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1. Introdution

A lass of models that appears naturally in a wide number of phenomena are the random

di�erential equations. This ours beause randomness is a powerful tool and onept to

ontrol omplex systems involving a large number of variables and partiles. The basi

idea is to desribe omplex systems by means of their statistial properties. Another kind

of phenomena are those governed by quantum mehanis and the unertainty priniple.

In this diretion, we have Shrödinger equations, and their random versions, whih are

the ore in the study of ondensed matter.

The semilinear Shrödinger equation reads as

ih
∂ψ

∂t
= −h2∆ψ + V (x)ψ − |ψ|p−1ψ, x ∈ R

n, (1)

where t ∈ R, n ≥ 3, 1 < p < ∞, h is the Plank onstant and i is the imaginary

unit. When looking for standing wave solutions, namely those with the speial form

ψ(x, t) := e−iE
h
tu(x), E ∈ R, we are leading to solve an equation of the type

−∆u+ V (x)u = |u|p−1u, x ∈ R
N . (2)

0
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2 L. Cioletti, L. C. F. Ferreira & M. Furtado

From the physial viewpoint, the funtion V is the potential energy, and therefore the

fore ating on the system is given by F (x) = −∇V (x). In [20℄ the author onsidered a

singularly perturbed version and obtained the existene of solution by assuming that V
is suh that

0 < inf
x∈Rn

V (x) < lim inf
|x|→+∞

V (x).

In [8℄, the authors showed that the same holds if V has a loal minimum. Later, many

authors onsidered multipliity and qualitative properties of solutions (see [1℄, [2℄ and

referenes therein).

The main interest of this paper is to study situations where the potential V is not

deterministi. We show existene and probabilisti properties for a nonhomogeneous

random version of (2), namely

{
−∆u+ Vω(x)u = b(x)u|u|p−1 + g(x), if x ∈ U ;

u = 0, if x ∈ ∂U,
(3)

where 1 < p <∞, Vω is a random variable, U ⊂ R
n
is a bounded domain and the terms

b, g ∈ L∞(U) are deterministi. In the ase V ≡ 0 Pohozaev-type identities provide non-
existene of positive solutions for (2) with ritial and superritial variational values

n+2
n−2 ≤ p < ∞. So, it is natural to onsider a nonhomogeneous term on the right-

hand side of (3). Here we desire to over not only high-powers for p, but also the

e�et on the random term Vω. Our results work well for b ≡ 1, and in this ase (3) is

preisely the perturbation of (2) by the non-homogeneous term g. Also, the boundedness
of U, b, g are not essential and ould be irumvented by working in other settings, suh

as homogeneous weighted L∞
-spaes, PMa

-spaes and anisotropi Lebesgue spaes (see,

e.g., [11℄, [12℄, [13℄, [14℄, [15℄). However, here this ondition will simplify matters a

bit. The random potential Vω is onstruted as follows: given a ontinuous funtion

f : RN → R, we onsider

Vω(x) :=

∫

U

f(x− y) dµω(y), (4)

where µω is a M(U)-valued random variable and M(U) denotes the set of all Radon

measures on U with �nite variation.

We present here some examples of (4) that have been treated in the literature (see e.g.

the review [18℄). We �rst onsider a model of an unordered alloy, that is, a mixture of

several materials with atoms loated at lattie positions. Assuming that the type of atom

at the lattie i ∈ Z
n
is random, we are led to onsider the type of potential

Vω(x) =
∑

i∈Zn

qi(ω)f(x− i), (5)

where the random variables qi desribe the harge of the atom at the position i of the
lattie. Other examples an be obtained by onsidering materials like glass or rubber,

where the position of the atoms of the material are loated at random points ηi in spae.

By normalizing the harge of the atoms, the suggested potential is formally

Vω(x) =
∑

i∈Zn

f(x− ηi(ω)), (6)
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An ellipti equation with random potential and superritial nonlinearity 3

where the ηi(ω) are random variables whih loalize the atoms in spae.

The lass of potentials allowed here is su�iently large to onsider many known models.

