
NODAL SOLUTION FOR A PLANAR PROBLEM WITH FAST

INCREASING WEIGHTS

GIOVANY M. FIGUEIREDO, MARCELO F. FURTADO, AND RICARDO RUVIARO

Abstract. In this paper we prove the existence of a sign-changing solutions
for the equation

−∆u−
1

2
(x · ∇u) = f(u), x ∈ R

2,

where f has exponential critical growth in the sense of the Trudinger-Moser
inequality. In the proof we apply variational methods.

1. Introduction

Consider the nonlinear heat equation

vt −∆v = |v|p−1v on (0,∞)× R
N .

If we try to find solutions of the form v(t, x) = t−1/(p−1)u(t−1/2x), a straightforward
calculation shows that u : RN → R needs to satisfy

−∆u−
1

2
(x · ∇u) =

1

p− 1
u+ |u|p−1u in R

N .

Solutions v with the above profile are called self-similar solutions (see [8, 15]). Be-
sides providing qualitative properties like global existence, blow-up and asymptotic
behavior (see e.g. [15–17]), self-similar solutions (or self-similar variables) are impor-
tant because they preserve the PDE scaling and so carry simultaneously information
about small and large scale behaviors.

For higher dimensions N ≥ 3, there are some results concerning the above equa-
tion and its variants obtained by replacing the right-hand side of the equality by
more general nonlinearities f(u) (see [2,7–9,14,20,21] and references therein). In a
large class of such results the authors used variational techniques, in such way that
the range of the power p is limited from above by the critical Sobolev exponent
2N/(N − 2).

In this paper we are interested in the 2-dimensional case, namely the problem

(P ) −∆u−
1

2
(x · ∇u) = f(u), x ∈ R

2,

where f is such that

(f0) f ∈ C1(R,R);
(f1) there exists α0 > 0 such that

lim
|s|→+∞

f(s)

eαs2
=

{

0, if α > α0,
+∞, if α < α0.
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This means that f has critical growth. As it is well known, in dimension two this
concept is related with the so callled Trudinger-Moser inequality which appears in
the pioneer works [19,24]. After then, there is a vast literature concerning this kind
of critical inequalities. We refer to [1,10,11] for bounded domains and to [5,22,23]
for entire space case. When dealing with the operator u 7→ ∆u + (1/2)(x · ∇u) we
need a new Trudinger-Moser type inequality which was estbalished in [13]. There,
afer noticing that

div(K(x)∇u) = K(x)

[

∆u+
1

2
(x · ∇u)

]

,

for

K(x) := e|x|
2/4, x ∈ R

2,

the authors introduced the set X as being the closure of the infinitely differentiable
radial functions with compact support C∞

c,rad(R
2) with respect to the norm

‖u‖ :=

(
∫

R2

K(x)|∇u|2dx

)1/2

.

As we shall see in Section 2, the space X has nice properties. In particular, it is
well defined the functional I ∈ C1(X,R) given by

I(u) :=
1

2
‖u‖2 −

∫

K(x)F (u)dx,

where F (t) :=
∫ t

0 f(τ)dτ , and its critical points are weak solutions of (P ).
We say that a nonzero critical point w ∈ X of I is a least energy solution if

I(w) = min
u∈N

I(u),

where

N := {u ∈ X : u 6= 0, I ′(u)u = 0} .

Since we are looking for nodal solutions, instead of the above manifold, we consider
the Nehari nodal set

M :=

{

u ∈ N : u± 6= 0, I ′(u±)u± = 0

}

,

where u+(x) := max{u(x), 0} and u−(x) := min{u(x), 0}, for all x ∈ R
2. The main

objective is to guarantee that the minimum

c := min
u∈M

I(u)

is achived at a solution w ∈ X . Notice that the set M contains all sign-changing
radial solutions of (P ) and therefore the minimum point w is called least energy

nodal solution.
In the first result we consider the (subcritical) power-type case and prove the

following:

Theorem 1.1. Suppose that p > 2 and f(t) = |t|p−2t. Then the problem (P )
possesses a least energy nodal solution wp ∈ X such that

cp := min
u∈M

I(u) =

(

1

2
−

1

p

)
∫

R2

K(x)|wp|
pdx.
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The existence of nodal solutions for a power-type concave/convex nonlinearity
was obtained in [26] via a fiber map approach. Here, we use a different technique
by adapting some ideas from [3] (see also [6]). Actually, it holds for more general
nonlinearities with critical (or subcritical) growth. Hence, for our second result,
besides (f0)− (f1) we suppose that

(f2) there holds

lim
t→0

f(t)

t
= 0;

(f3) there exists θ > 2 such that

0 < θF (t) ≤ f(t)t, ∀ t 6= 0;

(f4) the map t→ f(t)/|t| is increasing in R\{0};

(f5) there exist p > 2 and τ >

[

cp

(

2θ

θ − 2

)

α

4π

](p−2)/2

such that

f(t)t ≥ τ |t|p, ∀ t ∈ R.

