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Abstract We consider the semilinear problem

−Δu − 1
2 (x · ∇u) = λf(u), x ∈ R

2,

where λ is a positive parameter and f has exponential critical growth. We first establish the existence
of a non-zero weak solution. Then, by assuming that f is odd, we prove that the number of solutions
increases when the parameter λ becomes large. In the proofs we apply variational methods in a suitable
weighted Sobolev space consisting of functions with rapid decay at infinity.
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1. Introduction

In this paper we consider the semilinear elliptic eigenvalue problem

−Δu − 1
2 (x · ∇u) = λf(u), x ∈ R

2, (Pλ)

where λ > 0 is a parameter and f is a continuous function satisfying some suitable
conditions. We shall look for solutions in a weighted Sobolev space of functions having a
rapid decay at infinity.

As quoted by Haraux and Weissler [10] and Escobedo and Kavian [8], the above
equation is closely related to the study of self-similar solutions for the heat equation.
More specifically, if we consider the evolution equation

ut − Δu = |u|p−1u on (0,∞) × R
N

and we seek solutions of the form u(t, x) = t−1/(p−1)ω(t−1/2x), a straightforward calcu-
lation shows that ω : R

N → R needs to satisfy

−Δω − 1
2 (x · ∇ω) =

1
p − 1

ω + |ω|p−1ω on R
N .

c© 2016 The Edinburgh Mathematical Society 107
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For higher dimensions, N � 3, there are some results concerning the above equation
and its variants obtained by replacing the right-hand side of the equality by more general
nonlinearities g(ω) (see [3,5,8,9,13,14] and references therein). In a large class of such
results the authors used variational techniques in such a way that the range of the power
p is limited from above by the critical Sobolev exponent 2N/(N − 2).

In dimension 2 the role of the critical exponent is played by the limiting exponent α0

for the Trudinger–Moser inequality in H1(R2), which is α0 = 4π. Here we are interested
in the case in which the function f has the maximal growth, which allows us to deal with
(Pλ) variationally. More precisely, in dimension 2 the maximal growth is related to the
so-called Trudinger–Moser inequality, namely,

sup
‖u‖

H1
0(Ω)�1

∫
Ω

eαu2
dx � C(α)

for all α � 4π and Ω ⊂ R
2 bounded. Motivated by this inequality, in [1,6] the authors

introduced the following notion of criticality in dimension 2: we say that f : R → R has
exponential critical growth if there exists α0 > 0 such that

lim
|s|→+∞

f(s)
eαs2 =

{
0 if α > α0,

+∞ if α < α0.
(1.1)

We assume throughout this paper that the nonlinearity f is continuous and satisfies this
growth condition.

Problems involving critical exponential growth in bounded domains Ω ⊂ R
2 have been

studied by many authors (see [6,7,15,16] and references therein). When dealing with
problems on the entire space we need a version of the Trudinger–Moser inequality for
unbounded domains. It asserts that

sup
‖u‖H1(R2)�1

∫
R2

(eαu2 − 1) dx � C(α)

for all α � 4π (see [4,17] and references therein).
Since we intend to apply variational methods, we first observe that (Pλ) can be rewrit-

ten in a divergence form. Indeed, if we set

k(x) := exp
(

|x|2
4

)
, x ∈ R

2,

a direct calculation shows that (Pλ) is equivalent to

− div(k(x)∇u) = λk(x)f(u), x ∈ R
2. (1.2)

Due to the presence of the weight k(x) we are not able to use the usual Sobolev spaces. As
quoted in [8], the natural space to look for rapid decay solutions is the space X defined
as the closure of C∞

c,rad(R2) with respect to the norm

‖u‖ :=
( ∫

R2
k(x)|∇u|2 dx

)1/2

.
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As we will see, the space X is compactly immersed into the Lebesgue spaces with weight
k. Furthermore, with the aid of the Trudinger–Moser inequality, we prove that the embed-
ding of X into the Orlicz space LA(R2), where A is the N -function A(t) = eαt2 − 1, is
continuous, although it is not compact.

In order to perform our minimax approach we need to impose some suitable assump-
tions on the behaviour of f . More precisely, we shall assume the following conditions:

(f1) f(s) = o(s) as s → 0,

(f2) there exists θ > 2 such that

0 � θF (s) := θ

∫ s

0
f(t) dt � sf(s) for all s ∈ R,

(f3) the following limit holds:

lim
|s|→+∞

f(s)s
F (s)

= +∞.

In our first result we establish the existence of a non-trivial weak solution for problem
(Pλ) when λ > 0 is arbitrary. More precisely, we have the following theorem.

Theorem 1.1. Suppose that f satisfies (f1)–(f3) and

(f4) there exists β0 > 0 such that

lim inf
|s|→∞

f(s)s
eα0s2 � β0 >

4
λα0

min
{

1
r2 exp

(
r2

4
+

r4

256

)
: r > 0

}
.

Then, for any λ > 0, problem (Pλ) has at least one non-zero weak solution.

We remark that our first theorem can be applied for the model nonlinearity

f(s) =
(es2 − 1)sβ0

1 + s2 , s ∈ R.

