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Abstract. It is establish existence and multiplicity of solutions to the
elliptic quasilinear Schrödinger equation

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = h(x, u), x ∈ R
N

where g, h, V are suitable smooth functions. The function g is asympto-
tically linear at infinity and, for each fixed x ∈ R

N , the function h(x, s)
behaves like s at the origin and s3 at infinity. In the proofs we apply
variational methods.

1. Introduction

In this work we consider the quasilinear elliptic problem

(P )

{

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = h(x, u), x ∈ R
N ,

u ∈ H1(RN ).

where N ≥ 3, V ∈ C(RN ,R), g ∈ C(R,R) and h ∈ C(RN × R,R) satisfy
some suitable conditions. It is related with the existence of solitary wave
solutions for the Schrödinger equation

(1.1) i∂tw = −∆w + V (x)w − k(x,w) − l′(|w|2)w∆l(|w|2)
where w : R × R

N → C, V : R
N → R is a given potential, l : R → R

and k : RN × R → R are fixed functions. It has been accepted as a model
in many physical phenomena depending of the function l. For instance, if
l(s) = 1 we have the classical stationary semilinear Schrödinger equation
[17]. When l(s) = s, the equation arises from fluid mechanics, plasma
physics and dissipative quantum mechanics, see [22, 21, 12, 15]. If l(s) =√
1 + s, the equation models the propagation of a high-irradiance laser in

a plasma as well as the self-channeling of a high-power ultrashort laser in
matter, see [16]. For further physical applications we also refer to [4, 14].

Generalized quasilinear elliptic problems in unbounded domains have
been extensively considered in the literature (see [3, 24, 1, 18, 23, 19, 20]
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and references therein). One of the main difficulties is the lack of compact-
ness which are inherent to elliptic problems defined in unbounded domains.

Moreover, if H(x, t) :=
∫ t
0 h(x, τ)dτ , the equation in (P ) is formally the

Euler-Lagrange equation associated with the functional

I(u) =
1

2

∫

RN

(

g(u)2 |∇u|2 + V (x)u2
)

dx−
∫

RN

H(x, u)dx.

Nevertheless, as quoted in [6], for some important examples of functions g
this functional can take the value +∞. Hence, a direct variational approach
is not possible.

In order to overcame the lack of compactness, we suppose that the po-
tential V satisfies the following:

(V0) V ∈ C(RN ,R);
(V1) inf

x∈RN
V (x) ≥ V0 > 0;

(V2) for all M > 0, there holds

measure
(

{x ∈ R
N : V (x) ≤M}

)

< +∞.

The second difficult quoted above is more delicate. There are some so-
lutions for particular cases of function g. For instance, if g(s) =

√
1 + 2s2,

the equation in (P ) becomes

(1.2) −∆u− u∆(u2) + V (x)u = h(x, u), x ∈ R
N .

It has been widely studied since the seminal papers [6, 18, 19]. In these
works, the authors considered the change of variables f : R → R given by

(1.3) f ′(t) =
(

1 + 2f2(t)
)−1/2

, f(0) = 0.

Under some growth restrictions on h, it provides a relation between the
weak solutions of the problem and the critical points of the (well defined)
functional

v 7→ 1

2

∫

RN

(|∇v|2 + V (x)f(v)2)dx−
∫

RN

H(x, f(v))dx.

Thus, we can use all the machinery of the Critical Point Theory to obtain
solutions for a large class of nonlinearities h (see [20, 7, 9, 26, 27, 28, 10, 5, 11]
and their references). Although a similar approach can be done for some
other particular g (see [8, 29]) there are some important functions g : R → R

which arise from mathematical physics, biology and chemistry where is not
possible to consider anymore the change of variables (1.3). We quote [25, 30]
for some results with more general functions g.

In this paper, we consider a huge class of nonlinearities g, just assuming
that

(g0) g ∈ C1(R, (0,+∞)) is even, non-decreasing in [0,+∞) and satisfies

(1.4) g∞ := lim
t→∞

g(t)

t
∈ (0,∞).
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and

(1.5) β := sup
t∈R

tg′(t)
g(t)

≤ 1.

In order to correctly set our variational framework, we borrow an idea
introduced in [25]. It consists in take the primitive G(t) :=

∫ t
0 g(τ) dτ ,

consider the change of variable v = G(u) and set

X =

{

u ∈ H1(RN ) :

∫

RN

V (x)u2 dx <∞
}

.

Consider also the Orlicz-Sobolev space given by

E :=

{

v ∈ H1(RN ) :

∫

V (x)[G−1(v)]2 <∞
}

.

It can be proved that J : E → R defined as J(v) = I(G−1(v)), v ∈ E, is
well defined and belongs to C1(E,R). Notice that u = G−1(v) belongs to X
if, and only if, v ∈ E. Moreover, v ∈ E is a critical point of J if, and only
if, u = G−1(v) is a weak solution of (P ). Hence, it is sufficient to look for
critical points of J (see Section 2 for details).

