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Abstract. We deal with the equation

−
(

1 +

∫
R3

|∇u|2dx
)

∆u + V (x)u = a(x)|u|p−1u x ∈ R3,

with p ∈ (3, 5). Under some conditions on the sign-changing potentials
V and a we obain a nonnegative ground state solution. In the radial
case we also obtain a nodal solution.
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1. Introduction

We consider a version of the equation

−
(
α+ β

∫
RN
|∇u|2dx

)
∆u+ V (x)u = f(x, u), x ∈ R3,

with α, β ∈ R, V and f satisfying some suitable conditions. Due to the
presence of the term

∫
RN |∇u|

2dx the equation is not a pointwise identity
and therefore the problem is called nonlocal. The main interest in this kind
of operator relies on the fact that it arises in the following physical context:
if we set V ≡ 0 and replace the entire space by Ω ⊂ RN , then we get the
problem

−
(
α+ β

∫
Ω

|∇u|2dx
)

∆u = f(x, u), x ∈ Ω, u ∈ H1
0 (Ω), (1.1)
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which is related to the stationary analogue of the equation

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0,

proposed by Kirchoff in [12]. This is an extension of the classical d’Alembert
wave equation which considers the effects of the changes on the length of the
string during vibrations. Actually, in the physical model, the parameters has
the following meaning: L is the length of the string, h is the area of cross-
section, E is the Young modulus of the material, ρ is the mass density and
P0 is the initial tension. After J.L.Lions [14] presented an abstract functional
analysis framework to the evolution equation related with (1.1), these kind
of problem has been extensively studied (see [1, 5, 3, 13, 4] and references
there in).

In this paper we assume, with no loss of generality, that α = β = 1 and
consider the problem

−
(

1 +

∫
R3

|∇u|2dx
)

∆u+ V (x)u = a(x)|u|p−1u x ∈ R3, (P )

with p ∈ (3, 5). In order to present the assumptions on the potentials we set
V −(x) := max{−V (x), 0},

S := inf
{
‖∇u‖2L2(R3);u ∈ D

1,2(R3), ‖u‖L6(R3) = 1
}
,

and assume the following conditions:

(V0) V ∈ Ltloc(R3) for some t > 3/2;

(V1) V − ∈ L3/2(R3) and ‖V −‖L3/2(R3) < S;

(V2) there are constants cV , µ > 0 such that

V (x) ≤ V∞ − cV e−µ|x|, for a.e. x ∈ R3,

with

V∞ := lim
|x|→+∞

V (x) > 0;

(a0) a ∈ L∞(R3)
(a1) there are constants ca, γ > 0 such that

a(x) ≥ a∞ − cae−γ|x|, for a.e. x ∈ R3,

with

a∞ := lim
|x|→+∞

a(x) > 0.

The equation in (P ) is the Euler-Lagrange equation of the functional
I : H1(R3)→ R given by

I(u) =
1

2
‖∇u‖2L2(R3)+

1

2

∫
R3

V (x)u2dx+
1

4
‖∇u‖4L2(R3)−

1

p+ 1

∫
R3

a(x)|u|p+1dx.

We say that a solution u is a ground state solution if it has minimal energy
between all the non zero solutions.
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As we shall see, it is important to consider the limit problem associated
with (P ), namely

−
(

1 + ‖∇u‖2L2(R3)

)
∆u+ V∞u = a∞|u|p−1u, x ∈ R3.

Arguing as in [4], we can prove that it has a positive ground state solution
ω ∈ H1(R3) (see Lemma 2.1 in Section 2). Thus, if we set

h∗ :=
(

1 + ‖∇ω‖22
)1/2

,

we can state our first result in the following way.

Theorem 1.1. Suppose that p ∈ (3, 5) and the potentials V and a satisfy
(V0)− (V2) and (a0)− (a1). If

µ < γ <

√
V∞(p+ 1)

h∗
, (1.2)

then the problem (P ) has a nonnegative ground state solution.

