MULTIPLE SOLUTIONS FOR A CRITICAL KIRCHHOFF SYSTEM
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ABSTRACT. We consider the nonlocal system
—m ([, IVu|?dz) Au
1 (fq IVv[?dz) Av

with positive potentials m and [. The nonlinearity F' is subcritical and locally superlinear at infinty. By using the
Symmetric Mountain Pass Theorem we obtain multiple solutions for small value of 1 and pa.

Fu(x,u,v) + ullu‘4u‘7 in Qv

Fy(z,u,v) + po|v|[*v, in Q,

1. INTRODUCTION
We consider the nonlocal variational system
—m ([, |Vul’dz) Au = F,(z,u,v)+ pi|u|tu, in Q,
(Sy.) —1([o|Vv]?de) Av = F,(z,u,v) + palv|*v, in Q,
u,v € W2 (Q),

where ) C R? is a bounded smooth domain, F is locallly superlinear and 1, po > 0 are parameters. The potentials
m and [ belongs to the set A of all continuous functions g € C([0, +00), R) which satisfy

(A1) g(t) > go > 0, for any ¢t > 0;

(A2) 2G(t) := 2f0tg(s)ds > g(t)t, for any t > 0.
Concerning the nonlinearity F' we assume that

(Fo) F € CHQ x R% R) is even with respect to the second variable;

F1) there holds limy,| ., @Al — 0 uniformly in ©;
|| 2]

(Fy) there exist o1, 02 € [0,2), co, ¢1, c2 € (0, +00) such that
1
ZVF(,T, z)-z—F(x,2) > —co — c1]8|7 — ca|t|??,

for any z € Q, z = (s,t) € R%, where z; - 2 stands for the inner product of 21, 2o € R%. Furthermore, if o1 # 0
or g9 # 0, we also suppose that, for some K > 0,

to < i1, if o1 # 0 and 05 = 0;
o < p1 < Kpp, if o1 # 0 and oy # 0;
w1 < Ko, if o1 =0 and o5 # 0.

(F3) there exist 61 02 € (2,6) and c3,cq, 5 € (0,400) such that
F(x,s,t) <csls|” +calt|?? +¢c5, VaeQ, (s,t)€R%

F(z,s,0)

(Fy) there exists an open set Qo C €2, with positive measure, such that limy_ SR = 0o, uniformly in €.

We state below the main result of this paper.
Theorem 1.1. Suppose that F satisfies (Fy) — (Fy). Suppose also that m, | € A and there exist a, b > 0 such that
(1.1) m(t) <a-+bt, Vt>0.

Then, for any k € N, there exists uy, > 0 such that the problem (S,) has at least k pairs of nonzero solutions for any
pus pio € (0, ;)
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We notice that condition (Fy) is weaker than the usual Ambrosetti-Ranbinowitz type condition since, in our setting,
it is allowed that F' takes negative values. Moreover, the superlinearity condition (F}) holds only when x € Q and the
second variable goes to infinity. Actually, we can prove an analogous theorem when the (local) superlinearity condition
holds on the third variable (see Remark 3.4) and the function [ verifies I(t) < a + bt.

Given a bounded smooth domain @ C RY and a positive function w, the Kirchhoff equation

—w </ |Vu|2dx) Au = g(x,u), in Q, u =20, on 0L,
Q

has its origin in the theory of nonlinear vibration. For instance, in the model case w(t) = a + bt, with a, b > 0, it
comes from the following model for the modified d’Alembert wave equation

0%u P, E [Ylou 2 d 0%u

o\ 0 tar )y |ae| ) B T 00w
proposed by Kirchhoff in [9]. Here L is the length of the string, h is the area of cross-section, E is the Young modulus
of the material, p is the mass density and P, is the initial tension. Nonlocal problems also appear in other fields
as, for example, biological systems where u describes a process which depends on the average of itself (for instance,
population density). We refer the reader to [3, 12] for more examples on the physical motivation of this problem.
As far as we know, the first paper dealing with Kirchhoff type equation via variational methods was [1]. Since then,
there is a vast literature concerning the existence, nonexistence, multiplicity and concentration behavior of solutions
for scalar nonlocal problems with critical growth (see [4, 14, 11, 6] and references therein). Although the literature for
the system is not so huge, we can cite the papers [2, 5, 8, 10, 16, 7] which contain some results which are related but
not comparable with ours.