In order to guarantee that the map v 7→ I(G−1(v)) is well defined, we
need to impose some restrictions on the growth of the nonlinear term h. We
suppose that

(h0) h ∈ C(RN × R);
(h1) there exist α0 > N/2 and a, b ∈ Lα0(RN ) such that

|h(x, t)| ≤ a(x)|t|+ b(x)g(t)|G(t)|, for all (x, t) ∈ R
N × R;

(h2) there exist 0 < q1 < 2, (2 · 2∗/q1)′ ≤ τ ≤ (4/q1)
′, Γ1 ∈ L1(RN ) and

Γ2 ∈ Lτ (RN ) such that

h(x, t)t− 2(1 + β)H(x, t) ≥ −Γ1(x)− Γ2(x)|t|q1 , for all (x, t) ∈ R
N × R.

where we define 1/s+ 1/s′ = 1 for any s > 1.

For any w ∈ Lq(RN ) we set w+(x) := max{w(x), 0}, define

F :=
{

w : RN → R : w+ 6≡ 0, w ∈ Lα(RN ) for some α > N/2
}

.

and suppose that

(H0) there exists K0 ∈ F such that

lim sup
t→0

2H(x, t)

G2(t)
= K0(x), uniformly for a.e. x ∈ R

N ;

(H∞) there exists K∞ ∈ F such that

lim inf
|t|→+∞

2H(x, t)

G2(t)
= K∞(x), uniformly for a.e. x ∈ R

N .



4 M.F. FURTADO, E.D. SILVA, AND M.L. SILVA

In view of conditions (V0)− (V2), the space X is compactly embedded in
Lq(RN ), for any 2 ≤ q < 2N/(N − 2) (see [13]). Hence, for any K ∈ F , the
eigenvalue problem

(1.6) −∆u+
V (x)

g(0)2
u = λK(x)u, u ∈ X,

has a first positive eigenvalue λ1(K) > 0. The same holds for the eigenvalue
problem

(1.7) −∆u = µK(x)u, u ∈ X.
In our main result we prove the existence of a non-zero solution under some
kind of crossing conditions on the eigenvalues associated to the asymptotic
limits K0 and K∞. More specifically, we prove the following:

Theorem 1.1. Suppose that V and g satisfy (V0) − (V2) and (g0), respec-
tively. Suppose also that h satisfies (h0) − (h2), (H0) and (H∞). Then the
problem (P ) has at least one non-zero solution, provided

µ1(K∞) < 1 < λ1(K0).

Actually, as a product of our calculation and using an usual truncation
argument, we are able to obtain a multiplicity result as stated in the next
result.

Theorem 1.2. Under the same hypotheses of Theorem 1.1 the problem (P )
has at least two solutions. One of them is positive and the another one is
negative.

The above results complement the aforementioned works in two senses.
First, because we consider a different class of functions g. Secondly, because
in most of the papers the authors considered superlinear nonlinearities h.
Here, we consider some sort of asymptotically linear conditions on h and
use the nonquadraticity condition (h2) to assure the existence of a solution.
Notice that, in this condition, we have that 2(1 + β) ≤ 4, differently from
the superlinear case where this constant is bigger than 4. It is worthwhile to
mention that, if (1.4) holds and the function g′(t) has limit at +∞, then then
number β is equal to 1, and therefore we have the limit case 2(1 + β) = 4.

Besides the generality of the function g, the main novel here is to consider
the ratio h(·, s)/s3 being bounded as s → +∞. As far we know, this is the
first result where functions h(·, s) behaving like s3 at infinity are considered
for the general equation in (P ). As it is well known, even if you have
compact embeddings on the Lebesgue spaces, this kind of problem present
many difficulties in the proof of the compactness properties required by the
usual minimax theorems. We believe that the proof of the Palais-Smale
condition contained in Proposition 3.1 can be used in many other variations
of the problem. The main difficult there is that, differently from [25], our
potential V is unbounded, and therefore our working space E is a proper
subset of H1(RN ) from which we have no information about reflexivity
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Throughout this work we use the eigenvalues problems (1.6) and (1.7).
In our context is natural to consider different eigenvalues problems due the
fact that G−1 behaves like s at the origin and

√

|s| at infinity. Furthermore,
if we consider the parametric eigenvalue problem

−∆u+
V (x)

g(s)2
u = λK(x)u, u ∈ X,

we have that, for s = 0, it becomes (1.6). On the other hand, if s = +∞,
we have formally the equation in (1.7), since (1.4) implies that g(s) → +∞,
as s → +∞. In other words, there is no effect of the potential V in the
linearized problem at infinity.

The paper is organized as follows: in the next section we present the
variational framework to deal with the problem as well as the main properties
of the function g. In Section 3, we prove the Palais-Smale condition and the
final Section 4 is devoted to the proof of the main results.

2. The variational framework

Hereafter, we write
∫

u instead of
∫

RN u(x)dx and denote by ‖ · ‖p the

Lp(RN )-norm, for p ≥ 1.
As quoted in the introduction, the problem (P ) is formally the Euler-

Lagrange equation associated with the functional

(2.1) u 7→ 1

2

∫

g(u)2 |∇u|2 + 1

2

∫

V (x)u2 −
∫

H(x, u).

Since it is not well defined inH1(RN ), we shall follow [25] and use the change

of variables v = G(u), where the function G is defined as G(t) :=
∫ t
0 g(τ)dτ .

For an easy reference we list below the main properties of the function G−1.
They will be extensively used in the rest of the paper.