The main result of this paper can be stated as follows:

Theorem 1.2. Suppose that f satisfies (f0)−(f5). Then the problem (P ) possesses
a least energy nodal solution.

Condition (f3) is the well-known Ambrosetti-Rabinowitz condition which guar-
antees that Palais-Smale sequences are bounded. Since f has critical growth, this
boundedness is not sufficient to get compactness for the functional. Actually, it is
important to use some abstract inequalities proved in [13] as well as the technical
condition (f5). Roughly speaking, it assures that Palais-Smale sequences have small
norm and therefore some standard arguments can be applied to recover compact-
ness. The monotonicity condition (f4) is used to prove some projections properties
on the Nehary nodal set M.

The main results of this paper complement those of [12, 13, 26] since we deal
with a different class of nonlinearities and we find a nodal solution. They also
complement the aforementioned works which study self-similar solutions for the
nonlinear heat equation since we consider here the 2-dimensional case.

The paper is organized as follows. In the next section, we present the variational
setting of the problem and prove our first theorem. In Section 3 we prove that
minimizers of the functional I on M are critical points. In the final Section 4, we
prove Theorem 1.2.

2. Variational framework and the proof of Theorem 1.1

Throughout the paper we write
∫

u instead of
∫

R2 u(x)dx. In order to present

the functional space to deal with our problem we consider C∞
c,rad(R

2) the space of
infinitely differentiable radial functions with compact support and denote by X the
closure of C∞

c,rad(R
2) with respect to the norm

‖u‖ :=

(
∫

K(x)|∇u|2
)1/2

.
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For each s ≥ 2, we also consider the weighted Lebesgue space Ls
K(R2) of all the

measurable functions u : R2 → R such that

‖u‖s :=

(
∫

K(x)|u|s
)1/s

<∞.

According to [13, Lemma 2.1] the space X is compactally embedded into the
Lebesgue spaces Ls

K(R2) for any s ∈ [2,∞). Moreover, the following version of
the Trudinger-Moser inequality holds:

Theorem 2.1. For any q ≥ 2, u ∈ X and β > 0 we have that K(x)|u|q(eβu
2

−1) ∈
L1(R2). Moreover, if ‖u‖ ≤M and βM2 < 4π, then there exists C = C(M,β, q) >
0 such that

∫

R2

K(x)|u|q(eβu
2

− 1)dx ≤ C(M,β, q).

Proof. See [13, Theorem 1.1 and Corollary 1.2]. �

Let α > α0 be given by (f1) and q ≥ 1. By using the critical growth of f we
obtain

lim
|t|→+∞

f(t)

|t|q−1(eαt2 − 1)
= 0.

This and (f2) imply that, for any given ε > 0, there exists Cε > 0 such that

(2.1) max{|f(t)t|, |F (t)|} ≤ ε|t|2 + Cε|t|
q(eαt

2

− 1), ∀ t ∈ R.

This inequality with q = 2 and Theorem 2.1 imply that the functional

I(u) :=
1

2

∫

K(x)|∇u|2dx−

∫

K(x)F (u)dx, ∀u ∈ X,

is well defined. By using standard calculations we conclude that I ∈ C1(X,R) with
the derivative given by

I ′(u)v =

∫

K(x)(∇u · ∇v)dx −

∫

K(x)f(u)vdx, ∀u, v ∈ X

and therefore the critical points of I are weak solutions of (P ).

Lemma 2.2. Suppose that f satisfies (f0) − (f3). Then, there exists ρ > 0 scuh

that, for any u ∈ N , ‖u‖ ≥ ρ and

I(u) ≥

(

1

2
−

1

θ

)

‖u‖2.

Proof. If u ∈ N , it follows from (f3) that

I(u) = I(u)−
1

θ
I ′(u)u ≥

(

1

2
−

1

θ

)

‖u‖2.

