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Abstract. We use a variational approach to deal with the system

−∆u+ V (x)u+K(x)φu = a(x)|u|p−1u, −∆φ = K(x)u2, x ∈ R
3,

whith 3 < p < 5. Under some mild conditions on the sign-changing potentials
V and a we obtain two nonzero solutions. One of them is nonnegative and the
other one changes sign.

1. Introduction

In this paper we look for minimal solutions for the system

(1.1)

{

−∆u+ V (x)u +K(x)φu = a(x)|u|p−1u, in R
3,

−∆φ = K(x)u2, in R
3,

where 3 < p < 5 and the potentials V , K and a satisfy some mild conditions. As
quoted by Benci and Fortunato in [4, 5], this system works as a model describing
solitary waves for the nonlinear stationary Schrödinger equation interacting with
the electrostatic field and also in semiconductor theory, nonlinear optics and plasma
physics.

In the recent years, many researches focused on existence, nonexistence, multi-
plicity and concentration of solutions for the above problem. In [10], the authors
obtained a radial solution for constant positive potentials and 3 < p < 5. In [11],
the same result was proved for 3 ≤ p < 5. In [22], the authors presented existence
and nonexistece results also for the radial case and a larger spectrum of the power
p. The nonradial case was treated in [7] for V ≡ 1. In that paper it is allowed
that a changes sign with an integrability condition for the functin a(x) − a∞ and
some other technical conditions. In [27], the author considered V ≡ 1 but a being
a sign-changing function with both the positive and negative part unbounded. We
also quote the paper [9], where the author considered V ≡ K ≡ 1, a changing sign
and add a term λg(x)u on the right-hand of the equation. With some conditions
on the parameter λ they obtained the existence of two positive solutions. We also
mention the paper [15], which seems to be the first one to consider the potential K
not constant.

In the aforementioned works the authors obtained nonnegative solutions. There
are only a few works concerning sign-changing solutions. In [17], the authors con-
sidered constant positive potentials and obtained, for each k ∈ N, a nodal solutions
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having exactly k − 1 nodal domains (see also [14] for a dynamical approach and a
less restricve condition on the growth of the nonlinearity). Nonradial nodal solu-
tions in the semiclassical limit were obtained in [16]. In [24], the authors considered
V not constant and obtained a nodal solution. Recently, the authors in [2] (see also
[1]) obtained a nodal solution with V not constant but positive and an asymptotic
condition similar to (V1). We emphasize that, in all these previous works, it was
supposed that K and a are constant and positive.

As we pointed out, in many papers the potentials has been supposed constant,
radial or positive. The main objective of this paper is to complement all these
works. In our first result, we look for nontrivial solution in the case that V and a
can be nonconstant, nonradial and indefinite in sign. More specifically, if we denote
V −(x) := max{−V (x), 0} and

S := inf
{

‖∇u‖2L2(R3);u ∈ D1,2(R3), ‖u‖L6(R3) = 1
}

,

we assume the following conditions.

(V0) V
− ∈ L3/2(R3) and

∫

R3 |V −(x)|3/2dx < S3/2;
(V1) there exist γ > 0 and CV > 0 such that

V (x) ≤ V∞ − CV e
−γ|x|, for a.e. x ∈ R

3,

where

0 < V∞ := lim
|x|→+∞

V (x);

(a0) a ∈ L∞(R3);
(a1) there exist θ > 0 and Ca > 0 such that

a(x) ≥ a∞ − Cae
−θ|x|, for a.e. x ∈ R

3,

where

a∞ := lim
|x|→+∞

a(x) > 0.

Concerning the potential K, we have a basic assumption of regularity which
enable us to deal with a scalar problem. Actually, if K ∈ L2(R3), for each u ∈
W 1,2(R3), the equation

−∆φ = K(x)u2, in R
3,

has a unique weak solution φ = φu ∈ D1,2(R3). We can prove that system (1.1) is
equivalent to the scalar equation

(P )

{

−∆u+ V (x)u +K(x)φu(x)u = a(x)|u|p−1u, in R
3,

u ∈ W 1,2(R3).

Hence, we shall suppose that

(K0) K ∈ L2(R3);
(K1) there exist α > 0 and CK > 0 such that

0 ≤ K(x) ≤ CKe
−α|x| for a.e. x ∈ R

3.

The equation in (P ) is the Euler-Lagrange equation of the energy functional
I :W 1,2(R3) → R given by

I(u) =
1

2

∫

R3

(

|∇u|2+V (x)u2
)

dx+
1

4

∫

R3

K(x)φu(x)u
2dx− 1

p+ 1

∫

R3

a(x)|u|p+1dx,
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We say that a solution u is a ground state solution if it has minimal energy I(u)
among all the nonzero solutions. The first result of this paper can be stated as
follows.

