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Universidade de Braśılia, Departamento de Matemática,
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Abstract

We prove the existence of two solutions for some elliptic equations with
combined indefinite nonlinearities on the boundary. The main novelty is to
consider variational methods together with a suitable split of the Sobolev
space W 1,2(Ω).
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1 Introduction

Since the work of Steklov [25], the semilinear problem

∆u = 0, in Ω,
∂u

∂η
= g(x, u), on ∂Ω,

has been extensively studied with many different type of perturbations g(x, u) ap-
pearing on the boundary of the open set Ω ⊂ RN . For linear function g, it comes
from physics, with the function u being the steady state temperature on Ω such
that the flux on the boundary is proportional to the temperature. The Steklov was
introduced in [25] where was considered a linear problem on the boundary. It is also
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important in conductivity and harmonic analysis [8] and some problems in con-
formal geometry [11]. There are many papers considering nonlinear perturbations
on the boundary (see [5, 9, 12,18,21–24], for instance).

In the first part of the paper we suppose that the function g(x, u) presents
a competition between a concave and a convex term. More specifically, we shall
study 

∆u = 0, in Ω,

∂u

∂η
= a(x)|u|p−2u+ µb(x)|u|q−2u, on ∂Ω,

(1.1) {p1}

where Ω ⊂ RN , N ≥ 3, is a bounded smooth domain, µ > 0, 1 < q < 2 < p <
2∗ = 2(N − 1)/(N − 2) and the potentials a, b verify

(a0) a ∈ L∞(∂Ω) and

∫
∂Ω

a(x) dσx 6= 0;

(a1) there exists a non-empty set A+ ⊂ ∂Ω open in ∂Ω such that a(x) > 0 for
a.e. x ∈ A+;

(b0) b ∈ L∞(∂Ω) and

∫
∂Ω

b(x) dσx < 0;

(b1) there exists a non-empty set B+ ⊂ ∂Ω open in ∂Ω such that b(x) > 0 for
a.e. x ∈ B+.

In our first result, we obtain multiple positive solutions for small values of µ.
More specifically, we prove the following.

{t1}
Theorem 1.1 If 1 < q < 2 < p < 2∗ and the potentials a and b satisfy (a0), (a1),
(b0) and (b1), then there exists µ∗ > 0 such that the problem (1.1) admits at least
two positive solutions if µ is small.

Since the pioneer work of Ambrosetti, Brezis and Cerami [3], elliptic problems
with concave-convex terms have been widely studied. It is impossible to give a
complete list of references and therefore we quote the papers [1, 2, 4, 14, 16, 20],
where the authors presented some related results for indefinite potentials.

In our proof, we use variational methods, by looking for critical points of the
energy functional associated to (1.1). After obtaining a first solution with a mini-
mization argument, we use a version of the Mountain Pass Theorem to get another
solution. Although the main steps of the proof are standard, the calculation here
becomes more involved since the first equation of the problem does not involve
the operator −∆ + Id. Hence, the quadratic part of the energy functional, namely∫

Ω
|∇u|2dx, is not a norm in the natural space W 1,2(Ω). In order to overcome

this difficulty we follow [6], by making an appropriate decomposition of the space
W 1,2(Ω).
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In our second result we consider a different type of competition on the bound-
ary. Actually, we replace the superlinear term in (1.1) by a function f(x, u) and
consider the problem

∆u = 0, in Ω,

∂u

∂η
= f(x, u) + µb(x)|u|q−2u, on ∂Ω,

(1.2) {p2}

where Ω ⊂ RN , N ≥ 3, is a bounded smooth domain, µ > 0, 1 < q < 2 and the
function f ∈ C(∂Ω× R,R) has subcritical growth, that is,

(f) there exist C1, C2 > 0 and p ∈ (2, 2∗ − 1) such that

|f(x, s)| ≤ C1 + C2|s|p−1, ∀x ∈ ∂Ω, s ∈ R.

We are interested in the case that f is asymptotically linear at the origin and at the
infinity. Since we shall consider some weighted eigenvalue problems, we introduce
the set

F :=

{
k : Ω→ R :

k ∈ Lσ(∂Ω), for some σ > N − 1,

k+ 6= 0,
∫
∂Ω
k(x) dσx 6= 0

}
,

where k+(x) := max{k(x), 0}.
Setting F (x, s) :=

∫ s
0
f(x, t) dt, we suppose that

(f0) there exists K0 ∈ F such that

lim
s→0+

2F (x, s)

s2
= K0(x), uniformly for x ∈ ∂Ω;

(f∞) there exists k∞ ∈ F such that

lim
s→+∞

f(x, s)

s
= k∞(x), uniformly for x ∈ ∂Ω.