In the next section, we prove a local compactness result for the associated energy functional. In Section 3, we prove
the main theorem.

2. THE LOCAL PALAIS-SMALE CONDITION

In what follows we write [, u instead of [, u(x)dz. We denote by |[ul|, the LP(Q)-norm of a function u € L?(£2),
for any 1 < p < cc.

Let H be the Hilbert space W, (Q) x Wy*(Q) endowed with the norm ||(u,v)]|| := o (IVuf? + [Vo|? )] . For
each component of the vector (u,v) € H, we also denote ||- || = ([, |V - [? )1/ . By using (Fy) — (F3) we can prove that
the functional I, ,, : H — R given by

1 1 1
L (,0) = 5M(Hul\2> + L0 = Gl = 20l - [ Plo.u.o),
where M (¢ fo s)ds and L(t fo s)ds, belongs to C'(H,R). Moreover, the critical points of I, ,, are

precisely the Weak solutlons of (S, )
Given ¢ € R, we say that I, ,, satisfies the Palais-Smale condition at level ¢ ((PS). for short) if any sequence
(zn) C H such that
ngr}} Iﬂl #2( ) =G hm I;,Ll 2 (Z’n«) = 07
has a convergent subsequence. The aim of this section is to prove the following local compactness result:
Proposition 2.1. Given C* > 0 there exits u* > 0 such that I,,, ,., satisfies (PS). for any c < C* and p1, po € (0, ).
The proof will be done in several steps. The first one is to verify that Palais-Smale sequences are bounded.

Lemma 2.2. If (2n) = ((un,vn)) C H is such that I, ,,(2n) = ¢ and I, (2n) — 0, then (2,) C H is bounded.
Proof. Given € > 0, there exists C. > 0 such that
(2.1) s|7t <els|®+Ce,  |t|72 <elt|®+Cey V(s,t) € R,

where o1, o3 € [0,2) come from (F5). This, (As) and (Fy) provide

c+o0n(1) + 0n (1) 20|

Y%

IMI)HZ (Zn) 4‘[;1,;,&2( )Zn

Y%

M1 H2
T3 llunlld + Tollonll§ — ol — exllunll3: — eallonllZ:

(55 — 1) lunll§ + (45 — 2c2) lenll§ — (o +2C0)12.
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Picking € > 0 small, we obtain Cy, C5 > 0 such that
(2.2) 12all§ < C1 + Callznll-
Since m, | € A, we have that m(t) > mg, [(t) > lo, for any ¢ > 0. This, I,,, ,1,(2n) = c+0,(1), (A1) — (A2) and (F3)
provide
1
M () + 5Ll

< Cllzall§ + esl + esllunllgh + calloally? + ¢+ on(1)-

| —

l
Tlunl? + ZLlval? - <

Since 01, 02 € (2,6), there holds an inequality analogous to (2.1) with 6; instead of o;. Hence, we infer from (2.2) that
min{mg;lo}

4
and therefore (z,,) is bounded in H. U

I2all* < Cll2nll§ + Cs < Csll2n]l + Cs,

The next lemma is a version of [15, Lemma 3.1].

Lemma 2.3. Suppose that (z,) = ((un,vy)) C H is such that z, — z = (u,v) weakly in H. Then, up to a subsequence,

lim |Fu(z, 2n)un — Fyu(z, z)ul =0 = lim |Fy (2, 20)vn — Fu(z, 2)0).

n—-+4o0o Q n—-4o0o Q
Proof. We only prove the first statement. Notice that, up to a subsequence, (u,,v,) — (u,v) stronly in L?(Q2) x L?(2),
(un (), v, () = (u(z),v(x)) for a.e. z € Q and
(2.3) max{|[ullg, [[unllg, [0]E, lvnllg} < C1, VneN.
Moreover, for any € > 0, we can use (F;) and Young’s inequality to obtain C. > 0 such that

[Fulir,5,1)s] < Ce + S(sl® + [171]) < Ce + el +14%), V€@, (s,1) € B2

Now, given d > 0, we can pick 0 < € < §/(8C}) and apply Egorov’s Theorem to obtain a measurable set Q C Q such
that F, (-, zn)un — Fu(-, 2)u uniformly in Q and |Q\Q| < §/(4C%).
It follows from the above inequality for F, and (2.3) that