In our second result we look for a nodal solution. The main inspiration
is the paper [16], where the authors obtained a sign changing solution for
the local case β = 0, under conditions analogous to those of Theorem 1.1.
Unfortunately, in the nonlocal case we are not able to use the decay estimates
of the potentials to localize the minimax level of the functional in the correct
compactness range. So, we shall restrict our attention to radial functions and
prove the following:

Theorem 1.2. Suppose that p ∈ (3, 5) and the potentials V and a are radial
and satisfy (V1) and (a0). If

(Ṽ2) V∞ = lim
|x|→+∞

V (x) > 0;

(ã1) a∞ = lim
|x|→+∞

a(x) > 0,

then the problem (P ) has a sign-changing radial solution. This solution has
small energy in the class of sign-changing radial solutions.

In the proof we apply variational methods. Although this is rather
standard we need to overcome the lack of compactness of H1(R3) into the
Lebesgue spaces. This is done by using some comparison arguments of the
minimax level of I and the minimax level of the limit problem. Another dif-
ficult in our proof relies on the fact that the potential a changes sign. Hence,
it is not true that any u ∈ H1(R3) \ {0} can be projected in the Nehari
manifold. For proving the second theorem we follow [2], by using the set
{u ∈ H1(R3) : I ′(u)u+ = 0 = I ′(u)u−}. Since it is not a smooth manifold,
we need to do some trick calculations for obtaining minimize sequences. Al-
though the second theorem holds for radial potentials the other assumptions
are very weak.

The case a ≡ 1 and p ∈ (3, 5) was treated in [13], where the authors
obtained a positive ground state solution. Also for positive potentials, the
authors in [11] obtained some multiplicity and concentration results for (P ).
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In [9], the authors obtained existence and multiplicity of solutions for an
equation with potentials vanishing at infinity. In [8], the authors considered
the symmetric case for a sign-changing radial potential V . We finnaly quote
the recent paper [6], where a Schrödinger-Poisson system is considered un-
der conditions closely related to that of Theorem 1.1. Actually, it is proved
there that the positive solution has exponential decay and therefore a second
(nodal) solution is obtained under almost the same conditions. Here, we are
not able to prove that the positive solution decays exponentially and there-
fore we use a slight different argument in the space of radial functions. In this
setting we do not need to control the decay rate of the potentials. The main
results of this paper can be viewed as a nonlocal version of those proved in
[10, 16] and complement the aforementioned works.

The paper has two more sections. In the first one we prove Theorem 1.1
and in the other we present the proof of Theorem 1.2.

2. The nonnegative solution

For any 2 ≤ q ≤ ∞, we denote by ‖u‖q the Lq-norm of a function u ∈ Lq(R3).
For saving notation, we write only

∫
u to denote

∫
R3 u(x)dx. Throughout this

section we suppose that the conditions (V0)− (V2) and (a0)− (a1) hold.
We first consider the limit problem

(P∞) −
(
1 + ‖∇u‖22

)
∆u+ V∞u = a∞|u|p−1u, x ∈ R3,

whose energy functional is I∞ : H1(R3)→ R given by

I∞(u) :=
1

2
‖u‖2∗ +

1

4
‖∇u‖42 −

1

p+ 1

∫
a∞|u|p+1,

with

‖u‖2∗ :=

∫ (
|∇u|2 + V∞u

2
)
.

Its Nehari manifold is

N∞ :=
{
u ∈ H1(R3)\{0} : I ′∞(u)u = 0

}
and we can define the ground state level by setting

m∞ := inf
u∈N∞

I(u).

Lemma 2.1. The problem (P∞) has a nonnegative ground state solution ω ∈
H1(R3) verifying

I∞(ω) = m∞ = max
t≥0

I∞(tω).

Moreover, if we set

h∗ :=
(

1 + ‖∇ω‖22
)1/2

,

we can obtain, for any 0 < δ <
√
V∞, a constant c := c(δ) > 0 such that

|ω(x)| ≤ ce− δ
h∗ |x|, ∀x ∈ R3.
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Proof. The existence of the solution ω ∈ H1(R3) as well as the alternative
characterization of m∞ is proved in [11]. In order to obtain the decay rate,
we set v(x) := ω(xh∗) and notice that

−∆v =
(h∗)2

(
a∞|ω(xh∗)|p−1ω(xh∗)− V∞ω(xh∗)

)
1 + ‖∇ω‖22

, x ∈ R3,

and therefore, by the definition of h∗, we get

−∆v + V∞v = a∞|v|p−1v, x ∈ R3.

