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Abstract. We prove the existence of infinitely many solutions for the
Kirchhoff equation

−
(
α+ β

∫
Ω

|∇u|2dx
)

∆u = a(x)|u|q−1u+ µf(x, u), in Ω,

where Ω ⊂ RN is a bounded smooth domain, a(x) is a (possibly) sign-
changing potential, 0 < q < 1, α > 0, β ≥ 0, µ > 0 and the function
f has arbitrary growth at infinity. In the proofs we apply variational
methods together with a truncation argument.

1. Introduction

In this paper we consider a version of the problem

−
(
α+ β

∫
Ω
|∇u|2dx

)
∆u = h(x, u), in Ω, u ∈ H1

0 (Ω),

where Ω ⊂ RN is a bounded domain, α > 0 and β ≥ 0. It is the stationary
state of the hyperbolic equation

vtt −
(
α+ β

∫
Ω
|∇v|2dx

)
∆xv = h(x, v), in Ω× (0, T ),

which was proposed, for N = 1, by Kirchhoff [10] as an extension of the
classical d’Alembert wave equation for free vibrations of elastic strings. The
main point in this model is that it allows changes on the length of the string
during the vibration. Such type of problems are called nonlocal due to
presence of the term

∫
Ω |∇v|

2dx. After the paper of Lions [11], this kind
of problem has been the subject of intensive research. In [2], the authors
presented a variational approach to deal with the stationary equation. Since
then, many authors applied Critical Point Theory to obtain existence and
multiplicity of results for related problems.

We are interested here in the case that the right-hand side of the equation
presents a sort of competition between concave and convex terms near the
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origin. More specifically, we shall consider

(P )

 −
(
α+ β

∫
|∇u|2dx

)
∆u = a(x)|u|q−1u+ µf(x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 3 , is a bounded smooth domain, 0 < q < 1, α > 0,
β ≥ 0 and µ > 0. The main assumptions on f are

(f0) f ∈ C(Ω×R,R) and there exists δ > 0 such that f(x, s) is odd in s
for any x ∈ Ω and |s| ≤ δ;

(f1) f(x, s) = o(|s|q), as s→ 0, uniformly in Ω.

In order to introduce the regularity condition on the potential a(x) we set
2∗ := 2N/(N − 2) and consider the sequence (pn) ⊂ R defined as p1 := 2∗

and

(1.1) pn+1 =


Npn

N − 2pn
, if 2pn < N,

pn + 1, if 2pn ≥ N,
for each n ∈ N. A straightforward calculation shows that (pn) is increasing
and unbounded. Hence, it is well defined

m := min{n ∈ N : 2pn > N}.
The main assumption on the potential a(x) is

(a0) a ∈ Lσq(Ω), with σq := pm/(1− q).
We denote by H the Sobolev space W 1,2

0 (Ω) endowed with the norm

‖u‖ = (
∫

Ω |∇u|
2dx)1/2. From the variational point view, the equation in

(P ) is the Euler-Lagrange equation of the energy functional

(1.2) I(u) =
α

2
‖u‖2 +

β

4
‖u‖4 − 1

q + 1

∫
a(x)|u|q+1dx− µ

∫
F (x, u)dx ,

where F (x, s) :=
∫ s

0 f(x, t)dt. Since we have no control on the behaviour
of f at infinity, this functional is not well defined in the entire space H.
However, in view of (f0)− (f1), it is finite for every function u ∈ H ∩L∞(Ω)
such that ‖u‖L∞(Ω) is sufficiently small.

In our first result we consider the definite case and prove the following.

Theorem 1.1. Suppose that 0 < q < 1, the function f satisfies (f0)− (f1)
and the potential a satisfies (a0) and

(a1) there exists a0 > 0 such that a(x) ≥ a0, for a.e. x ∈ Ω.

Then, for any α > 0, β ≥ 0 and µ > 0, the problem (P ) has a sequence of

solutions (uk) ⊂ W 1,2
0 (Ω) such that ‖uk‖L∞(Ω) → 0 as k → ∞. Moreover,

I(uk) < 0 and I(uk)→ 0 as k →∞.