For example, the ase of glass onsidered in (6) an be obtained by taking the random

point measure µω =
∑

i δηi(ω). Atually, for this hoie of the measure we have that

∑

i∈Zn∩U

f(x− ηi(ω)) =

∫

U

f(x− η)dµω(η). (7)

Also, a ombination of potentials like (5) and (6), namely

Vω(x) = Σ
i∈Zn∩U

qi(ω)f(x− ηi(ω)),

is also overed by (4) with µω = Σ
i∈Zn∩U

qi(ω)δηi(ω). It is not di�ult to see that we an

also onsider other models like, e.g., the Poisson model (see [18℄ for more examples).

The models (5) and (6) orrespond to disrete measures µω for whih results about

loalization, spetral properties and deays an be found in [18℄, [21℄. For Shrödinger

equations de�ned in a lattie, i.e. x ∈ Z
n
, we refer the reader to [5℄. Considering a

random time-dependent potential for (1), the authors of [3℄ studied asymptoti behavior

of solutions by showing onvergene for Gaussian limits when the two-point orrelation

funtion of the potential is rapidly deaying. Still for time-dependent random potentials,

saling limits for paraboli waves in random media were investigated in [10℄. Another

type of random equations are the paraboli ones, for whih we refer to the works [4℄,

[6℄, [7℄ and their referenes. In fat, the authors of [4℄ extended regularity properties

(Kalita's results) to the stohasti ase by onsidering quasilinear paraboli systems under

a random perturbation of It� type (see [16℄ for further results on stohasti PDEs).

In this paper we show that a solution for the nonlinear ellipti PDE (3) exists almost

surely (or not) depending on the ν-measure of the interval [0, k0‖f‖
−1
∞ ), where ν is the

probability measure indued on R by the random variable ω 7→ µω and k0 is a given

onstant (see Theorem 3.2). For that, we obtain Proposition 3.1 whih seems not to

be available in the literature even for the deterministi version of (3). Solutions are

understood in an integral sense based on Green funtions. In Remark 3.3 and Corollary

3.4, we give some examples of ontinuum random potentials overed by our results. Sine

we are onsidering L∞
-valued random solutions, it is natural to ask about the expeted

value of the L∞
-norm of solutions. In Theorem 3.5, we provide an estimate for this value

depending on the size of the potential. Moreover, we obtain a law of larger numbers for

solutions obtained by independent ensembles. It is worth to mention that, when dealing

with the random variable ω 7→ u(x, ω) that maps an element of Ω in the solution of (3)

assoiated with the random potential Vω , we need to onsider some known onepts of

real random variables in a more general setting (see Setion 2 for more details).

As a further omment, we observe that the random potentials onsidered here are built

from a very general probability spae. In this setting it does not always make sense to

ask what is the probability that the problem (3) has a solution in L∞(U). In order to

give some sense to this question we should restrit ourself to probability spaes (Ω,F ,P)
and random potentials V where the set

{ω ∈ Ω : the problem (3) has a solution in L∞(U)}
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4 L. Cioletti, L. C. F. Ferreira & M. Furtado

is an event (measurable). Working in suh probability spaes, Theorem 3.2 gives us

immediately a lower bound for the probability of the non-linear problem (3) having a

solution.

The manusript is organized as follows. In the next setion, we introdue some notations,

basi de�nitions and give some properties for an integral operator assoiated with the

random potential Vω . The main results are stated and proved in Setion 3.

2. Preliminaries and notation

Throughout this paper (Ω,F ,P) denotes a given omplete probability spae. If (E, E) is
a measurable spae, any (F , E)-measurable funtion X : Ω → E will be alled a E-valued
random variable. We use the abbreviation a.s. for almost surely or almost sure.

Let U ⊂ R
n
be a bounded domain. We adopt the standard notation M(U) to denote

the set of all Random measures on U with �nite variation and we all B(M(U)) the σ-
algebra of the borelians of M(U) generated by the total variation norm. The spae of all

bounded ontinuous real-valued funtions de�ned on U will be denoted by BC(U). Sine
BC(U) is a metri spae with the supremum norm, when we refer to a BC(U)-valued
random variable, the onsidered σ-algebra is always the one generated by the borelians.