Theorem 1.1. Suppose that 3 < p < 5 and the potentials satisfy (V0) − (V1),
(a0)− (a1) and (K0)− (K1). If

γ < min{θ, α}, θ < (p+ 1)
√

V∞ and α < 2
√

V∞,

then the problem (P ) has a nonnegative ground state solution.

In the proof we apply variational methods. Although this is rather standard we
need to overcome the lack of compactness of the embedding of W 1,2(R3) into the
Lebesgue spaces. This is done by using some comparison arguments of the minimax
level of the energy functional and that of the limit problem. In the calculations, the
restrictions on the size of the parameters play an important role. Another difficult
relies on the fact the potentials V and a can change sign. In this way, some known
arguments of unique projection in the Nehari manifold do not hold here. Theorem
1 complements the results of [10, 11, 22, 7, 27] and improves that of [13], since we
have here weaker conditions on the parameters γ, θ and α.

In our second result we obtain the existence of nodal solution with a stronger
condition on the parameter α. More specifically, we shall prove the following theo-
rem.

Theorem 1.2. Suppose that 3 < p < 5 and the potentials satisfy (V0) − (V1),
(a0)− (a1) and (K0)− (K1). If

γ < min{θ, α}, θ < (p+ 1)
√

V∞ and α <
√

V∞,

then the problem (P ) has a nodal minimal solution.

Although the proof follows the same lines of those presented in the first theorem,
the calculations here are more involved. Actually, in some results on nodal solutions,
the authors tried to minimize the energy functional restricted to some set which
contains all the nodal solutions. Recalling that the map u 7→ u+ is not differentiable,
we conclude that the same holds for this set. Since for any nodal solution of (P )
we have that I ′(u+)u+ < 0, the usual set {u ∈ W 1,2(R3) : I ′(u±)u± = 0} is not a
good choice for minimization set. Hence, we follow [1], by using {u ∈ W 1,2(R3) :
I ′(u)u+ = 0 = I ′(u)u−}. Again, we need to make some trick calculations since the
potentials V and a can change sign. The (stronger) condition on the exponent α is
of technical nature and appears when we try to correct localize the minimax level
of the energy functional in order to get compactness. Theorem 2 complements the
results of [17, 14, 23, 24, 2].

We finaly mention the papers [20, 8, 26] where variants of our problem are
considered with some of the potentials changing sign. In all those results, there is
no information about the sign of the solution. However, our results are in some
sense related (an not comparable) with those.

The paper is organized in the following way: in the next section, after presenting
the abstract framework, we prove the existence of the nonnegative solution. In
Section 3 we obtained nodal solutions for an auxiliary problem and in the final
Section 4 we prove Theorem 1.2.
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2. The positive solution

We first establish the variational framework to deal with the problem (P ). For
any 2 ≤ q ≤ ∞, we denote by ‖u‖q the Lq-norm of a function u ∈ Lq(R3). For
saving notation, we write only

∫

u to denote
∫

R3 u(x)dx. We also denote u+(x) :=

max{u(x), 0} and u−(x) := max{−u(x), 0}.
If we set

X :=

{

u ∈W 1,2(R3) :

∫

V (x)u2 <∞
}

,

according to [12, Lemma 2.1], the quadratic form u 7→
∫

(|∇u|2 + V +(x)u2) defines
a norm in X , which is equivalent to the usual norm of W 1,2(R3). Moreover, we can
use Hölder’s inequality to obtain

(2.1)

∫

V −(x)u2 ≤ ‖V −‖3/2‖u‖26 ≤ S−1‖V −‖3/2
∫

|∇u|2,

and therefore we conclude that the norm

‖u‖ :=
(

∫

(|∇u|2 + V (x)u2)
)

1
2

.

is well defined and is equivalent to ‖ · ‖W 1,2(R3).

Since K ∈ L2(R3), a straightforward application of the Lax-Milgram Theorem
implies that, for any given u ∈ W 1,2(R3), there exists a unique φ = φu ∈ D1,2(R3)
which weakly solves −∆φ = K(x)u2 in R

3. Recalling the expression of the Green
function of the Laplacian we obtain

(2.2) φu(x) =
1

4π

∫

R3

K(y)u2(y)

|x− y| dy.

We can construct the application φ : W 1,2(R3) → D1,2(R3) which associates, for
each u ∈ W 1,2(R3), the function φu defined above. We collect below some properties
of the map φ (see [7, Lemma 2.1] and [13, Lemma 2.2]).

Lemma 2.1. For any u ∈ X there holds

(1) φu(x) ≥ 0 for a.e. x ∈ R
3;

(2) φtu = t2φu, for any t > 0;
(3) there exists c1 > 0 such that

∫

|∇φu|2 ≤ c1‖u‖26;
(4) If un ⇀ u weakly in X, then

lim
n→∞

∫

K(x)φun
(x)u2n =

∫

K(x)φu(x)u
2

and

lim
n→∞

∫

K(x)φun
(x)unϕ =

∫

K(x)φu(x)uϕ, ∀ϕ ∈ X.