Lemma 2.1. The function G−1 ∈ C2(R,R) satisfies the following proper-
ties:

(g1) G
−1 is increasing;

(g2) 0 < d
dt

(

G−1(t)
)

= 1
g(G−1(t))

≤ 1
g(0) , for all t ∈ R;

(g3)
∣

∣G−1(t)
∣

∣ ≤ |t|
g(0) , for all t ∈ R;

(g4) lim
t→0

G−1(t)
t = 1

g(0) ;

(g5) lim
t→±∞

G−1(t)
g(G−1(t))

= ± 1
g∞

;

(g6) 1 ≤ tg(t)
G(t) ≤ 2 and 1 ≤ G−1(t) g(G−1(t))

t ≤ 2, for all t 6= 0;

(g7)
G−1(t)√

t
is non-decreasing in (0,+∞) and |G−1(t)| ≤ (2/g∞)1/2

√

|t|,
for all t ∈ R;

(g8)
∣

∣G−1(t)
∣

∣ ≥
{

G−1(1) |t| , for all |t| ≤ 1,

G−1(1)
√

|t|, for all |t| ≥ 1 ;
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(g9)
t

g(t) is increasing and
∣

∣

∣

t
g(t)

∣

∣

∣
≤ 1

g∞
, for all t ∈ R;

(g10) the function [G−1(t)]2 is convex. In particular, [G−1(st)]2 ≤ s[G−1(t)]2,
for all t ∈ R, s ∈ [0, 1];

(g11) [G−1(st)]2 ≤ s2[G−1(t)]2, for all t ∈ R, s ≥ 1;
(g12) [G−1(s − t)]2 ≤ 4([G−1(s)]2 + [G−1(t)]2), for all s, t ∈ R.
(g13) the function G−1(t) is concave. In particular, G−1(st) ≤ sG−1(t),

for all t ∈ R, s ∈ [1,∞);
(g14) G

−1(st) ≥ sG−1(t), for all t ∈ R, 0 ≤ s ≤ 1;

Proof. The proof of the first item follows from the monotonicity of g. For
the second one, it is sufficient to compute the derivative on both sides of
the equality G(G−1(t)) = t and use (g1). Now, for each t > 0, the Mean
Value Theorem provides ξ ∈ [0, t] such that G−1(t) −G−1(0) = (G−1)′(ξ)t.
Therefore, the proof of (g3) follows from (g2). The statement (g4) is a
consequence of L’Hopital rule, while (g5) follows from (1.4) and the fact that
G−1 is an odd function. Now, integrating the inequality tg′(t)− g(t) ≤ 0 by
parts, we conclude that tg(t) ≤ 2G(t). The Mean Value Theorem and the
monotonicity of g provide G(t) ≤ g(t)t. Hence, the the first inequality in
(g6) follows. For the second one, it is sufficient to use the change of variables
t = G−1(s), t ≥ 0. The first statement in (g7) is a simple consequence of (g6),
while the second one follows from the following limit limt→+∞G−1(t)2/t =
(2/g∞). Using (g6) again we can prove that G−1(t)/t is non-decreasing. This
fact and (g7) imply property (g8). The item (g9) is an easy consequence of
(g1).

It remains to prove (g10), (g11) and (g12). Using (1.5) and a straightfor-
ward calculation we get, for z = G−1(t),

([G−1(t)]2)′′ =
2

g(z)2

(

1− zg′(z)
g(z)

)

=
2

g(z)

d

dz

(

z

g(z)

)

.

Item (g10) follows from this equality and (g9). In order to check (g11) we first
notice that (G−1(t))′′ = −g′(G−1(t))g(G−1(t))−3 ≤ 0. Hence, the function
[G−1(t)]′ is non-increasing. For any t ≥ 0 fixed, we consider the function
ψ(s) := G−1(st) − sG−1(t), for s ≥ 1. Since g

(

G−1(t)
)

≤ g
(

G−1(st)
)

, we
can use (g6) to get

ψ′(s) ≤ G−1(t)

(

t

G−1(t)g(G−1(t))
− 1

)

≤ 0.

Therefore ψ(s) ≤ ψ(1) = 0 holds for all s ≥ 1. Thus G−1(st) ≤ sG−1(t) for
all t ≥ 0 and s ≥ 1. Since [G−1]2 is even the proof of (g11) is concluded.
Finally, to establish (g12), we use the fact that [G−1]2 is even and non-
decreasing in (0,+∞) together with (g10) and (g11) to get, for all s, t ∈ R,

[G−1(s− t)]2 = [G−1(|s− t|)]2 ≤ [G−1(|s|+ |t|)]2

≤ [G−1(2max{|s|, |t|})]2 ≤ 4([G−1(s)]2 + [G−1(t)]2).

Items (g13) and (g14) can be proved with similar arguments. �
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Now we consider the Hilbert space X defined as

X =

{

u ∈ H1(RN ) :

∫

V (x)u2 <∞
}

,

endowed with the inner product

〈u, v〉 =
∫

∇u∇v + V (x)uv, ∀u, v ∈ X.

It is well known that X is continuous embedding into Lq(RN ) for q ∈ [2, 2∗].
Furthermore, X is compactly embedded in Lq(RN ) for any q ∈ [2, 2∗) (see
[13]).

We also define the Orlicz-Sobolev space

E :=

{

v ∈ H1(RN ) :

∫

V (x)[G−1(v)]2 <∞
}

.

Since, by (g10), [G
−1]2 is a convex function, we can argue as in [20, 19] to

conclude that E is a Banach space when endowed with the norm

‖v‖ := ‖∇v‖2 + |v|g, ∀ v ∈ E,
where

|v|g := inf
ξ>0

1

ξ

{

1 +

∫

V (x)[G−1(ξv)]2
}

.

