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Abstra
t. We are 
on
erned with a nonhomogeneous ellipti
 equation with

random potential and super
riti
al nonlinearity. Existen
e of solution is ob-

tained almost surely for a 
lass of potentials that in
ludes 
ontinuum and

dis
rete ones. Also, we provide a law of larger numbers for the obtained so-

lutions by independent ensembles and estimate the expe
ted value for their

L∞
-norms.
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1. Introdu
tion

A 
lass of models that appears naturally in a wide number of phenomena are the random

di�erential equations. This o

urs be
ause randomness is a powerful tool and 
on
ept to


ontrol 
omplex systems involving a large number of variables and parti
les. The basi


idea is to des
ribe 
omplex systems by means of their statisti
al properties. Another kind

of phenomena are those governed by quantum me
hani
s and the un
ertainty prin
iple.

In this dire
tion, we have S
hrödinger equations, and their random versions, whi
h are

the 
ore in the study of 
ondensed matter.

The semilinear S
hrödinger equation reads as

ih
∂ψ

∂t
= −h2∆ψ + V (x)ψ − |ψ|p−1ψ, x ∈ R

n, (1)

where t ∈ R, n ≥ 3, 1 < p < ∞, h is the Plan
k 
onstant and i is the imaginary

unit. When looking for standing wave solutions, namely those with the spe
ial form

ψ(x, t) := e−iE
h
tu(x), E ∈ R, we are leading to solve an equation of the type

−∆u+ V (x)u = |u|p−1u, x ∈ R
N . (2)
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From the physi
al viewpoint, the fun
tion V is the potential energy, and therefore the

for
e a
ting on the system is given by F (x) = −∇V (x). In [20℄ the author 
onsidered a

singularly perturbed version and obtained the existen
e of solution by assuming that V
is su
h that

0 < inf
x∈Rn

V (x) < lim inf
|x|→+∞

V (x).

In [8℄, the authors showed that the same holds if V has a lo
al minimum. Later, many

authors 
onsidered multipli
ity and qualitative properties of solutions (see [1℄, [2℄ and

referen
es therein).

The main interest of this paper is to study situations where the potential V is not

deterministi
. We show existen
e and probabilisti
 properties for a nonhomogeneous

random version of (2), namely

{
−∆u+ Vω(x)u = b(x)u|u|p−1 + g(x), if x ∈ U ;

u = 0, if x ∈ ∂U,
(3)

where 1 < p <∞, Vω is a random variable, U ⊂ R
n
is a bounded domain and the terms

b, g ∈ L∞(U) are deterministi
. In the 
ase V ≡ 0 Pohozaev-type identities provide non-
existen
e of positive solutions for (2) with 
riti
al and super
riti
al variational values

n+2
n−2 ≤ p < ∞. So, it is natural to 
onsider a nonhomogeneous term on the right-

hand side of (3). Here we desire to 
over not only high-powers for p, but also the

e�e
t on the random term Vω. Our results work well for b ≡ 1, and in this 
ase (3) is

pre
isely the perturbation of (2) by the non-homogeneous term g. Also, the boundedness
of U, b, g are not essential and 
ould be 
ir
umvented by working in other settings, su
h

as homogeneous weighted L∞
-spa
es, PMa

-spa
es and anisotropi
 Lebesgue spa
es (see,

e.g., [11℄, [12℄, [13℄, [14℄, [15℄). However, here this 
ondition will simplify matters a

bit. The random potential Vω is 
onstru
ted as follows: given a 
ontinuous fun
tion

f : RN → R, we 
onsider

Vω(x) :=

∫

U

f(x− y) dµω(y), (4)

where µω is a M(U)-valued random variable and M(U) denotes the set of all Radon

measures on U with �nite variation.

We present here some examples of (4) that have been treated in the literature (see e.g.

the review [18℄). We �rst 
onsider a model of an unordered alloy, that is, a mixture of

several materials with atoms lo
ated at latti
e positions. Assuming that the type of atom

at the latti
e i ∈ Z
n
is random, we are led to 
onsider the type of potential

Vω(x) =
∑

i∈Zn

qi(ω)f(x− i), (5)

where the random variables qi des
ribe the 
harge of the atom at the position i of the
latti
e. Other examples 
an be obtained by 
onsidering materials like glass or rubber,

where the position of the atoms of the material are lo
ated at random points ηi in spa
e.