We emphasize that the theorem holds independently of the growth of f far
way the origin. In order to be able to deal variationally, we use an argument
borrowed from [12]. It consists in considering a modified functional Jθ,
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defined in the entire space H, whose critical points with small L∞-norm are
weak solutions of (P ). After obtaining infinitely many critical points for Jθ,
we use some kind of iteration regularity process to prove that these solutions
go to zero in L∞(Ω).

In our second result we consider potentials which can be indefinite in sign.
More specifically, we shall prove

Theorem 1.2. Suppose that 0 < q < 1, the function f satisfies (f0)− (f1)
and the potential a satisfies (a0) and

(ã1) there exists a0 > 0 and an open set Ω̃ ⊂ Ω such that a(x) ≥ a0, for

a.e. x ∈ Ω̃.

Then the problem (P ) has a sequence of solutions (uk) ⊂W 1,2
0 (Ω) such that

I(uk) < 0 and I(uk)→ 0 as k →∞, in each of the following cases

(i) α > 0, β ≥ 0 and µ ∈ (0, µ∗), for some µ∗ > 0;
(ii) β ≥ 0, µ > 0 and α ∈ (α∗,∞), for some α∗ > 0.

In our final result we present a version of Theorem 1.2 with no restriction
on the size of the parameters. In this case, we need to replace the condition
(f1) by a stronger one. The last result of the paper can be stated as follows.

Theorem 1.3. Suppose that 0 < q < 1, the function f satisfies (f0) and

(f̃1) f(x, s) = o(|s|), as s→ 0, uniformly in Ω,

and the potential a satisfies (a0) and (ã1). Then the same conclusion of
Theorem 1.1 holds.

We recall that, in their celebrated paper [3], Ambrosetti, Brezis and Ce-
rami studied the problem

−∆u = λ|u|q−2u+ |u|p−2u in Ω, u = 0 on ∂Ω,

with 1 < q < 2 and 2 < p < 2∗. Among other results, the existence of two
positive solutions is obtained for λ > 0 small. After this work, many authors
have considered the effect of concave-convex terms in Dirichlet problems.
Since it is impossible to give a complet list of references, we just cite the
results which are closely related to ours.

In [12], the author considered the local case α = 1, β = 0, µ = 1 and
a(x) = λ > 0. Under the conditions (f0)− (f1), he obtained the existence of
infinitely many solutions as in Theorem 1.1. The same result was proved in

[8], by assuming that a ∈ C(Ω) has nonzero positive part and f verifies (f̃1)
instead of (f1). For the nonlocal problem, we can cite the paper [6], where
the authors considered a more general nonlocal term, a(x) ≡ λ > 0, µ = 1
and f(x, s) = |s|p−1s, with 1 < p ≤ (N +2)/(N −2), and obtained infinitely
many solutions for low dimension N ≤ 3 and some technical conditions on
the size of the parameters λ and β. We also refer to [4, 13] for some related
results.

The main theorems of this paper extend and complement the aforemen-
tioned works in several senses: differently from [12, 8], we consider the case
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β > 0; our potential a(x) can be nonconstant, nonsmooth and indefinite in
sign; there is no restrictions on the dimension; there is no restriction on the
size of β. It is worthwhile to mention that, even in the local case β = 0,
our results seem to be new. Finally, we notice that the same results hold
for N = 1 and N = 2. In this case, it is sufficient to consider 2∗ = +∞ and
choose p1 ∈ (1,+∞) in a arbitrary way.

The rest of the paper is organized as follows: in the next section, after
presenting some auxiliary results, we prove the first two theorems. In the
final section 3, we prove Theorem 1.3.

2. The case f(x, s) = o(|s|q)

For any u ∈ L1(Ω), we write only
∫
u to denote

∫
u(x)dx. If 1 ≤ p ≤ ∞,

‖u‖p stands for the Lp(Ω)-norm of the function u ∈ Lp(Ω). Hereafter, we
assume that conditions (a0) and (f0) hold.

Let H be the Sobolev space W 1,2
0 (Ω) endowed with the norm

‖u‖ :=

(∫
|∇u|2

)1/2

.

As quoted in the introduction, the functional I given in (1.2) is not well de-
fined in H. In order to overcome this difficult we use a truncation argument.
So, we start by presenting a version of [12, Lemma 2.3].