By a weak solution of (P ) we mean a function u ∈ H1(RN ) ∩ L∞
loc(R

N )

such that, for all ϕ ∈ C∞
0 (RN ), there holds

∫

[g2(u)∇u∇ϕ+ g(u)g′(u)|∇u|2ϕ+ V (x)uϕ] =

∫

h(x, u)ϕ.

After the change of variables u = G−1(v) in the map given in (2.1), we
obtain the following functional

J(v) :=
1

2

∫

(

|∇v|2 + V (x)[G−1(v)]2
)

−
∫

H(x,G−1(v)), v ∈ E.

Under the growth conditions (1.5), (1.4) and (h1), we have that J ∈ C1(E,R)
and its critical points are weak solutions of the problem

−∆v + V (x)
G−1(v)

g (G−1(v))
=
h(x,G−1(v))

g (G−1(v))
, v ∈ E.

Moreover, if v ∈ E ∩ C2(RN ) is a critical point of J , then the function
u = G−1(v) is a classical solution of (P ) (see [6]).

We list below the mains properties of the space E.

Proposition 2.2. Suppose that V satisfies (V0) − (V2). Then the space E
has the following properties:

(1) if (vn) ⊂ E is such that vn(x) → v(x) a.e. in R
N and

lim
n→+∞

∫

V (x)[G−1(vn)]
2 =

∫

V (x)[G−1(v)]2,
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then
lim

n→+∞
|vn − v|g = 0

(2) the embeddings E →֒ D1,2(RN ), E →֒ H1(RN ) and X →֒ E are
continuous.

(3) the map v → G−1(v) from E to Lq(RN ) is continuous for each q ∈
[2, 2 · 2∗], and it is compact for each q ∈ [2, 2 · 2∗);

(4) if v ∈ E and u = G−1(v), then

‖ug(u)‖ ≤ 4‖v‖;
(5) If vn ⇀ 0 in D1,2(RN ) and

(∫

V (x)[G−1(vn)]
2
)

is bounded then, up

to a subsequence, G−1(vn) → 0 strongly in Lq(RN ) for any 2 ≤ q <
2 · 2∗;

(6) if v ∈ E, then

|v|g ≤ 2max

{

∫

V (x)[G−1(v)]2,

(
∫

V (x)[G−1(v)]2
)1/2

}

.

(7) if v ∈ E, then

|v|g ≥ 1

4
min

{

∫

V (x)[G−1(v)]2,

(
∫

V (x)[G−1(v)]2
)1/2

}

.

Proof. The first three items can be proved along the same lines discussed in
[7, 20]. In order to prove the fourth, we fix v ∈ E and notice that, by using
the definition of G−1 and a straightforward calculation, we get

(2.2) ∇ [ug(u)] =

(

1 +
ug′(u)
g(u)

)

∇v,

and therefore, by (1.5),

(2.3) ‖∇(ug(u))‖2 ≤ 2‖∇v‖2.
For t 6= 0 and s = G−1(t), it follows from the first inequality in (g6) and
(g11) that

[

G−1

(

sg(s)

G(s)
ξG(s)

)]2

≤
(

sg(s)

G(s)

)2
[

G−1(ξG(s))
]2 ≤ 4

[

G−1(ξt)
]2
,

for any ξ > 0. Thus, for ψ = G−1(v)g
(

G−1(v)
)

, we get

|ψ|g = inf
ξ>0

{

1

ξ

(

1 +

∫

V (x)
[

G−1(ξψ)
]2
)}

≤ 4|v|g .

The statement 4 follows from the above inequality and (2.3).
For proving item 5, we may suppose that vn(x) → 0 a.e. in R

N . Since

‖G−1(vn)‖2X =

∫
( |∇vn|2
g (G−1(vn))

+ V (x)[G−1(vn)]
2

)

≤ max{1, g(0)−2}
∫

(

|∇vn|2 + V (x)[G−1(vn)]
2
)

,
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and (
∫

V (x)[G−1(vn)]
2) is bounded, up to a subsequence, (G−1(vn)) weakly

converges in X. The compactness of the embedding X →֒ Lq(RN ), for
2 ≤ q < 2∗, and the pointwise convergence G−1(vn(x)) → G−1(0) = 0 a.e.
in R

N , imply that the weak limit is zero. So, G−1(vn) → 0 strongly in
Lq(RN ), whenever 2 ≤ q < 2∗.

For un := G−1(vn), it follows from (g9) that

∣

∣∇[G−1(vn)]
2
∣

∣

2
= 4

∣

∣

∣

∣

un
g(un)

∇vn
∣

∣

∣

∣

2

≤ 4

g2∞
|∇vn|2.

Hence, we can use the Sobolev inequality to get, for some c1 > 0,

‖G−1(vn)‖2·2∗ = ‖[G−1(vn)]
2‖1/22∗ ≤ c1‖∇([G−1(vn)]

2)‖1/22

≤ c1
√

2/g∞

(
∫

|∇vn|2
)1/4

<∞.

It follows from the interpolation inequality that G−1(vn) → 0 in Lq(RN ) for
any 2 ≤ q < 2 · 2∗.

