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Abstract. We show the existence of a nonzero solution for the semilinear
Schrödinger equation −∆u + V (x)u = f(x, u). The potential V is periodic

and 0 belongs to a gap of σ(−∆ + V ). The function f is superlinear and

asymptotically periodic with respect to x variable. In the proof we apply a
new critical point theorem for strongly indefinite functionals proved in [3].

1. Introduction

We consider the existence of nonzero solutions for the semilinear Schrödinger
equation

−∆u+ V (x)u = f(x, u), x ∈ RN , (1.1) eq1

where V ∈ C(RN ,R) the nonlinearity f ∈ C(RN × R,R) satisfy the following
assumptions:

(A1) V (x) = V (x1, . . . , xN ) is 1-periodic in x1, . . . , xN ;
(A2) if σ(−∆ + V ) denotes the spectrum of the operator −∆ + V , then 0 6∈

σ(−∆ + V ) and σ(−∆ + V ) ∩ (−∞, 0) 6= ∅,
(A3) there exist c1, c2 > 0 and p ∈ (2, 2∗) such that

|f(x, t)| ≤ c1|t|+ c2|t|p−1, ∀(x, t) ∈ RN × R;

(A4) f(x, t)t ≥ 0, for all (x, t) ∈ RN × R;
(A5) f(x, t) = o(|t|), as t→ 0, uniformly in x ∈ RN ;
(A6) it holds

lim
|t|→∞

F (x, t)
t2

=∞, uniformly in x ∈ RN ,

where F (x, t) :=
∫ t

0
f(x, τ)dτ .

We denote by F the class of all functions h ∈ C(RN ,R) ∩L∞(RN ,R) such that,
for every ε > 0, the set {x ∈ RN : |h(x)| ≥ ε} has finite Lebesgue measure, and we
assume that

(A7) there exist p∞ ∈ (2, 2∗), ϕ ∈ F and f∞ ∈ C(RN × R,R), 1-periodic in
x1, . . . , xN , such that, for all for all (x, t) ∈ RN × R,
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(i) f∞(x, t)t ≥ 0 and f∞(x, t)/|t| is not decreasing in R \ {0};
(ii) F (x, t) ≥ F∞(x, t) :=

∫ t
0
f∞(x, τ)dτ ;

(iii) |f(x, t)− f∞(x, t)| ≤ ϕ(x)|t|p∞−1.
(A8) there exists θ0 ∈ (0, 1) such that

1− θ2

2
tf(x, t) ≥ F (x, t)− F (x, θt), ∀θ ∈ [0, θ0], (x, t) ∈ RN × R.

Our first result can be stated as follows.

thm1 Theorem 1.1. Suppose that (A1)–(A8) are satisfied. Then problem (1.1) has a
nonzero solution.

In the proof we apply a version of the Linking Theorem due to Li and Szulkin
[4] to obtain a Cerami sequence for the associated functional. Thanks to (A8), the
same argument employed by Tang in [8] provides the boundedness of this sequence.
If f is periodic is sufficient to guarantee that, up to translations, the weak limit
of the sequence is a nonzero solution. In our case we do not have periodicity and
therefore the strategy of [8] fails. To overcome this difficult we use a a local version
of the Linking Theorem proved in [3].

The same idea can be used to replace condition (A8) by another one introduced
by Ding and Lee in [2] (see also [10] for a weaker condition). More specifically, we
assume that

(A4’) F (x, t) ≥ 0 for all (x, t) ∈ RN × R;
(A8’) there exist τ > max{1, N/2} and positive constants r, a1, R1 such that

q(r) := inf{F̂ (x, t) : x ∈ RN and |t| ≥ r} > 0,

|f(x, t)|τ ≤ a1|t|τ F̂ (x, t), for all x ∈ RN , |t| ≥ R1,

where F̂ (x, t) := 1
2f(x, t)t− F (x, t).

thm2 Theorem 1.2. Suppose that (A1), (A2), (A4’), (A5)–(A7), (A8’) are satified. Then
problem (1.1) has a nonzero solution.

In this article we denote BR(y) := {x ∈ RN : |x − y| < R} and |A| for the
Lebesgue measure of a set A ⊂ RN . We write

∫
A
u instead of

∫
A
u(x)dx. We also

omit the set A whenever A = RN . Also we write | · |p for the norm in Lp(RN ).