For any k ∈ F , we can prove (see Section 2) that the eigenvalue problem

∆u = 0, in Ω,
∂u

∂ν
= λk(x)u, on ∂Ω,

has a sequence of eigenvalues (λj(k))j∈N such that λj(k) → ∞ as j → ∞. With
this notation, we can state our second result in the following way

{t2}
Theorem 1.2 Suppose that b satisfies (b0) − (b1) and f satisfies (f), (f∞) and
(f0) with

∫
∂Ω
K0(x)dσx < 0. Assume also that

λ1(k∞) < 1 < λ1(K0) and λj(k∞) < 1 < λj+1(k∞),

for some j ≥ 1. Then the problem (1.2) admits at least two nonzero solutions for
any µ > 0 small enough.
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Although we can guarantee that one of the above solutions is positive, we
do not have information about the sign of the second one. However, if we suppose
that f is odd in the second variable, we can obtain two positive solutions as in
Theorem 1.1 (see Remark 4.1). The condition λj(k∞) < 1 < λj+1(k∞) is a sort
of nonressonance condition. It is used only to show that the energy functional has
some compactness properties (see Proposition 4.2).

In the proof we follow the same lines of Theorem 1.1. Again, we need to
consider some trick decomposition of the space W 1,2(Ω). In the asymptotically
linear case, the eigenvalue problems associated to the asymptotic limits K0 and
k∞ play an important rule in this feature.

Semilinear elliptic problems with concave-convex or asymptotically terms
have been considered during the last years(see [2, 15, 19], for instance). Usually,
they are treated under Dirichlet boundary conditions. In this case, the map u 7→∫

Ω
|∇u|2dx defines a norm in the working space W 1,2

0 (Ω). The same does not oc-
cur in problems (1.1) and (1.2), since the natural space to look for solutions is
W 1,2(Ω). For semilinear elliptic problems with nonlinear terms on the boundary
we refer the reader to [4, 5, 10, 15, 21, 22]. In all these works the left hand side of
the equation treated provides the norm u 7→

∫
Ω

(|∇u|2 + c(x)u2)dx in W 1,2(Ω),
since they considered c(x) ≥ c0 > 0 a.e. in Ω. The main feature of this paper is to
consider the extremal case c ≡ 0. Hence, our results complement and/or general-
ize the aforementioned works. In particular, Theorem 1.1 complements the results
of [15,19] and Theorem 1.2 is closely related to [2, 4].

The paper is organized as follows: in the next section we give some pre-
liminaries results and present the abstract framework to deal with our problems.
Section 3 is devoted to the proof of Theorem 1.1 and in the final Section 4 we
prove Theorem 1.2.

2 Preliminary results

In this section we present the variational framework to deal with our problems.
The main difficulty is that its linear part induces the term

∫
Ω
|∇u|2 dx in the

associated functional. Since we are going to work with the space W 1,2(Ω), this
term is not a norm and therefore some of the usual arguments do not hold. In
order to overcome this problem we adapt some ideas from [6] (see also [10]).

Here and throughout this work C,C1, C2, . . . , are positive constants. The
element of area in the integrals over ∂Ω is denoted by dσx, and the norm in Ls(Ω)
by ‖ · ‖s. For any s > 1, we denote by s′ its conjugated exponent. We recall the
set F defined in the introduction

F :=

{
k : Ω→ R :

k ∈ Lσ(∂Ω), for some σ > N − 1,

k+ 6≡ 0,
∫
∂Ω
k(x) dσx 6= 0

}
.

The next two results are versions of analogous results presented in [6].
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{aux}
Lemma 2.1 Let k ∈ F and define

Xk :=

{
u ∈W 1,2(Ω) :

∫
∂Ω

k(x)udσx = 0

}
. (2.1) {xk}

Then

(i) the Poincaré inequality holds in the subspace Xk, that is, for some C > 0 we
have that

‖u‖2 ≤ C‖∇u‖2, ∀u ∈ Xk;

(ii) for any u ∈W 1,2(Ω) there is (a unique) tu ∈ R such that u⊥ := (u−tu) ∈ Xk,
and therefore W 1,2(Ω) = 〈1〉 ⊕Xk. Moreover, the expression

〈(tu + u⊥), (tv + v⊥)〉 = tu · tv +

∫
Ω

(∇u⊥ · ∇v⊥) dx, (2.2) {pii}

defines an inner product in W 1,2(Ω) with associated norm equivalent to the
usual one.

Proof. Suppose, by contradition, that there exists (un) ⊂ Xk such that ‖un‖2 ≥
n‖∇un‖2. If we define vn := un/‖un‖2, we have that ‖vn‖2 = 1 and ‖∇vn‖2 ≤ 1/n.
Hence, (vn) is bounded in W 1,2(Ω). Since σ > (N − 1) > 2(N − 1)/N = (2∗)

′, up
to a subsequence, vn → v strongly in L2(∂Ω) and Lσ

′
(∂Ω). Thus,∣∣∣∣∫

∂Ω

k(x)(vn − v) dσx

∣∣∣∣ ≤ ‖k‖Lσ(∂Ω)‖vn − v‖Lσ′ (∂Ω)

and therefore ‖v‖2 = 1 and
∫
∂Ω
k(x)v dσx = 0.

Since ∂vn
∂xi
→ 0 in L2(Ω), for any ϕ ∈ C∞0 (Ω) we get∫

Ω

v
∂ϕ

∂xi
dx = −

∫
Ω

∂v

∂xi
ϕdx = − lim

n→+∞

∫
Ω

∂vn
∂xi

ϕdx = 0.