By normalizing the 
harge of the atoms, the suggested potential is formally

Vω(x) =
∑

i∈Zn

f(x− ηi(ω)), (6)
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where the ηi(ω) are random variables whi
h lo
alize the atoms in spa
e.

The 
lass of potentials allowed here is su�
iently large to 
onsider many known models.

For example, the 
ase of glass 
onsidered in (6) 
an be obtained by taking the random

point measure µω =
∑

i δηi(ω). A
tually, for this 
hoi
e of the measure we have that

∑

i∈Zn∩U

f(x− ηi(ω)) =

∫

U

f(x− η)dµω(η). (7)

Also, a 
ombination of potentials like (5) and (6), namely

Vω(x) = Σ
i∈Zn∩U

qi(ω)f(x− ηi(ω)),

is also 
overed by (4) with µω = Σ
i∈Zn∩U

qi(ω)δηi(ω). It is not di�
ult to see that we 
an

also 
onsider other models like, e.g., the Poisson model (see [18℄ for more examples).

The models (5) and (6) 
orrespond to dis
rete measures µω for whi
h results about

lo
alization, spe
tral properties and de
ays 
an be found in [18℄, [21℄. For S
hrödinger

equations de�ned in a latti
e, i.e. x ∈ Z
n
, we refer the reader to [5℄. Considering a

random time-dependent potential for (1), the authors of [3℄ studied asymptoti
 behavior

of solutions by showing 
onvergen
e for Gaussian limits when the two-point 
orrelation

fun
tion of the potential is rapidly de
aying. Still for time-dependent random potentials,

s
aling limits for paraboli
 waves in random media were investigated in [10℄. Another

type of random equations are the paraboli
 ones, for whi
h we refer to the works [4℄,

[6℄, [7℄ and their referen
es. In fa
t, the authors of [4℄ extended regularity properties

(Kalita's results) to the sto
hasti
 
ase by 
onsidering quasilinear paraboli
 systems under

a random perturbation of It� type (see [16℄ for further results on sto
hasti
 PDEs).

In this paper we show that a solution for the nonlinear ellipti
 PDE (3) exists almost

surely (or not) depending on the ν-measure of the interval [0, k0‖f‖
−1
∞ ), where ν is the

probability measure indu
ed on R by the random variable ω 7→ µω and k0 is a given


onstant (see Theorem 3.2). For that, we obtain Proposition 3.1 whi
h seems not to

be available in the literature even for the deterministi
 version of (3). Solutions are

understood in an integral sense based on Green fun
tions. In Remark 3.3 and Corollary

3.4, we give some examples of 
ontinuum random potentials 
overed by our results. Sin
e

we are 
onsidering L∞
-valued random solutions, it is natural to ask about the expe
ted

value of the L∞
-norm of solutions. In Theorem 3.5, we provide an estimate for this value

depending on the size of the potential. Moreover, we obtain a law of larger numbers for

solutions obtained by independent ensembles. It is worth to mention that, when dealing

with the random variable ω 7→ u(x, ω) that maps an element of Ω in the solution of (3)

asso
iated with the random potential Vω , we need to 
onsider some known 
on
epts of

real random variables in a more general setting (see Se
tion 2 for more details).

As a further 
omment, we observe that the random potentials 
onsidered here are built

from a very general probability spa
e. In this setting it does not always make sense to

ask what is the probability that the problem (3) has a solution in L∞(U). In order to

give some sense to this question we should restri
t ourself to probability spa
es (Ω,F ,P)
and random potentials V where the set

{ω ∈ Ω : the problem (3) has a solution in L∞(U)}
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is an event (measurable). Working in su
h probability spa
es, Theorem 3.2 gives us

immediately a lower bound for the probability of the non-linear problem (3) having a

solution.

The manus
ript is organized as follows. In the next se
tion, we introdu
e some notations,

basi
 de�nitions and give some properties for an integral operator asso
iated with the

random potential Vω . The main results are stated and proved in Se
tion 3.