The main interest in the map φ comes from the fact that it enables us dealing
with system (S) as a single equation. Actually, it can be proved that (u, φu) ∈
W 1,2(R3)×D1,2(R3) is a solution of (S) if, and only if, it is a weak solution of the
nonlocal problem (P ) quoted in the introduction. Its equation has a variational
structure and its energy functional is I : X → R given by

I(u) :=
1

2

∫

(

|∇u|2 + V (x)|u|2
)

+
1

4

∫

K(x)φu(x)u
2 − 1

p+ 1

∫

a(x)|u|p+1.
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In view of (2.1), we can prove that I ∈ C1(X,R) and

I ′(u)ϕ = 〈u, ϕ〉X +

∫

K(x)φuuϕ−
∫

a(x)|u|p−1uϕ, ∀ϕ ∈ X.

Hence, the critical points of I are precisely the weak solutions of (P ).
Since our potentials can be nonradial, it is necessary to overcome the lack of

compactness of the embedding of X into the Lebesgue spaces. Thus, we are going
to consider the limit problem

(P∞) −∆u+ V∞u = a∞|u|p−1u, x ∈ R
3,

with associated energy functional I∞ : X → R given by

I∞(u) :=
1

2

∫

(|∇u|2 + V∞u
2)− 1

p+ 1

∫

a∞|u|p+1.

Its Nehari manifold is

N∞ :=
{

u ∈ X\{0}; I ′∞(u)u = 0
}

and the following result can be found in [6].

Proposition 2.2. The problem (P∞) has a positive radial solution ω ∈ W 1,2(R3)
such that

I∞(ω) = m∞ = inf
u∈N∞

I∞(u).

Moreover, for any 0 < δ <
√
V∞, there exists C = C(δ) > 0 such that

ω(x) ≤ Ce−δ|x|, ∀x ∈ R
3.

In order to obtain our first solution, we are going to minimize the functional I
restricted to its Nehari manifold

N :=
{

u ∈ X\{0} : I ′(u)u = 0
}

.

We present in the sequel some important properties of this set. They are standard
when the potential a is positive. In our case, even the potential being indefinite,
we take advantage of the positivy of the aymptotic limit a∞.

Lemma 2.3. The following hold

(1) N is non-empty and it is a C1-manifold;

(2) for any u ∈ N , we have that I(u) = maxt≥0 I(tu);
(3) we have that

m := inf
u∈N

I(u) > 0.

Proof. Let ω be the solution given by Proposition 2.2, xn := (0, 0, n) ∈ R
3 and

(2.3) ωn(x) := ω(x+ xn), ∀x ∈ R
3.

If follows from (a1), the Lebesgue Theorem and the change of variables x 7→ (x+xn)
that

(2.4) lim
n→∞

∫

a(x)|ωn|p+1 =

∫

a∞|ω|p+1dx > 0.

Hence, for n large,
∫

a(x)|ωn|p+1 > 0. Since 3 < p < 5, a simple calculation shows
that the function t 7→ I(tωn) achieves its global maximum in some tn > 0 such
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that I ′(tnωn)(tnωn) = 0, that is, tnωn ∈ N 6= ∅. Since
∫

K(x)φu(x)u
2 ≥ 0 and

(p+ 1) > 2, it is easy to obtain c1 > 0 such that

(2.5) ‖u‖ ≥ c1 > 0, ∀u ∈ N .

Hence, if define J(u) := I ′(u)u, we can use item 1 of Lemma 2.1 and 3 < p < 5 to
obtain, for any u ∈ N ,

(2.6) J ′(u)u ≤ (2− (p+ 1))‖u‖2 < 0,

and therefore we can use the Implicit Function Theorem to guarantee the regularity
of N . In the last inequality above, we have used K, φu ≥ 0 and 3 < p < 5.

If u ∈ N we have that ‖u‖2 +
∫

K(x)φu(x)u
2 =

∫

a(x)|u|p+1 > 0 and therefore
the second statement can be proved in a standard way. For the last one, it is
sufficient to notice that

(2.7) I(u) = I(u)− 1

p+ 1
I ′(u)u ≥

(1

2
− 1

p+ 1

)

‖u‖2,

and use (2.5). The lemma is proved. ✷

We present below a key estimate for the proof of Theorem 1.1.

Proposition 2.4. We have that m < m∞.

