MULTIPLE SOLUTIONS FOR A CRITICAL KIRCHHOFF SYSTEM

MARCELO F. FURTADO, LUAN D. DE OLIVEIRA, AND JOÃO PABLO P. DA SILVA

Abstract. We consider the nonlocal system

$$
\left\{\begin{aligned}
-m\left(\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u & =F_{u}(x, u, v)+\mu_{1}|u|^{4} u, \text { in } \Omega \\
-l\left(\int_{\Omega}|\nabla v|^{2} \mathrm{~d} x\right) \Delta v & =F_{v}(x, u, v)+\mu_{2}|v|^{4} v, \text { in } \Omega
\end{aligned}\right.
$$

with positive potentials m and l. The nonlinearity F is subcritical and locally superlinear at infinty. By using the Symmetric Mountain Pass Theorem we obtain multiple solutions for small value of μ_{1} and μ_{2}.

1. Introduction

We consider the nonlocal variational system

$$
\left\{\begin{align*}
-m\left(\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u & =F_{u}(x, u, v)+\mu_{1}|u|^{4} u, \text { in } \Omega \\
-l\left(\int_{\Omega}|\nabla v|^{2} \mathrm{~d} x\right) \Delta v & =F_{v}(x, u, v)+\mu_{2}|v|^{4} v, \text { in } \Omega \\
u, v \in W_{0}^{1,2}(\Omega) &
\end{align*}\right.
$$

where $\Omega \subset \mathbb{R}^{3}$ is a bounded smooth domain, F is locallly superlinear and $\mu_{1}, \mu_{2}>0$ are parameters. The potentials m and l belongs to the set \mathcal{A} of all continuous functions $g \in C([0,+\infty), \mathbb{R})$ which satisfy
$\left(\mathcal{A}_{1}\right) g(t) \geq g_{0}>0$, for any $t \geq 0 ;$
$\left(\mathcal{A}_{2}\right) 2 G(t):=2 \int_{0}^{t} g(s) \mathrm{d} s \geq g(t) t$, for any $t \geq 0$.
Concerning the nonlinearity F we assume that
$\left(F_{0}\right) F \in C^{1}\left(\Omega \times \mathbb{R}^{2}, \mathbb{R}\right)$ is even with respect to the second variable;
$\left(F_{1}\right)$ there holds $\lim _{|z| \rightarrow \infty} \frac{|\nabla F(x, z)|}{|z|^{5}}=0$, uniformly in Ω;
$\left(F_{2}\right)$ there exist $\sigma_{1}, \sigma_{2} \in[0,2), c_{0}, c_{1}, c_{2} \in(0,+\infty)$ such that

$$
\frac{1}{4} \nabla F(x, z) \cdot z-F(x, z) \geq-c_{0}-c_{1}|s|^{\sigma_{1}}-c_{2}|t|^{\sigma_{2}}
$$

for any $x \in \Omega, z=(s, t) \in \mathbb{R}^{2}$, where $z_{1} \cdot z_{2}$ stands for the inner product of $z_{1}, z_{2} \in \mathbb{R}^{2}$. Furthermore, if $\sigma_{1} \neq 0$ or $\sigma_{2} \neq 0$, we also suppose that, for some $K>0$,

$$
\begin{cases}\mu_{2} \leq \mu_{1}, & \text { if } \sigma_{1} \neq 0 \text { and } \sigma_{2}=0 \\ \mu_{2} \leq \mu_{1} \leq K \mu_{1}, & \text { if } \sigma_{1} \neq 0 \text { and } \sigma_{2} \neq 0 \\ \mu_{1} \leq K \mu_{2}, & \text { if } \sigma_{1}=0 \text { and } \sigma_{2} \neq 0\end{cases}
$$

$\left(F_{3}\right)$ there exist $\theta_{1} \theta_{2} \in(2,6)$ and $c_{3}, c_{4}, c_{5} \in(0,+\infty)$ such that

$$
F(x, s, t) \leq c_{3}|s|^{\theta_{1}}+c_{4}|t|^{\theta_{2}}+c_{5}, \quad \forall x \in \Omega,(s, t) \in \mathbb{R}^{2} ;
$$

$\left(F_{4}\right)$ there exists an open set $\Omega_{0} \subset \Omega$, with positive measure, such that $\lim _{|s| \rightarrow \infty} \frac{F(x, s, 0)}{|s|^{4}}=+\infty$, uniformly in Ω_{0}.
We state below the main result of this paper.
Theorem 1.1. Suppose that F satisfies $\left(F_{0}\right)-\left(F_{4}\right)$. Suppose also that $m, l \in \mathcal{A}$ and there exist $a, b>0$ such that

$$
\begin{equation*}
m(t) \leq a+b t, \quad \forall t \geq 0 \tag{1.1}
\end{equation*}
$$

Then, for any $k \in \mathbb{N}$, there exists $\mu_{k}^{*}>0$ such that the problem $\left(S_{\mu}\right)$ has at least k pairs of nonzero solutions for any $\mu_{1}, \mu_{2} \in\left(0, \mu_{k}^{*}\right)$.

[^0]We notice that condition $\left(F_{2}\right)$ is weaker than the usual Ambrosetti-Ranbinowitz type condition since, in our setting, it is allowed that F takes negative values. Moreover, the superlinearity condition $\left(F_{4}\right)$ holds only when $x \in \Omega_{0}$ and the second variable goes to infinity. Actually, we can prove an analogous theorem when the (local) superlinearity condition holds on the third variable (see Remark 3.4) and the function l verifies $l(t) \leq a+b t$.