2. Preliminaries and notation

Throughout this paper (Ω,F ,P) denotes a given 
omplete probability spa
e. If (E, E) is
a measurable spa
e, any (F , E)-measurable fun
tion X : Ω → E will be 
alled a E-valued
random variable. We use the abbreviation a.s. for almost surely or almost sure.

Let U ⊂ R
n
be a bounded domain. We adopt the standard notation M(U) to denote

the set of all Random measures on U with �nite variation and we 
all B(M(U)) the σ-
algebra of the borelians of M(U) generated by the total variation norm. The spa
e of all

bounded 
ontinuous real-valued fun
tions de�ned on U will be denoted by BC(U). Sin
e
BC(U) is a metri
 spa
e with the supremum norm, when we refer to a BC(U)-valued
random variable, the 
onsidered σ-algebra is always the one generated by the borelians.

Similarly to a X -valued Borel random variable X : Ω → X , where X is an arbitrary

metri
 spa
e.

The random potentials 
onsidered here are the BC(U)-valued random variables de�ned

as follows. Take any random variable X : Ω → M(U) (whi
h is simply a random

measure in M(U)) and a �xed fun
tion f ∈ BC(Rn). Then, for µω = X(ω), the fun
tion
V : Ω → BC(U) de�ned by

Vω(x) :=

∫

U

f(x− y) dµω(y), x ∈ U,

is a BC(U)-valued random variable that will be 
alled a random potential. To see that

V is a well-de�ned BC(U)-valued random variable, is enough to 
onsider the mapping

Tf : M(U) → BC(U) given by

Tf (µ)(x) =

∫

U

f(x− y) dµ(y), x ∈ U,

and to observe that V = Tf ◦X . In fa
t, if we denote by µ the total variation of the

measure µ, we have the inequality

‖Tf(µ)‖∞ := sup
x∈U

|Tf(µ)(x)| ≤

(
sup
x∈Rn

|f(x)|

)
µ , (8)

whi
h implies that Tf(µ) belongs to L
∞(U). Also, pro
eeding as in (8) and using dom-

inated 
onvergen
e theorem, one 
an show that Tf (µ) is a 
ontinuous fun
tion, and so

Borel measurable. It follows that V is a 
omposition of two Borel measurable fun
tions

and a BC(U)-valued random variable.

Let (U,B, µ) be a measure spa
e. For a measurable fun
tion f we de�ne

‖f‖L∞(U,dµ) = inf {a ≥ 0 : µ({x : |f(x)| > a}) = 0} ,
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and the spa
e L∞(U,B(U), µ) as the set

{f : U → R : f is Borel measurable and ‖f‖L∞(U,dµ) <∞}.

When dµ = dx is the Lebesgue measure in U ⊂ R
n, we simply denote L∞(U) =

L∞(U,B(U), dx). Although we are assuming that f ∈ BC(Rn), most of the re-

sults presented here are also valid if we suppose only the weaker 
ondition f ∈
∩µ∈M(U)L

∞(U,B(U), µ).

In order to state some 
onvergen
e results, we need to use the notion of Bo
hner integrals.

Let (X , ‖ · ‖X ) be a Bana
h spa
e and (Ω,F ,P) be a probability spa
e. If X : Ω → X
is a X -valued Borel random variable su
h that X = Y a.s. in Ω, where Y : Ω → X is a

X -valued Borel random variable with Y (Ω) ⊂ X separable, and

∫

Ω

‖X(ω)‖X dP(ω) <∞,

then there exists a unique element E[X ] ∈ X with the property

ℓ(E[X ]) =

∫

Ω

ℓ(X(ω)) dP(ω)

for all ℓ ∈ X ∗
, where X ∗

stands for the dual of X . Following the standard notation, we

write

E[X ] =

∫

Ω

X(ω) dP(ω).

We 
all E[X ] the Bo
hner integral of X with respe
t to P. More details about the

existen
e and some properties of this integral 
an be found in [17℄, [19℄.