Proof. For ωn defined in (2.3), we can use (2.4) to conclude that the number tn
appearing in the proof of Lemma 2.3 is such that tnωn ∈ N for any n ≥ n0. Since
‖ωn‖6 = ‖ω‖6, it follows from item 3 of Lemma 2.1 that

∫

K(x)φωn
(x)ω2

n ≤ ‖φωn
‖6‖K‖2‖ωn‖26 ≤ c2‖K‖2‖ω‖46,

for some c2 > 0. This and I ′(tnωn)tnωn = 0 imply that

0 ≤ t−2
n ‖wn‖2 + c2‖K‖2‖ω‖46 − tp−3

n

∫

a(x)|ωn|p+1,

from which it follows that (tn) is bounded. Hence, we may assume that tn → t0 ≥ 0.
By (2.5) and (V1), we have that

0 < c1 ≤ t2n‖ωn‖2 = t2n(‖ω‖2 + on(1)),

and therefore t0 > 0.
The definition of I and I∞ imply that

(2.8) m ≤ I(tnωn) = I∞(tnωn) +
t2n
2
Vn +

t4n
4
Kn +

tp+1
n

p+ 1
An,

for

Vn :=

∫

(V (x) − V∞)ω2
n, Kn :=

∫

K(x)φωn
(x)ω2

n

and

An :=

∫

(a∞ − a(x))|ωn|p+1.

Claim: There exists C > 0 such that

(2.9) Vn ≤ −Ce−γn, Kn ≤ Ce−αn, An ≤ Ce−θn.
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If this is true, since I∞(tnωn) = I∞(tnω) ≤ I∞(ω) = m∞, the above inequalities
and (2.8) provide

m ≤ m∞ + Ct2ne
−γn

[

−1

2
+
t2n
4
e(γ−α)n +

tp−1
n

p+ 1
e(γ−θ)n

]

.

Recalling that tn → t0 > 0 and γ < min{α, θ}, we see that the expression into the
brackets above is negative for n large.

It remains to verify the claim. Since n − |x| ≤ |x − xn|, we can use (K1) and
Holder’s inequality to get

(2.10) Kn ≤
∫

K(x)φωn
(x)ω2

n ≤ CKe
−αn‖φωn

‖6
(
∫

eα6/5|x|ω12/5

)5/6

.

Since α < 2
√
V∞, we can use Proposition 2.2 to guarantee that the last integral

above is finite. Moreover, by the embedding D1,2(R3) →֒ L6(R3) and item 3 of
Lemma 2.1, we have that (φωn

) is bounded in L6(R3). The inequality for Kn

follows from the above considerations.
An analogous argument and θ < (p+ 1)

√
V∞ provides

An ≤ Ca

∫

e−θ|x−xn|ωp+1 ≤ Cae
−θn

∫

eθ|x|ωp+1 = Ce−θn.

Since |x+ xn| ≤ |x|+ n, we have that

Vn ≤ −CV
∫

e−γ|x−xn|ω2 ≤ −CV e−γn
∫

e−γ|x|ω2

and the proof is finished. ✷

We are ready to prove our first result.

Proof of Theorem 1.1. The Ekeland Variational Principle provides (un) ⊂ N such
that I(un) → m and ‖I ′(un)|N ‖ → 0. Using (2.6), we can prove that I ′(un) → 0, in
such way that (un) is a Palais-Smale sequence of I. A standard procedure proves
that this sequence is bounded. Hence, along a subsequence, we have that un ⇀ u
weakly in X . Morevoer, it follows from item 4 of Lemma 2.1 that I ′(u) = 0.

Suppose, by contradiction, that u ≡ 0. Then, un → 0 in Lsloc(R
N ) for any

s ∈ [2, 2∗). Thus, we can use (V1), (a1), (K1) and the same calculation performed
in (2.10) to obtain

(2.11)

∫

a(x)|un|p+1 =

∫

a∞|un|p+1 + on(1),

∫

K(x)φun
u2n = on(1),

‖un‖2∗ :=

(
∫

|∇un|2 + V∞u
2
n

)

= ‖un‖2 + on(1).

Thus, recalling that I ′(un)un = 0, we get

(2.12) ‖un‖2∗ =

∫

a∞|un|p+1 + on(1).

Let tn > 0 be such that tnun ∈ N∞. By using that un ∈ N , (2.5) and the
first equality in (2.11), we conclude that

∫

a(x)|un|p+1 ≥ c0 > 0. Hence, the above
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equality implies that tn → 1 as n→ +∞. It follows that

I∞(tnun) = I∞(tnun)−
1

p+ 1
I ′∞(tnun)(tnun)

=
(1

2
− 1

p+ 1

)

t2n‖un‖2∗ =
(1

2
− 1

p+ 1

)

‖un‖2 + on(1)

= I(un)−
1

p+ 1
I ′(un)un + on(1) = I(un) + on(1),

and therefore

m∞ ≤ I∞(tnun) = I(un) + on(1) = m+ on(1).

Taking the limit into the above expression we obtain m∞ ≤ m, which contradicts
Proposition 2.4. Thus, we have that u 6≡ 0.