Suppose, by contradiction, that there exists a sequence (un) ⊂ N such that
‖un‖ → 0. We may assume that, for some β < 4π, there holds α‖un‖2 < β. By
setting vn := un/‖un‖, we can use (2.1) with q > 2 and the embbeding X →֒



NODAL SOLUTION FOR A PLANAR PROBLEM WITH FAST INCREASING WEIGHTS 5

L2
K(R2) to get

‖un‖
2 =

∫

K(x)f(un)un

≤ ε

∫

K(x)u2n + Cε‖un‖
q

∫

K(x)|vn|
q
[

e4π‖un‖
2|vn|

2

− 1
]

≤ εC1‖un‖
2 + Cε‖un‖

q

∫

K(x)|vn|
q
[

eβ|vn|
2

− 1
]

,

for some constant C1 > 0. Since ‖vn‖ = 1, it follows from Theorem 2.1 that

(1 − εC1) ≤ Cε‖un‖
q−2C(1, β, q).

If ε > 0 is small, the above inequality and q > 2 contraditcs ‖un‖ → 0. The lemma
is proved. �

In what follows we prove that the set M is nonempty.

Lemma 2.3. Suppose that f satisfies (f0) − (f2) and (f5). Then, for any u ∈ X
such that u± 6= 0, there exist tu, su > 0 such that

I ′(tuu
+ + suu

−)u+ = I ′(tuu
+ + suu

−)u− = 0.

Consequently, tuu
+ + suu

− ∈ M.

Proof. Given q > 2, it follows from I ′(tu+ + sv−)(tu+) = I ′(tu+)(tu+) and (2.1)
that

I ′(tu++sv−)(tu+) ≥
t2

2
‖v+‖2−

t2

2
ε

∫

K(x)(v+)2−tqCε

∫

K(x)(v+)q(eα(tv
+)2−1).

Recalling that X →֒ L2
K(R2) and using Theorem 2.1, we obtain C1 > 0 and C2 =

C2(ε, ‖v+‖, q) > 0 such that

I ′(tu+ + su−)(tu+) ≥
t2

2
(1− εC1) ‖v

+‖2 − C2t
q‖v+‖q,

for any 0 ≤ t <
√

(4π)/(2α‖v+‖2). By picking ε > 0 small and using q > 2, we
obtain t∗ > 0 such that

(2.2) I ′(tu+ + su−)(tu+) > 0, ∀ s ≥ 0, t ∈ [0, t∗].

On the other hand, by integrating the inequality in (f5), we conclude that

(2.3) F (t) ≥
τ

p
|t|p, ∀ t ∈ R.

Hence,

I ′(tu+ + su−)(tu+) ≥
t2

2
‖v+‖2 − τ

tp

p

∫

K(x)(v+)p.

Recalling that p > 2 we obtain t∗ > t∗ such that

(2.4) I ′(tu+ + su−)(tu+) < 0, ∀ s ≥ 0, t ∈ [t∗,+∞).

In the same way, starting from I ′(tu+ + su−)(su−) = I ′(su−)(su−), we obtain
s∗ > s∗ > 0 such that

I ′(tu+ + su−)(su−) > 0, ∀ t ≥ 0, s ∈ [0, s∗]

and

I ′(tu+ + su−)(su−) < 0, ∀ t ≥ 0, s ∈ [s∗,+∞).
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The result follows from the above inequalities, (2.2)–(2.4) and a version of the
Intermediate Value Theorem proved by Miranda in [18]. �

We are ready to present the proof of our first main result.

Proof of Theorem 1.1. Supose that f(t) = |t|p−2t. Then the associated functional
is

Ip(u) :=
1

2
‖u‖2 −

1

p

∫

K(x)|u|p, u ∈ X.

Let Np and Mp be the Nehari manifold and the Nehari nodal set of Ip, respectively,
and set

cp := min
u∈Mp

Ip(u).

We are going to show that cp is attained in a (least energy) nodal solution of the
problem (P ).

Let (un) ⊂ Mp be such that Ip(un) → cp. By Lemma 2.2, (un) is bounded
in X and, up to a subsequence, un ⇀ u weakly in X . Moreover, since the map
w 7→ w± is continuous from Ls(R2) to Ls(R2) (see [6, Lemma 2.3]), we also have
that u±n ⇀ u± weakly in X . By Lemma 2.2, we have that

ρ ≤ ‖u±n ‖
2 =

∫

K(x)|u±n |
p.