Hence, v ∈ W 1,2(Ω) has null weak derivate and, for some C ∈ R, v(x) = C a.e.
in Ω. This,

∫
∂Ω
k(x)v dσx = 0 and

∫
∂Ω
k(x) dσx 6= 0 imply that v = 0, which

contradicts ‖v‖2 = 1. This proves the first item.
For item (ii) we take u ∈W 1,2(Ω) and set

tu :=
1∫

∂Ω

k(x) dσx

∫
∂Ω

k(x)udσx.

A straightforward calculation shows that u⊥ = u − tu ∈ Xk. Using (i), we can
prove that (2.2) defines an inner product in W 1,2(Ω). If we denote by ‖ · ‖ the
norm induced by this inner product we have that, for any u ∈W 1,2(Ω),

‖u‖2W 1,2 =

∫
Ω

(|∇u|2 + u2) dx ≤ 2t2u|Ω|+
∫

Ω

(|∇u⊥|2 + 2(u⊥)2) dx ≤ C‖u‖2,
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for some C > 0 independent of u. Using this inequality and item (i) again we can
prove that (W 1,2(Ω), ‖ · ‖) is a Banach space. Hence, it follows from the Open
Maping Theorem (see [7, Corollary 2.8]) that ‖ · ‖ is equivalent to ‖ · ‖W 1,2 . �

We present below a technical result which will be useful to control the be-
haviour of the energy functional near the origin. We borrow some ideas from [10].

{tech}
Lemma 2.2 Let k and Xk as in the statement of Lemma 2.1. If (a0) and (b0)
hold, then there exist η > 0 such that, for any u = tu + u⊥, with tu ∈ 〈1〉 = R and
u⊥ ∈ Xk, we have that∫

∂Ω

b(x)|tu + u⊥|q dσx ≤
|tu|q

2

∫
∂Ω

b(x) dσx, whenever ‖∇u⊥‖2 ≤ η|tu|.

Proof. Arguing by contradiction, we suppose that there exists a sequence (un) ∈ H
such that

(∫
Ω
|∇u⊥n |2 dx

)1/2 ≤ |tun |/n and∫
∂Ω

b(x)|tun + u⊥n |q dσx >
|tun |q

2

∫
∂Ω

b(x) dσx, (2.3) {l00}

where un = tun + u⊥n , tun ∈ R and u⊥n ∈ Xk. If we set wn := u⊥n /tun , we conclude
that

∫
Ω
|∇wn|2 dx → 0. Since Poincare’s inequality holds in Xk, see Lemma 2.1,

we get wn → 0 in Xk. Moreover, the continuous embedding Xk ⊂ Lq(∂Ω) shows
that wn → 0 in Lq(∂Ω) and wn → 0 a. e. in ∂Ω. Dividing the inequality in (2.3)
by |tun |q, we obtain ∫

∂Ω

b(x)|1 + wn|q dσx >
1

2

∫
∂Ω

b(x) dσx.

Taking the limit and using Lebesgue Theorem we conclude that
∫
∂Ω
b(x) dσx ≥ 0,

which contradicts (b0). This completes the proof. �

Remark 2.1 A simple inspection of the proofs show that the two lemmas above
remain true if we discard the hypothesis on k+ and suppose only that k ∈ Lσ(∂Ω)
for some σ > N − 1.

For any k ∈ F , let us consider the eigenvalue problem
∆u = 0, in Ω,

∂u

∂ν
= λk(x)u, on ∂Ω.

(2.4) {pa}

Since k ∈ Lσ(Ω) with σ > (N − 1), we can use Hölder’s inequality and the spec-
tral theory of compact operators to obtain an unbounded sequence of eigenvalues
(λj(k))j∈N such that λj(k)→∞ as j →∞. Notice that λ0(k) = 0 is an eigenvalue
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of (2.4) associated with the constant eigenfunctions. Since 〈1〉⊥ = Xk, we have
the following characterization

λ1(k) = inf
u∈Xk

{∫
Ω

|∇u|2 dx,

∫
∂Ω

k(x)u2 dσx = 1

}
> 0.

Indeed, if we take (un) ⊂ Xk such that
∫
∂Ω
k(x)u2

ndσx = 1 and ‖∇un‖2 →
λ1(k), we can use Lemma 2.1 to conclude that (un) is bounded. Hence, up to a
subsequence, un ⇀ u weakly in W 1,2(Ω). Since σ > N − 1, we can prove that
u ∈ Xk \ {0} and

∫
∂Ω
k(x)u2 dσx = 1. Recalling that v 7→ (

∫
Ω
|∇v|2 dx)1/2 defines

a norm in Xk, we can use a standard argument to show that λ1(k) is achieved by
the function u. Since u 6= 0 and Xk does not contain constant function we conclude
that λ1(k) > 0, as claimed.

Many other properties of the first eigenvalue could be proved depending on
the sign of

∫
∂Ω
k(x)dσx. We omit more details since just the above consideration

is enough to our purposes. We refer the reader to [13, 26] for a full description of
the first positive eigenvalue of a related eigenvalue problem.