Indeed, this function satisfies conditions (f1)–(f4) for α0 = 1 and λβ0 > 3.
In the proof of Theorem 1.1 we shall use the mountain pass theorem. After having

established all the properties of the space X we need to overcome the difficulty of dealing
with the unboundedness of the domain. Actually, this implies some problems in handling
with Palais–Smale sequences. Since the embedding of X in the Orlicz space LA(R2) is not
compact, we need to prove some technical convergence results as well as perform some
careful estimates of the minimax level of the associated functional. We also emphasize
the necessity of establishing a version of a convergence result due to Lions [11] for our
variational setting (see Lemma 2.6).

Condition (f3), which essentially has already appeared in [15,19], is crucial in order to
get some of the required convergence results. Although it appears to be quite restrictive,
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the model functions with critical exponential growth satisfy (f3). Moreover, this condition
is implied by

(f̂3) there exist constants R0, M0 > 0 such that

0 < F (s) � M0f(s) for all |s| � R0,

which has been used in many papers (see [1,6,7], for instance).
Concerning the correct localization of the minimax level, we use the technical condition

(f4) and adapt some ideas presented in [15] by performing some careful estimates of a
slight modification of the Green functions considered by Moser [12]. It is worthwhile
mentioning that our condition (f4) is more general than the analogous one considered
in [15], since here the number β0 may be finite. Actually, a numerical computation shows
that the relation between α0 and β0 in condition (f4) is satisfied if λα0β0 > 9.

In our last result we introduce more symmetry into the problem and show that the
value of the parameter λ > 0 affects the number of solutions.

Theorem 1.2. Suppose that the odd function f satisfies (f1)–(f3) and

(f5) there are μ0, s0 > 0 and θ0 > 2 such that

F (s) � μ0|s|θ0 for all |s| � s0.

Then, for any given m ∈ N, there exists Λm > 0 such that problem (Pλ) has at least m

pairs of non-zero weak solutions provided that λ > Λm.

The proof of this last theorem will be done as a byproduct of the compactness condition
established in the proof of Theorem 1.1 and an application of the symmetric mountain
pass theorem. Notice that, in this symmetric setting, we replace the condition at infinity
(f4) by (f5), which provides the control of F at the origin. As far as we know, there are
no multiplicity results concerning problems like (Pλ) when the nonlinearity has critical
growth.

The paper is organized as follows. In § 2 we present some useful inequalities concerning
the space X. In § 3 we establish the variational setting of our problem and prove a local
compactness result for the associated functional. The main results are proved in § 4.

2. Some properties of the space X

In this section we present some technical results. Throughout the paper we write
∫

u

instead of
∫

R2 u(x) dx.
We recall that X denotes the Hilbert space obtained as the completion of C∞

c,rad(R2)
with respect to the norm

‖u‖ :=
( ∫

k(x)|∇u|2
)1/2

,

which is induced by the inner product

〈u, v〉 :=
∫

k(x)(∇u · ∇v).
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For each p � 2 we also consider the weighted Lebesgue space Lp(R2, k) of all radial
functions u : R

2 → R such that

‖u‖p :=
( ∫

k(x)|u|p
)1/p

< ∞.

Lemma 2.1. The space X is compactly embedded into Lp(R2, k) for any p ∈ [2, +∞).

Proof. For any given u ∈ C∞
c,rad(R2) we have that∫

|∇(k(x)1/2u)|2 =
∫

k(x)|∇u|2 +
∫

∇(k(x)1/2u2)∇(k(x)1/2).

Integrating by parts we get∫
|∇(k(x)1/2u)|2 =

∫
k(x)|∇u|2 − 1

2

∫
k(x)u2(Δθ + 1

2 |∇θ|2), (2.1)

where θ(x) := |x|2/4. Since

Δθ(x) + 1
2 |∇θ(x)|2 = 1 + 1

8 |x|2 � 1,

it follows that ∫
k(x)u2 � 2

∫
k(x)|∇u|2. (2.2)

By density, we have the same inequality for any u ∈ X. This establishes the continuous
embedding X ↪→ L2(R2, k).

If p > 2 and u ∈ X, we can use (2.1) and (2.2) to get∫
(|∇(k(x)1/2u)|2 + k(x)u2) �

∫
k(x)|∇u|2 + 1

2

∫
k(x)u2 � 2‖u‖2.