Taking the limit and recalling that the embedding X →֒ Lp
K(R2) is compact, we

conclude that
∫

K(x)|u±|p ≥ ρ > 0 and therefore u± 6= 0. We can now use Lemma
2.3 to obtain tu, su > 0 such that wp := tuu

+ + suu
− ∈ Mp. By using the weak

convergence and the compact embedding again we get

cp ≤ Ip(wp) ≤ lim inf
n→+∞

Ip(un) = cp.

Moreover,

cp = Ip(wp)−
1

p
I ′p(wp)wp =

(

1

2
−

1

p

)
∫

K(x)|wp|
p.

It remains to prove that wp is a critical point of Ip. This will be done in the
next section (see Proposition 3.2) in a more general setting. ✷

3. The deformation argument

For each u ∈ X with u± 6= 0, let us consider hu : R+ × R
+ → R given by

hu(t, s) := I(tu+ + su−), ∀ (t, s) ∈ R
+ × R

+

and denote by Φu : R+ × R
+ → R

2 its gradient, that is,

Φu(t, s) := (Φu
1 (t, s),Φ

u
2 (t, s)) =

(

I ′(tu+ + su−)u+, I ′(tu+ + su−)u−
)

,

for every (t, s) ∈ R
+ × R

+.
The next result is a version of [3, Lemma 2,1] and states that, when dealing with

the Nehari nodal set, the map hu has the same properties of the usual fiber maps.

Lemma 3.1. Suppose that f satisfies (f0)− (f2) and (f4). If u ∈ M, then

hu(t, s) < hu(1, 1) = I(u), ∀ (s, t) ∈ (R+ × R
+) \ {(1, 1)}.

Moreover, det(Φu)′(1, 1) > 0.
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Proof. Let u ∈ M and notice that 0 = I ′(u)u± = I ′(u+ + u−)u±. Hence,

Φu(1, 1) =
(∂hu

∂t
(1, 1),

∂hu

∂s
(1, 1)

)

= (0, 0)

and we conclude that (1, 1) is a critical point of hu. Given t, s ≥ 0, we infer from
(2.3) that

hu(t, s) ≤
t2

2
‖u+‖2 +

s2

2
‖u−‖2 −

tp

p
τ

∫

K(x)|u+|p −
sp

p
τ

∫

K(x)|u−|p.

Since p > 2, it follows that

lim
|(t,s)|→+∞

hu(t, s) = −∞,

and therefore hu attains its maximun value at some point (t, s) ∈ R
+ × R

+.
We first prove that t, s > 0. Suppose, by contradiction, that s = 0. Thus,

I ′(tu+)tu+ = 0, or equivalently,

‖u+‖2 =

∫

K(x)f(tu+)

t
u+.

This and I ′(u+)u+ = 0 provides
∫

{u>0}

K(x)

[

f(tu+)

tu+
−
f(u+)

u+

]

(u+)2 = 0,

and it follows from (f4) that t = 1. Since Lemma 2.2 provides I(u−) > 0, we get

hu(t, 0) = hu(1, 0) = I(u+) < I(u+) + I(u−) = I(u) = hu(1, 1),

which is absurd because (t, 0) is a global maximum point. The same argument
proves that t > 0.

Since (1, 1) and (t, s) are both critical points of hw, we have that I ′(tu+)tu+ =
I ′(su−)su− = 0 and I ′(u+)u+ = I ′(u−)u− = 0. Hence, we can argue as above to
conclude that t = s = 1.

In order to check that det(Φu)′(1, 1) > 0, we first notice that

(Φu)′(t, s) =

(

g′1(t) 0
0 g′2(s)

)

,

where

g1(t) := Φu
1 (t, s) = I ′(tu+)u+ = t‖u+‖2 −

∫

K(x)f(tu+)u+,

and g2(s) := Φu
2 (t, s). Since u

+ ∈ N , it follows from the definition of g1(t) and (f4)
that

g′1(1) = ‖u+‖2 −

∫

K(x)f ′(u+)(u+)2 =

∫

K(x)
[

f(u+)u+ − f ′(u+)(u+)2
]

< 0.

Analagously g′2(1) < 0, and therefore we conclude that

det(Φu)′(1, 1) = g′1(1)g
′
2(1) > 0.

This finishes the proof. �

We now use a deformation argument to show that the set M is a natural con-
straint for the functional I. The proof is adapted from [4, Proposition 3.1].
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Proposition 3.2. Suppose that f satisfies (f0)− (f2) and (f4). If w ∈ M is such

that

(3.1) I(w) = c := min
u∈M

I(u),

then I ′(w) = 0.