For X -valued random variables, we de�ne the 
onvergen
e in probability similarly to the

real-valued 
ase. If {Xj} is a sequen
e of X -valued random variable, we say that Xj


onverges to a X -valued random variable X in probability if for all ε > 0, we have

lim
j→∞

P({ω ∈ Ω : ‖Xj(ω)−X(ω)‖X ≥ ε}) = 0. (9)

When X is a real-valued random variable, we use the usual notation and denote the

expe
ted value of X and its varian
e by

E[X ] :=

∫

Ω

X(ω) dP(ω) and VarX := E[(E[X ]−X)2],

respe
tively. For both senses of expe
tation presented above, we also use the notation

EA[X ] =

∫

A

X(ω) dP(ω), (10)

when A ⊂ Ω is measurable and the right-hand-side of (10) makes sense.

Let X and Y be two E-valued random variable in the same probability spa
e. We say

that they are identi
ally distributed if for all A ∈ E we have P(X−1(A)) = P(Y −1(A)).

Vol. XX, No. XX, XXXX℄



6 L. Cioletti, L. C. F. Ferreira & M. Furtado

Now we introdu
e the notion of independen
e. Given a �nite set of random variables

X1, . . . Xj , they are said to be independent if for all Ai ∈ E , 1 ≤ i ≤ j, we have

P(∩j
i=1Xi ∈ Ai) =

j∏

i=1

P(Xi ∈ Ai).

Finally, a sequen
e of random variables {X1, X2 . . .} is independent if all �nite 
olle
tion
of this sequen
e form a set of independent random variables.

3. Main results and proofs

Let G be the Green fun
tion of the Lapla
ian operator −∆ in the bounded domain

U ⊂ R
n
with n ≥ 3. It is known that (see [9℄), for all x, y ∈ U , there holds

0 ≤ G(x, y) ≤
1

nαn(n− 2)

1

|x− y|n−2
,

where αn stands for the volume of the unit ball in R
n
. Hen
e, if we denote by dU the

diameter of U , namely

dU := sup
x1, x2∈U

|x1 − x2|,

and BdU
(x) = {y ∈ R

n; |y − x| < dU}, a straightforward 
al
ulation provides

∫

U

G(x, y)dy ≤
1

nαn(n− 2)

∫

BdU
(x)

1

|x− y|n−2
dy

=
1

nαn(n− 2)

nαnd
2
U

2
=

d2U
2(n− 2)

,

(11)

for all x ∈ U . From now on, we write only l0 = l0(n, U) to denote the quantity

l0 :=
d2U

2(n− 2)
. (12)

Inequality (11) implies that the map H : L∞(U) → L∞(U) given by

H(ϕ)(x) :=

∫

U

G(x, y)ϕ(y)dy, x ∈ U,

is well-de�ned. More spe
i�
ally, for any ϕ ∈ L∞(U), we have that

|H(ϕ)(x)| ≤

∫

U

G(x, y)|ϕ(y)|dy ≤ ‖ϕ‖∞

∫

U

G(x, y)dy,

and then

‖H(ϕ)‖∞ ≤ l0‖ϕ‖∞. (13)

Standard 
al
ulations show that the problem (3) is formally equivalent to the integral

equation

u(x) = H(g)−H(Vωu) +H(bu|u|p−1). (14)

[Revista Integración
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A solution of (14) is 
alled an integral solution of (3).

In what follows, we give estimates for the terms of (14) in order to apply a �xed point

argument. We �rst set X := L∞(U) and de�ne, for any �xed ω ∈ Ω, the linear fun
tion
T : X → X given by

T (u) := −H(Vωu), ∀u ∈ X .

It follows from (13) and (8) that, for any u ∈ X , there holds

‖T (u)‖∞ ≤ l0‖Vωu‖∞ ≤ l0‖f‖∞ µω ‖u‖∞, (15)

and so

‖T ‖X→X ≤ l0‖f‖∞ µω .

For the nonlinear term in (14), we de�ne B : X → X by

B(u) := H(b|u|p−1u), ∀u ∈ X .

For a1, a2 ∈ R, there holds

∣∣a1|a1|p−1 − a2|a2|
p−1

∣∣ ≤ p|a1 − a2|
(
|a1|

p−1 + |a2|
p−1

)
,

and then it follows that

‖b(·)
(
u|u|p−1 − ũ|ũ|p−1

)
‖∞ ≤ ‖b‖∞‖u− ũ‖∞

(
‖u‖p−1

∞ + ‖ũ‖p−1
∞

)
.

