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Abstract. We consider the nonlocal system
{

−m
(∫

Ω
|∇u|2dx

)

∆u = Fu(x, u, v) + µ1|u|4u, in Ω,

−l
(∫

Ω
|∇v|2dx

)

∆v = Fv(x, u, v) + µ2|v|4v, in Ω,

with positive potentials m and l. The nonlinearity F is subcritical and locally superlinear at infinty. By using the
Symmetric Mountain Pass Theorem we obtain multiple solutions for small value of µ1 and µ2.

1. Introduction

We consider the nonlocal variational system

(Sµ)





−m
(∫

Ω |∇u|2dx
)
∆u = Fu(x, u, v) + µ1|u|

4u, in Ω,

−l
(∫

Ω |∇v|2dx
)
∆v = Fv(x, u, v) + µ2|v|

4v, in Ω,

u, v ∈ W 1,2
0 (Ω),

where Ω ⊂ R
3 is a bounded smooth domain, F is locallly superlinear and µ1, µ2 > 0 are parameters. The potentials

m and l belongs to the set A of all continuous functions g ∈ C([0,+∞),R) which satisfy

(A1) g(t) ≥ g0 > 0, for any t ≥ 0;

(A2) 2G(t) := 2
∫ t

0
g(s)ds ≥ g(t)t, for any t ≥ 0.

Concerning the nonlinearity F we assume that

(F0) F ∈ C1(Ω× R
2,R) is even with respect to the second variable;

(F1) there holds lim|z|→∞
|∇F (x,z)|

|z|5 = 0, uniformly in Ω;

(F2) there exist σ1, σ2 ∈ [0, 2), c0, c1, c2 ∈ (0,+∞) such that

1

4
∇F (x, z) · z − F (x, z) ≥ −c0 − c1|s|

σ1 − c2|t|
σ2 ,

for any x ∈ Ω, z = (s, t) ∈ R
2, where z1 · z2 stands for the inner product of z1, z2 ∈ R

2. Furthermore, if σ1 6= 0
or σ2 6= 0, we also suppose that, for some K > 0,





µ2 ≤ µ1, if σ1 6= 0 and σ2 = 0;
µ2 ≤ µ1 ≤ Kµ1, if σ1 6= 0 and σ2 6= 0;
µ1 ≤ Kµ2, if σ1 = 0 and σ2 6= 0.

(F3) there exist θ1 θ2 ∈ (2, 6) and c3, c4, c5 ∈ (0,+∞) such that

F (x, s, t) ≤ c3|s|
θ1 + c4|t|

θ2 + c5, ∀x ∈ Ω, (s, t) ∈ R
2;

(F4) there exists an open set Ω0 ⊂ Ω, with positive measure, such that lim|s|→∞
F (x,s,0)

|s|4 = +∞, uniformly in Ω0.

We state below the main result of this paper.

Theorem 1.1. Suppose that F satisfies (F0)− (F4). Suppose also that m, l ∈ A and there exist a, b > 0 such that

(1.1) m(t) ≤ a+ bt, ∀ t ≥ 0.

Then, for any k ∈ N, there exists µ∗
k > 0 such that the problem (Sµ) has at least k pairs of nonzero solutions for any

µ1, µ2 ∈ (0, µ∗
k).
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We notice that condition (F2) is weaker than the usual Ambrosetti-Ranbinowitz type condition since, in our setting,
it is allowed that F takes negative values. Moreover, the superlinearity condition (F4) holds only when x ∈ Ω0 and the
second variable goes to infinity. Actually, we can prove an analogous theorem when the (local) superlinearity condition
holds on the third variable (see Remark 3.4) and the function l verifies l(t) ≤ a+ bt.