Proof. Suppose, by contradiction, that the result is false. Then, there exist δ, λ > 0
such that ‖I ′(v)‖ > λ whenever ‖v − w‖ < 3δ. Setting g(t, s) := tw+ + sw−, we
can use Lemma 3.1 to obtain D ⊂ R

2 such that (1, 1) ∈ D and

(3.2) α := max
(t,s)∈∂D

I(g(t, s)) = max
(t,s)∈∂D

hw(t, s) < c.

For ε < min{(c − α)/2, λδ/8} and S := Bδ(w), it follows from [25, Lemma 2.3]
that there exists η ∈ C([0, 1]×X,X) verifying

(i) η(1, u) = u, if u 6∈ I−1([c− 2ε, c+ 2ε]);
(ii) η(1, Ic+ε ∩ S) ⊂ Ic−ε;
(iii) I(η(1, u)) ≤ I(u), for any u ∈ X .

By Lemma 3.1, (ii) and (iii) it follows that

(3.3) max
(t,s)∈D

I(η(1, g(t, s))) < c.

It follows from the definition of Φw and w ∈ M that Φw(t, s) = 0 if, and only if,
(t, s) = (1, 1) ∈ D. Thus, from the definition of the Brouwer degree and Lemma
3.1, we get

deg(Φw, D, 0) = sgn det(Φw)′(1, 1) = 1.

We set h(t, s) := η(1, g(t, s)),

(3.4) Ψ(t, s) := (t−1I ′(h(t, s))h(t, s)+, s−1I ′(h(t, s))h(t, s)−)

and notice that, by the choice of ε > 0, (3.2) and (i), we have that that g = h on
∂D. So, the definition of Φw and (3.4) imply that Φw = Ψ on ∂D, from which we
obtain

deg(Ψ, D, 0) = deg(Φw, D, 0) = 1.

Thus, there exists (t, s) ∈ D such that h(t, s) ∈ M, which contradicts (3.3). This
contradiction proves that I ′(w) = 0 and we conclude the proof. �

4. Proof of Theorem 1.2

We devote this section to the proof of our second main result. The main idea is
to consider the minimization problem defined in (3.1). The first step of the proof
is obtaining an estimative of the number c.

Lemma 4.1. Suppose that f satisfies (f0) − (f2) and (f5). Then the numer c
defined in (3.1) satisfies

c ≤
cp

τ2/(p−2)
,

where cp > 0 comes from Theorem 1.1.
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Proof. Let wp ∈ X be the solution given by Theorem 1.1. Since w± 6= 0, by Lemma
2.3, we obtain twp

, swp
> 0 such that twp

w+
p + swp

w−
p ∈ M. Hence, by (2.3) and

I ′p(w
±
p )w

±
p = 0, we get

c ≤ I(twp
w+

p + swp
w−

p )

≤
t2wp

2
‖w+

p ‖
2 +

s2wp

2
‖w−

p ‖
2 −

τ

p
tpwp

∫

K(x)|w+
p |

p −
τ

p
spwp

∫

K(x)|w−
p |

p

=

[

t2wp

2
− τ

tpwp

p

]
∫

K(x)|w+
p |

p +

[

s2wp

2
− τ

spwp

p

]
∫

K(x)|w−
p |p

≤ max
s≥0

[

s2

2
− τ

sp

p

]
∫

K(x)|wp|
p.

Recalling the value of cp given in the statement of Theorem 1.1, a straightforward
calculation provides

c ≤ max
s≥0

[

s2

2
− τ

sp

p

](

1

2
−

1

p

)−1

cp ≤
cp

τ2/(p−2)
,

and we have done. �

It can be proved that any function u ∈ X decays as |x|−1/2e−|x|2/8 at infinity.
Hence, we have the following techical result whose proof can be found in [13, Lemma
4.4]:

Lemma 4.2. Suppose G ∈ C(R,R) satisfies

G(t) ≤ c1t
4(eαt

2

− 1), ∀ t ∈ R,

with c1, α > 0. Then there exists c2, c3 > 0 such that, for any radial function

u ∈ X and R > 1, there holds
∫

BR(0)c
K(x)G(u)dx ≤

c2
R
‖u‖4(eαc

2
3‖u‖

2

− 1).

In our next result, we use the above lemma to obtain a compactness property
for sequences with small norm in X .