Lemma 2.1. Suppose that f satisfies (f1). Then, for any given θ > 0, there
exist 0 < ξ < δ/2 and g ∈ C(Ω× R,R) odd in the second variable such that

(g1) g(x, s) = f(x, s), ∀ (x, s) ∈ Ω× [−ξ, ξ].
Moreover, if G(x, s) :=

∫ s
0 g(x, t)dt then, for any (x, s) ∈ Ω× R, there hold

(g2) g(x, s)s− 2G(x, s) ≤ θ|s|q+1;
(g3) g(x, s)s− (q + 1)G(x, s) ≤ θ|s|q+1;

(g4) |G(x, s)| ≤ θ

2
|s|q+1;

(g5) |g(x, s)| ≤ θ|s|q.

Proof. Given 0 < ε < θ/14, we obtain from (f1) a number 0 < ξ < δ/2 such
that

max{|F (x, s)|, |f(x, s)s|} ≤ ε|s|q+1, ∀ (x, s) ∈ Ω× [−2ξ, 2ξ].

Let ρ ∈ C1(R, [0, 1]) be an even function satisfying, for any s ∈ R,

ρ ≡ 1 in [−ξ, ξ], ρ ≡ 0 in R \ (−2ξ, 2ξ), |ρ′(s)| ≤ 2/ξ, ρ′(s)s ≤ 0,

pick 0 < γ < θ/12, consider F∞(s) := γ|s|q+1 and define the function
g ∈ C(Ω× R,R) by setting

g(x, s) := ρ′(s)F (x, s) + ρ(s)f(x, s) + (1− ρ(s))F ′∞(s)− ρ′(s)F∞(s).

A straightforward calculation shows that, for any (x, s) ∈ Ω × R, we have
that

G(x, s) = ρ(s)F (x, s) + (1− ρ(s))F∞(s).
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Using the properties of ρ, it is easy to see that g is continuous, odd in
the second variable, and verifies (g1), (g4) and (g5). In order to prove (g2),
notice that

g(x, s)s− 2G(x, s) = sρ′(s)F (x, s) + sρ(s)f(x, s) + s(1− ρ(s))F ′∞(s)

− sρ′(s)F∞(s)− 2ρ(s)F (x, s)− 2(1− ρ(s))F∞(s).

Recalling that sF ′∞(s) = γ(q + 1)|s|q+1 we get, for |s| ≤ 2ξ,

g(x, s)s− 2G(x, s) ≤ 2ξ
2

ξ
|F (x, s)|+ |sf(x, s)|+ γ(q + 1)|s|q+1

+ 2ξ
2

ξ
γ|s|q+1 + 2|F (x, s)|

≤ 6|F (x, s)|+ |sf(x, s)|+ 6γ|s|q+1

≤ (7ε+ 6γ)|s|q+1 < θ|s|q+1 .

On the other hand, for |s| > 2ξ, we have that

g(x, s)s− 2G(x, s) = sF ′∞(s)− 2F∞(s) < sF ′∞(s) < θ|s|q+1 .

So, we conclude that (g2) holds. The property (g3) can be proved with an
analogous argument. 2

For any θ > 0, it follows from (g4)− (g5) that the functional

Jθ(u) :=
α

2
‖u‖2 +

β

4
‖u‖4 − 1

q + 1

∫
a(x)|u|q+1 − µ

∫
G(x, u) ,

belongs to C1(H,R) and, for any u, v ∈ H, we have that

J ′θ(u)v = (α+ β ‖u‖2)

∫
(∇u · ∇v)−

∫
a(x)|u|q−1uv − µ

∫
g(x, u)v.

Thus, if u ∈ H ∩ L∞(Ω) is such that ‖u‖∞ < ξ, it follows from (g1) that
g(x, u(x)) = f(x, u(x)) a.e. in Ω. We then conclude that any critical point
of Jθ with small L∞-norm is a weak solution of (P ).

Now, we prove a technical result.

Lemma 2.2. Suppose that the functions a and f satisfy (a1) and (f1),
respectively. If

(2.1) 0 < θ <
(1− q)a0

(1 + q)µ
,

then Jθ(u) = J ′θ(u)u = 0 if, and only if, u = 0.