3 The concave-convex case

In this section we consider the concave-convex case, proving that problem (1.1)
admits two positive solutions. Along all this section we consider the function k of
the previous section as being k ≡ 1. With this choice, the set X1 defined in (2.1) is
the subspace of the functions with zero average in Ω. More specifically, we denote
by H the space W 1,2(Ω) with the following decomposition

H = 〈1〉 ⊕X1 = 〈1〉 ⊕
{
u ∈W 1,2(Ω) :

∫
∂Ω

udσx = 0

}
.

Hence, any element u ∈ H can be (uniquely) written as u = tu + u⊥, with tu ∈ R
and u⊥ ∈ X1. In H, we consider the norm

‖tu + u⊥‖ =
√
t2u + ‖∇u⊥‖22 ,

which is equivalent to the usual norm of W 1,2(Ω) (see Lemma 2.1).
The energy functional associated with the problem (1.1) is

J(u) :=
1

2

∫
Ω

|∇u|2 dx− 1

p

∫
∂Ω

a(x)|u|p dσx −
µ

q

∫
∂Ω

b(x)|u|q dσx, u ∈ H.

A straightforward calculation show that J ∈ C1(H,R) and its critical points are
weak solutions of (1.1).

We are going to obtain the solution by looking for the critical points f J . We
first verify that the functional admits the Mountain Pass geometry.
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{mountain}
Lemma 3.1 Suppose that (a0), (a1) and (b0) hold. Then there exists µ∗ > 0 such
that, for any µ ∈ (0, µ∗), we have the following

(i) there exist αµ, rµ > 0 such that

J(u) ≥ αµ, ∀u ∈ H, ‖u‖ = rµ;

(ii) there exists e ∈ H1(Ω), independent of µ, such that

J(e) < 0, ‖e‖ > rµ.

Proof. Let η be given by Lemma 2.2 and consider u = tu + u⊥, with tu ∈ R and
u⊥ ∈ X1. We split the proof in two distinct cases.

Case 1: ‖∇u⊥‖2 ≤ η|tu|.

In this case, since ‖u‖2 = t2u + ‖∇u⊥‖22 = r2, we have that

tu ≥ r/
√

1 + η2. (3.1) {l3}

Hence, it follows from Lemma 2.2 that

J(u) ≥ 1

2

∫
Ω

|∇u⊥|2 dx− 1

p

∫
∂Ω

a(x)|u|p dσx −
µ

2q
|tu|q

∫
∂Ω

b(x) dσx

≥ −C1‖u‖p −
µ

2q
|tu|q

∫
∂Ω

b(x) dσx,

for some C1 > 0, where we have used the trace embedding W 1,2(Ω) ⊂ Lp(∂Ω) in
the last inequality. Since

∫
∂Ω
b(x) dσx < 0, we can use (3.1) to get

J(u) ≥ rq
(
−C1r

p−q + µC2

)
,

with C2 := −
∫
∂Ω
b(x) dσx/(2q(1 + η2)q/2) > 0. Thus, if rp−q ≤ (µC2)/(2C1), we

have that
J(u) ≥ µ

2
C2r

q, (3.2) {l111}

for any u ∈ H such that ‖∇u⊥‖2 ≤ η|tu| and ‖u‖ ≤ r. It is important to notice
that the above inequality is verified for any µ > 0.

Case 2: ‖∇u⊥‖2 > η|tu|.

In this case, for γ :=
√

1 + η−2, we have that

‖u‖2 ≤ γ2‖∇u⊥‖22. (3.3) {l4}
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Hence ∣∣∣∣∫
∂Ω

b(x)|u|q dσx

∣∣∣∣ ≤ C3‖u‖q ≤ C3γ
q‖∇u⊥‖q2

and we can use (3.3) to get

J(u) ≥ 1

2
‖∇u⊥‖22 − C1‖u‖p −

µC3

q
γq‖∇u⊥‖q2

≥ 1

2
‖∇u⊥‖22

{
1− C1γ

p‖∇u⊥‖p−2
2 − µC3

q
γq‖∇u⊥‖q−2

2

}
.

It follows that, for some constants C4, C5 > 0 which are independent of µ > 0, we
have that

J(u) ≥ 1

2
‖∇u⊥‖22

{
1− C5‖∇u⊥‖p−2

2 − µC4‖∇u⊥‖q−2
2

}
. (3.4) {calor}

We now set r1 := (4C5)1/(2−p) and notice that, if ‖u‖ = r1, then ‖∇u⊥‖2 ≤
r1, and therefore C5‖∇u⊥‖p−2

2 ≤ 1/4. Moreover, since (3.3) implies that ‖∇u⊥‖2 ≥
r1/γ > 0, there exists µ∗ > 0 such that µC4‖∇u⊥‖q−2

2 ≤ 1/4, for any µ ∈ (0, µ∗).
Then, we can use (3.4) to deduce that

J(u) ≥ 1

4
‖∇u⊥‖22 ≥

1

4γ2
‖u‖2 =

η2

4(1 + η2)
r2
1 > 0,

for any µ ∈ (0, µ∗), ‖u‖ = r1 and ‖∇u⊥‖2 > η|tu|. This and (3.2) show that the
first statement of the lemma holds if we set

rµ := min
{(µC2

2C1

)1/(p−q

, (4C5)1/(2−p)
}

and

αµ := min
{µ

2
C2r

q
µ,

η2

4(1 + η2)
(4C5)2/(2−p)

}
.