As proved in the paper [7], for any 0 < δ <
√
V∞, there exists c := c(δ) > 0

such that |v(x)| ≤ ce−δ|x|, x ∈ R3, and therefore the result follows from the
definition of v. 2

We now come back to the problem (P ). From now on, we shall assume
that the relation (1.2) holds with the number h∗ given by the previous lemma.

We denote by X the space H1(R3) endowed with the norm

‖u‖ :=

(
‖∇u‖22 +

∫
V (x)u2

)1/2

, u ∈ X.

In view of (V1) − (V2), the above norm is equivalent to the usual norm of
H1(R3) (see [10]). The energy functional associated to the problem (P ) is

I(u) :=
1

2
‖u‖2 +

1

4
‖∇u‖42 −

∫
a(x)|u|p+1, u ∈ X.

Lemma 2.2. If a satisfies (a1), then the set

N :=
{
u ∈ X\{0} : I ′(u)u = 0

}
is a C1-manifold. Moreover,

m := inf
u∈N

I(u) > 0.

Proof. For each n ∈ N, consider ωn(x) := ω(x + xn) where ω ∈ X is given
by Lemma 2.1 and xn := (0, 0, n). By (a1), we have that

∫
a(x)|ωn|p+1 →∫

a∞|ω|p+1 > 0. Hence, for any n ≥ n0, we have that∫
a(x)|ωn|p+1 > 0.

For this values of n, the function fn(t) := I(tωn), t > 0, is positive near the
origin and goes to −∞ as t → +∞. So, fn achieves its maximum value at
tn > 0. Since f ′n(tn) = 0 we conclude that tnωn ∈ N and therefore N is non
empty.

By the Sobolev embedding and (a0) we have ‖u‖2 ≤
∫
a(x)|u|p+1 ≤

c1‖u‖p+1, for any u ∈ N and some some c1 > 0. Since (p+ 1) > 2, we obtain
ρ > 0 such that

‖u‖2 ≥ ρ, ∀u ∈ N . (2.1)
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If we define J : X → R by J(u) := I ′(u)u, we can use u ∈ N , a simple
computation and (p+ 1) > 4 to get

J ′(u)u =
(

2− (p+ 1)
)
‖u‖2 +

(
4− (p+ 1)

)
‖∇u‖42 < 0. (2.2)

This, (2.1) and the Implicit Function Theorem imply thatN is a C1-manifold.

Finally, if u ∈ N , we have that

I(u) = I(u)− 1

p+ 1
I ′(u)u ≥

(1

2
− 1

p+ 1

)
‖u‖2, (2.3)

and it follows from (2.1) that m > 0. The lemma is proved. 2

Proposition 2.3. If V and a satisfy (V2) and (a1), respectively, then

m < m∞.

Proof. Let ωn and tn as in the proof of Lemma 2.2. Since tnωn ∈ N , we can
use (V2) and (a1) to write

t−2
n

(
‖ω‖2∗ + on(1)

)
+ ‖∇ω‖42 = tp−3

n

(∫
a∞|ω|p+1 + on(1)

)
,

where on(1) stands for a quantity approaching zero as n → +∞. By the
above expression (tn) is bounded. Hence, we may assume that tn → t0 ≥ 0.
By (2.1),

0 < ρ ≤ ‖tnωn‖2 = t2n
(
‖ω‖2∗ + on(1)

)
,

and therefore t0 > 0.

We now notice that

m ≤ I(tnωn) = I∞(tnωn) +
t2n
2
Vn +

tp+1
n

p+ 1
An,

with

Vn :=

∫ (
V (x)− V∞

)
ω2
n, An :=

∫ (
a∞ − a(x)

)
|ωn|p+1.

We claim that, for some constants c1, c2 > 0, there hold

Vn ≤ −c1e−µn, An ≤ c2e−γn, (2.4)

If this is true, we have that

m ≤ I∞(tnωn) + t2ne
−µn

(
−1

2
c1 +

tp−1
n

p+ 1
c2e

(µ−γ)n

)
.