Given a bounded smooth domain $\Omega \subset \mathbb{R}^{N}$ and a positive function w, the Kirchhoff equation

$$
-w\left(\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u=g(x, u), \text { in } \Omega, \quad u=0, \text { on } \partial \Omega,
$$

has its origin in the theory of nonlinear vibration. For instance, in the model case $w(t)=a+b t$, with $a, b>0$, it comes from the following model for the modified d'Alembert wave equation

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=g(x, u)
$$

proposed by Kirchhoff in [9]. Here L is the length of the string, h is the area of cross-section, E is the Young modulus of the material, ρ is the mass density and P_{0} is the initial tension. Nonlocal problems also appear in other fields as, for example, biological systems where u describes a process which depends on the average of itself (for instance, population density). We refer the reader to $[3,12]$ for more examples on the physical motivation of this problem. As far as we know, the first paper dealing with Kirchhoff type equation via variational methods was [1]. Since then, there is a vast literature concerning the existence, nonexistence, multiplicity and concentration behavior of solutions for scalar nonlocal problems with critical growth (see $[4,14,11,6]$ and references therein). Although the literature for the system is not so huge, we can cite the papers $[2,5,8,10,16,7]$ which contain some results which are related but not comparable with ours.

In the next section, we prove a local compactness result for the associated energy functional. In Section 3, we prove the main theorem.

2. The local Palais-Smale condition

In what follows we write $\int_{\Omega} u$ instead of $\int_{\Omega} u(x) d x$. We denote by $\|u\|_{p}$ the $L^{p}(\Omega)$-norm of a function $u \in L^{p}(\Omega)$, for any $1 \leq p \leq \infty$.

Let H be the Hilbert space $W_{0}^{1,2}(\Omega) \times W_{0}^{1,2}(\Omega)$ endowed with the norm $\|(u, v)\|:=\left[\int_{\Omega}\left(|\nabla u|^{2}+|\nabla v|^{2}\right)\right]^{1 / 2}$. For each component of the vector $(u, v) \in H$, we also denote $\|\cdot\|=\left(\int_{\Omega}|\nabla \cdot|^{2}\right)^{1 / 2}$. By using $\left(F_{0}\right)-\left(F_{3}\right)$ we can prove that the functional $I_{\mu_{1}, \mu_{2}}: H \rightarrow \mathbb{R}$ given by

$$
I_{\mu_{1}, \mu_{2}}(u, v):=\frac{1}{2} M\left(\|u\|^{2}\right)+\frac{1}{2} L\left(\|v\|^{2}\right)-\frac{\mu_{1}}{6}\|u\|_{6}^{6}-\frac{\mu_{2}}{6}\|v\|_{6}^{6}-\int_{\Omega} F(x, u, v)
$$

where $M(t):=\int_{0}^{t} m(s) \mathrm{d} s$ and $L(t):=\int_{0}^{t} l(s) \mathrm{d} s$, belongs to $C^{1}(H, \mathbb{R})$. Moreover, the critical points of $I_{\mu_{1}, \mu_{2}}$ are precisely the weak solutions of $\left(S_{\mu}\right)$.

Given $c \in \mathbb{R}$, we say that $I_{\mu_{1}, \mu_{2}}$ satisfies the Palais-Smale condition at level $c\left((P S)_{c}\right.$ for short) if any sequence $\left(z_{n}\right) \subset H$ such that

$$
\lim _{n \rightarrow+\infty} I_{\mu_{1}, \mu_{2}}\left(z_{n}\right)=c, \quad \lim _{n \rightarrow+\infty} I_{\mu_{1}, \mu_{2}}^{\prime}\left(z_{n}\right)=0
$$

has a convergent subsequence. The aim of this section is to prove the following local compactness result:
Proposition 2.1. Given $C^{*}>0$ there exits $\mu^{*}>0$ such that $I_{\mu_{1}, \mu_{2}}$ satisfies $(P S)_{c}$ for any $c<C^{*}$ and $\mu_{1}, \mu_{2} \in\left(0, \mu^{*}\right)$.
The proof will be done in several steps. The first one is to verify that Palais-Smale sequences are bounded.
Lemma 2.2. If $\left(z_{n}\right)=\left(\left(u_{n}, v_{n}\right)\right) \subset H$ is such that $I_{\mu_{1}, \mu_{2}}\left(z_{n}\right) \rightarrow c$ and $I_{\mu_{1}, \mu_{2}}^{\prime}\left(z_{n}\right) \rightarrow 0$, then $\left(z_{n}\right) \subset H$ is bounded.
Proof. Given $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
|s|^{\sigma_{1}} \leq \varepsilon|s|^{6}+C_{\varepsilon}, \quad|t|^{\sigma_{2}} \leq \varepsilon|t|^{6}+C_{\varepsilon}, \quad \forall(s, t) \in \mathbb{R}^{2} \tag{2.1}
\end{equation*}
$$

where $\sigma_{1}, \sigma_{2} \in[0,2)$ come from $\left(F_{2}\right)$. This, $\left(\mathcal{A}_{2}\right)$ and $\left(F_{2}\right)$ provide

$$
\begin{aligned}
c+o_{n}(1)+o_{n}(1)\left\|z_{n}\right\| & \geq I_{\mu_{1}, \mu_{2}}\left(z_{n}\right)-\frac{1}{4} I_{\mu_{1}, \mu_{2}}^{\prime}\left(z_{n}\right) z_{n} \\
& \geq \frac{\mu_{1}}{12}\left\|u_{n}\right\|_{6}^{6}+\frac{\mu_{2}}{12}\left\|v_{n}\right\|_{6}^{6}-c_{0}|\Omega|-c_{1}\left\|u_{n}\right\|_{\sigma_{1}}^{\sigma_{1}}-c_{2}\left\|v_{n}\right\|_{\sigma_{2}}^{\sigma_{2}} \\
& \geq\left(\frac{\mu_{1}}{12}-\varepsilon c_{1}\right)\left\|u_{n}\right\|_{6}^{6}+\left(\frac{\mu_{2}}{12}-\varepsilon c_{2}\right)\left\|v_{n}\right\|_{6}^{6}-\left(c_{0}+2 C_{\varepsilon}\right)|\Omega|
\end{aligned}
$$

