µ)/2∗

≤ C2‖wn‖µ|Ωn(b,∞)|(2
∗−µ)/2∗ = C2|Ωn(b,∞)|(2

∗−µ)/2∗ .

Since 2∗ − µ > 0, we infer from (4.8) that

lim
b→+∞

∫
Ωn(b,∞)

|wn|µdx = 0. (4.9)

By using the definition of wn, we get∫
Ωn(0,aε)

Fz(x, zn) · (w+
n − w−n )

‖zn‖
dx ≤

∫
Ωn(0,aε)

|Fz(x, zn)|
|zn|

|wn||w+
n − w−n |dx.
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Let C3 > 0 be such that ‖z‖2L2 ≤ C3‖z‖2 for each z ∈ E and consider ε > 0. By
(F2), there exists aε > 0 such that |Fz(x, z)| ≤ ε|z|/C3 for each |z| ≤ aε. It follows
from the inequality quoted above that, for any n ∈ N, there holds∫

Ωn(0,aε)

Fz(x, zn) · (w+
n − w−n )

‖zn‖
dx ≤ ε

C3

∫
Ωn(0,aε)

|wn|2dx ≤ ε‖wn‖2 = ε. (4.10)

Let bε > aε to be chosen later during the proof. Since 2τ ′ = 2τ/(τ −1) ∈ (2, 2∗),
we can use Hölder’s inequality to obtain∫

Ωn(bε,∞)

Fz(x, zn) · (w+
n − w−n )

‖zn‖
dx =

∫
Ωn(bε,∞)

Fz(x, zn) · (w+
n − w−n )|wn|
|zn|

dx

≤

 ∫
Ωn(bε,∞)

|Fz(x, zn)|τ

|zn|τ
dx


1/τ  ∫

Ωn(bε,∞)

(|wn||w+
n − w−n |)τ

′
dx


1/τ ′

= A1
n ·A2

n

By (F6) and (4.7) the term A1
n is uniformly bounded. Moreover, by Hölder’s in-

equality, we have that

A2
n ≤

 ∫
Ωn(bε,∞)

|wn|2τ
′
dx


1/2τ ′  ∫

Ωn(bε,∞)

|w+
n − w−n |2τ

′
dx


1/2τ ′

≤ C4

(∫
Ωn(bε,∞)

|wn|2τ
′
dx

)1/2τ ′

.

All together, the above estimates provide∫
Ωn(bε,∞)

Fz(x, zn) · (w+
n − w−n )

‖zn‖
dx ≤ C5

(∫
Ωn(bε,∞)

|wn|2τ
′
dx

)1/2τ ′

.

This inequality and (4.9) provide the existence of bε > 0 (sufficiently large) satis-
fying, for n ≥ n0, ∫

Ωn(bε,∞)

Fz(x, zn) · (w+
n − w−n )

‖zn‖
dx < ε. (4.11)

Recalling that ϕ ∈ L∞(RN ) and using (F7) we obtain C6 > 0 such that |Fz(x, zn)| ≤
C6|zn| for each x ∈ Ωn(aε, bε). Hence, we can argue as above and use the definition
of wn to obtain∫

Ωn(aε,bε)

Fz(x, zn) · (w+
n − w−n )

‖zn‖
dx ≤ C6

‖zn‖2

∫
Ωn(aε,bε)

|zn|2dx.

Thus, we infer from (4.7) that, taking n0 larger if necessary, there holds∫
Ωn(aε,bε)

Fz(x, zn) · (w+
n − w−n )

‖zn‖
dx ≤ C6

‖zn‖2
C1b

2
ε

q(aε)
< ε,

for n ≥ n0.
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The above inequality, (4.10) and (4.11) imply that∫
Fz(x, zn) · (w+

n − w−n )

‖zn‖
≤ 3ε, ∀n ≥ n0.

But this contraditcs (4.6) , since ε > 0 is arbitrary. This contradiction proves the
boundedness of (zn). �

Lemma 4.4. Suppose that F satisfies (F2), (F6) and (F7). Let c > 0 and (zn) ⊂ E
be a (Ce)c sequence for I. If zn ⇀ 0 weakly in E, then there exists a sequence
(yn) ⊂ RN , R > 0 and β > 0 such that |yn| → ∞ and

lim sup
n→∞

∫
BR(yn)

|zn|2dx ≥ β > 0

Proof. Suppose, by contradiction, that the lemma is false. Then, for any R > 0,
we have that

lim
n→∞

sup
y∈RN

∫
BR(y)

|zn|2dx = 0,

and therefore Lion’s lemma implies that zn → 0 in Ls(RN ) × Ls(RN ) for each
s ∈ (2, 2∗). It follows from (4.2) that

∫
F (x, zn)→ 0 as n→ +∞. In the same way∫

Fz(x, zn) · zn → 0. On the other hand,

c = lim
n→∞

[
I(zn)− 1

2
I ′(zn)zn

]
= lim
n→∞

∫ (
1

2
Fz(x, zn) · zn − F (x, zn)

)
= 0,

which contradicts the hypothesis c > 0 and finishes the proof. �

Next, we state two technical convergence results. The proofs can be done arguing
along the same lines of [15, Lemmas 5.1 and 5.2], respectively.

Lemma 4.5. Suppose that F satisfies (F7). Let (zn) ⊂ E be a bounded sequence
and wn(x) = w(x− yn), with w ∈ E and (yn) ⊂ RN . If |yn| → ∞, then

[F∞,z(x, zn)− Fz(x, zn)] · wn → 0,

strongly in L1(RN ) as n→∞.