We have proved that u ∈ N is a nonzero critical point. Hence, we can use item
4 of Lemma 2.1 to obtain

m ≤ I(u)− 1

p+ 1
I ′(u)u =

(

1

2
− 1

p+ 1

)

‖u‖2 −
(

1

4
− 1

p+ 1

)
∫

K(x)φuu
2

≤ lim inf
n→+∞

(

I(un)−
1

p+ 1
I ′(un)un

)

= m,

from which it follows that I(u) = m.
Considering u = |u|, we can use (2.2) to see that φu = φu. Hence, an easy

computation shows that u ∈ N and I(u) = I(u) = m. It follows from the Lagrange
Multiplier Theorem that I ′(u) = λJ ′(u), for some λ ∈ R. This implies that 0 =
I ′(u)u = λJ ′(u)u. By (2.6), J ′(u)u < 0, and therefore λ = 0. We conclude that
u ≥ 0 is a non negative solution of the problem (P ). Since I(u) = m, it is a ground
state solution. The theorem is proved. ✷

Remark 2.5. If ū is the non negative solution given by Theorem 1.1, we can use

(K1) to conclude that

−∆ū+ V (x)ū ≤ a(x)|ū|p, ∀x ∈ R
3,

in the weak sense. Arguing as in [18, Theorem 1.11], we can prove that ū(x) → 0
as |x| → +∞. Hence, as in the proof of [19, Theorem 3.1], we can verify that, for

any δ > 0, there exists C = C(δ) > 0, such that

(2.13) ū(x) ≤ Ce−δ|x|, ∀x ∈ R
3.

3. The auxiliary problem

In this section we prove an auxiliary result which will be useful in the proof of
the second theorem. We start by noticing that the nodal solutions of the problem
(P ) belongs to the set

N± :=
{

u ∈ N : u± 6≡ 0, I ′(u)u+ = 0 = I ′(u)u−
}

.

For R > 0, we consider

N±
R := N± ∩H1

0 (BR(0)).

We state in the sequel the main result of this section.
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Proposition 3.1. For any R > 0, the infimum

m±
R := inf

u∈N±

R

I(u)

is achieved at some uR ∈ N±
R such that I ′(uR)ϕ =, for any ϕ ∈ H1

0 (BR(0)).

In order to prove the above result we shall adapt some arguments from [3, 1].

Lemma 3.2. Let u ∈ N±
R and define

hu(t, s) := I(tu+ + su−), ∀ t, s ≥ 0.

Then hu attains its maximum at the point (1, 1) ∈ R
2.

Proof. Since I ′(u)u± = 0, we have that

‖u±‖2 +
∫

K(x)φu(x)(u
±)2 =

∫

a(x)|u±|p+1 > 0,

and therefore lim
|(t,s)|→+∞

hu(t, s) = −∞, from which it follows that the maximum is

attained at some point (t0, s0) ∈ [0,+∞)× [0,+∞).

Claim 1: we have that s0, t0 > 0

Indeed, suppose by contradiction that s0 = 0. In this case, since hu(0, 0) = 0
and p > 3, we have that t0 > 0. Moreover, since

∫

a(x)(u−)p+1 > 0, we obtain
I(su−) > 0, for small s > 0. By using

∫

φu+(x)(u−)2 =
∫

φu−(x)(u+)2, we get

hu(t0, 0) = I(t0u
+) < I(t0u

+) + I(su−) +
s2t20
2

∫

K(x)φu−(x)(u+)2 = hu(t0, s),

which does not make sense. A similar argument shows that t0 > 0.

Claim 2: we have that s0, t0 ∈ (0, 1]

We just prove that t0 ≤ 1, since the argument for the other inequality is analo-
gous. Recalling that the partial derivatives of I(tu+ + su−) vanishes at (t0, s0), we
obtain

t20‖u+‖2 + t40

∫

K(x)φu+(x)(u+)2+

+s20t
2
0

∫

K(x)φu−(x)(u+)2 = tp+1
0

∫

a(x)(u+)p+1.

If we suppose that s0 ≤ t0, the equality above and φu = φu+ + φu− imply that

t−2
0 ‖u+‖2 +

∫

K(x)φu(x)(u
+)2 ≥ tp−3

0

∫

a(x)(u+)p+1.

From this and I ′(u)u+ = 0, we obtain

(t−2
0 − 1)‖u+‖2 ≥ (tp−3

0 − 1)

∫

a(x)(u+)p+1,

and therefore t0 ≤ 1. For the case t0 ≤ s0 it is sufficient to use

s20‖u−‖2 + s40

∫

K(x)φu−(x)(u−)2+

+s20t
2
0

∫

K(x)φu+(x)(u−)2 = sp+1
0

∫

a(x)(u−)p+1

and argue as above.
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Claim 3: hu does not attain its maximum in (0, 1]2 \ {(1, 1)}

Since hu(t0, s0) = I(t0u
+ + s0u

−)− 1
p+1I

′(t0u
+ + s0u

−)(t0u
+ + s0u

−), we have

that

hu(t0, s0) =

(

1

2
− 1

p+ 1

)

(t20‖u+‖2 + s20‖u−‖2)+
(

1

4
− 1

p+ 1

){

t40

∫

φu+(x)(u+)2 + s40

∫

φu−(x)(u−)2 + 2s20t
2
0

∫

φu−(x)(u+)2
}

,

where we also have used φu−(x)(u+)2 = φu+(x)(u−)2. If s0 < 1 or t0 < 1, it follows
from the above equality that

hu(t0, s0) < I(u+ + u−)− 1

p+ 1
I ′(u+ + u−)(u+ + u−) = hu(1, 1),

which is absurd. ✷

Lemma 3.3. For any R > 0, there exists uR ∈ N±
R such that I(uR) = m±

R.