This inequality and the same argument used in (15) imply that

‖B(u)−B(ũ)‖∞ ≤ l0p‖b‖∞‖u− ũ‖∞
(
‖u‖p−1

∞ + ‖ũ‖p−1
∞

)
, (16)

for any u, ũ ∈ L∞(U).

All together, the above estimates enable us to solve the random equation (3) as follows.

Proposition 3.1. Given f, b, g ∈ L∞(U) and ω ∈ Ω, we 
onsider the potential Vω indu
ed

by the random measure µω := X(ω). Let l0 be the quantity introdu
ed in (12) and set

τω := l0‖f‖∞ µω and K := l0p‖b‖∞. (17)

If ε > 0 and ω ∈ Ω are su
h that

0 ≤ τω < 1,
2pKεp−1

(1− τω)p−1
+ τω < 1, (18)

and ‖g‖∞ ≤ ε/l0, then the equation (3) has a unique integral solution uω (i.e. it satis�es

(14)) su
h that

uω = u(·, ω) ∈ L∞(U) and ‖uω‖∞ ≤
2ε

1− τω
. (19)

Proof. For ea
h ε > 0 and ω ∈ Ω satisfying (18), we 
onsider the 
losed ball

Bε =

{
u ∈ L∞(U); ‖u‖∞ ≤

2ε

(1− τω)

}
,

Vol. XX, No. XX, XXXX℄
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endowed with the metri
 d(u, v) := ‖u− v‖∞. We are going to show that the map

Φ(u) := H(g)−H(Vωu) +H(bu |u|
p−1

) = H(g) + T (u) +B(u) (20)

is a 
ontra
tion on the 
omplete metri
 spa
e (Bε, d). Using the estimates (13), (15), and

(16) with ũ = 0, we obtain

‖Φ(u)‖∞ ≤ ‖H(g)‖∞ + ‖T (u)‖∞ + ‖B(u)‖∞

≤ l0 ‖g‖∞ + τω‖u‖∞ +K‖u‖p∞

≤ ε+ τω
2ε

1− τω
+

2pKεp

(1 − τω)p

=

(
1 + τω +

2pKεp−1

(1− τω)p−1

)
ε

1− τω

for all u ∈ Bε. Hen
e, it follows from (18) that

‖Φ(u)‖∞ ≤
2ε

1− τω
.

This shows that Φ maps Bε into Bε.

For all u, ũ ∈ Bε, it follows from (15) and (16) that

‖Φ(u)− Φ(ũ)‖∞ = ‖T (u− ũ)‖∞ + ‖B(u)−B(ũ)‖∞

≤ τω‖u− ũ‖∞ +K‖u− ũ‖∞
(
‖u‖p−1

∞ + ‖ũ‖p−1
∞

)

≤

(
τω +

2pKεp−1

(1− τω)p−1

)
‖u− ũ‖∞.

In view of (18), the above estimate implies that Φ is a 
ontra
tion in Bε. Now, the

Bana
h �xed point theorem assures that there is a unique solution u for the integral

equation (14) su
h that ‖u‖∞ ≤ (2ε)/(1− τω). �XXX

The next results are related to the randomness introdu
ed by the random potential V
and existen
e of solutions for the problem (3). Roughly speaking, we �rst obtain the

probability of (3) having a solution via the method dis
ussed above. In the sequel we

dis
uss a law of large numbers for a sequen
e of random potentials.

Theorem 3.2. Let ν be the probability measure indu
ed on R by the random variable

ω 7→ µω . Let g ∈ L∞(U) be su
h that ‖g‖∞ < 1
l0
( 1
2pK )

1

p−1
, where K = l0p‖b‖∞.

Choose 0 < c0 < 1 in su
h a way that ‖g‖∞ ≤ ε0
l0

with

ε0 :=

(
(1− c0)

p

2pK

) 1

p−1

.

Let A be the set of ω ∈ Ω su
h that (3) has a solution u(·, ω) given by Proposition 3.1

with ε = ε0. The set A is 
alled the admissible one for the random variable X(ω) and
non-homogeneous term g.

[Revista Integración
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(i) The set A is F-measurable, and the probability of (3) having a solution is

P(A) = ν

([
0,

c0
l0‖f‖∞

))
.