Proof. It is obvious that Jθ(0) = J ′θ(0)0 = 0 independently of θ. On the
other hand, if Jθ(u) = J ′θ(u)u = 0, then we can use (a1), J ′θ(u)u−2Jθ(u) = 0
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and (g2) to get

(1− q)a0

q + 1

∫
|u|q+1 ≤ β

2
‖u‖4 +

1− q
q + 1

∫
a(x)|u|q+1

= µ

∫
(g(x, u)u− 2G(x, u))

≤ µθ

∫
|u|q+1.

The above inequality and (2.1) imply that u = 0. 2

Notice that the positivity of the potential a was essential in the above
proof. If we are in the setting of the local condition (ã1), we can obtain
a priori estimates for the functions verifying Jθ(u) = J ′θ(u)u = 0. More
precisely, if we set

Sq+1 := inf
u∈H
u6=0

∫
|∇u|2(∫
|u|q+1

) 2
q+1

> 0,

we have the following.

Lemma 2.3. Suppose that the functions a and f satisfy (ã1) and (f1),
respectively. If

(2.2) 0 < θ <
(1− q)

2
S

(q+1)/2
q+1 ,

then Jθ(u) = J ′θ(u)u = 0 implies ‖u‖ ≤ (µ/α)1/(1−q).

Proof. If Jθ(u) = J ′θ(u)u = 0, then the equality J ′θ(u)u − (q + 1)Jθ(u) = 0
implies

(2.3)
α(1− q)

2
‖u‖2 +

β(3− q)
4

‖u‖4 = µ

∫
(g(x, u)u− (q + 1)G(x, u)).

It follows from (g3), the embedding H ↪→ Lq+1(Ω) and (2.2), that

α(1− q)
2

‖u‖2 ≤ µθS−(q+1)/2
q+1 ‖u‖q+1 ≤ µ(1− q)

2
‖u‖q+1

and the result follows. 2

Lemma 2.4. For any θ > 0 the functional Jθ is coercive and satisfies the
Palais-Smale condition.

Proof. Since the sequence (pn) defined in the introduction is increasing, we
have that

(2.4) σq =
pm

1− q
≥ 2∗

1− q
>

2∗

2∗ − (q + 1)
=

(
2∗

q + 1

)′
,



MULTIPLE SOLUTIONS FOR A KIRCHHOFF PROBLEM 7

and therefore 1 < σ′q(q + 1) < 2∗. Hence, we can use Hölder’s inequality,
(g4) and the Sobolev embeddings to get

Jθ(u) ≥ α

2
‖u‖2 +

β

4
‖u‖4 − 1

q + 1
‖a‖σq ‖u‖

q+1
σ′q(q+1) −

µθ

2
‖u‖q+1

q+1

≥ α

2
‖u‖2 +

β

4
‖u‖4 − C ‖u‖q+1 ,

for some constant C > 0. Recalling that (q + 1) < 2, we conclude that
Jθ(u)→∞ if ‖u‖ → +∞, that is, Jθ is coercive.

Suppose now that (un) ⊂ H is such that Jθ(un)→ c and J ′θ(un)→ 0. By
the above considerations, (un) is bounded. Hence, up to a subsequence, for
some A ≥ 0 and u ∈ H, we have that

‖un‖ → A, un ⇀ u weakly in H, un → u strongly in Lp(Ω),

for any p ∈ [1, 2∗). By (2.4), there exists p0 ∈ (q + 1, 2∗) such that σq =
( p0

q+1)′. Hölder’s inequality and the above convergences provide∣∣∣∣∫ a(x)|un|q−1un(un − u)

∣∣∣∣ ≤ ‖a‖σq ‖un‖qp0
‖un − u‖p0

→ 0 ,

as n→∞. Moreover, by (g5) and Hölder’s inequality again∣∣∣∣∫ g(x, un)(un − u)

∣∣∣∣ ≤ θ ‖un‖qq+1 ‖un − u‖q+1 → 0 .

Thus

on(1) = J ′θ(un)(un − u) = (α+ β ‖un‖2)

(
‖un‖2 −

∫
∇un · ∇u

)
+ on(1) .