Proof. Let (un) ⊂ N±
R be such that I(un) → m±

R. By (2.7), (un) is bounded,
and therefore, up to a subsequence, there exists u ∈ H1

0 (BR(0)) such that un ⇀ u
weakly in H1

0 (BR(0)), un → u strongly in Lp+1(BR(0)) and un(x) → (x) a.e. in
BR(0). Arguing as in the proof of (2.5) we obtain ρ > 0 such that

∫

BR(0)

a(x)|u±n |p+1dx = ‖u±n ‖2 +
∫

BR(0)

K(x)φun
(x)(u±n )

2dx ≥ ‖u±n ‖2 ≥ ρ.

Hence, taking the limit, we conclude that
∫

BR(0)
a(x)|u±|p+1dx ≥ ρ > 0. Following

the same lines of Claim 1 on the proof of Lemma 3.2, we can verify that hu attains
its maximum at some point (tu, su) ∈ R

2 such that tu, su > 0. Thus

∂

∂t
hu(tu, su) = 0 =

∂

∂s
hu(tu, su),

which is equivalent to uR := (tuu
+ + suu

−) ∈ N±
R . Hence, we can use the above

convergences, item 4 of Lemma 2.1 and Lemma 3.2 to conclude that

m±
R ≤ I(tuu

+ + suu
−) ≤ lim inf

n→∞
I(tuu

+
n + suu

−
n )

≤ lim inf
n→∞

hun(tu, su)

≤ lim inf
n→∞

hun(1, 1) = lim inf
n→∞

I(un) = m±
R.

The lemma is proved. ✷

We are ready to prove the main result of this section.

Proof of Proposition 3.1. For R > 0, let uR be given by the last lemma. It suffices
to check tat I ′(uR)ϕ = 0 for any ϕ ∈ H1

0 (BR(0)). Arguing by contradiction, we
suppose that this is not true. Then there exists δ, λ > 0 such that ‖I ′(v)‖ > λ
whenever ‖v − uR‖ < 3δ. If we consider

g(t, s) := tu+R + su−R,

for s, t > 0, it follows from Lemma 3.2 that, for some open set D ⊂ R
2 containing

(1, 1), there holds

(3.1) ρ := max
(t,s)∈∂D

I(g(t, s)) < m±
R.
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For ε < min{(m±
R − ρ)/2, δλ/8} and S = Bδ(uR), [25, Lemma 2.3] provides a

deformation η ∈ C([0, 1]×H1
0 (BR(0)), H

1
0 (BR(0))) such that

(a) η(1, u) = u, if u 6∈ I−1[m±
R − 2ε,m±

R + 2ε],

(b) η(1, Im
±

R
+ε ∩ S) ⊂ Im

±

R
−ε,

(c) I(η(1, u)) ≤ I(u), for any u ∈ H1
0 (BR(0)).

If we define h(t, s) := η(1, g(t, s)), it follows from Lemma 3.2, (c) and (b) that

(3.2) max
(t,s)∈D

I(h(t, s)) < m±
R.

Consider the maps

ψ(t, s) =
(

I ′(g(t, s))u+R, I
′(g(t, s))u−R

)

,

Ψ(t, s) =
(

t−1I ′(h(t, s))h(t, s)+, s−1I ′(h(t, s))h(t, s)−
)

,

and notice that, since uR ∈ N±
R , we have that ψ(t, s) = (0, 0) if, and only if,

(t, s) = (1, 1). Hence, a straightforward computation provides deg(ψ,D, (0, 0)) =
sgndetψ′(1, 1) = 1. On the other hand, since ρ < (m±

R − 2ε), it follows from (3.1)
and (a) that h ≡ Id on ∂D, in such way that deg(Ψ, D, (0, 0)) = 1. Thus, there
exists (t, s) ∈ D such that h(t, s) ∈ N±

R , which contradicts (3.2) and finishes the
proof. ✷

4. The nodal solution

In this section we prove our second theorem by showing that the

m± := inf
u∈N±

I(u)

is achieved. This will be done as a limit process on the solutions obtained in the
last section.

Lemma 4.1. We have that

lim
R→+∞

m±
R = m±.