(ii) Let uω, ũω be two solutions of (3) 
orresponding, respe
tively, to µω, g,A and

µ̃ω, g̃, Ã with ‖g‖∞ , ‖g̃‖∞ ≤ ε0
l0
. Assume that A∩Ã 6= ∅ and de�ne

ηω := l0‖f‖∞max{ µω , µ̃ω }, for ω ∈ A∩Ã.

We have that

‖u(·, ω)− ũ(·, ω)‖∞ ≤

l0

(
‖g − g̃‖∞ +

2ε0
1− ηω

‖f‖∞ µω − µ̃ω

)

1− ηω −
2pKεp−1

0

(1− ηω)p−1

(21)

for all ω ∈ A∩Ã.

(iii) The map U : A → L∞(U) given by U(ω) := u(·, ω) is a random variable, and there

holds

‖U(ω)‖∞ ≤
2ε0

1− τω
= 2ε0

∞∑

j=0

τ jω, (22)

for all ω ∈ A.

Proof. We �rst noti
e that ω ∈ A if only if τω = l0‖f‖∞ µω veri�es (18) with ε = ε0.

Then, if Y (ω) = X(ω) = µω , it follows that A =
{
Y ∈

[
0, c0

l0‖f‖∞

)}
is measurable

and

P(A) = P

(
Y ∈

[
0,

c0
l0‖f‖∞

))
= PY

([
0,

c0
l0‖f‖∞

))

= ν

([
0,

c0
l0‖f‖∞

))
.

This establishes (i).

Now we deal with item (ii). Firstly, observe that ηω = max{τω, τ̃ω}, where

τω = l0‖f‖∞µω and τ̃ω = l0‖f‖∞ µ̃ω .

Subtra
ting the integral equations veri�ed by uω and ũω, and afterwards 
omputing
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‖ · ‖∞, we obtain

‖uω − ũω‖∞ ≤ ‖H(g − g̃)‖∞ + ‖H(Vω(u− ũω))‖∞

+‖H((Vω − Ṽω)ũω)‖∞

+
∥∥H(b

(
uω|uω|

p−1 − ũω|ũω|
p−1

)
)
∥∥
∞

≤ l0‖g − g̃‖∞ + l0‖f‖∞ µω ‖uω − ũω‖∞

+l0‖f‖∞ µω − µ̃ω ‖ũω‖∞

+l0p‖b‖∞‖uω − ũω‖∞(‖uω‖
p−1
∞ + ‖ũω‖

p−1
∞ ).

It follows from (19) that

‖uω‖∞ ≤
2ε0

1− τω
≤

2ε0
1− ηω

and ‖ũ‖∞ ≤
2ε0

1− τ̃ω
≤

2ε0
1− ηω

.

The two above expressions give us

‖uω − ũω‖∞ ≤ l0‖g − g̃‖∞ + l0‖f‖∞ µω ‖uω − ũω‖∞

+ l0
2ε0

1− ηω
‖f‖∞ µω − µ̃ω +

2pKεp−1
0

(1− ηω)p−1
‖uω − ũω‖∞

= l0‖g − g̃‖∞ + l0
2ε0

1− ηω
‖f‖∞ µω − µ̃ω

+

[
ηω +

2pKεp−1
0

(1− ηω)p−1

]
‖uω − ũω‖∞ ,

whi
h yields (21).

Taking µω, µ̃ω independent of ω, i.e. µω = µ and µ̃ω = µ̃, for all ω ∈ Ω, we 
an see from

(17) and (21) that the data-map solution L(µ, g) = u is 
ontinuous from

{
(µ, g) ∈ M(U)× L∞(U); µ <

c0
l0‖f‖∞

, ‖g‖∞ ≤
ε0
l0

}
to L∞(U), (23)

where u is the deterministi
 solution of (3) 
orresponding to the data (µ, g). From this,

and be
ause X |A given by X(ω) = µω is measurable, it follows that the 
omposition

U(ω) = L(µω , g) = L(X(ω), g) from A to L∞(U) is measurable.