2. Variational setting

We denote by S the selfadjoint operator −∆+V acting on L2(RN ) with domain
D(S) := H2(RN ). Under the conditions (A1) and (A2), we have the orthogonal
decomposition L2(RN ) = L− ⊕ L+, with the subspaces L+ and L− being such
that S is negative in L− and positive in L+. If we consider the Hilbert space
H := D(|S|1/2) with the inner product (u, v) := (|S|1/2u, |S|1/2v)L2 , and the corre-
sponding norm ‖u‖ := ||S|1/2u|2, it follows from (A1) and (A2) that H = H1(RN )
and the above norm is equivalent to the usual norm of this space. Hence, we obtain
the decomposition

H = H+ ⊕H−, H± = H ∩ L±,

which is orthogonal with respect to (·, ·)L2 and (·, ·).
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Let (ek) ⊂ H be a total orthonormal sequence in H−. We introduce a new
topology on H by setting

‖u‖τ := max
{
‖u+‖,

∞∑
k=1

1
2k
|〈u−, ek〉|

}
. (2.1) norma-tau

The above norm induces a topology in H which we call τ -topology. Given a set
M ⊂ H, an homotopy h : [0, 1]×M → H is said to be admissible if

(i) h is τ -continuous, that is, if tn → t and un
τ→ u then h(tn, un) τ→ h(t, u);

(ii) for each (t, u) ∈ [0, 1]×M there is a neighborhood U of (t, u) in the product
topology of [0, 1] and (H, τ) such that the set {w − h(t, w) : (t, w) ∈ U ∩
([0, 1]×M)} is contained in a finite dimensional subspace of H.

When I ∈ C1(E,R) the symbol Γ denotes the class of maps

Γ :=
{
h ∈ C([0, 1]×M,H) : h is admissible, h(0, ·) = IdM ,

I(h(t, u)) ≤ max{I(u),−1} for all (t, u) ∈ [0, 1]×M
}
.

The first part of the following abstract result can be found in [4, Theorem 2.1] while
the last one was proved in [3, Theorem 2.3].

local Theorem 2.1. Suppose that I ∈ C1(H,R) satisfies
(A9) The functional I can be written as

I(u) =
1
2

(‖u+‖2 − ‖u−‖2)− J(u),

with J ∈ C1(H,R) bounded from below, weakly sequentially lower semicon-
tinuous and J ′ is weakly sequentially continuous;

(A10) there exist u0 ∈ H+\{0}, α > 0 and R > r > 0 such that

inf
Nr

I ≥ α, sup
∂M

I ≤ 0,

where Nr := {u ∈ H+ : ‖u‖ = r},

MR,u0 = M := {u = u− + ρu0 : u− ∈ H−, ‖u‖ ≤ R, ρ ≥ 0},

and ∂M denotes the boundary of M relative to Ru0 ⊕H−.
If

c := inf
h∈Γ

sup
u∈M

I(h(1, u)),

then there exists (un) ⊂ H such that

I(un)→ c ≥ α, (1 + ‖un‖)‖I ′(un)‖H∗ → 0. (2.2) cs

If there exists h0 ∈ Γ such that

c = inf
h∈Γ

sup
u∈M

I(h(1, u)) = sup
u∈M

I(h0(1, u)),

then I possesses a nonzero critical point u0 ∈ h0(1,M) such that I(u0) = c.

We intend to apply the above result to obtain solutions for our equation. To
define the functional we notice that for a given ε > 0, we can use (A3) and (A5) to
obtain Cε > 0 such that

|f(x, t)| ≤ ε|t|+ Cε|t|p−1, |F (x, t)| ≤ ε|t|2 + Cε|t|p, (2.3) c1
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for any (x, t) ∈ RN ×R. The same inequality holds under conditions (A5), (̂f5) and
(A7)(ii) (see [3, Lemma 4.1]). Therefore, in the setting of our main theorems, we
can easily conclude that the functional I : H → R given by

I(u) :=
1
2
‖u+‖2 − 1

2
‖u−‖2 −

∫
F (x, u),

for any u = u+ + u−, with u± ∈ H±, is well defined. Moreover, it belongs to
C1(H,R) and its critical points are the weak solutions of (1.1).