Given a bounded smooth domain Ω ⊂ R
N and a positive function w, the Kirchhoff equation

−w

(∫

Ω

|∇u|2dx

)
∆u = g(x, u), in Ω, u = 0, on ∂Ω,

has its origin in the theory of nonlinear vibration. For instance, in the model case w(t) = a + bt, with a, b > 0, it
comes from the following model for the modified d’Alembert wave equation

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= g(x, u),

proposed by Kirchhoff in [9]. Here L is the length of the string, h is the area of cross-section, E is the Young modulus
of the material, ρ is the mass density and P0 is the initial tension. Nonlocal problems also appear in other fields
as, for example, biological systems where u describes a process which depends on the average of itself (for instance,
population density). We refer the reader to [3, 12] for more examples on the physical motivation of this problem.
As far as we know, the first paper dealing with Kirchhoff type equation via variational methods was [1]. Since then,
there is a vast literature concerning the existence, nonexistence, multiplicity and concentration behavior of solutions
for scalar nonlocal problems with critical growth (see [4, 14, 11, 6] and references therein). Although the literature for
the system is not so huge, we can cite the papers [2, 5, 8, 10, 16, 7] which contain some results which are related but
not comparable with ours.

In the next section, we prove a local compactness result for the associated energy functional. In Section 3, we prove
the main theorem.

2. The local Palais-Smale condition

In what follows we write
∫
Ω u instead of

∫
Ω u(x)dx. We denote by ‖u‖p the Lp(Ω)-norm of a function u ∈ Lp(Ω),

for any 1 ≤ p ≤ ∞.

Let H be the Hilbert space W 1,2
0 (Ω) × W 1,2

0 (Ω) endowed with the norm ‖(u, v)‖ :=
[∫

Ω

(
|∇u|2 + |∇v|2

)]1/2
. For

each component of the vector (u, v) ∈ H , we also denote ‖ · ‖ =
(∫

Ω |∇ · |2
)1/2

. By using (F0)− (F3) we can prove that
the functional Iµ1,µ2 : H → R given by

Iµ1,µ2(u, v) :=
1

2
M(‖u‖2) +

1

2
L(‖v‖2)−

µ1

6
‖u‖66 −

µ2

6
‖v‖66 −

∫

Ω

F (x, u, v),

where M(t) :=
∫ t

0
m(s)ds and L(t) :=

∫ t

0
l(s)ds, belongs to C1(H,R). Moreover, the critical points of Iµ1,µ2 are

precisely the weak solutions of (Sµ).
Given c ∈ R, we say that Iµ1,µ2 satisfies the Palais-Smale condition at level c ((PS)c for short) if any sequence

(zn) ⊂ H such that

lim
n→+∞

Iµ1,µ2(zn) = c, lim
n→+∞

I ′µ1,µ2
(zn) = 0,

has a convergent subsequence. The aim of this section is to prove the following local compactness result:

Proposition 2.1. Given C∗ > 0 there exits µ∗ > 0 such that Iµ1,µ2 satisfies (PS)c for any c < C∗ and µ1, µ2 ∈ (0, µ∗).

The proof will be done in several steps. The first one is to verify that Palais-Smale sequences are bounded.

Lemma 2.2. If (zn) = ((un, vn)) ⊂ H is such that Iµ1,µ2(zn) → c and I ′µ1,µ2
(zn) → 0, then (zn) ⊂ H is bounded.

Proof. Given ε > 0, there exists Cε > 0 such that

(2.1) |s|σ1 ≤ ε|s|6 + Cε, |t|σ2 ≤ ε|t|6 + Cε, ∀ (s, t) ∈ R
2,

where σ1, σ2 ∈ [0, 2) come from (F2). This, (A2) and (F2) provide

c+ on(1) + on(1)‖zn‖ ≥ Iµ1,µ2(zn)−
1

4
I ′µ1,µ2

(zn)zn

≥
µ1

12
‖un‖

6
6 +

µ2

12
‖vn‖

6
6 − c0|Ω| − c1‖un‖

σ1
σ1

− c2‖vn‖
σ2
σ2

≥
(µ1

12
− εc1

)
‖un‖

6
6 +

(µ2

12
− εc2

)
‖vn‖

6
6 − (c0 + 2Cε)|Ω|.
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Picking ε > 0 small, we obtain C1, C2 > 0 such that

(2.2) ‖zn‖
6
6 ≤ C1 + C2‖zn‖.