In view of the series

1
1−z

=
∑∞

j=0 z
j
for |z| < 1, we �nish by observing that (22) follows

from (19) with ε = ε0 and ω ∈ A. �XXX

Remark 3.3. Here we give examples of random potentials for whi
h there exists a solution

almost surely in Ω. The �rst o

urs if we suppose that the measure ν has 
ompa
t support


ontained in the interval [0, a], with a < c0
l0‖f‖∞

. In this 
ase it follows from item (i) of

Theorem 3.2 that P(A) = 1, i.e., the solution exists almost surely in Ω. Se
ond, take a

[Revista Integración



An ellipti
 equation with random potential and super
riti
al nonlinearity 11

sequen
e {µj}j∈N in M(U), and let {aj(ω)}j∈N be a sequen
e of random variables from

Ω to R. Consider the random variable µω de�ned by

µω =

∞∑

j=1

aj(ω)µj .

For some q > 1, suppose that

|aj(ω)| <
(
∑∞

k=1
1
kq )

−1

l0 µj ‖f‖∞

c0
jq

a.s. in Ω,

for all j ∈ N. Then,

µω ≤

∞∑

j=1

|aj(ω)| µj <
c0

l0‖f‖∞
a.s. in Ω,

and Theorem 3.2 assures that there is an integral solution for (3) a.s. in Ω.

In the sequel we show how the Borel-Cantelli's Lemma 
an be used to give a su�
ient


ondition for the existen
e of solution a.s. in Ω.

Corollary 3.4. Let c0 and g be as in Theorem 3.2. Let {µj}j∈N be a sequen
e in M(U)
and let {aj(ω)}j∈N be a sequen
e of random variables from Ω to R. Assume that the series

µω =

∞∑

j=1

aj(ω)µj

is 
onvergent in M(U).

For ea
h k ∈ N, de�ne

Sk(ω) =

k∑

j=1

aj(ω)µj

and Lk = {ω ∈ Ω : Sk ≥ c̃}, with 0 < c̃ < c0/(l0‖f‖∞). If

∞∑

k=1

P(Lk) <∞,

then there is an integral solution for (3) almost surely in Ω .

Proof. By Borel-Cantelli's Lemma we get that P(lim supLk) = 0, that is,

P
(
∪∞
j=1 ∩

∞
k=j { Sk < c̃}

)
= 1.

It follows that, for almost sure ω ∈ Ω, there is j0 = j0(ω) su
h that for all j > j0, we
have

Sj(ω) < c̃.

Therefore, by taking the limit as j → ∞, we obtain

µω = lim
j→∞

Sj(ω) ≤ c̃ <
c0

l0‖f‖∞
a.s. in Ω.

This inequality and Theorem 3.2 imply that there is an integral solution u(x, ω) for (3)
almost surely in Ω. �XXX

Vol. XX, No. XX, XXXX℄



12 L. Cioletti, L. C. F. Ferreira & M. Furtado

A straightforward 
al
ulation shows that in general EΩ(u(x, ω)) does not satisfy the

equation (3), even if we repla
e the random potential by its mean. However, we are able

to obtain some information on the average and moments of the random solution uω. Let
us mention that, when dealing with the random variable ω 7→ uω, the expe
tation has

to be understood in the Bo
hner sense (see Se
tion 2). Note also that in fa
t a solution

uω ∈ L∞(U) of (14) belongs to the separable subspa
e C(U).

Theorem 3.5. Assume the hypotheses of Theorem 3.2 and denote by uω(x) = u(x, ω) ∈
L∞(U) the solution of (3). Let m ∈ N be �xed and suppose that

∞∑

j=1

(m+ j − 1)!

(m− 1)!j!
(l0‖f‖∞)j EA[ µω

j ] < +∞. (24)

Then EA[|u|
m(x, ω)] ∈ L∞(U) and

EA

[
‖|u|m(·, ω)‖L∞(U)

]
<∞. (25)

In the 
ase m = 1, we have EA[u(x, ω)] ∈ L∞(U) and

EA

[
‖u(·, ω)‖L∞(U)

]
≤ (2ε0)



1 +

∞∑

j=1

(l0‖f‖∞)
j
EA

[
µω

j
]


 . (26)

Proof. It follows from (22) that

‖|u|m(·, ω)‖L∞(U) ≤ ‖u(·, ω)‖mL∞(U) ≤
(2ε0)

m

(1 − τω)m
. (27)

Computing EA in (27), we obtain

‖EA [|u|m(x, ω)]‖L∞(U) ≤ EA

[
‖|u|m(x, ω)‖L∞(U)

]

≤ (2ε0)
m
EA




1 +

∞∑

j=1

(m+ j − 1)!