To define the linking subsets we consider the periodic limit problem

−∆u+ V (x)u = f∞(x, u), x ∈ RN .
Under our conditions we can use [8, Theorem 1.2] to conclude that it has a ground
state solution u∞ ∈ H1(RN ). More precisely, if

I∞(u) :=
1
2
‖u+‖2 − 1

2
‖u−‖2 −

∫
F∞(x, u),

we have
I∞(u∞) = inf{I∞(u) : u ∈ H \ {0}, I ′∞(u) = 0} > 0. (2.4) c0

We set u0 := u+
∞ and consider

M := {u = u− + ρu0 : u− ∈ H−, ‖u‖ ≤ R, ρ ≥ 0}, Nr := {u ∈ H+ : ‖u‖ = r}.
As proved in [7, Proposition 39 and Theorem 40] and [9, Corollary 2.4], we have

sup
M

I∞(u) ≤ I∞(u∞). (2.5) u0

We finish this section by stating two technical convergence results whose proofs
can be found in [5, Lemmas 5.1 and 5.2], respectively.

convergence1 Lemma 2.2. Suppose that (A7) holds. Let (un) ⊂ H1(RN ) be a bounded sequence
and vn(x) := v(x − yn), where v ∈ H1(RN ) and (yn) ⊂ RN . If |yn| → ∞, then
[f∞(x, un)− f(x, un)]vn → 0, strongly in L1(RN ), as n→∞.

convergence2 Lemma 2.3. Suppose that h ∈ F and s ∈ [2, 2∗). If vn ⇀ v weakly in H1(RN ),
then

∫
h(x)|vn|s →

∫
h(x)|v|s, as n→∞.

3. Proofs of main results

In this section we prove Theorems 1.1 and 1.2.

link structure Lemma 3.1. Under the hypothesis of our main theorems the functional I satisfies
the geometric conditions (A9) and (A10).

Proof. Conditions (A5), (A8’) and (A7)(ii) imply (A3). Thus, the inequalities in
(2.3) holds under the assumptions of our main theorems and we can easily conclude
that I satisfies (A9). Since Nr ⊂ H+, for any u ∈ Nr, it holds I(u) = (1/2)‖u+‖2−∫
F (x, u). Hence, it follows from (2.3) that infNr

I ≥ α > 0 for some r, α > 0. For
R > r large we need to verify that sup∂M I ≤ 0. We fix u = u− + ρu0 ∈ ∂MR.
If ‖u‖ ≤ R and ρ = 0, we have u = u− ∈ H− and therefore I(u) ≤ 0, since (A4)
implies that F ≥ 0. Thus, it remains to consider ‖u‖ = R and ρ > 0. Arguing by
contradiction, we suppose that for some sequence (un) such that un = u−n + ρnu0,
ρn > 0, ‖un‖ = Rn →∞ we have that I(un) > 0. Then

I(un)
‖un‖2

=
1
2

(ρ2
n‖u0‖2

‖un‖2
− ‖u

−
n ‖2

‖un‖2
)
−
∫
F (x, un)
‖un‖2

> 0.
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Since F ≥ 0, we must have ρn‖u0‖ ≥ ‖u−n ‖. From

ρ2
n‖u0‖2

‖un‖2
+
‖u−n ‖2

‖un‖2
= 1,

it follows that 1√
2‖u0‖

≤ ρn

‖un‖ ≤
1
‖u0‖ and u−n /‖un‖ is bounded. Thus, up to a

subsequence, we have

ρn
‖un‖

→ ρ > 0,
u−n
‖un‖

⇀ v ∈ H−, u−n
‖un‖

→ v a.e. for x ∈ RN .

This and ‖un‖ → ∞ imply that ρn →∞. Thus, we have

lim |un(x)| =∞ a.e. in Ω = {x ∈ RN : ρu0(x) + v(x) 6= 0}.

Taking the lim sup in the inequality

0 <
I(un)
‖un‖2

≤ 1
2

(ρ2
n‖u0‖2

‖un‖2
− ‖u

−
n ‖2

‖un‖2
)
−
∫

Ω

F (x, un)
u2
n

u2
n

‖un‖2
dx,

using Fatou’s Lemma and (A6), we conclude that

0 ≤ 1
2
(
ρ2‖u0‖2 − ‖v‖2

)
−
∫

Ω

lim inf
n→∞

F (x, un)
u2
n

(ρu0 + v)2 dx = −∞,

which is a contradiction. �

We are ready to obtain a solution for equation (1.1).