Since m, l ∈ A, we have that m(t) ≥ m0, l(t) ≥ l0, for any t ≥ 0. This, Iµ1,µ2(zn) = c+ on(1), (A1)− (A2) and (F3)
provide

l0
4
‖un‖

2 +
m0

4
‖vn‖

2 ≤
1

2
M(‖un‖

2) +
1

2
L(‖vn‖

2)

≤ C‖zn‖
6
6 + c5|Ω|+ c3‖un‖

θ1
θ1

+ c4‖vn‖
θ2
θ2

+ c+ on(1).

Since θ1, θ2 ∈ (2, 6), there holds an inequality analogous to (2.1) with θi instead of σi. Hence, we infer from (2.2) that

min{m0; l0}

4
‖zn‖

2 ≤ C3‖zn‖
6
6 + C4 ≤ C5‖zn‖+ C6,

and therefore (zn) is bounded in H . �

The next lemma is a version of [15, Lemma 3.1].

Lemma 2.3. Suppose that (zn) = ((un, vn)) ⊂ H is such that zn ⇀ z = (u, v) weakly in H. Then, up to a subsequence,

lim
n→+∞

∫

Ω

|Fu(x, zn)un − Fu(x, z)u| = 0 = lim
n→+∞

∫

Ω

|Fv(x, zn)vn − Fu(x, z)v|.

Proof. We only prove the first statement. Notice that, up to a subsequence, (un, vn) → (u, v) stronly in L2(Ω)×L2(Ω),
(un(x), vn(x)) → (u(x), v(x)) for a.e. x ∈ Ω and

(2.3) max{‖u‖66, ‖un‖
6
6, ‖v‖

6
6, ‖vn‖

6
6} ≤ C1, ∀n ∈ N.

Moreover, for any ε > 0, we can use (F1) and Young’s inequality to obtain Cε > 0 such that

|Fu(x, s, t)s| ≤ Cε +
ε

2
(|s|6 + |t|5|s|) ≤ Cε + ε(|s|6 + |t|6), ∀x ∈ Ω, (s, t) ∈ R

2.

Now, given δ > 0, we can pick 0 < ε < δ/(8C1) and apply Egorov’s Theorem to obtain a measurable set Ω̂ ⊂ Ω such

that Fu(·, zn)un → Fu(·, z)u uniformly in Ω̂ and |Ω\Ω̂| < δ/(4Cε).
It follows from the above inequality for Fu and (2.3) that

∫

Ω\Ω̂

|Fu(x, zn)un − Fu(x, z)u| ≤ 2Cε|Ω \ Ω̂|+ 4C1ε ≤ δ.

This and the uniform convergence in Ω̂ provide

lim sup
n→+∞

∫

Ω

|Fu(x, zn)un − Fu(x, z)u| ≤ lim sup
n→+∞

(∫

Ω̂

+

∫

Ω\Ω̂

)
≤ δ.

Since δ > 0 is arbitrary, the result follows from the above inequality. �

Let S the best constant of the Sobolev embedding W 1,2
0 (Ω) →֒ L6(Ω), namely

S := inf
u∈W 1,2

0 (Ω)\{0}

‖u‖2

(
∫
Ω
|u|6)2/6

.