Since µ < γ and tn → t0 > 0, we obtain n0 ∈ N such that m < I∞(tnωn), for
n ≥ n0. It follows from Lemma 2.1 that

m < I∞(tnωn) = I∞(tnω) ≤ max
t≥0

I∞(tω) = I∞(ω) = m∞

and we have done.
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It remains to prove (2.4). Since |x − xn| ≤ |x| + n, we infer from (V2)
that

Vn ≤ −cV
∫
e−µ|x|ω2

n = −cV
∫
e−µ|x−xn|ω2

≤ −cV e−µn
∫
e−µ|x|ω2 = −c1e−µn.

For the second inequality we pick δ ∈
(
γh∗
p+1 ,
√
V∞

)
and obtain, from Lemma

2.1, c = c(δ) > 0 such that

|ω(x)| ≤ ce− δ
h∗ |x|, ∀x ∈ R3.

Hence, recalling that n− |x| ≤ |x− xn|, it follows from (a1) and the former
argument that

An ≤ ca
∫
e−γ|x||ωn|p+1 ≤ c · cae−γn

∫
e(γ−

δ(p+1)
h∗ )|x|.

Since γ < δ(p+1)
h∗ , the last integral above is finite and the proof is finished. 2

Lemma 2.4. There exists a bounded sequence (un) ⊂ N such that

I(un)→ m, I ′(un)→ 0.

Moreover, un ⇀ u0 weakly in X with I ′(u0) = 0.

Proof. The Ekeland Variational Principle provides (un) ⊂ N and (λn) ⊂ R
such that

I(un)→ m, I ′(un) + λnJ
′(un)→ 0,

with J(u) = I ′(u)u. Using (2.2) and a standard argument we can show that
λn → 0, and therefore I ′(un) → 0. Moreover, by (2.3), we have that (un) is
bounded and therefore we may assume that, for some u0 ∈ X, there holds

un ⇀ u0, weakly in X and D1,2(R3), ‖∇un‖22 → A2, (2.5)

with A ∈ R. Hence, we can easily conclude that u0 weakly satisfies

−
(

1 +A2
)

∆u0 + V (x)u0 = a(x)|u0|p−1u0, x ∈ R3. (2.6)

If u0 = 0 the lemma is proved. So, we may assume that u0 6≡ 0 and we
shall prove thatA2 = ‖∇u0‖22. First notice that ‖∇u0‖22 ≤ lim infn→∞ ‖∇un‖22 =
A2. Suppose, by contradiction, that ‖∇u0‖22 < A2. Since u0 satisfies (2.6) we
have that ∫

a(x)|u0|p+1 = ‖u0‖2 + ‖∇u0‖22A2 > 0.

Hence, there exists t0 > 0 such that t0u0 ∈ N . Thus, by using (2.6) and
‖∇u0‖22 < A2, we obtain

t20‖u0‖2 + t40‖∇u0‖42 = tp+1
0

(
‖u0‖2 +A2‖∇u0‖22

)
> tp+1

0

(
‖u0‖2 + 2‖∇u0‖42

)
,

and therefore (
t20 − t

p+1
0

)
‖u0‖2 +

(
t40 − t

p+1
0

)
‖∇u0‖42 > 0.
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Since (p+ 1) > 4 we infer that t0 ∈ (0, 1) and we can use (2.5) to get

m ≤ I(t0u0)− 1

p+ 1
I ′(t0u0)t0u0

<
(1

2
− 1

p+ 1

)
‖u0‖2 +

(1

4
− 1

p+ 1

)
‖∇u0‖42

≤ lim inf
n→+∞

[(1

2
− 1

p+ 1

)
‖un‖2 +

(1

4
− 1

p+ 1

)
‖∇un‖42

]
= lim inf

n→+∞

[
I(un)− 1

p+ 1
I ′(un)un

]
= m,

(2.7)

which is a contradiction. Hence, A2 = ‖∇u0‖22 and it follows from (2.6) that
I ′(u0) = 0. 2

We are ready to prove our first theorem.