Similarly to a X -valued Borel random variable X : Ω → X , where X is an arbitrary

metri spae.

The random potentials onsidered here are the BC(U)-valued random variables de�ned

as follows. Take any random variable X : Ω → M(U) (whih is simply a random

measure in M(U)) and a �xed funtion f ∈ BC(Rn). Then, for µω = X(ω), the funtion
V : Ω → BC(U) de�ned by

Vω(x) :=

∫

U

f(x− y) dµω(y), x ∈ U,

is a BC(U)-valued random variable that will be alled a random potential. To see that

V is a well-de�ned BC(U)-valued random variable, is enough to onsider the mapping

Tf : M(U) → BC(U) given by

Tf (µ)(x) =

∫

U

f(x− y) dµ(y), x ∈ U,

and to observe that V = Tf ◦X . In fat, if we denote by µ the total variation of the

measure µ, we have the inequality

‖Tf(µ)‖∞ := sup
x∈U

|Tf(µ)(x)| ≤

(
sup
x∈Rn

|f(x)|

)
µ , (8)

whih implies that Tf(µ) belongs to L
∞(U). Also, proeeding as in (8) and using dom-

inated onvergene theorem, one an show that Tf (µ) is a ontinuous funtion, and so

Borel measurable. It follows that V is a omposition of two Borel measurable funtions

and a BC(U)-valued random variable.

Let (U,B, µ) be a measure spae. For a measurable funtion f we de�ne

‖f‖L∞(U,dµ) = inf {a ≥ 0 : µ({x : |f(x)| > a}) = 0} ,
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An ellipti equation with random potential and superritial nonlinearity 5

and the spae L∞(U,B(U), µ) as the set

{f : U → R : f is Borel measurable and ‖f‖L∞(U,dµ) <∞}.

When dµ = dx is the Lebesgue measure in U ⊂ R
n, we simply denote L∞(U) =

L∞(U,B(U), dx). Although we are assuming that f ∈ BC(Rn), most of the re-

sults presented here are also valid if we suppose only the weaker ondition f ∈
∩µ∈M(U)L

∞(U,B(U), µ).

In order to state some onvergene results, we need to use the notion of Bohner integrals.

Let (X , ‖ · ‖X ) be a Banah spae and (Ω,F ,P) be a probability spae. If X : Ω → X
is a X -valued Borel random variable suh that X = Y a.s. in Ω, where Y : Ω → X is a

X -valued Borel random variable with Y (Ω) ⊂ X separable, and

∫

Ω

‖X(ω)‖X dP(ω) <∞,

then there exists a unique element E[X ] ∈ X with the property

ℓ(E[X ]) =

∫

Ω

ℓ(X(ω)) dP(ω)

for all ℓ ∈ X ∗
, where X ∗

stands for the dual of X . Following the standard notation, we

write

E[X ] =

∫

Ω

X(ω) dP(ω).

We all E[X ] the Bohner integral of X with respet to P. More details about the

existene and some properties of this integral an be found in [17℄, [19℄.

For X -valued random variables, we de�ne the onvergene in probability similarly to the

real-valued ase. If {Xj} is a sequene of X -valued random variable, we say that Xj

onverges to a X -valued random variable X in probability if for all ε > 0, we have

lim
j→∞

P({ω ∈ Ω : ‖Xj(ω)−X(ω)‖X ≥ ε}) = 0. (9)

When X is a real-valued random variable, we use the usual notation and denote the

expeted value of X and its variane by

E[X ] :=

∫

Ω

X(ω) dP(ω) and VarX := E[(E[X ]−X)2],

respetively. For both senses of expetation presented above, we also use the notation

EA[X ] =

∫

A

X(ω) dP(ω), (10)

when A ⊂ Ω is measurable and the right-hand-side of (10) makes sense.