Thus, we conclude that k1/2u ∈ H1(R2). Hence, we can use (2.1) again to infer that∫
k(x)|∇u|2 �

∫
|∇(k(x)1/2u)|2 + 1

2

∫
k(x)|u|2

= ‖k1/2u‖2
H1(R2) − 1

2

∫
k(x)|u|2

� Cp

( ∫
k(x)p/2|u|p

)2/p

− 1
2

∫
k(x)|u|2,

where Cp > 0 is related to the embedding H1(R2) ↪→ Lp(R2). Since k(x) � 1 and p � 2,
we have that k(x)p/2 � k(x). It follows from (2.2) that

Cp

( ∫
k(x)|u|p

)2/p

� Cp

( ∫
k(x)p/2|u|p

)2/p

� 2
∫

k(x)|∇u|2, (2.3)

and therefore X ↪→ Lp(R2, k) for p � 2.
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It was proved in [8, Proposition 11] that the embedding X ↪→ L2(R2, k) is compact.
For the p > 2 case, we take a sequence (un) ⊂ X such that un ⇀ 0 weakly in X. Fix
p̃ > p and consider τ ∈ (0, 1) such that p = (1 − τ)2 + τ p̃. Hölder’s inequality with
exponents 1/(1 − τ) and 1/τ provides∫

k(x)|un|p =
∫

k(x)(1−τ)|un|(1−τ)2k(x)τ |un|τp̃

�
( ∫

k(x)|un|2
)1−τ( ∫

k(x)|un|p̃
)τ

� c‖un‖2(1−τ)
2 .

Up to a subsequence, we have that un → 0 in L2(R2, k). The above expression implies
that un → 0 in Lp(R2, k). �

Remark 2.2. As a byproduct of the above calculations we see that X ↪→ H1(R2).
Indeed, for any u ∈ X, it holds that∫

(|∇u|2 + |u|2) �
∫

k(x)(|∇u|2 + |u|2) � c‖u‖2.

We also quote for future reference that, in view of the second inequality of (2.3), for any
r � 1 there exists C = C(r) such that( ∫

k(x)r|u|2r

)1/r

� C

∫
k(x)|∇u|2 for all u ∈ X. (2.4)

We shall need the following variant of a well-known radial lemma of Strauss [18].

Lemma 2.3. There exists c0 > 0 such that, for all v ∈ X, it holds that

|v(x)| � c0|x|−1/2e−|x|2/8‖v‖ for all x ∈ R
2 \ {0}.

Proof. It suffices to prove the lemma for v ∈ C∞
c,rad(R2). Let r = |x| and ϕ : [0, +∞) →

R be such that ϕ(r) = v(|x|). We have that

ϕ(r)2 = −2
∫ ∞

r

ϕ(s)ϕ′(s) ds

� 2
∫ ∞

r

e−s2/4s−1|ϕ(s)||ϕ′(s)|es2/4s ds

� r−1e−r2/4
∫ ∞

r

(ϕ(s)2 + ϕ′(s)2)es2/4s ds

� c1r
−1e−r2/4

∫
(k(x)|∇v|2 + k(x)v2).

Since X ↪→ L2(R2, k), we get

ϕ(r)2 � cr−1e−r2/4‖v‖2,

and the lemma follows. �
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In order to make the proof of our results more direct and effective, we state a technical
lemma.

Lemma 2.4. Suppose that G ∈ C(R, R) satisfies

G(s) � c1s
4(eαs2 − 1) for all s ∈ R,

with c1, α > 0. Then there exists c > 0 such that, for any R > 1 and u ∈ X, it holds that∫
BR(0)c

k(x)G(u) dx � c

R
‖u‖4(eαc2

0‖u‖2 − 1),

where c0 > 0 comes from Lemma 2.3.

Proof. It follows from the monotone convergence theorem that∫
BR(0)c

k(x)G(u) dx � c1

∫
BR(0)c

k(x)|u|4(eαu2 − 1) dx

= c1

+∞∑
j=1

αj

j!

∫
BR(0)c

k(x)|u|2j+4 dx. (2.5)

By using Lemma 2.3 we can estimate the last integral above as∫
BR(0)c

k(x)|u|2j+4 dx � (c0‖u‖)2j+4
∫

BR(0)c

e(|x|2/4)(1−j−2)|x|−j−2 dx

� 2π(c0‖u‖)2j+4
∫ ∞

R

s−j−2s ds

= 2π(c0‖u‖)2j+4 1
jRj

� 2π

R
(c0‖u‖)2j+4,

where we have used that j � 1 and R > 1. The above expression and (2.5) provide∫
BR(0)c

k(x)G(u)dx � 2π

R
c1(c0‖u‖)4

∞∑
j=1

(αc2
0‖u‖2)j

j!

=
c

R
‖u‖4(eαc2

0‖u‖2 − 1)

with c := 2πc1c
4
0 > 0, and this completes the proof. �

We now recall the Trudinger–Moser inequality for the whole space R
2, the proof of

which can be found, for instance, in [4,17].

Lemma 2.5 (Trudinger–Moser inequality). If α > 0 and v ∈ H1(R2), then
(eαv2 −1) ∈ L1(R2). Moreover, if ‖∇v‖L2(R2) � 1, ‖v‖L2(R2) � M < ∞ and α � 4π, then
there exists a constant C = C(M, α) such that∫

(eαv2 − 1) � C(M, α). (2.6)
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In what follows we establish a version of a result due to Lions (see [11, Theorem I.6])
for the whole space R

2 and considering our functional space.

Lemma 2.6. Let (vn) in X with ‖vn‖ = 1 and suppose that vn ⇀ v weakly in X with
‖v‖ < 1. Then for each 0 < p < 4π(1 − ‖v‖2)−1, up to a subsequence, we have that

sup
n∈N

∫
(epv2

n − 1) < ∞.