For the proof of (ii) we consider a positive smooth function φ1 : ∂Ω→ R with
support contained in the set A+ given by condition (a1). According to [7, page
315], there exists an extension φ ∈ H such that φ1 = φ|∂Ω. We have that

J(tφ) ≤ t2

2
‖∇φ‖22 −

tp

p

∫
A+

a(x)φp dσx −
µtq

q

∫
A+

b(x)φq dσx.

Since the first integral above is positive and q < 2 < p, we get

lim sup
t→∞

J(tφ)

tp
≤ −1

p

∫
A+

a(x)φp dσx < 0,

and the second item follows for e := tφ, with t > 0 large enough. �

We prove in the sequel that J admits at least one critical point with negative
energy.
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{ppp}
Proposition 3.1 Suppose that (a0), (a1), (b0) and (b1) holds and let µ∗, rµ be
given by Lemma 3.1. If µ ∈ (0, µ∗), then

cµ := inf
u∈Brµ (0)

J(u) < 0

is achieved at some positive function uµ ∈ Brµ(0). In particular, J ′(uµ) = 0.

Proof. We first prove that cµ < 0. For this purpose we pick ψ1 : ∂Ω→ R a positive
smooth function with support contained in the set B+ given by condition (b1). If
we denote by ψ its extension to the whole set Ω, we can argue as in the proof of
item (ii) of Lemma 3.1 to obtain

lim inf
t→0+

J(tψ)

tq
≤ −µ

q

∫
B+

b(x)ψq dσx < 0.

For t > 0 small, we have that ‖tψ‖ < rµ. This and the above inequality prove that
cµ < 0.

We now consider (un) ⊂ Brµ(0) such that J(un)→ cµ. Up to a subsequence,
we have that un ⇀ uµ weakly in W 1,2(Ω), un → uµ strongly in L2(Ω) and Ls(∂Ω),
for any 1 < s < 2∗, and un(x)→ uµ(x) a.e. in Ω. Hence, we have that∫

∂Ω

a(x)|un|p dσx →
∫
∂Ω

a(x)|uµ|p dσx

and ∫
∂Ω

b(x)|un|q dσx →
∫
∂Ω

b(x)|uµ|q dσx.

Moreover, since the norm is weakly semicontinuous, we can use the strong conver-
gence in L2(Ω) to get ∫

Ω

|∇uµ|2 dx ≤ lim inf
n→+∞

∫
Ω

|∇un|2 dx.

All together, the above expressions provide

J(uµ) ≤ lim inf
n→+∞

J(un) = cµ < 0,

and therefore cµ is attained at uµ. Since J(un) = J(|un|), we may suppose that the
sequence (un) verifies un ≥ 0, and therefore the pointwise convergence provides
uµ ≥ 0 a.e. in Ω. Moreover, since J(uµ) < 0 and item (i) of Lemma 3.1 imply that
that ‖uµ‖ < rµ, we have that uµ is a nonnegative critical point of J . Using classical
results of elliptic regularity we obtain that uµ ∈ W 2,p(Ω) for any 1 < p < ∞
(see [17, Corolary 9.25]). It follows from Harnack’s inequality that uµ > 0 a.e. in
Ω and we are done. �

We now prove that J verifies a classical compactness condition. The main
novelty here is to ensure the compactness using the decomposition of the space
W 1,2(Ω) presented in the last section.
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{bound}
Proposition 3.2 Suppose that (a0) and (b0) hold. If c ∈ R and (un) ⊂ H is such
that

J(un)→ c and (1 + ‖un‖)‖J ′(un)‖ → 0,

as n→ +∞, then (un) has a convergent subsequence.

Proof. We first show that (un) has a bounded subsequence. Suppose, by contra-
diction, that ‖un‖ → +∞ and define define wn := un/‖un‖. Up to a subsequence,
wn ⇀ w weakly in H, wn → w strongly in Lp(∂Ω) and Lq(∂Ω), for some w ∈ H.

Computing J(un)− (1/2)J ′(un)un, we obtain(
1

2
− 1

p

)∫
∂Ω

a(x)|un|p dσx = µ

(
1

q
− 1

2

)∫
∂Ω

b(x)|un|q dσx + c+ on(1),

where on(1) denotes a quantity going to zero as n→∞. Thus,∫
∂Ω

a(x)|un|p dσx ≤ C1 + C1‖un‖q,

holds for some C1 > 0. Recalling that J(un) = c+ on(1), we obtain

1

2

∫
Ω

|∇un|2 dx =
1

p

∫
∂Ω

a(x)|un|p dσx +
µ

q

∫
∂Ω

b(x)|un|q dσx + c+ on(1)

≤ C2 + C2‖un‖q

and therefore ∫
Ω

|∇wn|2 dx ≤ on(1) + C3‖un‖q−2.