Let X and Y be two E-valued random variable in the same probability spae. We say

that they are identially distributed if for all A ∈ E we have P(X−1(A)) = P(Y −1(A)).

Vol. XX, No. XX, XXXX℄
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Now we introdue the notion of independene. Given a �nite set of random variables

X1, . . . Xj , they are said to be independent if for all Ai ∈ E , 1 ≤ i ≤ j, we have

P(∩j
i=1Xi ∈ Ai) =

j∏

i=1

P(Xi ∈ Ai).

Finally, a sequene of random variables {X1, X2 . . .} is independent if all �nite olletion
of this sequene form a set of independent random variables.

3. Main results and proofs

Let G be the Green funtion of the Laplaian operator −∆ in the bounded domain

U ⊂ R
n
with n ≥ 3. It is known that (see [9℄), for all x, y ∈ U , there holds

0 ≤ G(x, y) ≤
1

nαn(n− 2)

1

|x− y|n−2
,

where αn stands for the volume of the unit ball in R
n
. Hene, if we denote by dU the

diameter of U , namely

dU := sup
x1, x2∈U

|x1 − x2|,

and BdU
(x) = {y ∈ R

n; |y − x| < dU}, a straightforward alulation provides

∫

U

G(x, y)dy ≤
1

nαn(n− 2)

∫

BdU
(x)

1

|x− y|n−2
dy

=
1

nαn(n− 2)

nαnd
2
U

2
=

d2U
2(n− 2)

,

(11)

for all x ∈ U . From now on, we write only l0 = l0(n, U) to denote the quantity

l0 :=
d2U

2(n− 2)
. (12)

Inequality (11) implies that the map H : L∞(U) → L∞(U) given by

H(ϕ)(x) :=

∫

U

G(x, y)ϕ(y)dy, x ∈ U,

is well-de�ned. More spei�ally, for any ϕ ∈ L∞(U), we have that

|H(ϕ)(x)| ≤

∫

U

G(x, y)|ϕ(y)|dy ≤ ‖ϕ‖∞

∫

U

G(x, y)dy,

and then

‖H(ϕ)‖∞ ≤ l0‖ϕ‖∞. (13)

Standard alulations show that the problem (3) is formally equivalent to the integral

equation

u(x) = H(g)−H(Vωu) +H(bu|u|p−1). (14)
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An ellipti equation with random potential and superritial nonlinearity 7

A solution of (14) is alled an integral solution of (3).

In what follows, we give estimates for the terms of (14) in order to apply a �xed point

argument. We �rst set X := L∞(U) and de�ne, for any �xed ω ∈ Ω, the linear funtion
T : X → X given by

T (u) := −H(Vωu), ∀u ∈ X .

It follows from (13) and (8) that, for any u ∈ X , there holds

‖T (u)‖∞ ≤ l0‖Vωu‖∞ ≤ l0‖f‖∞ µω ‖u‖∞, (15)

and so

‖T ‖X→X ≤ l0‖f‖∞ µω .

For the nonlinear term in (14), we de�ne B : X → X by

B(u) := H(b|u|p−1u), ∀u ∈ X .

For a1, a2 ∈ R, there holds

∣∣a1|a1|p−1 − a2|a2|
p−1

∣∣ ≤ p|a1 − a2|
(
|a1|

p−1 + |a2|
p−1

)
,

and then it follows that

‖b(·)
(
u|u|p−1 − ũ|ũ|p−1

)
‖∞ ≤ ‖b‖∞‖u− ũ‖∞

(
‖u‖p−1

∞ + ‖ũ‖p−1
∞

)
.

This inequality and the same argument used in (15) imply that

‖B(u)−B(ũ)‖∞ ≤ l0p‖b‖∞‖u− ũ‖∞
(
‖u‖p−1

∞ + ‖ũ‖p−1
∞

)
, (16)

for any u, ũ ∈ L∞(U).

All together, the above estimates enable us to solve the random equation (3) as follows.