Proof of Theorem 1.1. Let (un) ⊂ N be the sequence given by Lemma 2.4
and u0 its weak limit. Suppose, by contradiction, that u0 ≡ 0. Given ε > 0,
we can use (V2) to obtain R > 0 such that∣∣∣∣∣

∫
R3\BR(0)

(V (x)− V∞)u2
ndx

∣∣∣∣∣ ≤ ε‖un‖22. (2.8)

Moreover, by using (V0) and Hölder’s inequality, we get∫
BR(0)

|V (x)− V∞|u2
n ≤ ‖V − V∞‖Lt(BR(0))‖un‖2L2t′ (BR(0))

.

Since t > 3/2, we have that 2t′ ∈ (2, 6). Thus, we can use the compact em-

bedding H1
0 (BR(0)) ↪→ L2t′(BR(0)) to conclude that the right-hand side

above goes to zero. This, (2.8) and the boundedness of (un) imply that∫
V (x)u2

n =
∫
V∞u

2
n+on(1). Since a ∈ L∞(R3), a similar argument holds for∫

a(x)|un|p+1, and therefore

‖un‖2 = ‖un‖2∗ + on(1),

∫
a(x)|un|p+1 =

∫
a∞|un|p+1 + on(1). (2.9)

Since un ∈ N , it follows that

‖un‖2∗ + ‖∇un‖42 =

∫
a∞|un|p+1 + on(1).

So, if we consider tn > 0 such that tnun ∈ N∞, we can argue as in the proof
of Lemma 2.4 to get(

t2n − tp+1
n

)
‖un‖2∗ +

(
t4n − tp+1

n

)
‖∇un‖42 = on(1).

The first equality in (2.9) together with (2.1) provide ‖un‖∗ ≥ ρ1 > 0, for n
large. Hence, the above expression implies that tn → 1.
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Now, using the boundedness of (un) and (2.9) again, we obtain

m∞ ≤ I∞(tnun)− 1

p+ 1
I ′∞(tnun)(tnun)

=
(1

2
− 1

p+ 1

)
t2n‖un‖2∗ +

(1

4
− 1

p+ 1

)
t4n‖∇un‖42

=
(1

2
− 1

p+ 1

)
‖un‖2 +

(1

4
− 1

p+ 1

)
‖∇un‖42 + on(1)

= I(un)− 1

p+ 1
I ′(un)un + on(1).

Taking the limit we conclude that m∞ ≤ m, which contradicts Proposition
2.3. Hence, u0 6≡ 0 is a non zero solution of the problem (P ). The same trick
used in (2.7) shows that I(u0) = m, that is, u0 is a ground state solution.

By setting v := |u0|, we can easily conclude that I(v) = I(u0) = m
and v ∈ N . Hence I ′(v) = λJ ′(v), for some λ ∈ R. Since I ′(v)v = 0 and
J ′(v)v < 0, it follows that λ = 0. Thus, v ∈ X is a non negative ground state
solution of (P ). 2

3. The nodal solution

In this section we obtain a sign changing solutions for the problem (P ). We
shall assume (V1), (a0) and denote u+(x) := max{u(x), 0} and u−(x) :=
max{−u(x), 0}. Differently from the previous section we are going to work
in a space of radial functions. So, we set

Xrad := X ∩ {u ∈ H1(R3) : u(x) = u(|x|) for a.e. x ∈ R3}

and denote by I the same functional of the last section but now constrained
to Xrad. We also define the following set

N± :=
{
u ∈ Xrad : u+, u− 6≡ 0, I ′(u)u+ = 0 = I ′(u)u−

}
.

Although it is not a differentiable manifold, we can obtain a nodal solution
along a minimizing process. We first prove a version of Lemma 2.2 for this
new set.

Lemma 3.1. Suppose that a satisfies (ã1). Then, the set N± is non empty
and

m± := inf
N±

I(u) > 0.

Proof. By (ã1), we can obtain R > 0 such that a(x) ≥ a∞/2 > 0, for a.e.
x ∈ R3/BR(0). Hence, picking u ∈ Xrad with support contained in R3/BR(0)
and u± 6≡ 0, we have that ∫

a(x)|u±|p+1 > 0.
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Let hu : R+ × R+ → R be defined as hu(t, s) := I(tu+ − su−), that is,

hu(t, s) =
t2

2
‖u+‖2 +

s2

2
‖u−‖2 +

1

4

(
t2‖∇u+‖2 + s2‖∇u−‖2

)2

− tp+1

p+ 1

∫
a(x)|u+|p+1 − sp+1

p+ 1

∫
a(x)|u−|p+1.