Taking the limit we obtain (α + βA2)(A2 − ‖u‖2) = 0, which implies that
‖u‖ = A. It follows from the weak convergence that un → u strongly in H.
2

In order to prove our result we shall apply the following variant of a result
due to Clark [5] (see [9, Theorem 2.1, Proposition 2.2]).

Theorem 2.1. Let X be a Banach space and J ∈ C1(X,R) an even func-
tional bounded from below which satisfies the Palais-Smale condition and
J(0) = 0. If, for each k ∈ N, there exists a k-dimensional subspace Xk ⊂ X
and ρk > 0 such that

(2.5) sup
u∈Xk∩Sρk

J(u) < 0 ,

where Sρ := {u ∈ X : ‖u‖X = ρ}, then J has a sequence of critical values
(ck) ⊂ (−∞, 0) such that ck → 0 as k → +∞.

We are ready to prove our first result.

Proof of Theorem 1.1. Let ξ > 0 be given by Lemma 2.1 with θ > 0
satisfying (2.1). As quoted before, any critical point of Jθ such that ‖u‖∞ <
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ξ is a weak solution of (P ). We are going to apply the last abstract result
for this modified functional and show that the obtained solutions have small
L∞-norm.

It is clear that the even functional Jθ satisfies Jθ(0) = 0. Moreover, by
Lemma 2.4, it also satisfies the Palais-Smale condition. Since Jθ is bounded
on bounded sets of H, we also conclude from the same lemma that Jθ is
bounded from below.

For any given k ∈ N, we set Xk := span{φ1, . . . , φk}, where {φn}n∈N is a
Hilbertian basis of H. Since all the norm in Xk are equivalent, we can use

0 < θ < (1−q)a0

(1+q)µ < a0
(1+q)µ , (a1) and (g4) to get, for any u ∈ Xk,

(2.6)

Jθ(u) ≤ α

2
‖u‖2 +

β

4
‖u‖4 − a0

q + 1
‖u‖q+1

q+1 +
µ

2
θ ‖u‖q+1

q+1

≤ α

2
‖u‖2 +

β

4
‖u‖4 − a0

2(q + 1)
C ‖u‖q+1 ,

for some constant C > 0 independent of u. Recalling that (q + 1) < 2, we
can choose ρk > 0 small in such way that Jθ verifies (2.5).

Theorem 2.1 provides a sequence of critical points (uk) ⊂ H such that
Jθ(uk) = ck → 0 as k → ∞. Since (uk) is a Palais-Smale sequence at level
c = 0, by Lemma 2.4, we may suppose that uk → u strongly in H. Hence,
Jθ(u) = J ′θ(u)u = 0 and we infer from Lemma 2.2 that u = 0, that is, uk → 0
strongly in H.

Notice that each function uk is a weak solution of

−∆u =
a(x)|uk(x)|q−1uk(x) + µg(x, uk(x))

α+ β ‖uk‖2
in Ω, u = 0 on ∂Ω.

If we denote by hk the right-hand side of the first equation above we have,
by (g5), |hk(x)| ≤ α−1(|a(x)||uk(x)|q + µθ|uk(x)|q) a.e. in Ω. Hence,∫

|hk(x)|2∗ ≤ C1α
−2∗

(∫
|a(x)|2∗ |uk|q2

∗
+ (µθ)2∗

∫
|uk|q2

∗
)
,

with C1 := 22∗−1. Since σq ≥ 2∗/(1− q) > 2∗, we have that

τq := q
(σq

2∗

)′
=

qσq
σq − 2∗

≤ 1.

Thus, Hölder’s inequality implies that∫
|a(x)|2∗ |uk|q2

∗ ≤ ‖a‖2
∗

σq

(∫
|uk|τq2

∗
)q/τq

≤ C2 ‖a‖2
∗

σq
‖uk‖q2

∗

2∗

and ∫
|uk(x)|q2∗ ≤ C3 ‖uk‖q2

∗

2∗ ,
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with C2 := |Ω|q(1−τq)/τq and C3 := |Ω|1−q. We conclude that hk ∈ L2∗(Ω)
and therefore, by the Agmon-Douglis-Nirenberg result [1] (see also [7, Lemma
9.17]), uk ∈W 2,2∗(Ω) and there exists C4 = C4(Ω) such that