Proposition 3.1. Given f, b, g ∈ L∞(U) and ω ∈ Ω, we onsider the potential Vω indued

by the random measure µω := X(ω). Let l0 be the quantity introdued in (12) and set

τω := l0‖f‖∞ µω and K := l0p‖b‖∞. (17)

If ε > 0 and ω ∈ Ω are suh that

0 ≤ τω < 1,
2pKεp−1

(1− τω)p−1
+ τω < 1, (18)

and ‖g‖∞ ≤ ε/l0, then the equation (3) has a unique integral solution uω (i.e. it satis�es

(14)) suh that

uω = u(·, ω) ∈ L∞(U) and ‖uω‖∞ ≤
2ε

1− τω
. (19)

Proof. For eah ε > 0 and ω ∈ Ω satisfying (18), we onsider the losed ball

Bε =

{
u ∈ L∞(U); ‖u‖∞ ≤

2ε

(1− τω)

}
,
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8 L. Cioletti, L. C. F. Ferreira & M. Furtado

endowed with the metri d(u, v) := ‖u− v‖∞. We are going to show that the map

Φ(u) := H(g)−H(Vωu) +H(bu |u|
p−1

) = H(g) + T (u) +B(u) (20)

is a ontration on the omplete metri spae (Bε, d). Using the estimates (13), (15), and

(16) with ũ = 0, we obtain

‖Φ(u)‖∞ ≤ ‖H(g)‖∞ + ‖T (u)‖∞ + ‖B(u)‖∞

≤ l0 ‖g‖∞ + τω‖u‖∞ +K‖u‖p∞

≤ ε+ τω
2ε

1− τω
+

2pKεp

(1 − τω)p

=

(
1 + τω +

2pKεp−1

(1− τω)p−1

)
ε

1− τω

for all u ∈ Bε. Hene, it follows from (18) that

‖Φ(u)‖∞ ≤
2ε

1− τω
.

This shows that Φ maps Bε into Bε.

For all u, ũ ∈ Bε, it follows from (15) and (16) that

‖Φ(u)− Φ(ũ)‖∞ = ‖T (u− ũ)‖∞ + ‖B(u)−B(ũ)‖∞

≤ τω‖u− ũ‖∞ +K‖u− ũ‖∞
(
‖u‖p−1

∞ + ‖ũ‖p−1
∞

)

≤

(
τω +

2pKεp−1

(1− τω)p−1

)
‖u− ũ‖∞.

In view of (18), the above estimate implies that Φ is a ontration in Bε. Now, the

Banah �xed point theorem assures that there is a unique solution u for the integral

equation (14) suh that ‖u‖∞ ≤ (2ε)/(1− τω). �XXX

The next results are related to the randomness introdued by the random potential V
and existene of solutions for the problem (3). Roughly speaking, we �rst obtain the

probability of (3) having a solution via the method disussed above. In the sequel we

disuss a law of large numbers for a sequene of random potentials.

Theorem 3.2. Let ν be the probability measure indued on R by the random variable

ω 7→ µω . Let g ∈ L∞(U) be suh that ‖g‖∞ < 1
l0
( 1
2pK )

1

p−1
, where K = l0p‖b‖∞.

Choose 0 < c0 < 1 in suh a way that ‖g‖∞ ≤ ε0
l0

with

ε0 :=

(
(1− c0)

p

2pK

) 1

p−1

.

Let A be the set of ω ∈ Ω suh that (3) has a solution u(·, ω) given by Proposition 3.1

with ε = ε0. The set A is alled the admissible one for the random variable X(ω) and
non-homogeneous term g.

[Revista Integración
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(i) The set A is F-measurable, and the probability of (3) having a solution is

P(A) = ν

([
0,

c0
l0‖f‖∞

))
.

(ii) Let uω, ũω be two solutions of (3) orresponding, respetively, to µω, g,A and

µ̃ω, g̃, Ã with ‖g‖∞ , ‖g̃‖∞ ≤ ε0
l0
. Assume that A∩Ã 6= ∅ and de�ne

ηω := l0‖f‖∞max{ µω , µ̃ω }, for ω ∈ A∩Ã.