Picking $\varepsilon>0$ small, we obtain $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
\left\|z_{n}\right\|_{6}^{6} \leq C_{1}+C_{2}\left\|z_{n}\right\| . \tag{2.2}
\end{equation*}
$$

Since $m, l \in \mathcal{A}$, we have that $m(t) \geq m_{0}, l(t) \geq l_{0}$, for any $t \geq 0$. This, $I_{\mu_{1}, \mu_{2}}\left(z_{n}\right)=c+o_{n}(1),\left(\mathcal{A}_{1}\right)-\left(\mathcal{A}_{2}\right)$ and $\left(F_{3}\right)$ provide

$$
\begin{aligned}
\frac{l_{0}}{4}\left\|u_{n}\right\|^{2}+\frac{m_{0}}{4}\left\|v_{n}\right\|^{2} & \leq \frac{1}{2} M\left(\left\|u_{n}\right\|^{2}\right)+\frac{1}{2} L\left(\left\|v_{n}\right\|^{2}\right) \\
& \leq C\left\|z_{n}\right\|_{6}^{6}+c_{5}|\Omega|+c_{3}\left\|u_{n}\right\|_{\theta_{1}}^{\theta_{1}}+c_{4}\left\|v_{n}\right\|_{\theta_{2}}^{\theta_{2}}+c+o_{n}(1)
\end{aligned}
$$

Since $\theta_{1}, \theta_{2} \in(2,6)$, there holds an inequality analogous to (2.1) with θ_{i} instead of σ_{i}. Hence, we infer from (2.2) that

$$
\frac{\min \left\{m_{0} ; l_{0}\right\}}{4}\left\|z_{n}\right\|^{2} \leq C_{3}\left\|z_{n}\right\|_{6}^{6}+C_{4} \leq C_{5}\left\|z_{n}\right\|+C_{6}
$$

and therefore $\left(z_{n}\right)$ is bounded in H.
The next lemma is a version of [15, Lemma 3.1].
Lemma 2.3. Suppose that $\left(z_{n}\right)=\left(\left(u_{n}, v_{n}\right)\right) \subset H$ is such that $z_{n} \rightharpoonup z=(u, v)$ weakly in H. Then, up to a subsequence,

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|F_{u}\left(x, z_{n}\right) u_{n}-F_{u}(x, z) u\right|=0=\lim _{n \rightarrow+\infty} \int_{\Omega}\left|F_{v}\left(x, z_{n}\right) v_{n}-F_{u}(x, z) v\right|
$$

Proof. We only prove the first statement. Notice that, up to a subsequence, $\left(u_{n}, v_{n}\right) \rightarrow(u, v)$ stronly in $L^{2}(\Omega) \times L^{2}(\Omega)$, $\left(u_{n}(x), v_{n}(x)\right) \rightarrow(u(x), v(x))$ for a.e. $x \in \Omega$ and

$$
\begin{equation*}
\max \left\{\|u\|_{6}^{6},\left\|u_{n}\right\|_{6}^{6},\|v\|_{6}^{6},\left\|v_{n}\right\|_{6}^{6}\right\} \leq C_{1}, \quad \forall n \in \mathbb{N} . \tag{2.3}
\end{equation*}
$$

Moreover, for any $\varepsilon>0$, we can use (F_{1}) and Young's inequality to obtain $C_{\varepsilon}>0$ such that

$$
\left|F_{u}(x, s, t) s\right| \leq C_{\varepsilon}+\frac{\varepsilon}{2}\left(|s|^{6}+|t|^{5}|s|\right) \leq C_{\varepsilon}+\varepsilon\left(|s|^{6}+|t|^{6}\right), \quad \forall x \in \Omega,(s, t) \in \mathbb{R}^{2}
$$

Now, given $\delta>0$, we can pick $0<\varepsilon<\delta /\left(8 C_{1}\right)$ and apply Egorov's Theorem to obtain a measurable set $\widehat{\Omega} \subset \Omega$ such that $F_{u}\left(\cdot, z_{n}\right) u_{n} \rightarrow F_{u}(\cdot, z) u$ uniformly in $\widehat{\Omega}$ and $|\Omega \backslash \widehat{\Omega}|<\delta /\left(4 C_{\varepsilon}\right)$.

It follows from the above inequality for F_{u} and (2.3) that

$$
\int_{\Omega \backslash \widehat{\Omega}}\left|F_{u}\left(x, z_{n}\right) u_{n}-F_{u}(x, z) u\right| \leq 2 C_{\varepsilon}|\Omega \backslash \widehat{\Omega}|+4 C_{1} \varepsilon \leq \delta .
$$

This and the uniform convergence in $\widehat{\Omega}$ provide

$$
\limsup _{n \rightarrow+\infty} \int_{\Omega}\left|F_{u}\left(x, z_{n}\right) u_{n}-F_{u}(x, z) u\right| \leq \limsup _{n \rightarrow+\infty}\left(\int_{\widehat{\Omega}}+\int_{\Omega \backslash \widehat{\Omega}}\right) \leq \delta .
$$

Since $\delta>0$ is arbitrary, the result follows from the above inequality.
Let S the best constant of the Sobolev embedding $W_{0}^{1,2}(\Omega) \hookrightarrow L^{6}(\Omega)$, namely

$$
S:=\inf _{u \in W_{0}^{1,2}(\Omega) \backslash\{0\}} \frac{\|u\|^{2}}{\left(\int_{\Omega}|u|^{6}\right)^{2 / 6}} .
$$