Since q < 2, we get ‖∇wn‖2 → 0. Hence, if we write wn = twn +w⊥n , with twn ∈ R
and w⊥n ∈ X1, we conclude that w⊥n → 0 in X1. It follows that the sequence (twn)
is bounded, and therefore, up to a subsequence, twn → tw ∈ R which satisfies

|tw| = ‖tw‖ = ‖w‖ = lim
n→∞

‖wn‖ = 1.

We conclude that wn → 1 strongly in H.
On the other hand, the equality ‖un‖1−pJ ′(un)twn = on(1) provides∣∣∣∣∫
∂Ω

a(x)|wn|p−2wntwn dσx

∣∣∣∣ ≤ 1

‖un‖p−q

∫
|b(x)||wn|q−1|twn |dσx + on(1).

Since p > q and wn → 1, the right-hand side above goes to zero. Thus, it follows
from the Lebesgue Theorem that

0 = lim
n→∞

∫
∂Ω

a(x)|wn|p−2wntwn dσx =

∫
∂Ω

a(x) dσx,
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which contradicts (a0). This contradiction proves that (un) is bounded.
Up to a subsequence, we have that un ⇀ u weakly in W 1,2(Ω), un → u

strongly in Lp(∂Ω) and Lq(Ω), for some u ∈ H. Hence,

lim
n→∞

∫
∂Ω

a(x)|un|p−2un(un − u) dσx = 0 = lim
n→∞

∫
∂Ω

b(x)|un|q−2un(un − u) dσx

and therefore

on(1) = J ′(un)(un − u) =

∫
Ω

∇un · ∇(un − u) dx+ on(1),

and we obtain ∇un → ∇u in (L2(Ω))N . Since un → u strongly in L2(Ω), we have
that un → u strongly in W 1,2(Ω). By Lemma 2.1, ‖ · ‖ is equivalent to the usual
norm of W 1,2(Ω) and therefore we conclude that un → u strongly in H. �

We are ready to prove our first theorem.

Proof of Theorem 1.1. Let µ∗ > 0 be given in Lemma 3.1. In view of Proposition
3.1 the problem has a positive solution uµ such that J(uµ) < 0. We shall obtain
the second solution as an application of a variant of the Mountain Pass Theorem
presented by Beresticky, Capuzzo-Dolcetta and Nirenberg in [6].

According to Propositions 3.1 and 3.2 the functional J admits the Mountain
Pass geometry and satisfies the Cerami condition. If we define p : H1(Ω)→ H1(Ω)
by p(u) = |u|, we easily see that J(p(u)) = J(u) for any u ∈ H1(Ω). Then,
applying [6, Theorem 10], we guarantee the existence of u ∈ p(H1(Ω)) such that
J(u) > 0 and J ′(u) = 0. In particular, the last assertion give us a nonzero critical
point u ∈ H such that u ≥ 0 a.e. in Ω. As before, this critical point is positive a.e.
in Ω and the theorem is proved. �

4 The asymptotically linear case

In this section we prove Theorem 1.2. From now on, we shall consider a differ-
ent splitting of the space W 1,2(Ω). Actually, considering the function K0 ∈ F
given by condition (f0), we denote by H the space W 1,2(Ω) with the following
decomposition

H := 〈1〉 ⊕XK0
= 〈1〉 ⊕

{
v ∈W 1,2(Ω) :

∫
∂Ω

K0(x)v dσx = 0

}
.

Recalling the results of Lemma 2.1, from now on we write u = tu+u⊥, with tu ∈ R
and u⊥ ∈ XK0

. As before, the norm of such element is ‖u‖ =
√
t2u + ‖∇u⊥‖22.

The energy functional associated to the problem (1.2) is J : H → R given by

J(u) :=
1

2

∫
Ω

|∇u|2dx−
∫
∂Ω

F (x, u)dσx −
µ

q

∫
∂Ω

b(x)|u|qdσx,

12



where F (x, s) =
∫ s

0
f(x, t)dt. Condition (f) imply that J ∈ C1(H,R) and the

critical points of J are weak solutions of (1.2).
In what follows we prove a version of Lemma 3.1 for this new functional.

{mountain2}
Lemma 4.1 Suppose that (b0), (f), (f∞) and (f0) hold with

∫
∂Ω
K0(x)dσx < 0.

If
λ1(k∞) < 1 < λ1(K0),

then there exists µ∗ > 0 such that, for any µ ∈ (0, µ∗), we have the following

(i) there are αµ, rµ > 0 such that

J(u) ≥ αµ, ∀u ∈ H, ‖u‖ = rµ;

(ii) there exists e ∈ H1(Ω), independent of µ, such that

J(e) < 0, ‖e‖ > rµ.