Lemma 4.3. Suppose that f satisfies (f0) − (f2). If (un) ⊂ X and there exists

0 < δ < (4π)/α such that

lim sup
n→+∞

‖un‖
2 < δ,

then, up to a subsequence, un ⇀ u weakly in X,

(4.1) lim
n→+∞

∫

K(x)F (un) =

∫

K(x)F (u)

and

(4.2) lim
n→+∞

∫

K(x)f(un)un =

∫

K(x)f(u)u.

Proof. The first statement is a direct consequence of the boundedness of (un) in
X . We shall prove (4.1) since the other convergence follows in the same way. For
any given ε > 0 and R > 0, we can use (2.1) with q = 4 and Lemma 4.2 to get

∫

BR(0)c
K(x)F (un) dx ≤ ε

∫

K(x)|un|
2 +

c2
R
‖un‖

4(eαc
2
3‖un‖

2

− 1) ≤ c4ε+
c5
R
,
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from which we conclude that

(4.3) lim sup
R→+∞

∫

BR(0)c
K(x)F (un)dx ≤ c4ε.

In order to estimate the integral in the ball we recall that, since the embedding
X →֒ L2

K(R2) is compact, there exists ψ2 ∈ L2(BR(0)) such that, for a.e. x ∈
BR(0), there holds

K(x)F (un) ≤ K(x)|un|
2 + c6K(x)|un|(e

α|un|
2

− 1) ≤ ψ2(x)
2 + c7|un|e

α|un|
2

,

where we have used (2.1) with ε = q = 1. We now claim that

gn(x) := |un|e
α|un|

2

→ |u|eα|u|
2

,

stongly in L1(BR(0)). If this is true, it follows from the pointwise convergence
F (un(x)) → F (u(x)) a.e. in BR(0), the last inequality and the Lebesgue Theorem
that

lim
n→+∞

∫

BR(0)

K(x)F (un) dx =

∫

BR(0)

K(x)F (u) dx.

Since R > 0 is arbitrary, this and (4.3) imply (4.1).
It remains to check that gn converges in L1(BR(0)). For any s > 1, we have that

(

eα|un|
2
)s

≤ eαsδ(u
2
n/‖un‖

2), for a.e. x ∈ BR(0).

Since δ < (4π)/α, we can pick s > 1 sufficiently close to 1 in such way that
αsδ < 4π. Thus, it follows from the above inequality and the classical Trudinger-

Moser inequality (see [19, 24]) that the sequence (eαu
2
n) is bounded in Ls(BR(0)).

Since we also have pointwise convergence, we may assume that

eαu
2
n ⇀ eαu

2

weakly in Ls(BR(0)).

If we denote by s′ > 1 the conjugated exponent of s, we have that |un| → |u| in
Ls(BR(0)) for any s > 1. These two convergences and Hölder’s inequality imply

that gn strongly converges to |u|eα|u|
2

in L1(BR(0)). �

We are ready to present the proof of the main result of this paper.

Proof of Theorem 1.2. Let (un) ⊂ M be such that I(un) → c as n → +∞. Since
I ′(un)un = 0, it follows from (f3) that

c+ on(1) = I(un)−
1

θ
I ′(un)un ≥

(

1

2
−

1

θ

)

‖un‖
2.

Hence, we infer from Lemma 4.1 that

lim sup
n→+∞

‖un‖
2 ≤

(

2θ

θ − 2

)

c ≤

(

2θ

θ − 2

)

cp
τ2/(p−2)

.

By (f5),

τ >

[

cp

(

2θ

θ − 2

)

α

4π

](p−2)/2

and therefore we conclude that

lim sup
n→+∞

‖un‖
2 <

4π

α
.

So, we can use Lemma 4.3 to obtain u ∈ X such that (4.1)-(4.2) hold.
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As in the proof of Theorem 1.1, we have that u±n ⇀ u± weakly in X . Recalling
that (u±n ) ⊂ N , we can use the last inequality, Lemmas 2.2 and 4.3 to conclude
that

ρ ≤ ‖u±n ‖
2 =

∫

K(x)f(u±n )u
±
n + on(1) =

∫

K(x)f(u±)u±,

and therefore u± 6= 0. By Lemma 2.3, there exist tu, su > 0 such that w :=
tuu

+ + suu
− ∈ M. From (4.1) and Lemma 3.1 we get

c ≤ I(w) = I(tuu
+ + suu

−)

≤ lim inf
n→+∞

I(tuu
+
n + suu

−
n )

≤ lim inf
n→+∞

I(u+n + u−n ) = c,

and therefore the infimum of I over M is attained at w ∈ M. Proposition 3.2
implies that w is a least energy nodal solution of (P ). ✷
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