Proof. Given ε > 0 we consider uε ∈ N± such that I(uε) ≤ m± + ε. We have
that, for some R0 > 0 large enough, u±ε 6≡ 0 in BR0

(0). We now take R > 4R0,
consider a cutoff function ξR ∈ C∞

0 (R3) such that ξR ≡ 1 in BR/4(0) and ξR ≡ 0

in R
3 \B3R/4(0), and define the function

uε,R(x) := ξR(x)uε(x).

Since

lim
R→+∞

∫

BR(0)

a(x)|u±ε,R|p+1dx =

∫

a(x)|u±ε |p+1 > 0,

we have that
∫

BR(0)
a(x)|u±ε,R|p+1dx > 0, for R > 0 large enough. As in the proof

of Lemma 3.2, we can obtain tR, sR ∈ (0,+∞) such that (tRu
+
ε,R + sRu

−
ε,R) ∈ N±

R .

Thus, since uε ∈ N±, we get

m±
R ≤ I(tRu

+
ε,R + sRu

−
ε,R) = I(tRu

+
ε + sRu

−
ε ) + oR(1)

≤ I(uε) + oR(1) ≤ m± + ε+ oR(1),

where oR(1) denotes a quantity approaching zero as R → +∞. Since ε > 0 is
arbitrary, we conclude that

lim sup
R→+∞

m±
R ≤ m±.



12 A.M. BATISTA AND M.F. FURTADO

Since N±
R ⊂ N±, the result follows from the above inequality. ✷

The key estimate for the proof of Theorem 1.2 is the following.

Proposition 4.2. We have that

m± < m+m∞.

Proof. Let ū the solution given by Theorem 1.1. For any n ∈ N and (t, s) ∈ [ 12 , 2]
2,

we define, for x ∈ R
3,

ψn(x) := tū(x) − sωn(x),

where ωn was defined in (2.3). We claim that there exists n0 ∈ N such that, for
any n ≥ n0 and (s, t) ∈ [ 12 , 2]

2,

I(ψn) < m+m∞.

In order to prove the claim we first notice that, for some C > 0, there holds

(4.1)

∫

K(x)φψn
(x)ψ2

n ≤ t4
∫

K(x)φu(x)u
2 + Ce−αn,

for any n ≥ n0 and (t, s) ∈ [ 12 , 2]
2. Indeed, since ū, ω ∈ X are non negative, we

have that
∫

K(x)φψn
(x)ψ2

n ≤ t2
∫

K(x)φψn
(x)u2 + s2

∫

K(x)φψn
(x)ω2

n.

By (2.9),

Kn =

∫

K(x)φωn
(x)ω2

n ≤ c1e
−αn,

for some c1 > 0. Fubini’s Theorem and the same argument used to get the above
inequality provide

∫

K(x)φωn
(x)u2 =

∫

K(x)φu(x)ω
2
n ≤ c2e

−αn.

The estimate (4.1) is a consequence of the above inequalities and the equality
φωn

≤ φtū + φsωn
.

We infer from (4.1) that

(4.2) I(ψn) ≤ I(tū) + I∞(sωn) +
s2

2
Vn +

sp+1

p+ 1
An −Dn − En + Ce−αn,

with

Dn := ts

∫

(∇ū · ∇ωn + V (x)ūωn),

En :=
1

p+ 1

∫

a(x)
(

|ψn|p+1 − |tū|p+1 − |sωn|p+1
)

.

and An and Vn, defined in the proof of Proposition 2.4, verifying

Vn ≤ −c1e−γn, An ≤ c1e
−θn.

By Remark 2.5, we have that |ū(x)| ≤ Ce−µ|x|, for some γ < µ <
√
V∞. Hence,

we can use [13, Proposition 3.2] to get

|En| ≤ c2

∫

(

|tū|psωn + |sωn|ptū
)

≤ c2e
−µn,
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for n large. Moreover, using that ū is a solution of (P ) and condition (K1), we
obtain

|Dn| = ts
∣

∣

∣

∫

a(x)|ū|p−1ūωn −
∫

K(x)φū(x)ūωn

∣

∣

∣
≤ c3e

−µn + c4e
−αn.

Since

I(tū) ≤ I(ū) = m, I∞(sωn) = I(sω) ≤ I∞(ω) = m∞,

all the above inequalities can be replaced in (4.2) to provide

I(ψn) ≤ m+m∞ + e−γn
[

−c3 + c2e
(γ−θ)n + c3e

(γ−µ)n + c4e
(γ−α)n

]

Taking n large, the claim follows from γ < min{α, θ, µ}.
In view of the claim, to obtain the inequality m± < m+m∞, it is sufficient to

obtain (t0, s0) ∈ [ 12 , 2]
2 such that t0ū− s0ωn ∈ N±. With this purpose, we define

h±(t, s, n) := I ′(tū− sωn)(tū− sωn)
±.

By using 3 < p < 5 , I ′(ū)u+ = 0 and a straightforward calculation, we get

h+(1/2, 0, n) > 0, h+(2, 0, n) < 0.