(3.1)

Since (p+ 1) > 4, we have that

lim
|(t,s)|→∞

hu(t, s) = −∞.

Hence, hu attains its maximum value at some point (tu, su) ∈ R2.
We claim that tu, su > 0. Indeed, suppose by contradiction that su = 0.

Hence, (tu, 0) is the maximum point of hu. Picking s > 0 small in such way
that I(su−) > 0, we obtain from (3.1) that

hu(tu, 0) = I(tuu
+) < I(tuu

+) + I(su−) +
t2us

2

2
‖∇u+‖22‖∇u−‖22 = hu(tu, s),

which is a contradiction. The proof that su > 0 is analogous.
Since tu, su > 0 we have that

∂hu
∂t

(tu, su) = I ′(tuu
+ − suu−)u+ = 0

and
∂hu
∂s

(tu, su) = −I ′(tuu+ − suu−)u− = 0,

which imply (tuu
+ − suu−) ∈ N±, proving the first statement of the lemma.

The second one is an easy consequence of N± ⊂ N and (2.1). 2

Lemma 3.2. Suppose that a satisfies (ã1). Then, for any u ∈ N±, the function
hu : R+ ×R+ → R defined in (3.1) attains its (strict) global maximum value
at (1, 1).

Proof. Since I ′(u)u± = 0, we have that
∫
a(x)|u±|p+1 > 0. Thus, arguing

as in the proof of Lemma 3.1, we conclude that hu has a maximum point
(tu, su) such that tu, su > 0.

We claim that tu, su ≤ 1. For the proof, we first consider the case
su ≤ tu. Recalling that ∂hu

∂t (tu, su) = 0, we get

tp+1
u

∫
a(x)|u+|p+1 = t2u‖u+‖2 + t4u‖∇u+‖42 + t2us

2
u‖∇u+‖22‖∇u−‖22

≤ t2u‖u+‖2 + t4u‖∇u+‖42 + t4u‖∇u+‖22‖∇u−‖22.

On the other hand, since u ∈ N±, we have that∫
a(x)|u+|p+1 = ‖u+‖2 + ‖∇u+‖42 + ‖∇u+‖22‖∇u−‖22.

and therefore(
t2u − tp+1

u

)
‖u+‖2 +

(
t4u − tp+1

u

)
‖∇u+‖42 +

(
t4u − tp+1

u

)
‖∇u+‖22‖∇u−‖22 ≥ 0.
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Since (p + 1) > 4 we infer from the above expression that tu ≤ 1. The
case tu ≤ su is analogous. Moreover, by using ∂hu

∂s (tu, su) = 0 and the same
argument we can prove that su ≤ 1.

Now, since

hu(tu, su) = I(tuu
+ − suu−)− 1

p+ 1
I ′(tuu

+ − suu−)(tuu
+ − suu−),

we have that

hu(tu, su) =

(
1

2
− 1

p+ 1

)(
t2u‖u+‖2 + s2

u‖u−‖2
)

+(
1

4
− 1

p+ 1

){
t4u‖∇u+‖42 + s4

u‖∇u−‖42 + 2s2
ut

2
u‖∇u+‖22‖∇u−‖22

}
.

If min{tu, su} < 1, then hu(tu, su) < hu(1, 1), which does not make sense.
Hence, tu = su = 1. Finally, the same calculation performed above shows
that this maximum point is strict. 2

Lemma 3.3. There exists u1 ∈ N± such that I(u1) = m±.

Proof. Let (un) ⊂ N± be such that I(un)→ m±. By (2.3), (un) is bounded
and we may assume that

u±n ⇀ u±, weakly in Xrad. (3.2)

Since I ′(un)u±n = 0, we have that

‖u±n ‖2 +
(
‖∇u+

n ‖2 + ‖∇u−n ‖2
)
‖∇u±n ‖2 =

∫
a(x)|u±n |p+1.

As in the proof of (2.1) we can obtain ρ1 > 0 such that ‖u±n ‖2 ≥ ρ1. Thus,
the above equality implies that

∫
a(x)|u±n |p+1 ≥ ρ1. Taking the limit and

recalling that Xr is compactly embedded in Lp+1(R3) we get∫
a(x)|u±|p+1 ≥ ρ1 > 0.