We denote by $C(\bar{\Omega})$ the set of all continuos functions $u: \bar{\Omega} \rightarrow \mathbb{R}$ endowed with the norm $\|u\|_{C(\bar{\Omega})}:=\max _{x \in \bar{\Omega}}|u(x)|$ and by $\mathcal{M}(\bar{\Omega})$ its dual, namely the set of Radon measures. Arguing along the same lines of the proof of the concentrationcompactness lemma of Lions [13, Lemma 2.1], we can prove the following version of that result for our system:
Lemma 2.4. Suppose that $\left(z_{n}\right)=\left(\left(u_{n}, v_{n}\right)\right) \subset H$ verifies

$$
\begin{cases}u_{n} \rightharpoonup u, v_{n} \rightharpoonup v, & \text { weakly in } W_{0}^{1,2}(\Omega), \\ \left|\nabla u_{n}\right|^{2} \rightharpoonup \zeta,\left|\nabla v_{n}\right|^{2} \rightharpoonup \bar{\zeta}, & \text { in the weak } k^{\star} \text { topology } \sigma(\mathcal{M}(\bar{\Omega}), C(\bar{\Omega})), \\ \left|u_{n}\right|^{6} \rightharpoonup \nu,\left|v_{n}\right|^{6} \stackrel{\rightharpoonup}{\rightharpoonup}, & \text { in the weak }{ }^{\star} \text { topology } \sigma(\mathcal{M}(\bar{\Omega}), C(\bar{\Omega})),\end{cases}
$$

where $\zeta, \bar{\zeta}, \nu, \bar{\nu} \in \mathcal{M}(\bar{\Omega})$ are nonnegative bounded measures in $\bar{\Omega}$. Then there exist enumerable sets J_{1} and J_{2}, which can be empty, and two families $\left\{x_{j}, j \in J_{1}\right\}$ and $\left\{y_{j}, j \in J_{2}\right\}$ of points in $\bar{\Omega}$ such that
(a) $\nu=|u|^{6} d x+\sum_{j \in J_{1}} \nu_{j} \delta_{x_{j}} ; \quad \bar{\nu}=|v|^{6} d x+\sum_{j \in J_{2}} \bar{\nu}_{j} \delta_{y_{j}}$;
(b) $\zeta \geq|\nabla u|^{2} d x+\sum_{j \in J_{1}} \zeta_{j} \delta_{x_{j}} ; \quad \bar{\zeta} \geq|\nabla v|^{2} d x+\sum_{j \in J_{2}} \zeta_{j} \delta_{y_{j}}$,
where $\nu_{j}, \bar{\nu}_{j}, \zeta_{j}, \bar{\zeta}_{j}>0$. Moreover, $S \nu_{j}^{1 / 3} \leq \zeta_{j}$, for any $j \in J_{1}$, and $\bar{\nu}_{j}^{1 / 3} \leq \bar{\zeta}_{j}$, for any $j \in J_{2}$.
We prove in the sequel that, for some special sequences, the sets J_{1} and J_{2} are finite.
Lemma 2.5. Let $\left(z_{n}\right) \subset H$ be as in Lemma 2.4 and suppose that $I_{\mu_{1}, \mu_{2}}^{\prime}\left(z_{n}\right) \rightarrow 0$. Then J_{1} and J_{2} are finite. Moreover,

$$
\begin{equation*}
\nu_{j} \geq\left(m_{0} S / \mu_{1}\right)^{3 / 2}, \quad \forall j \in J_{1} ; \quad \bar{\nu}_{j} \geq\left(l_{0} S / \mu_{2}\right)^{3 / 2}, \quad \forall j \in J_{2} \tag{2.4}
\end{equation*}
$$

Proof. We only pove that J_{1} is finite, since the argument for J_{2} is analogous. Let $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ be such that $\phi \equiv 1$ in $B_{1 / 2}(0)$ and $\phi \equiv 0$ in $\mathbb{R}^{N} \backslash B_{1}(0)$. Suppose that $J_{1} \neq \varnothing$, fix $j \in J_{1}$ and define $\phi_{\varepsilon}(x):=\phi\left(\left(x-x_{j}\right) / \varepsilon\right)$, for $\varepsilon>0$. Since $\left(\phi_{\varepsilon} z_{n}\right) \subset H$ is bounded we have that $I_{\mu_{1}, \mu_{2}}^{\prime}\left(z_{n}\right)\left(\phi_{\varepsilon} u_{n}, 0\right)=o_{n}(1)$, and therefore

$$
m\left(\left\|u_{n}\right\|^{2}\right)\left(A_{n, \varepsilon}+\int_{\Omega}\left|\nabla u_{n}\right|^{2} \phi_{\varepsilon}\right)=o_{n}(1)+\mu_{1} \int_{\Omega}\left|u_{n}\right|^{6} \phi_{\varepsilon}+\int_{\Omega} F_{u}\left(x, u_{n}, v_{n}\right) u_{n} \phi_{\varepsilon}
$$

where $A_{n, \varepsilon}:=\int u_{n}\left(\nabla u_{n} \cdot \nabla \phi_{\varepsilon}\right)$. Since $m(t) \geq m_{0}$, for any $t \geq 0$, Lemma 2.4 implies that

$$
\begin{equation*}
m_{0}\left(\limsup _{n \rightarrow+\infty} A_{n, \varepsilon}+\int_{\bar{\Omega}} \phi_{\varepsilon} d \zeta\right) \leq \mu_{1} \int_{\bar{\Omega}} \phi_{\varepsilon} d \nu+\int_{\Omega} f(x, u) u \phi_{\varepsilon} \tag{2.5}
\end{equation*}
$$

We claim that $\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} A_{n, \varepsilon}=0$. If this is true, we can take the limit as $\varepsilon \rightarrow 0$ in the above equality and use the Lebesgue Theorem to get $m_{0} \zeta_{j} \leq \mu_{1} \nu_{j}$. Recalling that $S \nu_{j}^{1 / 3} \leq \zeta_{j}$, we obtain $m_{0} S \nu_{j}^{1 / 3} \leq m_{0} \zeta_{j} \leq \mu_{1} \nu_{j}$, and therefore $\nu_{j} \geq\left(m_{0} S / \mu_{1}\right)^{3 / 2}$. Thus, $\nu(\bar{\Omega}) \geq \sum_{j \in J} \nu_{j} \geq \sum_{j \in J}\left(m_{0} S / \mu_{1}\right)^{3 / 2}$ and we conclude that J_{1} is finite.