Let v 6= 0 and suppose first that
∫

V (x)[G−1(v)]2 > 1. Setting ξ0 :=
(∫

V (x)[G−1(v)]2
)−1

< 1, using the definition of |v|g and (g10), we get

|v|g ≤ 1

ξ0

(

1 +

∫

V (x)[G−1(ξ0v)]
2

)

≤ 1

ξ0

(

1 + ξ0

∫

V (x)[G−1(v)]2
)

= 2

∫

V (x)[G−1(v)]2.

If 0 <
∫

V (x)[G−1(v)]2 ≤ 1, we set ξ0 :=
(∫

V (x)[G−1(v)]2
)−1/2 ≥ 1. Since,

by (g13), G
−1 is a concave function, we car argue as above to conclude that

|v|g ≤ 2(
∫

V (x)[G−1(v)]2)1/2. This and the above expression finish the proof
of item 6. The last item can de proved with an analogous argument. We
omit the details. �

3. A compactness condition

If V is a real Banach space, we say that J ∈ C1(V,R) satisfies the Palais-
Smale condition at level c ∈ R, in short (PS)c, if any sequence (vn) ⊂ V
such that

lim
n→+∞

J (vn) = c, lim
n→∞

J ′(vn) = 0

has a convergent subsequence. We devote all this section to the proof of the
following result.

Proposition 3.1. Suppose that V , g and h satisfy (V0) − (V2), (g0) and
(h0) − (h2). If (vn) ⊂ E is such that J(vn) → c and J ′(vn) → 0, then (vn)
has a convergent subsequece.
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Proof. We first prove that (vn) is bounded. Indeed, in view of item 4 of
Proposition 2.2, we have that ψn := G−1(vn) g

(

G−1(vn)
)

∈ E. Hence, we
can use (2.2) and (1.5) to compute

J ′(vn)ψn ≤ (1+β)

∫

|∇vn|2+
∫

V (x)
[

G−1(vn)
]2−

∫

h(x,G−1(vn))G
−1(vn).

This and the embeddingE →֒ Ls(RN ), for 2 ≤ s ≤ 2∗, imply that J ′(vn)ψn =
on(1)‖vn‖. Hence, we can use (h2) to get

c+ on(1)‖vn‖ ≥ J(vn)−
1

2(β + 1)
J ′(vn)ψn

≥ β

2(β + 1)

∫

V (x)[G−1(vn)]
2 − 1

2(β + 1)

∫

Γ1,

− β

2(β + 1)

∫

Γ2(x)|G−1(vn)|q1 .

Since the number τ given in (h2) verifies 2 ≤ q1τ
′/2 ≤ 2∗, we can use

the above expression, (1.5), (g7), Holder’s inequality and the embedding

E →֒ Lq1τ ′/2(RN ), to obtain

(3.1)

∫

V (x)[G−1(vn)]
2 ≤ on(1)‖vn‖+ c1‖Γ1‖1 + c1‖Γ2‖τ‖vn‖q1/2q1τ ′/2

≤ on(1)‖vn‖+ c1‖Γ1‖1 + c1‖Γ2‖τ‖vn‖q1/2.
Arguing by contradiction we suppose that, up to a subsequence, ‖vn‖ →

+∞ as n → +∞. Set wn := vn/‖vn‖ and notice that the above inequality
and (g11) provide
∫

V (x)[G−1(wn)]
2 =

∫

V (x)

[

G−1

(

vn
‖vn‖

)]2

≤ 1

‖vn‖

∫

V (x)[G−1(vn)]
2 → 0.

Since (wn) is bounded in D1,2(RN ), we may assume that wn ⇀ w weakly
in D1,2(RN ) and wn(x) → w(x) a.e. in R

N . From Fatou’s lemma and the
last estimate we get

∫

V (x)[G−1(w)]2 ≤ lim inf
n→∞

∫

V (x)[G−1(wn)]
2 = 0, and

therefore w = 0. We infer from item 1 of Proposition 2.2 that |wn|g → 0.
We now claim that

(3.2) lim
n→+∞

1

‖vn‖2
∫

H(x,G−1(vn)) = 0.

If this is true, we can finish the proof of the boundedness of (vn) by noticing
that
∫

|∇wn|2 =
2J(vn)

‖vn‖2
− 1

‖vn‖2
∫

V (x)[G−1(vn)]
2+

2

‖vn‖2
∫

H(x,G−1(vn)) → 0,

where we have used J(vn) → c, (3.1) and (3.2). This and |wn|g → 0 imply
that 1 = ‖wn‖ = ‖wn‖22 + |wn|g → 0, which does not make sense. This
contradiction shows that (vn) is bounded.
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In order to verify (3.2), we first notice that, by (g8),

(3.3) |t| ≤ 1

G−1(0)
|G−1(t)|+ 1

G−1(0)2
[G−1(t)]2, ∀ t ∈ R.

Thus, since vn = ‖vn‖wn, we can use (h1) and (g3) to get

(3.4)

|H(x,G−1(vn))|
‖vn‖2

≤ a(x)

2

[

G−1(‖vn‖wn)
]2

‖vn‖2
+
b(x)

2

[‖vn‖wn]
2

‖vn‖2

≤ 1

2

(

a(x)

g2(0)
+ b(x)

)

w2
n

≤ c1(a(x) + b(x))([G−1(wn)]
2 + [G−1(wn)]

4).