(m− 1)!j!
τ jω




 . (28)

By using the linearity of the expe
tation and re
alling that τω = l0‖f‖∞ µω , we get the

following upper bound for the right hand side of (28):

(2ε0)
m + (2ε0)

m

∞∑

j=1

(m+ j − 1)!

(m− 1)!j!
(l0‖f‖∞)j EA

[
µω

j
]
; (29)

this bound is �nite due to (24). From (25) with m = 1 and the estimate

‖EA [u(x, ω)]‖L∞(U) ≤ EA

[
‖|u|(x, ω)‖L∞(U)

]
, (30)

we obtain that EA[u(·, ω)] ∈ L∞(U). The estimate (26) follows by taking m = 1 in

(28)-(29) and afterwards using (30). �XXX
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In the sequel we show a weak law of large numbers for the random L∞(U)-solutions
obtained in Se
tion 2.

Theorem 3.6. Let {Xj}j∈N be an independent sequen
e of random variables Xj : Ω →
M(U). Assume that the admissible set Aj = Ω for all j, and let uj(·, ω) ∈ L∞(U) be the
solution given by Theorem 3.2 with respe
t to Xj(ω) = µω,j and g. If Xj → X a.s. and

L = sup
j∈N

(
ess sup

ω∈Ω
µω,j

)
<

c0
l0‖f‖∞

, (31)

then

k∑

j=1

uj(x, ω)− EΩ[uj(x, ω)]

k
→ 0 (32)

and

k∑

j=1

‖uj(·, ω)‖∞ − EΩ[‖uj(·, ω)‖∞]

k
→ 0, (33)

as k → ∞, where the 
onvergen
es in (32) and (33) are in the sense of probability (see

(9)).

Proof. Noti
e that Xj → X a.s. is equivalent to µω,j → µω = X(ω) in M(U) almost

surely. From this and the 
ontinuity of data-solution map L(·, ·) (see (23)), it follows

that

‖uj(·, ω)− u(·, ω)‖∞ = ‖L(µω,j, g)− L(µ, g)‖∞ → 0,

as j → ∞. Re
alling (22) and afterwards using (31), we obtain

‖uj(·, ω)‖∞ ≤
2ε0

1− l0‖f‖∞(ess supω∈Ω µω,j )

≤
2ε0
1− L

= Q0, a.s. in Ω. (34)

Next, for a �xed g su
h that ‖g‖∞ ≤ ε0
l0
, 
onsider

Sg(µ) = L(µ, g) (35)

de�ned from D to L∞(U), where D =
{
µ ∈ M(U) : µ < c0

l0‖f‖∞

}
. Sin
e Xj 's are inde-

pendent, it follows that {Yj}j∈N de�ned by

Yj = ‖uj(·, ω)‖∞ = ‖Sg ◦Xj(ω)‖∞

are also independent. So, from Chebyshev's inequality, the independen
e of {Yj}j∈N, and
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(34), we have that

P




∣∣∣∣∣∣
k−1

k∑

j=1

(‖uj(·, ω)‖∞ − EΩ[‖uj(·, ω)‖∞])

∣∣∣∣∣∣
≥ δ




≤
1

(kδ)2
EΩ




∣∣∣∣∣∣

k∑

j=1

(‖uj(·, ω)‖∞ − EΩ[‖uj(·, ω)‖∞] )

∣∣∣∣∣∣

2



=
1

(kδ)2

k∑

j=1

EΩ

[
|(‖uj(·, ω)‖∞ − EΩ[‖uj(·, ω)‖∞] )|

2
]

≤
1

(kδ)2

k∑

j=1

EΩ

[
|2Q0|

2
]

≤
1

(kδ)2

k∑

j=1

|2Q0|
2
EΩ [1]

≤
4Q2

0

δ2
1

k
.

Letting k → +∞ in the above expression, we get (33). The 
onvergen
e (32) 
an be

proved similarly to (33). �XXX
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