We denote by C(Ω) the set of all continuos functions u : Ω → R endowed with the norm ‖u‖C(Ω) := maxx∈Ω |u(x)| and

by M(Ω) its dual, namely the set of Radon measures. Arguing along the same lines of the proof of the concentration-
compactness lemma of Lions [13, Lemma 2.1], we can prove the following version of that result for our system:

Lemma 2.4. Suppose that (zn) = ((un, vn)) ⊂ H verifies




un ⇀ u, vn ⇀ v, weakly in W 1,2
0 (Ω),

|∇un|
2 ⇀ ζ, |∇vn|

2 ⇀ ζ, in the weak⋆ topology σ(M(Ω), C(Ω)),

|un|
6 ⇀ ν, |vn|

6 ⇀ ν, in the weak⋆ topology σ(M(Ω), C(Ω)),

where ζ, ζ, ν, ν ∈ M(Ω) are nonnegative bounded measures in Ω. Then there exist enumerable sets J1 and J2, which
can be empty, and two families {xj , j ∈ J1} and {yj , j ∈ J2} of points in Ω such that

(a) ν = |u|6dx+
∑

j∈J1

νjδxj ; ν = |v|6dx+
∑

j∈J2

νjδyj ;

(b) ζ ≥ |∇u|2dx+
∑

j∈J1

ζjδxj ; ζ ≥ |∇v|2dx+
∑

j∈J2

ζjδyj ,
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where νj , νj , ζj , ζj > 0. Moreover, Sν
1/3
j ≤ ζj, for any j ∈ J1, and ν

1/3
j ≤ ζj, for any j ∈ J2.

We prove in the sequel that, for some special sequences, the sets J1 and J2 are finite.

Lemma 2.5. Let (zn) ⊂ H be as in Lemma 2.4 and suppose that I ′µ1,µ2
(zn) → 0. Then J1 and J2 are finite. Moreover,

(2.4) νj ≥ (m0S/µ1)
3/2 , ∀ j ∈ J1; νj ≥ (l0S/µ2)

3/2 , ∀ j ∈ J2.

Proof. We only pove that J1 is finite, since the argument for J2 is analogous. Let φ ∈ C∞
0 (RN , [0, 1]) be such that

φ ≡ 1 in B1/2(0) and φ ≡ 0 in R
N \ B1(0). Suppose that J1 6= ∅, fix j ∈ J1 and define φε(x) := φ((x − xj)/ε), for

ε > 0. Since (φεzn) ⊂ H is bounded we have that I ′µ1,µ2
(zn)(φεun, 0) = on(1), and therefore

m(‖un‖
2)

(
An,ε +

∫

Ω

|∇un|
2φε

)
= on(1) + µ1

∫

Ω

|un|
6φε +

∫

Ω

Fu(x, un, vn)unφε,

where An,ε :=
∫
un(∇un · ∇φε). Since m(t) ≥ m0, for any t ≥ 0, Lemma 2.4 implies that

(2.5) m0

(
lim sup
n→+∞

An,ε +

∫

Ω

φεdζ

)
≤ µ1

∫

Ω

φεdν +

∫

Ω

f(x, u)uφε.

We claim that lim
ε→0

lim sup
n→∞

An,ε = 0. If this is true, we can take the limit as ε → 0 in the above equality and use the

Lebesgue Theorem to get m0ζj ≤ µ1νj . Recalling that Sν
1/3
j ≤ ζj , we obtain m0Sν

1/3
j ≤ m0ζj ≤ µ1νj , and therefore

νj ≥ (m0S/µ1)
3/2. Thus, ν(Ω) ≥

∑
j∈J νj ≥

∑
j∈J (m0S/µ1)

3/2
and we conclude that J1 is finite.

In order to prove the claim, we first use Hölder’s inequality to compute

|An,ε| ≤

∫

Ω

|un||∇un||∇φε| ≤ C

(∫

Ω

|un|
2|∇φε|

2

)1/2

.

Thus, the change of variables y := (x− xj)/ε and the Sobolev embedding provide

lim sup
n→∞

|An,ε| ≤ C

(∫

Ω

|u|2|∇φε|
2dx

)1/2

= ε(N−2)/2C

(∫

{|y|≤ε}

|u(yε+ xj)|
2|∇φ(y)|2dy)

)1/2

,

and the result follows from N ≥ 3. �

We are ready to prove our local compactness result.