On the other hand, item 5 of Proposition 2.2 implies that, up to a subse-
quence,

(3.5) G−1(wn) → 0 strongly in Lq(RN ), for any 2 ≤ q < 2 · 2∗.
Recalling that b ∈ Lα0(RN ) with α0 > N/2, we can use Hölder’s inequality
to get

∫

b(x)[G−1(wn)]
4 ≤ ‖b‖α0

‖G−1(wn)‖44α0/(α0−1) → 0,

where we have used (3.5) and the fact that 4 < 4α0/(α0 − 1) < 2 · 2∗. The
same argument shows that

max

{
∫

a(x)[G−1(wn)]
4,

∫

a(x)[G−1(wn)]
2,

∫

b(x)[G−1(wn)]
2

}

→ 0.

The proof of (3.2) follows from the above expression and (3.4). Hence, we
conclude that (vn) is bounded.

Now, for some v ∈ D1,2(RN ), we have that vn ⇀ v weakly in D1,2(RN ).
Since we also have pointwise convergence, we can use (3.1) and Fatou’s
lemma to get

(3.6)

∫

V (x)[G−1(v)]2 ≤ lim inf
n→+∞

∫

V (x)[G−1(vn)]
2 <∞,

and therefore the weak limit v belongs to E.
Notice that, since [G−1]2 is convex, the function Q defined by

(3.7) Q(v) :=

∫

|∇v|2 +
∫

V (x)[G−1(v)]2,

is also convex. Hence,
(3.8)

Q(v)−Q(vn) ≥ Q′(vn) · (v − vn)

= 2J ′(vn) · (v − vn) + 2

∫

h(x,G−1(vn))

g(G−1(vn))
(v − vn).

We claim that

(3.9) lim
n→+∞

∫

h(x,G−1(vn))

g(G−1(vn))
(v − vn) = 0.
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Assuming the claim, recalling that J ′(vn) → 0 and taking the limit in (3.8),
we get

lim sup
n→+∞

Q(vn) ≤ Q(v).

On the other hand, the weak converge of (vn) in D1,2(RN ) provides

(3.10)

∫

|∇v|2 ≤ lim inf
n→+∞

∫

|∇vn|2.

Hence, we infer from (3.6) that Q(v) ≤ lim inf
n→+∞

Q(vn), and therefore

(3.11) lim
n→+∞

Q(vn) = Q(v).

Before continuing the proof we justify equation (3.9). From (h1), (g2),
(g3) and (3.3), we obtain
∣

∣

∣

∣

h(x,G−1(vn))

g(G−1(vn))

∣

∣

∣

∣

≤
(

a(x)

g(0)2
+ b(x)

)

|vn| ≤ ψ(x)(|G−1(vn)|+ [G−1(vn)]
2),

with ψ(x) := c1(a(x) + b(x)) ∈ Lα0(RN ). This and (3.3) imply that
(3.12)
∣

∣

∣

∣

h(x,G−1(vn))

g(G−1(vn))

∣

∣

∣

∣

|vn − v| ≤ c2ψ(x)Mn(x)(|G−1(vn − v)|+ [G−1(vn − v)]2),

with Mn(x) := |G−1(vn(x))| + [G−1(vn(x))]
2. If we set q := 2α0/(α0 − 1)

we can use α0 > N/2 to conclude that 2 < q < 2∗. Hence, the embedding
E →֒ Lq(RN ), (g3) and (g7) imply that the sequence hn is bounded in
Lq(RN ). It follows from Hölder’s inequality that

∫

ψ(x)hn(x)[G
−1(vn − v)]2 ≤ ‖ψ‖α0

‖Mn‖q‖G−1(vn − v)‖22q → 0,

where we have used 4 < 2q < 2 · 2∗ and item 5 of Proposition 2.2. An
analogous argument provides

∫

ψ(x)Mn(x)|G−1(vn − v)| → 0 and therefore
the statement (3.9) is a consequence of (3.12).

By using (3.11) we obtain

Q(v) = lim inf
n→+∞

Q(vn)

≥ lim inf
n→+∞

∫

|∇vn|2 + lim inf
n→+∞

∫

V (x)[G−1(vn)]
2

≥
∫

|∇v|2 +
∫

V (x)[G−1(v)]2 = Q(v)

We infer from the above inequality, (3.6) and (3.10) that
(3.13)

lim inf
n→+∞

∫

|∇vn|2 =
∫

|∇v|2, lim inf
n→+∞

∫

V (x)[G−1(vn)]
2 =

∫

V (x)[G−1(v)]2.
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Hence

Q(v) = lim sup
n→+∞

(
∫

|∇vn|2 +
∫

V (x)[G−1(vn)]
2

)

≥ lim sup
n→+∞

∫

|∇vn|2 + lim inf
n→+∞

∫

V (x)[G−1(vn)]
2

≥ lim inf
n→+∞

(
∫

|∇vn|2 +
∫

V (x)[G−1(vn)]
2

)

= Q(v),

and therefore we conclude that lim sup
n→+∞

∫

|∇vn|2 =
∫

|∇v|2. This and (3.13)

imply that ‖vn‖D1,2(RN ) → ‖v‖D1,2(RN ). So, the weak convergence of (vn)

imply that vn → v strongly in D1,2(RN ).
Arguing as above we can also conclude that

lim sup
n→+∞

∫

V (x)[G−1(vn)]
2 =

∫

V (x)[G−1(v)]2.

and therefore
√

V (x)[G−1(vn)]2 →
√

V (x)[G−1(v)]2 strongly in L2(RN ).