(2.7) ‖uk‖W 2,2∗ ≤ C4 ‖hk‖2∗ ≤ C5 ‖uk‖q2∗ ≤ Ĉ1 ‖uk‖q ,

for each k ∈ N, where C5 = C4α
−1{C1(C2 ‖a‖2

∗

σq
+ C3(µθ)2∗)}1/2∗ and Ĉ1 =

C5S
−q/2. Since uk → 0 strongly in H, we have that ‖uk‖W 2,2∗ → 0. If

m = 1, that is, 2p1 = 2 · 2∗ > N (see the definition of m and of the sequence
(pn) in (1.1)), the continuous embedding W 2,2∗(Ω) ↪→ C(Ω) implies that
‖uk‖∞ → 0.

On the other hand, if 2 · 2∗ ≤ N (equivalently, m > 1), the embedding
W 2,2∗(Ω) ↪→ Lp2(Ω) and (2.7) imply that, for some C6 = C6(Ω) > 0,

‖uk‖p2
≤ C6 ‖uk‖W 2,2∗ ≤ C6Ĉ1 ‖uk‖q ,

where p2 is the second term of the sequence defined in (1.1). Furthermore,
since in this case σq ≥ p2/(1 − q) > p2, we can argue as above to conclude
that hk ∈ Lp2(Ω). Hence uk ∈W 2,p2(Ω) and

‖uk‖W 2,p2 ≤ C7 ‖uk‖qp2
≤ Ĉ2 ‖uk‖q

2

,

where C7 > 0 is independent of k and Ĉ2 = C7(C6Ĉ1)q.
Since σq ≥ pn/(1− q) > pn for n = 1, . . . ,m, we can repeat this argument

until we get uk ∈W 2,pm(Ω) and

(2.8) ‖uk‖W 2,pm ≤ Ĉm ‖uk‖q
m

,

with Ĉm > 0 independent of k. Then, ‖uk‖W 2,pm → 0 as k → ∞. But

2pm > N provides W 2,pm(Ω) ↪→ C(Ω), and therefore we conclude that
‖uk‖∞ → 0. So, there exists k0 ∈ N such that

‖uk‖∞ ≤
ξ

2
, ∀ k ≥ k0

and the theorem is proved. 2

Proof of Theorem 1.2. Under the setting of item (i), that is, α > 0 and
β ≥ 0 fixed, we suppose that µ ≤ 1 and choose

0 < θ < min

{
1− q

2
S

(q+1)/2
q+1 ,

a0

1 + q

}
.

In the setting of the second item (β ≥ 0 and µ > 0 fixed) we choose

0 < θ < min

{
1− q

2
S

(q+1)/2
q+1 ,

a0

µ(1 + q)

}
.

In order to obtain a sequence of critical points for Jθ we argue as in The-
orem 1.1. The first difference appears when we try to prove (2.5). Indeed,
since a is no longer positive, we need an alternative construction for the
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finite-dimensional subspace. For any given k ∈ N, we choose k linearly inde-

pendents functions φ1, . . . , φk ∈ C∞0 (Ω̃), where the open set Ω̃ ⊂ Ω comes

from the condition (ã1). Since a(x) ≥ a0 a.e. in Ω̃, the inequality (2.6) still
holds for u ∈ Xk. Hence, there is a sequence of critical points (uk) ⊂ H
such that Jθ(uk) = ck → 0 as k →∞. Again, there exists u ∈ H such that
uk → u strongly in H. Though we cannot guarantee that u = 0, it follows
from Lemma 2.3 that

(2.9) ‖u‖ ≤
(µ
α

)1/(1−q)
.

As in the proof of Theorem 1.1, we have that uk ∈ W 2,pm(Ω) and in-
equality (2.8) holds. Hence, we can use the embedding W 2,pm(Ω) ↪→ C(Ω)
to get

‖uk‖∞ ≤ C0 ‖uk‖W 2,pm ≤ C0Ĉm ‖uk‖q
m

,

for some constant C0 = C0(Ω) > 0. Since ‖uk‖ → ‖u‖, it follows from (2.9)
that there exists k0 ∈ N such that

‖uk‖∞ ≤ C0Ĉm2q
m
(µ
α

)qm/(1−q)
, ∀ k ≥ k0.