Proof of Proposition 2.1. We first assume that σ1, σ2 ∈ [0, 2) given in (F2) are both nonzero. Given C∗ > 0, we fix
µ1, µ2 ∈ (0, µ̃), with µ̃ > 0 to be choosed later. Let (zn) = ((un, vn)) ⊂ H be such that Iµ1,µ2(zn) → c ≤ C∗ and
I ′µ1,µ2

(zn) → 0, as n → +∞. According to Lemma 2.2, we may assume that all the hypotheses of Lemma 2.4 holds.
By using the same notation of that lemma we define

Q1 :=
∑

j∈J1

νj , Q2 :=
∑

j∈J2

νj ,

in such way that

(2.6) lim
n→+∞

‖un‖
6
6 = ‖u‖66 +Q1, lim

n→+∞
‖vn‖

6
6 = ‖v‖66 +Q2.

Claim: If µ̃ > 0 is small, then Q1 < (m0S/µ1)
3/2

and Q2 < (l0S/µ2)
3/2

.
Indeed, by (F2) we have that

Iµ1,µ2(zn)−
1

4
I ′µ1,µ2

(zn)zn ≥
µ1

12
‖un‖

6
6 +

µ2

12
‖vn‖

6
6 − c0|Ω| − c1‖un‖

σ1
σ1

− c2‖vn‖
σ2
σ2
.

By taking the limit, using (2.6) and the embeddings W 1,2
0 (Ω) →֒ Lσi(Ω) and Lσ1(Ω) →֒ L6(Ω), we get

(2.7)
µ1

12
Q1 +

µ2

12
Q2 ≤ M + c0|Ω|+ c1a1‖u‖

σ1
6 −

µ1

12
‖u‖66 + c2a2‖u‖

σ2
6 −

µ2

12
‖v‖66.

Choosing C1 > 0 such that σ1

6C1
= µ1

12a1c1
and applying Young’s inequality with exponents r = 6/σ1 and r′ = 6/(6−σ1)

we obtain ‖u‖σ1
6 ≤ σ1

6C1
‖u‖66 +

Cr′−1
1

r′ = µ1

12a1c1
‖u‖66 +

C2

(µ1)
σ1/(6−σ1) . Analogously, ‖v‖

σ2
6 ≤ µ2

12a2c2
‖v‖66 +

C3

(µ2)
σ2/(6−σ2) . So,

it follows from (2.7) that

µ1

12
Q1 +

µ2

12
Q2 ≤ M + c0|Ω|+ c1a1

C2

(µ1)
σ1/(6−σ1)

+ c2a2
C3

(µ2)
σ2/(6−σ2)

.
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Since µ2 ≤ µ1 ≤ Kµ2, we obtain Ai > 0, i = 1, . . . , 6, independent of µ1 and µ2, such that

Q1 ≤
A1

µ1
+

A2

(µ1)
6/(6−σ1)

+
A3

(µ1)
6/(6−σ2)

, Q2 ≤
A4

µ2
+

A5

(µ2)
6/(6−σ2)

+
A6

(µ2)
6/(6−σ2)

.

Recalling that σi ∈ [0, 2), we obtain max {1; 6/(6− σ1); 6/(6− σ2)} < 3/2. Hence, picking µ̃ > 0 such that A1

√
µ̃ ≤

(m0S)
3/2 /3, there holds

A1

µ1
≤

1

3

(m0S)
3/2

µ1

√
µ̃

≤
1

3

(
m0S

µ1

)3/2

.

By using the same argument (with a small µ̃ if necessary), we obtain Q1 < (m0S/µ1)
3/2. The inequality for Q2 can

be proved in the same way.
By using the claim and (2.4) we conclude that the sets J1 and J2 of Lemma 2.4 are empty. Hence

lim
n→+∞

∫

Ω

|un|
6 =

∫

Ω

|u|6, lim
n→+∞

∫

Ω

|vn|
6 =

∫

Ω

|v|6,

and we can use I ′µ1,µ2
(zn)(un, 0) = on(1), I

′
µ1,µ2

(zn)(u, 0) = on(1) and Lemma 2.3 to get

on(1) = Iµ1,µ2(zn)(un, 0)− I ′µ1,µ2
(zn)(u, 0) = m(‖un‖

2)
(
‖un‖

2 − ‖u‖2
)
+ on(1).