In order to prove the claim, we first use Hölder's inequality to compute

$$
\left|A_{n, \varepsilon}\right| \leq \int_{\Omega}\left|u_{n}\right|\left|\nabla u_{n}\right|\left|\nabla \phi_{\varepsilon}\right| \leq C\left(\int_{\Omega}\left|u_{n}\right|^{2}\left|\nabla \phi_{\varepsilon}\right|^{2}\right)^{1 / 2}
$$

Thus, the change of variables $y:=\left(x-x_{j}\right) / \varepsilon$ and the Sobolev embedding provide

$$
\left.\limsup _{n \rightarrow \infty}\left|A_{n, \varepsilon}\right| \leq C\left(\int_{\Omega}|u|^{2}\left|\nabla \phi_{\varepsilon}\right|^{2} d x\right)^{1 / 2}=\varepsilon^{(N-2) / 2} C\left(\int_{\{|y| \leq \varepsilon\}}\left|u\left(y \varepsilon+x_{j}\right)\right|^{2}|\nabla \phi(y)|^{2} d y\right)\right)^{1 / 2}
$$

and the result follows from $N \geq 3$.
We are ready to prove our local compactness result.
Proof of Proposition 2.1. We first assume that $\sigma_{1}, \sigma_{2} \in[0,2)$ given in $\left(F_{2}\right)$ are both nonzero. Given $C^{*}>0$, we fix $\mu_{1}, \mu_{2} \in(0, \widetilde{\mu})$, with $\widetilde{\mu}>0$ to be choosed later. Let $\left(z_{n}\right)=\left(\left(u_{n}, v_{n}\right)\right) \subset H$ be such that $I_{\mu_{1}, \mu_{2}}\left(z_{n}\right) \rightarrow c \leq C^{*}$ and $I_{\mu_{1}, \mu_{2}}^{\prime}\left(z_{n}\right) \rightarrow 0$, as $n \rightarrow+\infty$. According to Lemma 2.2, we may assume that all the hypotheses of Lemma 2.4 holds. By using the same notation of that lemma we define

$$
Q_{1}:=\sum_{j \in J_{1}} \nu_{j}, \quad Q_{2}:=\sum_{j \in J_{2}} \bar{\nu}_{j}
$$

in such way that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|u_{n}\right\|_{6}^{6}=\|u\|_{6}^{6}+Q_{1}, \quad \lim _{n \rightarrow+\infty}\left\|v_{n}\right\|_{6}^{6}=\|v\|_{6}^{6}+Q_{2} . \tag{2.6}
\end{equation*}
$$

Claim: If $\widetilde{\mu}>0$ is small, then $Q_{1}<\left(m_{0} S / \mu_{1}\right)^{3 / 2}$ and $Q_{2}<\left(l_{0} S / \mu_{2}\right)^{3 / 2}$.
Indeed, by $\left(F_{2}\right)$ we have that

$$
I_{\mu_{1}, \mu_{2}}\left(z_{n}\right)-\frac{1}{4} I_{\mu_{1}, \mu_{2}}^{\prime}\left(z_{n}\right) z_{n} \geq \frac{\mu_{1}}{12}\left\|u_{n}\right\|_{6}^{6}+\frac{\mu_{2}}{12}\left\|v_{n}\right\|_{6}^{6}-c_{0}|\Omega|-c_{1}\left\|u_{n}\right\|_{\sigma_{1}}^{\sigma_{1}}-c_{2}\left\|v_{n}\right\|_{\sigma_{2}}^{\sigma_{2}}
$$

By taking the limit, using (2.6) and the embeddings $W_{0}^{1,2}(\Omega) \hookrightarrow L^{\sigma_{i}}(\Omega)$ and $L^{\sigma_{1}}(\Omega) \hookrightarrow L^{6}(\Omega)$, we get

$$
\begin{equation*}
\frac{\mu_{1}}{12} Q_{1}+\frac{\mu_{2}}{12} Q_{2} \leq M+c_{0}|\Omega|+c_{1} a_{1}\|u\|_{6}^{\sigma_{1}}-\frac{\mu_{1}}{12}\|u\|_{6}^{6}+c_{2} a_{2}\|u\|_{6}^{\sigma_{2}}-\frac{\mu_{2}}{12}\|v\|_{6}^{6} \tag{2.7}
\end{equation*}
$$

Choosing $C_{1}>0$ such that $\frac{\sigma_{1}}{6 C_{1}}=\frac{\mu_{1}}{12 a_{1} c_{1}}$ and applying Young's inequality with exponents $r=6 / \sigma_{1}$ and $r^{\prime}=6 /\left(6-\sigma_{1}\right)$ we obtain $\|u\|_{6}^{\sigma_{1}} \leq \frac{\sigma_{1}}{6 C_{1}}\|u\|_{6}^{6}+\frac{C_{1}^{r^{\prime}-1}}{r^{\prime}}=\frac{\mu_{1}}{12 a_{1} c_{1}}\|u\|_{6}^{6}+\frac{C_{2}}{\left(\mu_{1}\right)^{\sigma_{1} /\left(6-\sigma_{1}\right)}}$. Analogously, $\|v\|_{6}^{\sigma_{2}} \leq \frac{\mu_{2}}{12 a_{2} c_{2}}\|v\|_{6}^{6}+\frac{C_{3}}{\left(\mu_{2}\right)^{\sigma_{2} /\left(6-\sigma_{2}\right)}}$. So, it follows from (2.7) that

$$
\frac{\mu_{1}}{12} Q_{1}+\frac{\mu_{2}}{12} Q_{2} \leq M+c_{0}|\Omega|+c_{1} a_{1} \frac{C_{2}}{\left(\mu_{1}\right)^{\sigma_{1} /\left(6-\sigma_{1}\right)}}+c_{2} a_{2} \frac{C_{3}}{\left(\mu_{2}\right)^{\sigma_{2} /\left(6-\sigma_{2}\right)}}
$$