Proof. We first notice that, for any given ε > 0, it follows from (f) and (f0) that,
for some Cε > 0 there holds

F (x, s) ≤ 1

2
(K0(x) + ε)s2 + Cε|s|p, for a.e. x ∈ ∂Ω,∀ s ∈ R. (4.1) {go}

As before, we consider η given by Lemma 2.2, take u = tu + u⊥ ∈ H and
consider two cases.

Case 1: ‖∇u⊥‖2 ≤ η|tu|.

In this case, we can use (4.1) and Lemma 2.2 to get

J(u) ≥ −C1‖u‖p −
µ

2q
|tu|q

∫
∂Ω

b(x) dσx + J (u) (4.2) {pequi1}

where

J (u) :=
1

2
‖∇u⊥‖22 −

1

2

∫
∂Ω

K0(x)(tu + u⊥)2dσx −
ε

2

∫
∂Ω

u2 dσx.

Recalling that
∫
∂Ω
K0(x)tuu

⊥dσx = 0, we can use the definition of λ1(K0) to
obtain ∫

∂Ω

K0(x)(tu + u⊥)2 dσx ≤ t2u
∫
∂Ω

K0(x) dσx +
1

λ1(K0)
‖∇u⊥‖22.

Since 2ab ≤ (a2 +b2), the trace embedding H ↪→ L2(∂Ω) and Poincare’s inequality
provide ∫

∂Ω

u2 dσx ≤ 2

∫
∂Ω

(
t2u + (u⊥)2

)
dσx ≤ C2(t2u + ‖∇u⊥‖22).

13



All together, the above inequalities imply that

J (u) ≥ 1

2

(
1− 1

λ1(K0)
− εC3

)
‖∇u⊥‖22 −

t2u
2

(∫
∂Ω

K0(x) dσx + εC3

)
. (4.3) {go2}

Since λ1(K0) > 1 and
∫
∂Ω
K0(x) dσx < 0, we can choose ε > 0 small in such way

that J (u) ≥ 0. Thus, it follows from (4.2) and the same argument used in Case 1
of Lemma 3.1 that the inequality (3.2) holds for the new functional J .

Case 2: ‖∇u⊥‖2 > η|tu|.

In this case we start by picking ε > 0 in such way that the last term into the
parenthesis in (4.3) is negative and the first one is equal to C4 > 0. Arguing as
above, using (4.1), (b0) and the trace embedding we obtain

J(u) ≥ C4

2
‖∇u⊥‖22 − C1

∫
∂Ω

|u|p dσx −
µ

q

∫
∂Ω

b(x)|u|q dσx

≥ C5‖∇u⊥‖22 − C6‖u‖p − µC7‖u‖q.

Recalling that, by (3.3), ‖u‖2 ≤ (1 + η−2)‖∇u⊥‖22, we obtain

J(u) ≥ ‖∇u⊥‖22
{
C5 − C6‖∇u⊥‖p−2

2 − µC7‖∇u⊥‖q−2
2

}
with all the constants independent of µ. Now, we can argue as in the proof of
Lemma 3.1 to conclude that item (i) holds.

For proving (ii), we first notice that, for any given ε > 0, we can use (f∞)
and (f0) to obtain Cε > 0 such that

F (x, s) ≥ 1

2
(k∞(x)− ε)s2 − Cε, for a.e. x ∈ ∂Ω,∀ s ∈ R.

If we take φ1 ∈ Xk∞ \ {0} such that (see Section 2)

∆φ1 = 0, in Ω,
∂φ1

∂ν
= λ1(k∞)k∞(x)φ1, on ∂Ω,

it follows from the above inequality for F that

J(tφ1) ≤ t2

2

∫
Ω

|∇φ1|2 dx− t2

2

∫
∂Ω

(k∞(x)− ε)φ2
1 dσx − µC8t

q + C9.

Since λ1(k∞)
∫

Ω
|∇φ1|2 dx =

∫
∂Ω
k∞(x)φ2

1 dσx, we can use the above expression
and the trace embedding H ↪→ L2(∂Ω) to get

J(tφ1)

t2
≤ 1

2

(
1− 1

λ1(k∞)
+ εC10

)∫
Ω

|∇φ1|2 dx− µC8t
q−2 + C9t

−2.
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If we choose ε > 0 small, we conclude that

lim sup
t→+∞

J(tφ1)

t2
< 0

and therefore item (ii) holds for e := tφ1, with t > 0 large enough. �

Now we shall ensure that J has a critical point with negative energy using
the behavior of f at the origin.

{ppp2}
Proposition 4.1 Suppose that (f0), (f), (b0) and (b1) hold and let µ∗, rµ be given
by Lemma 4.1. If µ ∈ (0, µ∗), then

cµ := inf
u∈Brµ (0)

J(u) < 0

is achieved at some positive function uµ ∈ Brµ(0). In particular, J ′(uµ) = 0.

Proof. Given ε > 0, it follows from (f) and (f0) that, for some Cε > 0 there holds

F (x, s) ≥ 1

2
(K0(x)− ε)s2 − Cε|s|p, for a.e. x ∈ ∂Ω,∀ s ∈ R.