The above inequality and the same argument used in the proof of Lemma
3.1 provides (tu, su) ∈ R2 such that u1 := (tuu

+ − suu−) ∈ N±. By using
Lemma 3.2, the weak convergence in (3.2) and the compact embedding again
we obtain

m± ≤ I(u1) ≤ lim inf
n→∞

I(tuu
+
n − suu−n )

= lim inf
n→∞

hun(tu, su)

≤ lim inf
n→∞

hun(1, 1) = lim inf
n→∞

I(un) = m±.

The lemma is proved. 2

We present now the proof of our second theorem.

Proof of Theorem 1.2. By the previous lemma, there exists u1 ∈ N± such
that I(u1) = m± > 0. Since u1 clearly changes sign, it is sufficient to prove
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that I ′(u1) = 0. Suppose, by contradiction, that this is not the case. Then,
there exist δ, λ > 0 such that ‖I ′(v)‖ > λ whenever ‖v − u1‖ < 3δ. Setting
g(t, s) := tu+

1 − su
−
1 , we can use Lemma 3.2 to obtain D ⊂ R2 such that

(1, 1) ∈ D and

α := max
(t,s)∈∂D

I(g(t, s)) = max
(t,s)∈∂D

hu1
(t, s) < m±. (3.3)

For ε < min{(m± − α)/2, λδ/8} and S := Bδ(u1), it follows from [15,
Lemma 2.3] that there exists η ∈ C([0, 1]×Xrad, Xrad) verifying

(i) η(1, u) = u, if u 6∈ I−1([m± − 2ε,m± + 2ε]);

(ii) η(1, Im
±+ε ∩ S) ⊂ Im±−ε;

(iii) I(η(1, u)) ≤ I(u), for any u ∈ Xrad.

By Lemma 3.2, (ii) and (iii) it follows that

max
(t,s)∈D

I(η(1, g(t, s))) < m±. (3.4)

We define

ψ(t, s) := (I ′(g(t, s))u+
1 , I

′(g(t, s))u−1 ) (3.5)

and

Ψ(t, s) := (t−1I ′(f(t, s))f(t, s)+, s−1I ′(f(t, s))f(t, s)−), (3.6)

where f(t, s) := η(1, g(t, s)). Since u1 ∈ N±, then ψ(t, s) = 0 if, and only if,
(t, s) = (1, 1) ∈ D. Thus, it follows from the definition of the Brouwer degree
that

deg(ψ,D, 0) = sgn detψ′(1, 1).

A direct computation shows that detψ′(1, 1) = (ai,j) with

a1,1 = ‖u+‖2 + 3‖∇u+‖42 + ‖∇u−‖22‖∇u+‖22 − p
∫
a(x)|u+|p+1

a2,2 = −‖u−‖2 − 3‖∇u−‖42 − ‖∇u−‖22‖∇u+‖22 + p

∫
a(x)|u−|p+1

and

a1,2 = 2‖∇u−‖22‖∇u+‖22, a2,1 = −2‖∇u−‖22‖∇u+‖22.
Since u ∈ N±, we have that

a1,1 = 2‖∇u+‖42 − (p− 1)

∫
a(x)|u+|p+1

≤ 2

(
‖∇u+‖42 −

∫
a(x)|u+|p+1

)
≤ 2

(
−‖u+‖2 − ‖∇u−‖22‖∇u+‖22

)
≤ a2,1.

An analogous argument shows that a2,2 ≥ a1,2. Hence, detψ′(1, 1) = a1,1a2,2−
a1,2a2,1 < 0 and we conclude that

deg(ψ,D, 0) = −1.
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The choice of ε > 0, (3.3) and (i) imply that g = f on ∂D. It follows from
(3.5) and (3.6) that ψ = Ψ on ∂D and

deg(Ψ, D, 0) = deg(ψ,D, 0) = −1.

Hence, there exists (t, s) ∈ D such that f(t, s) ∈ N±, which contradicts (3.4).
Thus, I ′(u1) = 0 and the theorem is proved. 2
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