Proof. We first notice that, if a, b, ε > 0, Young’s inequality implies that

a2 = (a − b)2 + b2 + 2ε(a − b)
b

ε
� (1 + ε2)(a − b)2 + c

(
1 +

1
ε2

)
b2.

Hence, we can use Young’s inequality again to get∫
(epv2

n − 1) �
∫ (

ep(1+ε2)(vn−v)2ep(1+1/ε2)v2 − 1
γ

− 1
γ′

)
� 1

γ

∫
(eγp(1+ε2)(vn−v)2 − 1) +

1
γ′

∫
(eγ′p(1+1/ε2)v2 − 1),

where γ > 1 and 1/γ +1/γ′ = 1. Since the last integral above is finite, it suffices to prove
that

sup
n∈N

∫
(eγp(1+ε2)(vn−v)2 − 1) < ∞.

Since vn ⇀ v and ‖vn‖ = 1, we conclude that

lim
n→∞

‖vn − v‖2 = 1 − ‖v‖2 <
4π

p
.

Thus, we can take 0 < α < 4π and choose γ > 1 and ε > 0 small in such a way that

γp(1 + ε2)‖vn − v‖2 < α < 4π. (2.7)

We now set un := (vn − v)/‖vn − v‖ and notice that, since
∫

|∇un|2 � ‖un‖2 = 1, we
have that ‖∇un‖L2(R2) � 1. Moreover, it follows from (2.2) that ‖un‖L2(R2) � 2. Hence,
we can invoke Lemma 2.5 and (2.7) to obtain a positive constant C(M, β) such that∫

(eγp(1+ε2)(vn−v)2 − 1) =
∫

(eγp(1+ε2)‖vn−v‖2u2
n − 1)

�
∫

(eαu2
n − 1)

� C(M, β),

and the lemma is proved. �
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3. A local compactness condition

Let α > α0 and let q � 1. By using the critical growth of f we obtain

lim
|s|→+∞

f(s)
|s|q−1(eαs2 − 1)

= 0.

This and (f1) imply that, for any given ε > 0, it holds that

max{|f(s)s|, |F (s)|} � 1
2εs2 + c1|s|q(eαs2 − 1) for all s ∈ R. (3.1)

Given u ∈ X we can set q = 2 to obtain∫
k(x)F (u) � c2

∫
k(x)|u|2 + c3

∫
k(x)|u|2(eαu2 − 1).

If we apply the inequality (1 + t)r � 1 + tr with t = es − 1 � 0, we get

(es − 1)r � (ers − 1) for all r � 1, s � 0. (3.2)

It follows from Hölder’s inequality that∫
k(x)|u|2(eαu2 − 1) �

( ∫
k(x)2|u|4

)1/2( ∫
(eαu2 − 1)2

)1/2

� c4‖u‖2
( ∫

(e2αu2 − 1)
)1/2

< +∞,

where we have used (2.4) and Lemma 2.5 to conclude that the last term is finite.
All together the above estimates imply that the functional

Iλ(u) := 1
2‖u‖2 − λ

∫
k(x)F (u), u ∈ X,

is well defined. Standard calculations show that Iλ ∈ C1(X, R) with derivative given by

I ′
λ(u)ϕ =

∫
k(x)∇u · ∇ϕ − λ

∫
k(x)f(u)ϕ for all u, ϕ ∈ X,

and therefore the critical points of Iλ are precisely the weak solutions of (1.2).

Remark 3.1. Since the value of λ > 0 is not relevant in Theorem 1.1, we shall assume,
until § 4.2, that λ = 1. To simplify notation we write simply I to denote I1.

We devote the rest of this section to the proof of a compactness condition for the
functional I. We follow here some arguments developed in [15]. First, we recall that
(un) ⊂ X is said to be a (PS)c sequence (where ‘PS’ stands for ‘Palais–Smale’) for the
functional I if I(un) → c and I ′(un) → 0. We say that I satisfies the (PS)c condition if
any (PS)c sequence has a convergent subsequence.
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Lemma 3.2. Suppose that f satisfies (f2) and (f3). If (un) ⊂ X is a (PS)c sequence
for I, then, up to a subsequence, we have that

(i) un ⇀ u weakly in X with I ′(u) = 0,

(ii) lim
n→∞

∫
k(x)F (un) =

∫
k(x)F (u),

(iii) lim sup
R→∞

∫
BR(0)c

k(x)f(un)un = 0.

Proof. Let (un) ⊂ X be such that I ′(un) → 0 and I(un) → c. By using (f2) and a
standard argument we can check that (un) is bounded in X. Hence, up to a subsequence,
un ⇀ u weakly in X and un(x) → u(x) almost everywhere (a.e.) in R

2. Recalling that
I ′(un)un = on(1), using the above expression, (f2) and the boundedness of (un), we
obtain c1 > 0 such that∫

k(x)f(un)un � c1,

∫
k(x)

(
1
θ
f(un)un − F (un)

)
� c1. (3.3)

The first estimate above, k(x) � 1 and condition (f2) again imply that∫
|f(un)un| =

∫
f(un)un �

∫
k(x)f(un)un � c1.