Since m is continuous and positive we get ‖u‖ → ‖u‖, and therefore un → u strongly in W 1,2
0 (Ω). The same argument

shows that vn → v strongly in W 1,2
0 (Ω). Thus, the proposition holds if σ1 6= 0 and σ2 6= 0.

If σ1 6= 0 and σ2 = 0, equation (2.7) becomes
µ1

12
Q1 +

µ2

12
Q2 ≤ M + c0|Ω|+ c1a1‖u‖

σ1
6 −

µ1

12
‖u‖66,

and the result follows with the same argument used above. Finnally, if σ1 = σ2 = 0, it is suficient to consider

µ1 <
(

m0S
3/2

3M

)2
and µ2 <

(
l0S

3/2

3M

)2
. The proposition is proved. �

3. Proof of Theorems 1.1

The main theorems of this paper will be proved as an application of the following version of the Symmetric Mountain
Pass Theorem.

Theorem 3.1. Let E = V ⊕ W be a real Banach space with dim V < ∞. Suppose that I ∈ C1(E,R) is an even

functional satisfying I(0) = 0 and

(I1) there exist ρ, α > 0 such that inf
u∈∂Bρ(0)∩W

I(u) ≥ α;

(I2) there exist a subspace V̂ ⊂ E with dimV < dim V̂ < ∞ such that, for some M > 0, there holds max
u∈V̂

I(u) ≤ M ;

(I3) I satisfies the (PS)c for any c ∈ (0,M).

Then I possesses at least (dim V̂ − dimV ) pairs of nonzero critical points.

In what follows we denote by (ϕj)j∈N the normalized eigenfunctions of σ(−∆,W 1,2
0 (Ω)). For each m ∈ N, we set

Vm := span{(ϕ1, ϕ1), . . . , (ϕm, ϕm)} and notice that H = Vm ⊕ V ⊥
m . It was proved in [15, Lemma 3.1] that, given

2 ≤ r < 6 and δ > 0, there exists m0 ∈ N such that, for any m ≥ m0,

(3.1)

∫

Ω

|u|r ≤ δ‖u‖r, ∀u ∈ span{ϕ1, . . . , ϕm}⊥

We prove in the sequel that the energy functional satisfies (I1).

Lemma 3.2. There exist µ > 0, m ∈ N and ρ, α > 0 such that, for any µ1, µ2 ∈ (0, µ), there holds

Iµ1,µ2(z) ≥ α, ∀ z ∈ ∂Bρ(0) ∩ V ⊥
m .

Proof. By using (A1), (F3), the Sobolev embeddings and inequality (3.1) with r = σi and δ > 0 to be choosed later,
we get

I(z) ≥
1

4
m(‖u‖2)‖u‖2 +

1

4
l(‖v‖2)‖v‖2 −

∫
F (x, z)−

µ1

6
‖u‖66 −

µ2

6
‖v‖66

≥
m0

4
‖u‖2 +

l0
4
‖v‖2 − c3|Ω| − c4‖u‖

θ1
θ1

− c5‖v‖
θ2
θ2

− µ1b1‖u‖
6 − µ2b2‖v‖

6

≥
m0

4
‖u‖2 +

l0
4
‖v‖2 − c3|Ω| − c4δ‖u‖

θ1 − c5δ‖v‖
θ2 − µ1b1‖u‖

6 − µ2b2‖v‖
6,
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for any z ∈ V ⊥
m . Hence, for c := (1/4)min{m0; l0}, there holds

I(z) ≥ ‖z‖2(c− c4δ‖z‖
θ1−2 − c5δ‖z‖

θ2−2)− c3|Ω| − µ1b1‖z‖
6 − µ2b2‖z‖

6,

If ρ = ρ(δ) > 0 verifies c4δρ
θ1−2 + c5δρ

θ2−2 = c/2, then

I(z) ≥
c

2
ρ2 − c3|Ω| − µ1b1ρ

6 − µ2b2ρ
6, ∀z ∈ ∂Bρ(0) ∩ V ⊥

m .