Since $\mu_{2} \leq \mu_{1} \leq K \mu_{2}$, we obtain $A_{i}>0, i=1, \ldots, 6$, independent of μ_{1} and μ_{2}, such that

$$
Q_{1} \leq \frac{A_{1}}{\mu_{1}}+\frac{A_{2}}{\left(\mu_{1}\right)^{6 /\left(6-\sigma_{1}\right)}}+\frac{A_{3}}{\left(\mu_{1}\right)^{6 /\left(6-\sigma_{2}\right)}}, \quad Q_{2} \leq \frac{A_{4}}{\mu_{2}}+\frac{A_{5}}{\left(\mu_{2}\right)^{6 /\left(6-\sigma_{2}\right)}}+\frac{A_{6}}{\left(\mu_{2}\right)^{6 /\left(6-\sigma_{2}\right)}}
$$

Recalling that $\sigma_{i} \in[0,2)$, we obtain $\max \left\{1 ; 6 /\left(6-\sigma_{1}\right) ; 6 /\left(6-\sigma_{2}\right)\right\}<3 / 2$. Hence, picking $\widetilde{\mu}>0$ such that $A_{1} \sqrt{\widetilde{\mu}} \leq$ $\left(m_{0} S\right)^{3 / 2} / 3$, there holds

$$
\frac{A_{1}}{\mu_{1}} \leq \frac{1}{3} \frac{\left(m_{0} S\right)^{3 / 2}}{\mu_{1} \sqrt{\widetilde{\mu}}} \leq \frac{1}{3}\left(\frac{m_{0} S}{\mu_{1}}\right)^{3 / 2}
$$

By using the same argument (with a small $\widetilde{\mu}$ if necessary), we obtain $Q_{1}<\left(m_{0} S / \mu_{1}\right)^{3 / 2}$. The inequality for Q_{2} can be proved in the same way.

By using the claim and (2.4) we conclude that the sets J_{1} and J_{2} of Lemma 2.4 are empty. Hence

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|u_{n}\right|^{6}=\int_{\Omega}|u|^{6}, \quad \lim _{n \rightarrow+\infty} \int_{\Omega}\left|v_{n}\right|^{6}=\int_{\Omega}|v|^{6},
$$

and we can use $I_{\mu_{1}, \mu_{2}}^{\prime}\left(z_{n}\right)\left(u_{n}, 0\right)=o_{n}(1), I_{\mu_{1}, \mu_{2}}^{\prime}\left(z_{n}\right)(u, 0)=o_{n}(1)$ and Lemma 2.3 to get

$$
o_{n}(1)=I_{\mu_{1}, \mu_{2}}\left(z_{n}\right)\left(u_{n}, 0\right)-I_{\mu_{1}, \mu_{2}}^{\prime}\left(z_{n}\right)(u, 0)=m\left(\left\|u_{n}\right\|^{2}\right)\left(\left\|u_{n}\right\|^{2}-\|u\|^{2}\right)+o_{n}(1) .
$$

Since m is continuous and positive we get $\|u\| \rightarrow\|u\|$, and therefore $u_{n} \rightarrow u$ strongly in $W_{0}^{1,2}(\Omega)$. The same argument shows that $v_{n} \rightarrow v$ strongly in $W_{0}^{1,2}(\Omega)$. Thus, the proposition holds if $\sigma_{1} \neq 0$ and $\sigma_{2} \neq 0$.

If $\sigma_{1} \neq 0$ and $\sigma_{2}=0$, equation (2.7) becomes

$$
\frac{\mu_{1}}{12} Q_{1}+\frac{\mu_{2}}{12} Q_{2} \leq M+c_{0}|\Omega|+c_{1} a_{1}\|u\|_{6}^{\sigma_{1}}-\frac{\mu_{1}}{12}\|u\|_{6}^{6},
$$

and the result follows with the same argument used above. Finnally, if $\sigma_{1}=\sigma_{2}=0$, it is suficient to consider $\mu_{1}<\left(\frac{m_{0} S^{3 / 2}}{3 M}\right)^{2}$ and $\mu_{2}<\left(\frac{l_{0} S^{3 / 2}}{3 M}\right)^{2}$. The proposition is proved.

3. Proof of Theorems 1.1

The main theorems of this paper will be proved as an application of the following version of the Symmetric Mountain Pass Theorem.

Theorem 3.1. Let $E=V \oplus W$ be a real Banach space with $\operatorname{dim} V<\infty$. Suppose that $I \in C^{1}(E, \mathbb{R})$ is an even functional satisfying $I(0)=0$ and
(I_{1}) there exist $\rho, \alpha>0$ such that $\inf _{u \in \partial B_{\rho}(0) \cap W} I(u) \geq \alpha$;
(I_{2}) there exist a subspace $\widehat{V} \subset E$ with $\operatorname{dim} V<\operatorname{dim} \widehat{V}<\infty$ such that, for some $M>0$, there holds $\max _{u \in \widehat{V}} I(u) \leq M$;
$\left(I_{3}\right) I$ satisfies the $(P S)_{c}$ for any $c \in(0, M)$.
Then I possesses at least $(\operatorname{dim} \widehat{V}-\operatorname{dim} V)$ pairs of nonzero critical points.
In what follows we denote by $\left(\varphi_{j}\right)_{j \in \mathbb{N}}$ the normalized eigenfunctions of $\sigma\left(-\Delta, W_{0}^{1,2}(\Omega)\right)$. For each $m \in \mathbb{N}$, we set $V_{m}:=\operatorname{span}\left\{\left(\varphi_{1}, \varphi_{1}\right), \ldots,\left(\varphi_{m}, \varphi_{m}\right)\right\}$ and notice that $H=V_{m} \oplus V_{m}^{\perp}$. It was proved in [15, Lemma 3.1] that, given $2 \leq r<6$ and $\delta>0$, there exists $m_{0} \in \mathbb{N}$ such that, for any $m \geq m_{0}$,

$$
\begin{equation*}
\int_{\Omega}|u|^{r} \leq \delta\|u\|^{r}, \quad \forall u \in \operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}^{\perp} \tag{3.1}
\end{equation*}
$$