Thus, it follows from a convergence result due to de Figueiredo et al . (see [6, Lemma 2.1])
that f(un) → f(u) in L1

loc(R
2). Hence, given ϕ ∈ C∞

c,rad(R2), we can take the limit in
I ′(un)ϕ to conclude that I ′(u)ϕ = 0. By density, I ′(u) = 0.

Let M > 0 be such that ‖un‖, ‖u‖ � M . Given R, ε > 0, we can use (3.1) with q = 4,
Lemma 2.4 and the embedding X ↪→ L2(R2, k) to get∫

BR(0)c

k(x)F (un) � ε

2

∫
k(x)|un|2 +

c

R
‖un‖4(eαc2

0‖un‖2 − 1) � c2ε +
c3

R
,

with c2, c3 > 0 depending only on M . It follows that

lim sup
R→∞

∫
BR(0)c

k(x)F (un) � c2ε. (3.4)

Moreover, since k(x)F (u) ∈ L1(R2), it holds that

lim sup
R→∞

∫
BR(0)c

k(x)F (u) = 0. (3.5)

For any fixed R > 0 we claim that

lim
n→∞

∫
BR(0)

k(x)F (un) dx =
∫

BR(0)
k(x)F (u) dx. (3.6)

If this is true, we can use the above convergence, (3.4) and (3.5) to get (ii).
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In order to prove (3.6) we first notice that, by (f3), we can obtain θ0, R0 > 0 such
that θ0F (s) � f(s)s for any |s| > R0. Moreover, we can suppose that θ0 also satisfies
(θc1)/(θ0 − θ) < ε. If An := {|un| � R0}, we can use the second inequality in (3.3) and
(f2) to obtain

θc1 �
∫

An

k(x)(f(un)un − θF (un)) dx

= (θ0 − θ)
∫

An

k(x)F (un) dx +
∫

An

k(x)(f(un)un − θ0F (un)) dx,

and therefore it follows that∫
An

k(x)F (un) dx � θc1

θ0 − θ
< ε. (3.7)

Applying Egoroff’s theorem we obtain a measurable set A ⊂ BR(0) such that |A| < ε

and un(x) → u(x) uniformly on BR(0) \ A. Hence,∣∣∣∣ ∫
BR(0)

k(x)(F (un) − F (u)) dx

∣∣∣∣ �
∫

A

k(x)F (un) dx +
∫

A

k(x)F (u) dx + on(1). (3.8)

Given α > α0, it follows from the growth condition of f that F (s) � c4eαs2
for all s ∈ R

and some c4 > 0. Thus, given γ > 1, we can use Hölder’s inequality to get∫
A

k(x)F (u) dx � M1c4|A|1/γ

( ∫
eαγ′u2

)1/γ′

� c5ε
1/γ (3.9)

with 1/γ + 1/γ′ = 1. On the other hand, using (3.7), Lebesgue’s theorem and the above
expression, we obtain∫

A

k(x)F (un) dx �
∫

A∩An

k(x)F (un) dx +
∫

A∩{|un|<Rθ}
k(x)F (un) dx

� ε +
∫

A∩{|un|<Rθ}
k(x)F (u) dx + on(1)

� ε + c5ε
1/γ + on(1).

Since ε > 0 is arbitrary, the convergence in (3.6) follows from (3.8), (3.9) and the above
inequality.

In order to prove (iii) it suffices to use the estimate for |f(s)s| in (3.1) with q = 4 and
proceed as in the proof of (3.4). �

Now we are ready to prove our compactness result.

Proposition 3.3. Suppose that f satisfies (f2) and (f3). Then the functional I satisfies
the (PS)d condition for any 0 < d < (2π)/α0.
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Proof. Let (un) ⊂ X be such that I ′(un) → 0 and I(un) → d < 2π/α0. According
to the previous lemma we have that un ⇀ u weakly in X, with I ′(u) = 0, and moreover∫

k(x)F (un) →
∫

k(x)F (u). We shall consider two possible cases.

Case 1 (u = 0). In this case we have that
∫

k(x)F (u) = 0, and therefore

lim
n→∞

‖un‖2 = 2
(

d +
∫

k(x)F (u)
)

= 2d <
4π

α0
.

Since I ′(un)un = on(1), in order to prove that un → 0 it is enough to check that

lim
n→∞

∫
k(x)f(un)un = 0.

By using (3.1) with q = 3, we get∣∣∣∣ ∫
k(x)f(un)un

∣∣∣∣ � ε

2
‖un‖2

2 + c1Dn,

where
Dn :=

∫
k(x)|un|2|un|(eαu2

n − 1).