/ |Fu (2, 20 )un — Fulz, 2)u| < 2C-|Q\ Q| 4+ 4C1e < 6.
Q\Q
This and the uniform convergence in 0 provide
limsup [ |Fu(x, 2n)un — Fy(z, 2)u] < limsup / +/ <.
n—+oo JO n—-+o0 Q Q\0
Since § > 0 is arbitrary, the result follows from the above inequality. O

Let S the best constant of the Sobolev embedding W *(Q) < L5(£2), namely
Jlul*

2/6°

g = ™
wewd 2@\ oy (Jo [ul®)

We denote by C(Q) the set of all continuos functions u :  — R endowed with the norm [ull ¢ @ = max, g u(z)| and

by M () its dual, namely the set of Radon measures. Arguing along the same lines of the proof of the concentration-
compactness lemma of Lions [13, Lemma 2.1], we can prove the following version of that result for our system:

Lemma 2.4. Suppose that (z,) = ((un,vn)) C H verifies

Uy — U, Uy — 0, weakly in Wol"Q(Q),
|Vun|? = ¢, |Vua|? = ¢, in the weak* topology o(M(2),C (1)),
[un|® — v, |v,|¢ = 7, in the weak* topology o(M(Q),C(Q)),

where ¢, ¢, v, 7 € M(Q) are nonnegative bounded measures in Q. Then there exist enumerable sets J, and Jy, which
can be empty, and two families {x; , j € J1} and {y; , j € J2} of points in Q such that

(2) v=[ulbde+ > v;de;; T=|v’dz+ Y T;dy;

JjE€I JjEJ2

(b) ¢ > [VulPdz + > (oe; ¢ > [Volde+ ) oy,

JjeJ1 JjEJ2
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where vj, U;,(j, Zj > 0. Moreover, S’U;/S < (j, for any j € J1, and v;_/s < Zj, for any j € Js.
We prove in the sequel that, for some special sequences, the sets J; and Js are finite.

Lemma 2.5. Let (z,) C H be as in Lemma 2.4 and suppose that I, . (2,) — 0. Then Jy and Jz are finite. Moreover,

(24) vj > (mOS/ul)g/Q, Vje Ji; v; > (loS/M2)3/2, Vi€ Jo.
Proof. We only pove that J; is finite, since the argument for J; is analogous. Let ¢ € C5°(RY,[0,1]) be such that

¢ =1in By/5(0) and ¢ = 0 in RV \ By(0). Suppose that J; # @, fix j € J; and define ¢.(z) := ¢((x — x;)/e), for

€ > 0. Since (¢-2,) C H is bounded we have that I}, . (2)(¢eun,0) = 0,(1), and therefore

(a1 (Am+ /|Vun| ¢5>—on o /|un| b + /Q (@ s O )i

where A, . == [u,(Vu, - Vo.). Since m(t) > mo, for any ¢ > 0, Lemma 2.4 implies that
(2.5) mg (lim sup Ap ¢ + ¢adC) < i /7¢ad7/ + [ flz,u)ud..
n—4o00 Q Q Q

We claim that lirno limsup A, . = 0. If this is true, we can take the limit as ¢ — 0 in the above equality and use the
eV nooco

Lebesgue Theorem to get mo(; < piv;. Recalling that SV1/3 < (j, we obtain moSl/;/3 < mp(; < pivj, and therefore

v; > (moS/p1)*%. Thus, v(Q) > dieaVi = 2ies (mOS/ul) and we conclude that J; is finite.
In order to prove the claim, we first use Holder’s inequality to compute

1/2
Anel < [ |un||wn||v¢s|sc< / |un|2|v¢5|2) .
Q Q

Thus, the change of variables y := (z — x;)/e and the Sobolev embedding provide

n—oo

1/2 1/2
limsup [A4,,.| < C ( / |u|2|V<z>a|2d:c> = WN-2/2¢ ( / u(ye + xj>|2|w<y>|2dy>> ,
Q {ly|<e}

and the result follows from N > 3. O
We are ready to prove our local compactness result.

Proof of Proposition 2.1. We first assume that o1, o2 € [0,2) given in (F3) are both nonzero. Given C* > 0, we fix
pi, pe € (0,71), with 1 > 0 to be choosed later. Let (2,) = ((un,vn)) C H be such that I, ,,(z,) = ¢ < C* and

I;/n 1o (zn) — 0, as n — 400. According to Lemma 2.2, we may assume that all the hypotheses of Lemma 2.4 holds.