Thus, up to a subsequence, we have that
√

V (x)[G−1(vn)]2 ≤ ϕ(x) a.e. in

R
n, for some ϕ ∈ L2(RN ). Hence, we can use (g12) to obtain

V (x)[G−1(vn − v)]2 ≤ 4(ϕ(x)2 + V (x)[G−1(v)]2).

Since the right-hand side above belongs to L1(RN ), it follows from the
Lebesgue Theorem that

∫

V (x)[G−1(vn − v)]2 → 0. Thus, item 1 of Propo-
sition 2.2 implies that |vn − v|g → 0. This fact and ‖∇(vn − v)‖2 → 0 show
that vn → v strongly in E. The proposition is proved. �

4. Proof of the main theorems

In this setion we present the proofs of our main results. We shall use the
following version of the Moutain Pass Theorem.

Theorem 4.1. Let V be a real Banach space, J ∈ C1(V,R) and S ⊂ V a
closed subset which arcwise disconnect V in connected components V1 and
V2. Suppose further that J (0) = 0 and

(J1) 0 ∈ V1 and there exists α > 0 such that J (v) ≥ α for all v ∈ S ;
(J2) there exists e ∈ V2 such that J (e) ≤ 0.

Let

(4.1) c0 := inf
γ∈Γ

max
t∈[0,1]

J (γ(t)) ≥ α,

where Γ := {γ ∈ C([0, 1], V ) : γ(0) = 0, γ(1) ∈ J−1((−∞, 0]) ∩ V2}. If J
satisfies (PS)c0 , then J has a critical point at level c0 > 0.

We are intending to apply the above theorem with V being the Orlicz-
Sobolev space E defined in the last section and J = J . We first verify that
J satisfies the geometric conditions (J1) and (J2) of Theorem 4.1.
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For each ρ > 0, we define the set

Sρ :=

{

v ∈ E :

∫

|∇v|2 + V (x)[G−1(v)]2 = ρ2
}

.

Since Q : E → R given in (3.7) is continuous, we have that Sρ is a closed
subset which disconnects the space E.

Recall that λ1(K0) denotes the first positive eigenvalue problem (1.6) with
K replaced by K0. Hence, we have that

∫

K0(x)u
2 ≤ 1

λ1(K0)

∫
(

|∇u|2 + V (x)

g(0)2
u2

)

, ∀u ∈ X.

We shall see in the next result that this inequality provides the mountain
geometry near the origin.

Lemma 4.2. Suppose that V , g and h satisfy (V0) − (V2), (g0) and (h0)−
(h1), respectively. Assume also that (H0) holds and λ1(K0) > 1. Then there
exist ρ, α > 0 such that

J(v) ≥ α, for all v ∈ Sρ.

Proof. We start noticing that, by (H0) and (g4),

lim sup
t→0

2H(x,G−1(t))

[G−1(t)]2
= lim sup

t→0

2H(x,G−1(t))

t2

(

t

G−1(t)

)2

= g(0)2K0(x),

uniformly for a.e. x ∈ R
N . Setting q := 2∗/α′

0 > 2, we can use (h1) to
obtain, for any given ε > 0, a function d ∈ Lα0(RN ) such that

|H(x,G−1(t))| ≤ g2(0)
(K0(x) + ε)

2
[G−1(t)]2 + d(x)|t|q ,

for a.e. x ∈ R
N and t ∈ R. Hence, if we fix v ∈ Sρ such that Q(v) = ρ and

using hypothesis (V1), we get

J(v) ≥ 1

2
ρ2−g(0)

2

2

∫

K0(x)[G
−1(v)]2−εg(0)

2

2V0

∫

V (x)[G−1(v)]2−
∫

d(x)|v|q .

Using Hölder and Gagliardo-Nirenberg inequalities we can write
∫

d(x)|v|2∗/α′

0 ≤ ‖d‖α0
‖v‖q2∗ ≤ c1‖d‖α0

‖∇v‖q2 ≤ c1‖d‖α0
Qq/2(v) ≤ c1‖d‖α0

ρq,

for some c1 > 0. Moreover, since ∇G−1(v) = g(G−1(v))−1∇v, we can use
the variational characterization of λ1(K0) and (g2) to obtain
∫

K0(x)[G
−1(v)]2 ≤ 1

λ1(K0)

(
∫

|∇[G−1(v)]|2 + V (x)
[G−1(v)]2

g(0)2

)

≤ g(0)−2

λ1(K0)

(
∫

|∇v|2 + V (x)[G−1(v)]2
)

=
g(0)−2

λ1(K0)
ρ2.

Putting all these estimates together, we obtain

J(v) ≥ 1

2

(

1− 1

λ1(K0)
− εg(0)2

V0
− Cρq−2

)

ρ2.
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Choosing ε > 0 small and recalling that q > 2 and λ1(K0) > 1 we obtain
the desired result. �

At this stage we shall prove that J has negative energy in some specific
directions proving the mountain pass geometry for the functional J . This
can be read in the following form

Lemma 4.3. Suppose that V , g and h satisfy (V0) − (V2), (g0) and (h0)−
(h1), respectively. Assume also that (H∞) holds and µ1(K∞) < 1. If ϕ ∈ X
is a positive eigenfunction associated to µ1(K∞), then

lim
t→+∞

J(tϕ) = −∞.

Proof. We start noticing that, by (h1) and (g3), for t ∈ R and a.e. x ∈ R
N

there holds
2|H(x,G−1(tϕ))|

t2
≤

(

a(x)

g(0)2
+ b(x)

)

ϕ(x)2.