Moreover, since wn ⇀ 0 weakly in X and ω is a solution of the limit problem, we
can use (a1), (V1) and item 4 of Lemma 2.1 to conclude that

h−(0, 1/2, n) = (1/2)2
∫

(|∇ωn|2 + V (x)ω2
n)− (1/2)p+1

∫

a(x)ωp+1
n

= ((1/2)2 − (1/2)p+1)

∫

(|∇ω|2 + V∞ω
2) + on(1),

and therefore, for n large, we have that h−(0, 1/2, n) > 0. The same argument
provides h−(2, 0, n) < 0. It follows from Miranda Theorem [21] that, for some
(t0, s0) ∈ [ 12 , 2]

2, there holds h±(t0, s0, n) = 0, for n large. But this is equivalent to
(t0ū− s0ωn) ∈ N±. ✷

Inspired by [2], we can use all the above results to prove our second theorem as
follows.

Proof of Theorem 1.2. For each n ∈ N, let un ∈ N±
n be the function given by

Proposition 3.1 with R = n. Since N±
n ⊂ N we can check that (un) is bounded.

Hence, we may suppose that un ⇀ u weakly in X . In view of Proposition 3.1, we
have that u is a critical point of I. We shall prove that u± 6= 0.

Suppose, by contradiction, that u+ = 0. Let a, b ∈ R defined as

a := lim
n→+∞

{

I(u+n ) +
1

4

∫

K(x)φu−
n
(x)(u+n )

2

}

,

b := lim
n→+∞

{

I(u−n ) +
1

4

∫

K(x)φu+
n
(x)(u−n )

2

}

.

Since I(un) = m±
n , a simple calculation, Lemma 4.1 and Proposition 4.2 provide

(4.3) a+ b = lim
n→+∞

I(un) = m± < m+m∞.

Let tn > 0 be such that tnu
+
n ∈ N∞, that is,

(4.4) ‖u+n ‖2∗ = tp−1
n

∫

a∞(u+n )
p+1.
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We claim that tn → 1. Indeed, arguing as in the proof of Lemma 3.3, we obtain

(4.5)

∫

a(x)(u+n )
p+1 ≥ ‖u+n ‖2 ≥ ρ,

for some ρ > 0. Since I ′(un)u
+
n = 0, we have that

‖u+n ‖2 +
∫

K(x)φun
(u+n )

2 =

∫

a(x)(u+n )
p+1.

Since (u+n ) weakly converges to zero, we can use (K1) and Holder’s inequality to
conclude that

∫

K(x)φun
(x)(u+n )

2 → 0. Thus, it follows from (V1), (a1) and (4.5)
that

‖u+n ‖2∗ =

∫

a∞(u+n )
p+1 + on(1) ≥ ρ+ on(1).

This and (4.4) imply that tn → 1 as n → +∞. Thus, as in the proof of Theorem
1.1, we can verify that I∞(tnu

+
n ) = I(u+n ) + on(1). Hence,

m∞ ≤ I∞(tnu
+
n ) = I(u+n ) + on(1) ≤ I(u+n ) +

1

4

∫

K(x)φu−
n
(u+n )

2 + on(1) = a.

and it follows from (4.3) that b < m.
On the other hand, if we consider sn > 0 such that snu

−
n ∈ N , we have that

(4.6) 0 = I ′(un)u
−
n = I ′(u−n )u

−
n +

∫

K(x)φu−
n
(x)(u+n )

2.

This implies that I ′(u−n )u
−
n < 0. Thus, sn ≤ 1 and we get

m ≤ I(snu
−
n ) = I(snu

−
n )−

1

p+ 1
I ′(snu

−
n )(snu

−
n )

=
(1

2
− 1

p+ 1

)

s2n‖u−n ‖2 +
(1

4
− 1

p+ 1

)

s4n

∫

K(x)φu−
n
(x)(u−n )

2

≤ I(u−n )−
1

p+ 1
I ′(u−n )(u

−
n ).

This and (4.6) provide

m ≤ I(u−n ) +
1

p+ 1

∫

K(x)φu+
n
(x)(u−n )

2

≤ I(u−n ) +
1

4

∫

K(x)φu+
n
(x)(u−n )

2 = b + on(1),

and we conclude that m ≤ b. This contradiction shows that u+ 6= 0. Similarly,
u− 6= 0.

We have obtained a nodal solution u of the problem. It verifies,

m± ≤ I(u) = I(u)− 1

p+ 1
I ′(u)u

=
(1

2
− 1

p+ 1

)

‖u1‖2 +
(1

4
− 1

p+ 1

)

∫

K(x)φu1
(x)u21

≤ lim inf
n→∞

{

I(un)−
1

p+ 1
I ′(un)un

}

= m±,

and therefore I(u) = m±. The theorem is proved. ✷
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