By using the same notation of that lemma we define
Q1= v, Q=) 7
jeJ1 JEJ2

in such way that
(2.6) il =l + Qi tim [l = ol + Q.

Claim: If p > 0 is small, then Q1 < (moS/u1)3/2 and Q2 < (ZOS/M2)3/2
Indeed, by (F») we have that

1 2
g on) = S0z 2 23 8 22 0 = ol = el — el

By taking the limit, using (2.6) and the embeddings W, *(2) < L7 (Q) and L7 (Q) < L5(), we get

1 2 1 2
(2.7 B0+ 20y < M+ ol + cran gt — Bl + eaanlfull® — B2l
Choosing C7 > 0 such that 6%11 = 12a - and applying Young’s inequality with exponents r = 6 /o1 and 1’ =6/(6—01)
oyt Oy Cs
we obtain [Ju|[gh < §A- ullf + =— = 12a1c1HuH6 Dk Analogously, [[v[[g* < 12a2c2HU||6 W' So,

it follows from (2.7) that

11 42 CQ 03
EQl + EQQ <M + ol + c1an (‘ul)gl/(ﬁfol) T C202 02/(6—02) "

(p12)
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Since po < 1 < Ko, we obtain A; > 0,4 =1,...,6, independent of p; and ps, such that
Al A2 A3 A4 A5 AG
Q1< —+ — + — Q2 < — — —.
11 (Ml)G/(ﬁ 1) (Ml)G/(ﬁ 2) Lo (M2)6/(6 2) (M2)6/(6 2)
Recalling that o; € [0,2), we obtain max {1;6/(6 — 01);6/(6 — 02)} < 3/2. Hence, picking i > 0 such that A;+/7i <
(moS)*? /3, there holds

Al 1 (m08)3/2 1 (mOS) 3/2
el _ <= .
mT 3 i 3\ m
By using the same argument (with a small i if necessary), we obtain Q; < (moS/u1)%/2. The inequality for Qo can
be proved in the same way.
By using the claim and (2.4) we conclude that the sets J; and J2 of Lemma 2.4 are empty. Hence

Jim /|un|6=/ Wl lim /|vn|6=/ o,
n—-+o0o Q Q n—-+o0o Q Q

and we can use I}, . (zn)(un,0) = 0,(1), I}, . (2n)(u,0) = 0,(1) and Lemma 2.3 to get

on(1) = Im,uz(zn)(umo) - I;Ll,pbg (zn)(u,O) = m(||unH2) (”un”2 - ||u||2) +on(1).

Since m is continuous and positive we get ||u|| — |Ju||, and therefore u,, — u strongly in W, *(€2). The same argument
shows that v,, — v strongly in Wol’Q(Q). Thus, the proposition holds if o1 # 0 and o3 # 0.
If o1 # 0 and o2 = 0, equation (2.7) becomes

251 H2 o H1
T@1+ 50 = M+ ool + cranfullg — EHUHE,

and the result follows with the same argument used above. Finnally, if o7 = 09 = 0, it is suficient to consider
2 2
M < (m%ﬁ/?) and pip < (10351\2/2) . The proposition is proved. 0

3. PROOF OF THEOREMS 1.1

The main theorems of this paper will be proved as an application of the following version of the Symmetric Mountain
Pass Theorem.

Theorem 3.1. Let E = V @ W be a real Banach space with dimV < co. Suppose that I € C*(E,R) is an even
functional satisfying I(0) =0 and

(I) there exist p, a > 0 such that inf I(u) > a;
w€dB,(0)NW

(I2) there exist a subspace V C E with dimV < dim V < oo such that, for some M > 0, there holds max I(u) < M;
ueV
(I3) I satisfies the (PS). for any c € (0, M).
Then I possesses at least (dim V — dim V') pairs of nonzero critical points.

In what follows we denote by (¢;);en the normalized eigenfunctions of o(—A, Wy?(€)). For each m € N, we set
Vi = span{(p1,¢1), - -+, (¢¥m,m)} and notice that H = V,,, ® V5. Tt was proved in [15, Lemma 3.1] that, given
2<r<6andd >0, there exists mo € N such that, for any m > my,

(31) [l <allr. vuespaner...ont*
Q
We prove in the sequel that the energy functional satisfies (I7).
Lemma 3.2. There exist @ >0, m € N and p, o > 0 such that, for any p1, p2 € (0,1), there holds
Lius(2) > a, VYz€dB,(0)NV,,.