Since a, b ∈ Lα0(RN ) with α0 > N/2, the right-hand side above belongs to
L1(RN ). Thus, we can set s = G−1(tϕ), use ϕ > 0, Fatou’s lemma and
(H∞) to get

lim inf
t→+∞

∫

2H(x,G−1(tϕ))

t2
≥

∫

lim inf
s→+∞

(

2
H(x, s)

G2(s)
ϕ2

)

=

∫

K∞(x)ϕ2.

From (g3), we have that for t ∈ R and a.e. x ∈ R
N

V (x)[G−1(tϕ(x))]2

t2
≤ g(0)−2V (x)ϕ(x)2.

Moreover, by (g7),

lim sup
t→+∞

V (x)[G−1(tϕ)]2

t2
≤ lim

t→+∞
2

k

V (x)ϕ(x)

t
= 0.

Since V ϕ2 ∈ L1(RN ), it follows from the Lebesgue Theorem that

lim
t→∞

∫
(

|∇ϕ|2 + V (x)[G−1(tϕ)]2

t2

)

=

∫

|∇ϕ|2.

The above estimates, the equality
∫

|∇ϕ|2 = µ1(K∞)
∫

K∞(x)ϕ2 and µ1(K∞) <
1 imply that

lim sup
t→+∞

2J(tϕ)

t2
≤

∫

|∇ϕ|2 −
∫

K∞(x)ϕ2 = (µ1(K∞)− 1)

∫

K∞(x)ϕ2 < 0,

and we are done. �

We are ready to prove our main results.

Proof of Theorems 1.1 and 1.2. In view of the above lemmas and Proposition
3.1, we can apply Theorem 4.1 with V = E and J = J to obtain v0 ∈ E
such that J ′(v0) = 0 and J(v0) = c0 ≥ α > 0. Since J(0) = 0, we conclude
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that v0 is a non-zero critical point of J . As quoted before, the function
u0 := G−1(v0) is a solution of the problem (P ) proving Theorem 1.1.

In order to prove the second theorem we define the function

h+(x, t) =

{

h(x, t), if t ≥ 0,

0, if t ≤ 0,

and consider the functional

J+(v) :=
1

2

∫

(

|∇v|2 + V (x)[G−1(v)]2
)

−
∫

H+(x,G
−1(v)), v ∈ E.

where H+(x, t) =
∫ t
0 h(x, τ)dτ . Since

∫

H+(x,G
−1(v)) =

∫

H(x,G−1(v+),
we can easily check that the two lemmas of this section also holds for J+. If
the same holds for Proposition 3.1, we can argue as in the first theorem to
obtain v1 ∈ E such that J ′

+(v1) = 0. Setting v−1 := min{u(x), 0}, recalling
that J ′

+(v1)v
−
1 = 0 and the definition of h+, we conclude that v−1 ≡ 0, that

is, v1(x) ≥ 0 for a.e. x ∈ R
N . It follows from the Maximum Principle that

v1 is a positive in R
N , and therefore u1 := G−1(v1) is a positive solution of

(P ). The negative solution can be obtained in a similar way, just truncating
h on the other side of the real line.

It remains to check that J+ verifies the (PS)c condition for any c ∈ R.
Let (vn) ⊂ E be a (PS)c sequence for the functional J+. Now we define
v−n (x) := min{vn(x), 0} and claim that ‖v−n ‖ → 0 as n → +∞. Indeed, if
this is not true, there exists γ > 0 in such way that, up to a subsequence,
‖v−n ‖ ≥ γ > 0. It follows from item 4 of Proposition 2.2, G−1(0) = 0, and
the definition of h+ that

on(1)‖v−n ‖ ≥ J ′
+(vn) ·G−1(v−n )g(G

−1(v−n ))

=

∫
(

1 +
G−1(v−n )g

′(G−1(v−n ))

g(G−1(v−n ))

)

|∇v−n |2

+

∫

V (x)
G−1(vn)

g(G−1(vn))
G−1(v−n )g(G

−1(v−n ))

≥
∫

|∇v−n |2 + V (x)G−1(v−n )
2.

Using the fact that ‖v−n ‖ ≥ γ > 0 follows that wn := v−n
‖v−n ‖ is well defined.

The above inequalities provide

max

{
∫

|∇wn|2,
∫

V (x)
G−1(v−n )

2

‖v−n ‖
,

∫

V (x)
G−1(v−n )

2

‖v−n ‖2
}

→ 0,
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as n→ +∞. Hence, we infer from (g10) and (g11) that
∫

V (x)[G−1]2(wn) =

∫

V (x)[G−1]2
(

v−n
‖v−n ‖

)

≤
(

1

‖v−n ‖
+

1

‖v−n ‖2
)
∫

V (x)[G−1]2(v−n ) → 0.

It follows from item 6 of Proposition 2.2 that |wn|g → 0 as n→ +∞. Thus,
1 = ‖wn‖ = ‖∇wn‖2 + |wn|g → 0, which is an absurd. Hence ‖v−n ‖ → 0
as n → +∞, as claimed. Using this fact and replacing (vn) by (v+n ) if
necessary, we may suppose that vn ≥ 0. Arguing along the same lines of
Proposition 3.1 we conclude that (vn) has a convergent subsequence, that
is, the truncated functional J+ satisfies the Palais-Smale condition. �
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