We have that

‖u(·, ω)− ũ(·, ω)‖∞ ≤

l0

(
‖g − g̃‖∞ +

2ε0
1− ηω

‖f‖∞ µω − µ̃ω

)

1− ηω −
2pKεp−1

0

(1− ηω)p−1

(21)

for all ω ∈ A∩Ã.

(iii) The map U : A → L∞(U) given by U(ω) := u(·, ω) is a random variable, and there

holds

‖U(ω)‖∞ ≤
2ε0

1− τω
= 2ε0

∞∑

j=0

τ jω, (22)

for all ω ∈ A.

Proof. We �rst notie that ω ∈ A if only if τω = l0‖f‖∞ µω veri�es (18) with ε = ε0.

Then, if Y (ω) = X(ω) = µω , it follows that A =
{
Y ∈

[
0, c0

l0‖f‖∞

)}
is measurable

and

P(A) = P

(
Y ∈

[
0,

c0
l0‖f‖∞

))
= PY

([
0,

c0
l0‖f‖∞

))

= ν

([
0,

c0
l0‖f‖∞

))
.

This establishes (i).

Now we deal with item (ii). Firstly, observe that ηω = max{τω, τ̃ω}, where

τω = l0‖f‖∞µω and τ̃ω = l0‖f‖∞ µ̃ω .

Subtrating the integral equations veri�ed by uω and ũω, and afterwards omputing
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10 L. Cioletti, L. C. F. Ferreira & M. Furtado

‖ · ‖∞, we obtain

‖uω − ũω‖∞ ≤ ‖H(g − g̃)‖∞ + ‖H(Vω(u− ũω))‖∞

+‖H((Vω − Ṽω)ũω)‖∞

+
∥∥H(b

(
uω|uω|

p−1 − ũω|ũω|
p−1

)
)
∥∥
∞

≤ l0‖g − g̃‖∞ + l0‖f‖∞ µω ‖uω − ũω‖∞

+l0‖f‖∞ µω − µ̃ω ‖ũω‖∞

+l0p‖b‖∞‖uω − ũω‖∞(‖uω‖
p−1
∞ + ‖ũω‖

p−1
∞ ).

It follows from (19) that

‖uω‖∞ ≤
2ε0

1− τω
≤

2ε0
1− ηω

and ‖ũ‖∞ ≤
2ε0

1− τ̃ω
≤

2ε0
1− ηω

.

The two above expressions give us

‖uω − ũω‖∞ ≤ l0‖g − g̃‖∞ + l0‖f‖∞ µω ‖uω − ũω‖∞

+ l0
2ε0

1− ηω
‖f‖∞ µω − µ̃ω +

2pKεp−1
0

(1− ηω)p−1
‖uω − ũω‖∞

= l0‖g − g̃‖∞ + l0
2ε0

1− ηω
‖f‖∞ µω − µ̃ω

+

[
ηω +

2pKεp−1
0

(1− ηω)p−1

]
‖uω − ũω‖∞ ,

whih yields (21).

Taking µω, µ̃ω independent of ω, i.e. µω = µ and µ̃ω = µ̃, for all ω ∈ Ω, we an see from

(17) and (21) that the data-map solution L(µ, g) = u is ontinuous from

{
(µ, g) ∈ M(U)× L∞(U); µ <

c0
l0‖f‖∞

, ‖g‖∞ ≤
ε0
l0

}
to L∞(U), (23)

where u is the deterministi solution of (3) orresponding to the data (µ, g). From this,

and beause X |A given by X(ω) = µω is measurable, it follows that the omposition

U(ω) = L(µω , g) = L(X(ω), g) from A to L∞(U) is measurable.