Since the embedding X ↪→ L2(R2, k) is compact, we have that ‖un‖2 → 0. Hence, it is
enough to verify that Dn → 0. By taking ri > 1, i = 1, 2, 3, such that 1/r1+1/r2+1/r3 =
1 and r2 > 2, we can use Hölder’s inequality to get

Dn � c2

( ∫
k(x)r1 |un|2r1

)1/r1

‖un‖Lr2 (R2)

( ∫
(eαr3‖un‖2(un/‖un‖)2 − 1)

)1/r3

� c3‖un‖2on(1)
( ∫

(eαr3‖un‖2(un/‖un‖)2 − 1)
)1/r3

, (3.10)

where we have used (2.4), (3.2) and the compactness of X ↪→ Lr2(R2). Since ‖un‖2 →
γ < 4π/α0, we can choose r3 close to 1 and α > α0 close to α0 in such a way that
r3α‖un‖2 � γ̃ < 4π. It follows from Lemma 2.5 that the last term in the parentheses in
(3.10) is bounded. Hence, Dn → 0 and the proposition is proved in the first case.

Case 2 (u �= 0). We are going to verify that

lim
n→∞

∫
k(x)f(un)un =

∫
k(x)f(u)u. (3.11)

If this is true, we obtain

on(1) = I ′(un)un = ‖un‖2 −
∫

k(x)f(u)u + on(1)

= ‖un‖2 − ‖u‖2 + I ′(u)u + on(1).

Since I ′(u) = 0, we conclude that ‖un‖ → ‖u‖ and the proposition follows from the weak
convergence of un.
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It remains to check (3.11). In view of item (iii) of the previous lemma, and since
lim supR→∞

∫
BR(0)c k(x)f(u)u = 0, we need only verify that, for any R > 0, the following

holds:
lim

n→∞

∫
BR(0)

k(x)f(un)un dx =
∫

BR(0)
k(x)f(u)u dx. (3.12)

With this aim we first notice that, as in the first case, we have

lim
n→∞

‖un‖2 = 2
(

d +
∫

k(x)F (u)
)

= 2(d + d0) > 0, (3.13)

where d0 :=
∫

k(x)F (u). We may suppose that ‖un‖ 
= 0 for all n � n0, and therefore
vn := un/‖un‖ is well defined. The weak convergence of (un) and (3.13) imply that

vn ⇀ v :=
u√

2(d + d0)
weakly in X.

It follows from (f2) that I(u) � 0. Thus, we can take α > α0 such that d < I(u) + 2π/α.
Hence,

1 − ‖v‖2 <
4π/α

2(d + d0)

and we can use (3.13) to obtain p0 > 0 such that α‖un‖2 < p0 < (4π)/(1 − ‖v‖2). We
now choose q > 1 sufficiently close to 1 in such way that

αq‖un‖2 < p <
4π

1 − ‖v‖2 ,

with p = p0q. It follows from Lemma 2.6 that

sup
n∈N

∫
(eαq‖un‖2v2

n − 1) � sup
n∈N

∫
(epv2

n − 1) = c4 < ∞.

Up to a subsequence, we have that un → u strongly in Ls(BR(0)) for any s � 1. Hence,
there exists Ψs ∈ L1(BR(0)) such that |un(x)|s � Ψs(x) a.e. in BR(0). Hence, by using
that k ∈ L∞(BR(0)), (3.1) with q = 1, Hölder’s inequality and the above expression, for
any measurable subset A ⊂ BR(0), we get∫

A

k(x)f(un)un dx � c5

∫
A

|un|2 dx + c6

( ∫
A

|un|q′
dx

)1/q′( ∫
A

(eαu2
n − 1)q dx

)1/q

� c5

∫
A

Ψ2 dx + c7

( ∫
A

Ψq′ dx

)1/q′( ∫
(eαq‖un‖2v2

n − 1)
)1/q

� c5

∫
A

Ψ2 dx + c8

( ∫
A

Ψq′ dx

)1/q′

.

Since Ψs ∈ L1(BR(0)) and the set A ⊂ BR(0) is arbitrary, we conclude that the first
integral above is uniformly small provided that the measure of A is small. Hence, the set
{k(x)f(un)un} is uniformly integrable, and Vitali’s theorem implies that k(x)f(un)un →
k(x)f(u)u in L1(BR(0)). This establishes (3.12) and concludes the proof. �
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4. Proof of the main results

We start this section with the following technical result.

Lemma 4.1. If u ∈ X, β > 0, q > 0 and ‖u‖ � M with βM2 < 4π, then there exists
C = C(β, M, q) > 0 such that∫

k(x)|u|2+q(eβu2 − 1) � C‖u‖2+q.

Proof. Let ri > 1, i = 1, 2, 3, be such that 1/r1 + 1/r2 + 1/r3 = 1 and qr2 � 2.
Hölder’s inequality implies that∫

k(x)|u|2+q(eβu2 − 1) �
( ∫

k(x)r1 |u|2r1

)1/r1

‖u‖q
Lqr2 (R2)

( ∫
(eβu2 − 1)r3

)1/r3

.

Using the embedding X ↪→ Lqr2(R2), (2.4) and (3.2) we get∫
k(x)|u|2+q(eβu2 − 1) � C(q)‖u‖2+q

( ∫
(eβr3u2 − 1)

)1/r3

. (4.1)

By choosing r3 close to 1, we can suppose that α := βr3M
2 < 4π. Thus,∫

(eβr3u2 − 1) �
∫

(eβr3M2(u/‖u‖)2 − 1) =
∫

(eαv2 − 1),

with v := u/‖u‖. Arguing as in the proof of Lemma 2.6, we obtain C(M, β) > 0 such
that ∫

(eβr3u2 − 1) � C(M, β).