Proof of the main results. By Lemma 3.1 and the first part of Theorem 2.1 we
can obtain (un) ⊂ H such that

I(un)→ c ≥ α > 0, (1 + ‖un‖)I ′(un)→ 0, as n→∞.

Under condition (A8), arguing along the same lines as in [8, Lemma 3.4] we can
prove that this sequence is bounded. As proved in [3, Lemma 4.3], the same holds
if f satisfies (A4’) and (A8’). We omit the (rather long) details in both cases. Since
(un) is bounded in H, up to a subsequence, we have that un ⇀ u weakly in H. By
using (A3), (A5) and standard calculations we can show that I ′(u) = 0. If u 6= 0
we are done. So, we need only to consider only the case u = 0.

We claim that there exist a sequence (yn) ⊂ RN , R > 0, and β > 0 such that
|yn| → ∞ as n→∞, and

lim sup
n→∞

∫
BR(yn)

|un|2 dx ≥ β > 0. (3.1) d2

Indeed, if this is not the case, from a result due to Lions [6] it follows that |un|s → 0
for any s ∈ (2, 2∗). Hence, the first inequality in (2.3) implies that

∫
F (x, un)→ 0

as n→ +∞. The same holds with
∫
f(x, un)un. On the other hand

c = lim
n→∞

(
I(un)− 1

2
I ′(un)un

)
= lim
n→∞

∫ (
1
2
f(x, un)un − F (x, un)

)
= 0

which contradicts c > 0.
Without loss of generality we may assume that (yn) ⊂ ZN (see [1]). Writing

ũn(x) := un(x + yn) and observing that ‖ũn‖H1 = ‖un‖H1 , up to subsequence we
have ũn ⇀ ũ in H, ũn → ũ in L2

loc(RN ) and for almost every x ∈ RN . It follows
from (3.1) that ũ 6= 0.
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We fix η ∈ C∞0 (RN ) and define, for each n ∈ N, the translation ηn(x) :=
η(x− yn). Using (2.3), the Lebesgue Theorem and the periodicity of f∞ we get

I ′∞(ũn)η = I ′∞(un)ηn = I ′∞(ũ)η + on(1),

where on(1) stands for a quantity approaching zero as n → +∞. Hence, we need
only to show that I ′∞(un)ηn = on(1). However, Lemma 2.2 provides

I ′∞(un)ηn = I ′(un)ηn −
∫

[f(x, un)− f∞(x, un)]ηn = I ′(un)ηn + on(1).

Since I ′(un)ηn → 0 it follows that I ′∞(ũ) = 0.
We claim that lim infn→∞

∫
F̂ (x, ũn) ≥

∫
F̂∞(x, ũ). Indeed, from (A7) we obtain

|F̂ (x, un)− F̂∞(x, un)| ≤
(1

2
+

1
p∞

)
h(x)|un|p∞ .

Thus, by Lemma 2.3, Fatou’s lemma and periodicity of F̂∞,

lim inf
n→∞

∫
F̂ (x, un) = lim inf

n→∞

∫
F̂∞(x, ũn) ≥

∫
F̂∞(x, ũ).

In view of the above considerations we obtain

c = lim
n→∞

(
I(un)− 1

2
I ′(un)un

)
= lim inf

n→∞

∫
F̂ (x, un)

≥
∫
F̂∞(x, ũ) = I∞(ũ)− 1

2
I ′∞(ũ)ũ = I∞(ũ),

and therefore I∞(ũ) ≤ c. Hence, using the definition of c, (A7) and ((2.5) we obtain

c ≤ sup
u∈M

I(u) ≤ sup
u∈M

I∞(u) ≤ I∞(u∞) ≤ I∞(ũ) ≤ c.

Thus, if we define h0 : [0, 1]×M → H by h0(t, u) := u for any (t, u) ∈ [0, 1]×M , the
above inequality implies supu∈M I(h0(u, 1)) = c. It follows from the last statement
of Theorem 2.1 that I has a nonzero critical point. �
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