Notice that ρ(δ) → +∞ as δ → 0, and therefore we can pick δ > 0 such that (c/2)ρ2− c3|Ω| > (c/4)ρ2. So, there exists
µ > 0 small such that

I(z) ≥ ρ2
( c
4
− µ1b1ρ

4 − µ2b2ρ
4
)
=: α > 0, ∀z ∈ ∂Bρ(0) ∩ V ⊥

m .

for any µ1, µ2 ∈ (0, µ). The lemma is proved. �

The local superlinearity condition (F4) is used only in the next result.

Lemma 3.3. Suppose that F and m satisfy (F4) and (1.1). Then, for any j ∈ N, there exist a j-dimensional subspace

V̂j ⊂ H and M > 0 such that supu∈V̂j
I(z) ≤ M, for any µ1, µ2 > 0.

Proof. Let Ω0 ⊂ Ω given by (F4) and consider (ϕj)j∈N the normalized eigenfunctions of σ(−∆,W 1,2
0 (Ω0)). We define

the subspace V̂j := span{(ϕj , 0), . . . , (ϕj , 0)}. Since V̂j is finite dimensional, there exists C1 = C1(V̂j) > 0 such that

(3.2) C1‖u‖
4 ≤ ‖u‖44, ∀u ∈ V̂j .

Let b > 0 be given in (1.1) and ε > b/(4C1). It follows from (F4) and (F0) that, F (x, s, 0) ≥ ε|s|4 − C2, for any

x ∈ Ω0, s ∈ R, and some constant C2 = C2(C1, b) > 0. This, (1.1) and (3.2) imply that, for any z ∈ V̂j , there holds

Iµ1,µ2(z) ≤
a

2
‖u‖2

(
εC1 −

b

4

)
‖u‖4 + C2|Ω| ≤ sup

t>0

{a
2
t2 + ε0t

4 + C2|Ω|
}
,

with ε0 = (εC1 − b/4) > 0. The result follows if we call M the right-hand side above.
�

We are ready to prove our main result.

Proof of Theorem 1.1. Let k ∈ N be fixed. By Lemma 3.2, we can find m ∈ N large in such way that, for the
decomposition H = V ⊕W , with V := 〈(ϕ1, 0) . . . , (ϕm, 0)〉, W := V ⊥, the functional Iµ1,µ2 satisfies (I1) for any µ1,

µ2 ∈ (0, µ). Moreover, by using Lemma 3.3, we obtain a subspace V̂k+m ⊂ H and M > 0 such that

dim V̂k+m = (k +m), sup
z∈V̂k+m

I ≤ M, ∀µ1, µ2 > 0.

Hence, Iµ1,µ2 satisfies (I2). By considering M as above, we obtain from Proposition 2.1 a number µ∗ > 0 such that
Iµ1,µ2 satisfies (I3), for any µ1, µ2 ∈ (0, µ∗). Since Iµ1,µ2(0) = 0 and Iµ1,µ2 is even, we can set µ∗

k := min{µ;µ∗} and
use Theorem 3.1 to conclude that, for any µ ∈ (0, µ∗

k), the functional Iµ1,µ2 has at lesat (k + m − m) = k pairs of
nonzero critical points. �

Remark 3.4. A simple inspecion of the proof of Lemma 3.3 shows that it also holds if we replace the bound condition

in m by l(t) ≤ a+ bt, for any t ≥ 0, and the superlinearity condition (F4) by

(F̂4) there exists an open set Ω0 ⊂ Ω, with positive measure, such that lim|t|→∞
F (x,0,t)

|t|4 = +∞, uniformly in Ω0.

Hence, in this new setting, we also get multiple solutions for the problem (Sµ).
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