This and (4.1) conclude the proof. �

4.1. Proof of Theorem 1.1

In this section we prove our existence result. Since we have already proved a local
compactness result, the key point is the correct localization of the mountain pass level.
This will be done using the following result, the proof of which will be postponed to the
last section of the paper.

Proposition 4.2. Suppose that f satisfies (f2) and (f4). Then there exists v ∈ X

with compact support such that

max
t�0

I(tv) <
2π

α0
. (4.2)

If we assume the above proposition, we can prove Theorem 1.1 as follows: by using
(3.1) with q > 2, Lemma 4.1 and (2.2), we obtain

I(u) � 1
2‖u‖2 − ε

2

∫
k(x)|u|2 − c1

∫
k(x)|u|2+(q−2)(eαu2 − 1)

� 1
2 (1 − c2ε)‖u‖2 − c3‖u‖q, (4.3)
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with c1, c2, c3 > 0. Since q > 2 and ε > 0 is arbitrary, it is standard to obtain α, ρ > 0
such that

I(u) � α > 0 for all u ∈ ∂Bρ(0).

Moreover, from (f2) we obtain c4, c5 > 0 such that

F (s) � c4|s|θ − c5 for all s ∈ R. (4.4)

If v is given by Proposition 4.2 and A ⊂ R
2 is its support, it follows from the above

inequality that, for any t > 0,

I(tv) � t2

2
‖v‖2 − c4t

θ

∫
A

k(x)|v|θ dx − c5|A|.

Since θ > 2, we conclude that I(tv) → −∞ as t → ∞. Hence, I(t0v) < 0 for some t0 > 0
large enough.

The above calculations show that I has the mountain pass geometry, and therefore we
can define the minimax level

cM := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = t0v}. The definition of cM and (4.2)
imply that

cM � max
t�0

I(tv) <
2π

α0
.

It follows from Proposition 3.3 and the mountain pass theorem that I has a non-zero
critical point, and the theorem is proved. �

4.2. Proof of Theorem 1.2

In order to prove our multiplicity result we shall use the following version of the
symmetric mountain pass theorem (see [2]).

Theorem 4.3. Let E be a real Banach space, and let J ∈ C1(E, R) be an even
functional satisfying J(0) = 0 and

(J1) there are constants ρ, α > 0 such that J |∂Bρ(0) � α;

(J2) there is A > 0 and a finite-dimensional subspace V of E such that

max
u∈V

J(u) � A.

If the functional J satisfies the (PS)d condition for 0 < d < A, then it possesses at least
dim V pairs of non-zero critical points.
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Given m ∈ N, we are going to apply this abstract result with E = X and J = Iλ and

V := span{ψ1, . . . , ψm},

where {ψi}m
i=1 ⊂ C∞

0 (R2) is a collection of smooth functions with disjoint supports.
We notice that, for any λ > 0, all the results proved in the last sections for the

functional I = I1 also hold for Iλ. Thus, arguing as in the proof of Theorem 1.1 we can
easily check that the even functional Iλ satisfies (J1). By using the local condition (f5)
and (f3) we can obtain μ > 0 such that

F (s) � μ|s|θ0 for all s ∈ R.

Since V is finite dimensional, all the norms in these spaces are equivalent. This fact and
the above inequality yield, for any u ∈ V ,

Iλ(u) � 1
2‖u‖2 − λcm‖u‖θ0 ,

where cm > 0 depends only on m. If we consider the maximum value of the map
t �→ (1/2)t2 − λcmtθ0 on [0, +∞), the above expression, θ0 > 2 and a straightforward
calculation imply that

max
u∈V

I(u) � Am :=
{

1
2

(
1

θ0cm

)2/(θ0−2)

− cm

(
1

θ0cm

)θ0/(θ0−2)}
λ2/(2−θ0),

and therefore Iλ verifies (J2). Since 2/(2−θ0) < 0, we have that limλ→+∞ Am = 0. Hence,
there exists Λm > 0 such that Am < (2π)/α0 for any λ > Λm. In view of Proposition 3.3,
for any λ > Λm we can apply Theorem 4.3 to obtain m pairs of non-zero critical points
of Iλ. This finishes the proof. �

4.3. Proof of Proposition 4.2

We devote this section to the proof of Proposition 4.2 by supposing, once again, that
λ = 1 and I = I1. The general case follows from obvious modifications.