Lemma 4.6. Suppose that ϕ ∈ F and s ∈ [2, 2∗]. If wn ⇀ w, then

lim
n→+∞

∫
ϕ|wn|s =

∫
ϕ|w|s.

We are now ready to prove our last theorem.

Proof of Theorem 1.2: We first notice that, by (F7), Lemma 4.1, and Fatou’s lemma,
the condition (L1) of Theorem 2.2 holds and from Lemma 4.2, we see that (L2)
is also verified. So, by Theorem 2.2 we obtain a (Ce)c-sequence (zn) ⊂ E for I
at level c > 0. By Lemma 4.3, we may suppose that zn ⇀ z weakly in E. We
claim that I ′(z) = 0. Indeed, it is sufficient to show that I ′(z)η = 0 for each
η ∈ C∞0 (RN )× C∞0 (RN ). We have that

I ′(zn)η − I ′(z)η = 〈zn − z, η〉 −
∫

[Fz(x, zn)− Fz(x, z)] · η. (4.12)

Up to a subsequence, zn → z in Lsloc(RN )× Lsloc(RN ) for each s ∈ [1, 2∗) and

zn(x)→ z(x) a.e. in K,

|zn(x)| ≤ ws(x) ∈ Ls(K), a.e. in K,
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where K stands for the support of η. Thus Fz(x, zn) → Fz(x, z) a.e. in K. Fur-
thermore, using (4.2) and Hölder’s inequality, we get

|Fz(x, zn)η| ≤ ε|w2||η|+ Cε|wq−1||η| ∈ L1(K).

Using the Lebesgue Theorem and the weak convergence of zn, we can take the limit
in (4.12) to conclude that

I ′(z)η = lim
n→∞

I ′(zn)η = 0.

If z 6= 0 we have done. So, we consider in what follows the case z = 0. By Lemma
4.4, there exist a sequence (yn) ⊂ RN , R > 0 and β > 0 such that |yn| → ∞ as
n→∞, and

lim sup
n→∞

∫
BR(yn)

|zn|2dx ≥ β > 0.

Furthermore, we can suppose that (yn) ⊂ ZN . Setting z̃n(x) := zn(x + yn) and
noticing that ‖z̃n‖ = ‖zn‖, along a subsequence, we have that z̃n ⇀ z̃ weakly in E.
By the last inequality above we have that z̃ 6= 0.

Claim 1: I ′∞(z̃) = 0

In order to prove this claim we fix η ∈ C∞0 (RN ) × C∞0 (RN ) and define, for
each n ∈ N, the translation ηn(x) = η(x − yn). Arguing as above and using the
periodicity of F∞ we get

I ′∞(z̃n)η = I ′∞(zn)ηn = I ′∞(z̃)η + o(1).

Hence, we need only to show that I ′∞(zn)ηn = o(1). But, Lemma 4.5 provides

I ′∞(zn)ηn = I ′(zn)ηn −
∫

[Fz(x, zn)− F∞,z(x, z)] · ηn = I ′(zn)ηn + on(1),

and the claim follows from the fact that (zn) is a bounded Cerami sequence.

Claim 2: If we set F̂∞(x, z) := (1/2)F∞,z(x, z) · z − F∞(x, z), then

lim inf
n→∞

∫
F̂ (x, zn) ≥

∫
F̂∞(x, z̃)

Indeed, using the definition of F̂ , F̂∞, the first part of (3.3) and (F7), we obtain

|F̂ (x, zn)− F̂∞(x, zn)| ≤ 1

2
|Fz(x, zn)− F∞,z(x, zn)||zn|

+

∫ 1

0

|Fz(x, tzn)− F∞,z(x, tzn)||zn|dt

≤ 1

2
ϕ(x)|zn|p∞ +

∫ 1

0

ϕ(x)tp∞−1|zn|p∞dt

=

(
1

2
+

1

p∞

)
ϕ(x)|zn|p∞ .
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This inequality and Lemma 4.6 enable us to use Fatou’s lemma and the periodicity

of F̂∞ to obtain

lim inf
n→∞

∫
F̂ (x, zn) = lim inf

n→∞

∫
F̂∞(x, zn)

= lim inf
n→∞

∫
F̂∞(x, z̃n) ≥

∫
F̂∞(x, z̃),

which proves the second claim.

The two claims and the periodicity of F̂ provide

c = lim
n→∞

[I(zn)− 1

2
I ′(zn)zn] = lim inf

n→∞

∫
F̂ (x, zn)

≥
∫
F̂∞(x, z̃) = I∞(z̃)− 1

2
I ′∞(z̃)z̃ = I∞(z̃).

Using the definition of c given in Theorem 2.2, the inequality F ≥ F∞ and (4.1) we
obtain

c ≤ sup
z∈MR,z0

I(z) ≤ sup
z∈MR,z0

I∞(z) ≤ I∞(z0) ≤ I∞(z̃) ≤ c.

Thus, if we define h0 : [0, 1] ×MR,z0 → E by h0(t, z) := z for any (t, z) ∈ [0, 1] ×
MR,z0 , the above inequality implies that

sup
z∈MR,z0

I(h0(z, 1)) = c > 0.

If follows from Theorem 2.3 that I possesses a nonzero critical point. The theorem
is proved. �
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