Let ψ1 : ∂Ω→ R be a positive smooth function with support contained in the set
B+ given by condition (b1). If we denote by ψ its extension to the whole set Ω we
can use the above inequality to get

J(tψ) ≤ t2

2

(∫
Ω

|∇ψ|2 dx−
∫
∂Ω

(K0(x)− ε)ψ2 dσx

)
+Cεt

p

∫
∂Ω

ψp dσx −
µtq

q

∫
B+

b(x)ψq dσx.

Since q < 2 < p, we infer that

lim inf
t→0+

J(tψ)

tq
= −

∫
B+

b(x)ψq dσx < 0,

and therefore cµ < 0. Now we can use (f0) and the same argument of Proposition
3.1 to conclude the proof. We omit the details. �

{bound2}
Proposition 4.2 Suppose that (b0), (f), (f∞) hold and, for some j ∈ N, we have
that

λj(k∞) < 1 < λj+1(k∞). (4.4) {hotel3}

If c ∈ R and (un) ⊂ H is such that

J(un)→ c and (1 + ‖un‖)‖J ′(un)‖ → 0, (4.5) {go4}

as n→ +∞, then (un) has a convergent subsequence.
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Proof. As quoted before, the usual norm of W 1,2(Ω) is equivalent to that induced
by the inner product (2.2) for any function k verifying the hypotheses of Lemma
2.1. Hence, the sequence (un) ⊂ 〈1〉 ⊕Xk∞ satisfies the same conditions on (4.5)
with the norm induced by this former decomposition. Moreover, it is sufficient to
prove the result with this new norm. Along all this proof we shall write u = tu+u⊥,
with tu ∈ R and u⊥ ∈ Xk∞ , that is, we use the decomposition 〈1〉 ⊕Xk∞ .

We start by claiming that (un) has a bounded subsequence. Indeed, suppose
by contradiction that ‖un‖ → +∞. If we set vn := un/‖un‖ we may suppose that,
up to a subsequence,

vn ⇀ v∞, weakly in 〈1〉 ⊕Xk∞ ,

vn(x)→ v∞(x), for a.e. in x ∈ Ω,

vn → v∞, strongly in Ls(∂Ω), 2 ≤ s < 2∗,

|vn(x)| ≤ hs(x), for a.e. x ∈ ∂Ω,

(4.6) {hotel0}

for some v∞ ∈ 〈1〉 ⊕Xk∞ and hs ∈ Ls(∂Ω), with 2 ≤ s < 2∗.
For any ϕ ∈ 〈1〉 ⊕Xk∞ , we have that

on(1) = J ′(un)(ϕ/‖un‖) =

∫
Ω

(∇vn · ∇ϕ) dx−
∫
∂Ω

f(x, un)

un
vnϕdσx

− µ

‖un‖2−q

∫
∂Ω

b(x)|vn|q−1ϕdσx.

(4.7) {hotel1}

Since lim|s|→+∞ f(x, s)/s = k∞(x) for any x ∈ Ω, we can use (f0) and the Lebesgue
theorem to get ∫

∂Ω

f(x, un)

un
vnϕdσx = on(1).

Hence, taking the limit into (4.7), using q < 2, (4.6), (f∞) and Lebesgue Theorem
again we conclude that∫

Ω

(∇v∞ · ∇ϕ)dx =

∫
∂Ω

k∞(x)v∞ϕdσx, ∀ϕ ∈ 〈1〉 ⊕Xk∞ . (4.8) {ll}

Picking ϕ ≡ 1, recalling that
∫
∂Ω
k∞(x)v⊥∞ dσx = 0 and

∫
∂Ω
k∞(x) dσx < 0, we

conclude that tv∞ = 0, and therefore v∞ = v⊥∞ ∈ Xk∞ . Since J ′(un)(un/‖un‖2) =
on(1), we can proceed as above to conclude that

∫
Ω
|∇vn|2 dx→

∫
∂Ω
k∞(x)v2

∞ dσx.
On the other hand, recalling that v∞ ∈ Xk∞ , we conclude that tvn → 0. Thus,

1 = lim
n→+∞

{(
t2vn +

∫
|∇vn|2 dx

)
− t2vn

}
=

∫
∂Ω

k∞(x)v2
∞ dσx,

and therefore v∞ 6≡ 0. This and (4.8) show that v∞ an eigenfunction of the problem
(2.4), with k = k∞. But this contradicts (4.4). Thus, we conclude that (un) is
bounded.
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Since all the nonlinear terms in the functional J has subcritical growth, we
can use a standard procedure to conclude that, for some subsequence, ∇un → ∇u
in (L2(Ω))N . The result easily follows from this fact. �

We are ready to finish the paper proving our second theorem.

Proof of Theorem 1.2. Arguing as in the proof of the first theorem we obtain a
positive solution by minimizing the functional J . The existence of the second solu-
tion is a consequence of all the above auxiliary results and the classical Mountain
Pass Theorem. �

{f-impar}
Remark 4.1 We notice that, in the last proof, we cannot guarantee that the second
solution is positive. However, if f is odd in the second variable, we have that
J(u) = J(|u|). Therefore, the same argument of Theorem 1.1 applies and we can
obtain a positive mountain pass solution.
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