We consider a small modification to the sequence of scaled truncated Green functions
considered by Moser (see [12]). More specifically, we define for n > 1,

M̃n(x) :=
1√

2π log n

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
k

(
r

n

)−1/2

log n if |x| � r/n,

k(x)−1/2 log
(

r

|x|

)
if r/n � |x| < r,

0 if |x| � r,

with r > 0 fixed. Notice that M̃n ∈ H1(R2) and supp(M̃n) = B̄r(0). Moreover, the
following lemma holds.
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Lemma 4.4. There exist D = D(r) > 0 and a sequence (dn) ⊂ R, which also depends
on r, such that

‖M̃n‖2 = 1 +
D

log n
− dn,

with limn→∞ dn log n = 0. In particular,

lim
n→∞

‖M̃n‖2 = 1. (4.5)

Proof. We set
An := Br(0) \ Br/n(0)

and notice that ∇M̃n is zero outside the set An, and

∇M̃n(x) = −e−|x|2/8(2π log n)−1/2
(

x

|x|2 + 1
4x log(r/|x|)

)
, x ∈ An.

Hence, we can compute∫
k(x)|∇M̃n|2 =

1
2π log n

∫
An

(
1

|x|2 +
|x|2
16

log2(r/|x|) + 1
2 log(r/|x|)

)
dx

=
1

log n

∫ r

r/n

(
1
s

+
s3

16
log2(r/s) + 1

2s log(r/s)
)

ds

=
1

log n

(
log n +

r2

8
+

r4

512
− Γr,n,1 − Γr,n,2

)
with

Γr,n,1 :=
r2

8

(
2 log n

n2 +
1
n2

)
, Γr,n,2 :=

r4

512

(
8 log2 n

n4 +
4 log n

n4 +
1
n4

)
.

If we now set

D :=
r2

8
+

r4

512
, dn := (log n)−1(Γr,n,1 + Γr,n,2), (4.6)

we get the conclusions of the lemma. �

We now normalize the Green function and consider the function Mn defined by

Mn :=
M̃n

‖M̃n‖
.

Since ‖Mn‖ = 1, Proposition 4.2 is a direct consequence of the following lemma.

Lemma 4.5. Suppose that f satisfies (f2) and (f4). Then there exists n ∈ N such
that

max
t�0

{
t2

2
−

∫
k(x)F (tMn)

}
<

2π

α0
. (4.7)
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Proof. Since Mn has compact support, we can argue as in the proof of Theorem 1.1
to conclude that the function

gn(t) :=
t2

2
−

∫
k(x)F (tMn), t � 0,

goes to −∞ as t → +∞. Hence, it attains its global maximum at a point tn > 0 such
that g′

n(tn) = 0, that is,

t2n =
∫

Br(0)
k(x)tnMnf(tnMn) dx. (4.8)

Suppose, by contradiction, that the lemma is false. Then for any n ∈ N it holds that

t2n
2

−
∫

k(x)F (tnMn) � 2π

α0
,

and therefore
t2n � 4π

α0
for all n ∈ N. (4.9)

We claim that (tn) ⊂ R is bounded. Indeed, let β0 > 0 be given by (f4) and let
0 < ε < β0. Condition (f4) provides R = R(ε) > 0 such that

sf(s) � (β0 − ε) exp(α0s
2) for all |s| � R. (4.10)

The definition of Mn, (4.9) and ‖M̃n‖ → 1 imply that, for any large values of n, it holds
that

tnMn(x) � e−r2/8

√
2 log n

α0
� R for all x ∈ Br/n(0).

It follows from (4.8), (4.10), the above expression, k(x) � 1 and the definition of Mn that

t2n �
∫

Br/n(0)
k(x)tnMnf(tnMn) dx

� (β0 − ε)
∫

Br/n(0)
exp(α0(tnMn)2) dx

= (β0 − ε)
∫

Br/n(0)
exp

(
α0t

2
n

log n

2π

e−r2/(4n2)

‖M̃n‖2

)
dx.

This, (4.5), the equation 1/n2 = exp(−2 log n) and direct calculation provide

t2n � (β0 − ε)πr2 exp
(

2
(

e−r2/(4n2)

‖M̃n‖2

α0

4π
t2n − 1

)
log n

)
. (4.11)

Since exp(s) � s, we can invoke Lemma 4.4 and the above expression to conclude that
(tn) is bounded.

By going to a subsequence, we may use (4.9) to get t2n → γ � 4π/α0. Since

e−r2/(4n2)‖M̃n‖−2 → 1,
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we can take the limit in (4.11) to conclude that γ > 4π/α0 cannot occur. Hence,

lim
n→∞

t2n =
4π

α0
. (4.12)

By using (4.9) and (4.11) again, we get

t2n � (β0 − ε)πr2 exp
(

−2
‖M̃n‖2

(‖M̃n‖2 − e−r2/(4n2)) log n

)
. (4.13)

It follows from Lemma 4.4 and L’Hopital’s rule that

(‖M̃n‖2 − e−r2/(4n2)) log n = (1 − e−r2/(4n2)) log n + D − dn log n = D + on(1).

Hence, recalling that ‖M̃n‖2 → 1, we can take the limit in (4.13) and use (4.12) to obtain

4π

α0
� (β0 − ε)πr2e−2D.

Letting ε → 0 and using the expression of D = D(r) given in (4.6), we conclude that

α0β0 � 4
r2 exp

(
r2

4
+

r4

256

)
.

Since r > 0 is arbitrary, the above expression contradicts (f4) and the lemma is proved.
�
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