In view of the series

1
1−z

=
∑∞

j=0 z
j
for |z| < 1, we �nish by observing that (22) follows

from (19) with ε = ε0 and ω ∈ A. �XXX

Remark 3.3. Here we give examples of random potentials for whih there exists a solution

almost surely in Ω. The �rst ours if we suppose that the measure ν has ompat support

ontained in the interval [0, a], with a < c0
l0‖f‖∞

. In this ase it follows from item (i) of

Theorem 3.2 that P(A) = 1, i.e., the solution exists almost surely in Ω. Seond, take a
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sequene {µj}j∈N in M(U), and let {aj(ω)}j∈N be a sequene of random variables from

Ω to R. Consider the random variable µω de�ned by

µω =

∞∑

j=1

aj(ω)µj .

For some q > 1, suppose that

|aj(ω)| <
(
∑∞

k=1
1
kq )

−1

l0 µj ‖f‖∞

c0
jq

a.s. in Ω,

for all j ∈ N. Then,

µω ≤

∞∑

j=1

|aj(ω)| µj <
c0

l0‖f‖∞
a.s. in Ω,

and Theorem 3.2 assures that there is an integral solution for (3) a.s. in Ω.

In the sequel we show how the Borel-Cantelli's Lemma an be used to give a su�ient

ondition for the existene of solution a.s. in Ω.

Corollary 3.4. Let c0 and g be as in Theorem 3.2. Let {µj}j∈N be a sequene in M(U)
and let {aj(ω)}j∈N be a sequene of random variables from Ω to R. Assume that the series

µω =

∞∑

j=1

aj(ω)µj

is onvergent in M(U).

For eah k ∈ N, de�ne

Sk(ω) =

k∑

j=1

aj(ω)µj

and Lk = {ω ∈ Ω : Sk ≥ c̃}, with 0 < c̃ < c0/(l0‖f‖∞). If

∞∑

k=1

P(Lk) <∞,

then there is an integral solution for (3) almost surely in Ω .

Proof. By Borel-Cantelli's Lemma we get that P(lim supLk) = 0, that is,

P
(
∪∞
j=1 ∩

∞
k=j { Sk < c̃}

)
= 1.

It follows that, for almost sure ω ∈ Ω, there is j0 = j0(ω) suh that for all j > j0, we
have

Sj(ω) < c̃.

Therefore, by taking the limit as j → ∞, we obtain

µω = lim
j→∞

Sj(ω) ≤ c̃ <
c0

l0‖f‖∞
a.s. in Ω.

This inequality and Theorem 3.2 imply that there is an integral solution u(x, ω) for (3)
almost surely in Ω. �XXX
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A straightforward alulation shows that in general EΩ(u(x, ω)) does not satisfy the

equation (3), even if we replae the random potential by its mean. However, we are able

to obtain some information on the average and moments of the random solution uω. Let
us mention that, when dealing with the random variable ω 7→ uω, the expetation has

to be understood in the Bohner sense (see Setion 2). Note also that in fat a solution

uω ∈ L∞(U) of (14) belongs to the separable subspae C(U).

Theorem 3.5. Assume the hypotheses of Theorem 3.2 and denote by uω(x) = u(x, ω) ∈
L∞(U) the solution of (3). Let m ∈ N be �xed and suppose that

∞∑

j=1

(m+ j − 1)!

(m− 1)!j!
(l0‖f‖∞)j EA[ µω

j ] < +∞. (24)

Then EA[|u|
m(x, ω)] ∈ L∞(U) and

EA

[
‖|u|m(·, ω)‖L∞(U)

]
<∞. (25)

In the ase m = 1, we have EA[u(x, ω)] ∈ L∞(U) and

EA

[
‖u(·, ω)‖L∞(U)

]
≤ (2ε0)



1 +

∞∑

j=1

(l0‖f‖∞)
j
EA

[
µω

j
]


 . (26)

Proof. It follows from (22) that

‖|u|m(·, ω)‖L∞(U) ≤ ‖u(·, ω)‖mL∞(U) ≤
(2ε0)

m

(1 − τω)m
. (27)

Computing EA in (27), we obtain

‖EA [|u|m(x, ω)]‖L∞(U) ≤ EA

[
‖|u|m(x, ω)‖L∞(U)

]

≤ (2ε0)
m
EA




1 +

∞∑

j=1

(m+ j − 1)!