We prove in the sequel that the energy functional satisfies $\left(I_{1}\right)$.
Lemma 3.2. There exist $\bar{\mu}>0, m \in \mathbb{N}$ and $\rho, \alpha>0$ such that, for any $\mu_{1}, \mu_{2} \in(0, \bar{\mu})$, there holds

$$
I_{\mu_{1}, \mu_{2}}(z) \geq \alpha, \quad \forall z \in \partial B_{\rho}(0) \cap V_{m}^{\perp}
$$

Proof. By using $\left(\mathcal{A}_{1}\right),\left(F_{3}\right)$, the Sobolev embeddings and inequality (3.1) with $r=\sigma_{i}$ and $\delta>0$ to be choosed later, we get

$$
\begin{aligned}
I(z) & \geq \frac{1}{4} m\left(\|u\|^{2}\right)\|u\|^{2}+\frac{1}{4} l\left(\|v\|^{2}\right)\|v\|^{2}-\int F(x, z)-\frac{\mu_{1}}{6}\|u\|_{6}^{6}-\frac{\mu_{2}}{6}\|v\|_{6}^{6} \\
& \geq \frac{m_{0}}{4}\|u\|^{2}+\frac{l_{0}}{4}\|v\|^{2}-c_{3}|\Omega|-c_{4}\|u\|_{\theta_{1}}^{\theta_{1}}-c_{5}\|v\|_{\theta_{2}}^{\theta_{2}}-\mu_{1} b_{1}\|u\|^{6}-\mu_{2} b_{2}\|v\|^{6} \\
& \geq \frac{m_{0}}{4}\|u\|^{2}+\frac{l_{0}}{4}\|v\|^{2}-c_{3}|\Omega|-c_{4} \delta\|u\|^{\theta_{1}}-c_{5} \delta\|v\|^{\theta_{2}}-\mu_{1} b_{1}\|u\|^{6}-\mu_{2} b_{2}\|v\|^{6}
\end{aligned}
$$

for any $z \in V_{m}^{\perp}$. Hence, for $c:=(1 / 4) \min \left\{m_{0} ; l_{0}\right\}$, there holds

$$
I(z) \geq\|z\|^{2}\left(c-c_{4} \delta\|z\|^{\theta_{1}-2}-c_{5} \delta\|z\|^{\theta_{2}-2}\right)-c_{3}|\Omega|-\mu_{1} b_{1}\|z\|^{6}-\mu_{2} b_{2}\|z\|^{6}
$$

If $\rho=\rho(\delta)>0$ verifies $c_{4} \delta \rho^{\theta_{1}-2}+c_{5} \delta \rho^{\theta_{2}-2}=c / 2$, then

$$
I(z) \geq \frac{c}{2} \rho^{2}-c_{3}|\Omega|-\mu_{1} b_{1} \rho^{6}-\mu_{2} b_{2} \rho^{6}, \quad \forall z \in \partial B_{\rho}(0) \cap V_{m}^{\perp}
$$

Notice that $\rho(\delta) \rightarrow+\infty$ as $\delta \rightarrow 0$, and therefore we can pick $\delta>0$ such that $(c / 2) \rho^{2}-c_{3}|\Omega|>(c / 4) \rho^{2}$. So, there exists $\bar{\mu}>0$ small such that

$$
I(z) \geq \rho^{2}\left(\frac{c}{4}-\mu_{1} b_{1} \rho^{4}-\mu_{2} b_{2} \rho^{4}\right)=: \alpha>0, \quad \forall z \in \partial B_{\rho}(0) \cap V_{m}^{\perp}
$$

for any $\mu_{1}, \mu_{2} \in(0, \bar{\mu})$. The lemma is proved.
The local superlinearity condition $\left(F_{4}\right)$ is used only in the next result.
Lemma 3.3. Suppose that F and m satisfy $\left(F_{4}\right)$ and (1.1). Then, for any $j \in \mathbb{N}$, there exist a j-dimensional subspace $\widehat{V}_{j} \subset H$ and $M>0$ such that $\sup _{u \in \widehat{V}_{j}} I(z) \leq M$, for any $\mu_{1}, \mu_{2}>0$.
Proof. Let $\Omega_{0} \subset \Omega$ given by $\left(F_{4}\right)$ and consider $\left(\varphi_{j}\right)_{j \in \mathbb{N}}$ the normalized eigenfunctions of $\sigma\left(-\Delta, W_{0}^{1,2}\left(\Omega_{0}\right)\right)$. We define the subspace $\widehat{V}_{j}:=\operatorname{span}\left\{\left(\varphi_{j}, 0\right), \ldots,\left(\varphi_{j}, 0\right)\right\}$. Since $\widehat{V_{j}}$ is finite dimensional, there exists $C_{1}=C_{1}\left(\widehat{V_{j}}\right)>0$ such that

$$
\begin{equation*}
C_{1}\|u\|^{4} \leq\|u\|_{4}^{4}, \quad \forall u \in \widehat{V_{j}} \tag{3.2}
\end{equation*}
$$

Let $b>0$ be given in (1.1) and $\varepsilon>b /\left(4 C_{1}\right)$. It follows from $\left(F_{4}\right)$ and $\left(F_{0}\right)$ that, $F(x, s, 0) \geq \varepsilon|s|^{4}-C_{2}$, for any $x \in \Omega_{0}, s \in \mathbb{R}$, and some constant $C_{2}=C_{2}\left(C_{1}, b\right)>0$. This, (1.1) and (3.2) imply that, for any $z \in \widehat{V}_{j}$, there holds

$$
I_{\mu_{1}, \mu_{2}}(z) \leq \frac{a}{2}\|u\|^{2}\left(\varepsilon C_{1}-\frac{b}{4}\right)\|u\|^{4}+C_{2}|\Omega| \leq \sup _{t>0}\left\{\frac{a}{2} t^{2}+\varepsilon_{0} t^{4}+C_{2}|\Omega|\right\}
$$

with $\varepsilon_{0}=\left(\varepsilon C_{1}-b / 4\right)>0$. The result follows if we call M the right-hand side above.