A simple inspection of the proof of Theorem 1.1 show that the constant

Ĉm = Ĉm(µ, α) is directly proportional to both µ and α−1. Thus, if α > 0
is fixed (item (i)) the L∞-norm of the function uk becomes small if µ is close
to zero. On the other hand, if µ > 0 is fixed (item (ii)) the same occurs if
α > 0 is large. In any case, the approximated solutions are weak solutions
of (P ). 2

3. The case f(x, s) = o(|s|)

In this section we prove Theorem 1.3. The ideas are analogous to that
used in the previous section. We need only to adapt the auxiliary results.

Lemma 3.1. Suppose that f satisfies (f̃1). Then, for any given θ > 0, there
exist 0 < ξ < δ/2 and g ∈ C(Ω× R,R) odd in the second variable such that
(g1) (see Lemma 2.1) holds. Moreover, if G(x, s) :=

∫ s
0 g(x, t)dt then, for

any (x, s) ∈ Ω× R, we have that

(g̃3) g(x, s)s− (q + 1)G(x, s) ≤ θ|s|2;

(g̃4) |G(x, s)| ≤ θ

2
|s|2;

(g̃5) |g(x, s)| ≤ θ|s|.

Proof. It follows from (f̃1) that, for any given 0 < ε < θ/14, there exists
0 < ξ < δ/2 such that

max{|F (x, s)|, |f(x, s)s|} ≤ ε|s|2, ∀ (x, s) ∈ Ω× [−2ξ, 2ξ].

The argument now is analogous to that presented in the proof of Lemma
2.1. We omit the details. 2
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As in the previous section, for any θ > 0, we consider the function g given
by the above lemma and define Jθ : H → R by setting

Jθ(u) :=
α

2
‖u‖2 +

β

4
‖u‖4 − 1

q + 1

∫
a(x)|u|q+1 − µ

∫
G(x, u).

In the next result, we denote by λ1 > 0 the first eigenvalue of (−∆,W 1,2
0 (Ω)).

Lemma 3.2. Suppose that the functions a and f satisfy (ã1) and (f̃1),
respectively. If

(3.1) 0 < θ <
(1− q)αλ1

2µ
,

then Jθ(u) = J ′θ(u)u = 0 if, and only if, u = 0.

Proof. If Jθ(u) = J ′θ(u)u = 0, it follows from (2.3), (g̃3) and Poincaré’s
inequality that

α(1− q)
2

‖u‖2 ≤ µ
∫

Ω
(g(x, u)u− (q + 1)G(x, u)) ≤ µθ

∫
|u|2 ≤ µθ

λ1
‖u‖2.

The result follows from (3.1). 2

Lemma 3.3. For any θ > 0 satisfying (3.1) the functional Jθ is coercive
and satisfies the Palais-Smale condition.

Proof. As in the proof of Lemma 2.4, 1 < σ′q(q+ 1) < 2∗. Hence, we can use
Hölder’s inequality and (g̃4) to obtain

Jθ(u) ≥ α

2
‖u‖2 +

β

4
‖u‖4 − 1

q + 1
‖a‖σq ‖u‖

q+1
σ′q(q+1) −

µθ

2
‖u‖22

≥ α

2
‖u‖2 +

β

4
‖u‖4 − 1

q + 1
‖a‖σq ‖u‖

q+1
σ′q(q+1) −

(1− q)αλ1

4
‖u‖22

≥ (1 + q)α

4
‖u‖2 +

β

4
‖u‖4 − C ‖u‖q+1 ,

for some constant C > 0. It is sufficient now to argue as in the proof of
Lemma 2.4. 2

We present now the proof of our last result.

Proof of Theorem 1.3. The proof is a consequence of the above lemmas
and the same argument used in the proof of Theorems 1.1 and 1.2. 2

References

[1] S. Agmon, A. Douglis and L. Nirenberg, Estimatives near the boundary for solutions
of elliptic P. D. E. satisfying a general boundary value condition I, Comm. Pure Appl.
Math. 12 (1959) 623-727.
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