(m− 1)!j!
τ jω




 . (28)

By using the linearity of the expetation and realling that τω = l0‖f‖∞ µω , we get the

following upper bound for the right hand side of (28):

(2ε0)
m + (2ε0)

m

∞∑

j=1

(m+ j − 1)!

(m− 1)!j!
(l0‖f‖∞)j EA

[
µω

j
]
; (29)

this bound is �nite due to (24). From (25) with m = 1 and the estimate

‖EA [u(x, ω)]‖L∞(U) ≤ EA

[
‖|u|(x, ω)‖L∞(U)

]
, (30)

we obtain that EA[u(·, ω)] ∈ L∞(U). The estimate (26) follows by taking m = 1 in

(28)-(29) and afterwards using (30). �XXX
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In the sequel we show a weak law of large numbers for the random L∞(U)-solutions
obtained in Setion 2.

Theorem 3.6. Let {Xj}j∈N be an independent sequene of random variables Xj : Ω →
M(U). Assume that the admissible set Aj = Ω for all j, and let uj(·, ω) ∈ L∞(U) be the
solution given by Theorem 3.2 with respet to Xj(ω) = µω,j and g. If Xj → X a.s. and

L = sup
j∈N

(
ess sup

ω∈Ω
µω,j

)
<

c0
l0‖f‖∞

, (31)

then

k∑

j=1

uj(x, ω)− EΩ[uj(x, ω)]

k
→ 0 (32)

and

k∑

j=1

‖uj(·, ω)‖∞ − EΩ[‖uj(·, ω)‖∞]

k
→ 0, (33)

as k → ∞, where the onvergenes in (32) and (33) are in the sense of probability (see

(9)).

Proof. Notie that Xj → X a.s. is equivalent to µω,j → µω = X(ω) in M(U) almost

surely. From this and the ontinuity of data-solution map L(·, ·) (see (23)), it follows

that

‖uj(·, ω)− u(·, ω)‖∞ = ‖L(µω,j, g)− L(µ, g)‖∞ → 0,

as j → ∞. Realling (22) and afterwards using (31), we obtain

‖uj(·, ω)‖∞ ≤
2ε0

1− l0‖f‖∞(ess supω∈Ω µω,j )

≤
2ε0
1− L

= Q0, a.s. in Ω. (34)

Next, for a �xed g suh that ‖g‖∞ ≤ ε0
l0
, onsider

Sg(µ) = L(µ, g) (35)

de�ned from D to L∞(U), where D =
{
µ ∈ M(U) : µ < c0

l0‖f‖∞

}
. Sine Xj 's are inde-

pendent, it follows that {Yj}j∈N de�ned by

Yj = ‖uj(·, ω)‖∞ = ‖Sg ◦Xj(ω)‖∞

are also independent. So, from Chebyshev's inequality, the independene of {Yj}j∈N, and

Vol. XX, No. XX, XXXX℄



14 L. Cioletti, L. C. F. Ferreira & M. Furtado

(34), we have that

P




∣∣∣∣∣∣
k−1

k∑

j=1

(‖uj(·, ω)‖∞ − EΩ[‖uj(·, ω)‖∞])

∣∣∣∣∣∣
≥ δ




≤
1

(kδ)2
EΩ




∣∣∣∣∣∣

k∑

j=1

(‖uj(·, ω)‖∞ − EΩ[‖uj(·, ω)‖∞] )

∣∣∣∣∣∣

2



=
1

(kδ)2

k∑

j=1

EΩ

[
|(‖uj(·, ω)‖∞ − EΩ[‖uj(·, ω)‖∞] )|

2
]

≤
1

(kδ)2

k∑

j=1

EΩ

[
|2Q0|

2
]

≤
1

(kδ)2

k∑

j=1

|2Q0|
2
EΩ [1]

≤
4Q2

0

δ2
1

k
.

Letting k → +∞ in the above expression, we get (33). The onvergene (32) an be

proved similarly to (33). �XXX
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