We are ready to prove our main result.
Proof of Theorem 1.1. Let $k \in \mathbb{N}$ be fixed. By Lemma 3.2, we can find $m \in \mathbb{N}$ large in such way that, for the decomposition $H=V \oplus W$, with $V:=\left\langle\left(\varphi_{1}, 0\right) \ldots,\left(\varphi_{m}, 0\right)\right\rangle$, $W:=V^{\perp}$, the functional $I_{\mu_{1}, \mu_{2}}$ satisfies (I_{1}) for any μ_{1}, $\mu_{2} \in(0, \bar{\mu})$. Moreover, by using Lemma 3.3, we obtain a subspace $\widehat{V}_{k+m} \subset H$ and $M>0$ such that

$$
\operatorname{dim} \widehat{V}_{k+m}=(k+m), \quad \sup _{z \in \widehat{V}_{k+m}} I \leq M, \quad \forall \mu_{1}, \mu_{2}>0
$$

Hence, $I_{\mu_{1}, \mu_{2}}$ satisfies $\left(I_{2}\right)$. By considering M as above, we obtain from Proposition 2.1 a number $\mu^{*}>0$ such that $I_{\mu_{1}, \mu_{2}}$ satisfies $\left(I_{3}\right)$, for any $\mu_{1}, \mu_{2} \in\left(0, \mu^{*}\right)$. Since $I_{\mu_{1}, \mu_{2}}(0)=0$ and $I_{\mu_{1}, \mu_{2}}$ is even, we can set $\mu_{k}^{*}:=\min \left\{\bar{\mu} ; \mu^{*}\right\}$ and use Theorem 3.1 to conclude that, for any $\mu \in\left(0, \mu_{k}^{*}\right)$, the functional $I_{\mu_{1}, \mu_{2}}$ has at lesat $(k+m-m)=k$ pairs of nonzero critical points.

Remark 3.4. A simple inspecion of the proof of Lemma 3.3 shows that it also holds if we replace the bound condition in m by $l(t) \leq a+b t$, for any $t \geq 0$, and the superlinearity condition $\left(F_{4}\right)$ by
$\left(\widehat{F_{4}}\right)$ there exists an open set $\Omega_{0} \subset \Omega$, with positive measure, such that $\lim _{|t| \rightarrow \infty} \frac{F(x, 0, t)}{|t| 4}=+\infty$, uniformly in Ω_{0}. Hence, in this new setting, we also get multiple solutions for the problem $\left(S_{\mu}\right)$.

References

[1] C.O. Alves, F.J.S.A. Correia and T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.
[2] F.J.S.A. Corrêa and R.G. Nascimento, On a nonlocal elliptic system of p-Kirchhoff-type under Neumann boundary condition, Math. Comput. Modelling 49 (2009), 598-604.
[3] G. Eisley, Nonlinear vibrations of beams and rectangular plates, Z. Anger. Math. Phys. 15 (1964), 167-175.
[4] G.M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl. 401 (2013), 706-713.
[5] G.M. Figueiredo, On a nonlocal system with critical growth, Recent trends on Nonlinear Elliptic System, edited by N. Zographopoulos, International Scientific press, 2012, Greece.
[6] M.F. Furtado, L.D. Oliveira and J.P.P. da Silva, Multiple solutions for a Kirchhoff equation with critical growth, preprint.
[7] M.B. Guimarães and R.S. Rodrigues, Existence of solution for a Kirchhoff type system with weight and nonlinearity involving a (p, q)-superlinear term and critical Caffarelli-Kohn-Nirenberg growth, Top. Meth. Nonlinear Analysis 49 (2017), 1-19.
[8] S. Khademloo, E. Valipour and A. Babakhani, Multiplicity of positive solutions for a second order elliptic system of Kirchhoff type, Abstr. Appl. Anal. (2014), Art. ID 280130, 9 pp.
[9] G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik, Teubner, Leipzig (1876).
[10] Q. Li and Z. Yang, Existence of positive solutions for a quasilinear elliptic systems of p-Kirchhoff type, Differ. Equ. Appl. 6 (2014), 73-80.
[11] L. Li and X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities, J. Math. Anal. Appl. 435 (2016), 955-967.
[12] J. Limaco and L.A. Medeiros, Kirchhoff-Carrier elastic strings in noncylindrical domains, Portugaliae Mathematica 14 (1999), 464-500.
[13] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1, 2, Rev. Mat. Iberoamericana 1 (1985) 145-201, 45-121.
[14] D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent. NoDEA Nonlinear Differential Equations Appl. 21 (2014), 885-914.
[15] E.A.B. Silva and M.S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), 341-358.
[16] Z. Zhang and Y. Sun, Existence and multiplicity of solutions for nonlocal systems with Kirchhoff type, Acta Math. Appl. Sin. Engl. Ser. 32 (2016), 35-54.

Universidade de Brasília, Departamento de Matemática, 70910-900, Brasília-DF, Brazil
Email address: mfurtado@unb.br
Universidade de Brasília, Departamento de Matemática, 70910-900, Brasília-DF, Brazil
Email address: luandiego2000@hotmail.com
Universidade Federal do Pará, Departamento de Matemática, 66075-110, Belém-PA, Brazil
Email address: jpabloufpa@gmail.com

[^0]: 1991 Mathematics Subject Classification. Primary 35J60; Secondary 35J20.
 Key words and phrases. Kirchhoff-type problems; multiple solutions; critical nonlinearities.
 The first author was partially supported by CNPq/Brazil.