Proof. By using (A;), (F3), the Sobolev embeddings and inequality (3.1) with » = 0; and § > 0 to be choosed later,
we get

1 1 M1 M2
I(z) = Zm(IIUIIQ)IIUII2 + Zl(llvl\Q)Hvll2 - /F(:c,z) - FIIUIIS - gllvl\g

v

mo lo 0 0
THUHQ + ZHUH2 — 3|9 — callullgt — esllvllg? — pabillul|® — paba|lv]|°

Y

mo lo
THUHQ + ZHUH2 — ¢3]Q] — cad||ull® = es6]|v)|% — pabllul|® — p2bo|lv],
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for any z € V.-, Hence, for ¢ := (1/4) min{mo;lo}, there holds
I(2) 2 |l21%(c = cadl|2]| " 72 = e56]|21%272) — es|Qf — pabullz]|® — paba 121,
If p = p(8) > 0 verifies c46p1 =2 + c56p?272 = ¢/2, then
c
I(z) = 5/’2 — 3| — pab1p® — pabap®, Yz € B, (0)N V.

Notice that p(§) — 400 as § — 0, and therefore we can pick § > 0 such that (c/2)p? —c3]|Q| > (¢/4)p?. So, there exists
7 > 0 small such that

I(z) > p? (2 — b pt — ,u2b2p4) =:a >0, Vz € 0B,(0)N V"f.
for any 1, pua € (0,72). The lemma is proved. 0
The local superlinearity condition (Fj) is used only in the next result.

Lemma 3.3. Suppose that F' and m satisfy (Fy) and (1.1). Then, for any j € N, there exist a j-dimensional subspace

17j C H and M > 0 such that sup ¢ I(z) < M, for any pi,p2 > 0.

Proof. Let Q0 C Q given by (Fj) and consider (¢;);en the normalized eigenfunctions of o(—A, Wy *(Q0)). We define
the subspace V; := span{(¢;,0),...,(¢;,0)}. Since V; is finite dimensional, there exists C; = C1(V;) > 0 such that

(3.2) Crllul* < |lulf, VueV.

Let b > 0 be given in (1.1) and ¢ > b/(4Cy). Tt follows from (F}) and (Fp) that, F(x,s,0) > ¢|s|* — Ca, for any
x € Qo, s € R, and some constant Co = C2(C4,b) > 0. This, (1.1) and (3.2) imply that, for any z € V;, there holds

a b a
() < lul? (01— )l + Calf] < sup {36 4 catt + Caf}.
t>0

with 9 = (¢Cy — b/4) > 0. The result follows if we call M the right-hand side above.

We are ready to prove our main result.

Proof of Theorem 1.1. Let k € N be fixed. By Lemma 3.2, we can find m € N large in such way that, for the
decomposition H =V & W, with V := {(¢1,0) ..., (¢m,0)), W := V+, the functional I, ,, satisfies (I1) for any p,
w2 € (0,7). Moreover, by using Lemma 3.3, we obtain a subspace Vi, C H and M > 0 such that

dim‘A/ker:(k—Fm), sup I <M, VYpui, pus>0.
2EViim
Hence, I,,, ., satisfies (I2). By considering M as above, we obtain from Proposition 2.1 a number p* > 0 such that
1., . satisfies (I3), for any pi, pe € (0, pu*). Since I, ,,(0) = 0 and I, ,, is even, we can set pj := min{zm; x*} and
use Theorem 3.1 to conclude that, for any 1 € (0, ), the functional I, ,, has at lesat (k +m — m) = k pairs of
nonzero critical points. O

Remark 3.4. A simple inspecion of the proof of Lemma 3.3 shows that it also holds if we replace the bound condition
inm by l(t) < a+bt, for any t > 0, and the superlinearity condition (Fy) by

F(xz,0,t)
[t]4

(ﬁ) there exists an open set g C (), with positive measure, such that lim;_, = +o00, uniformly in Q.

Hence, in this new setting, we also get multiple solutions for the problem (S,,).
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