MULTIPLE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH CRITICAL GROWTH

MARCELO F. FURTADO, LUAN D. DE OLIVEIRA, AND JOÃO PABLO P. DA SILVA

Abstract. We consider the problem

$$
-m\left(\int_{\Omega}|\nabla u|^{2} d x\right) \Delta u=\lambda f(x, u)+\mu|u|^{2^{*}-2} u, \quad x \in \Omega, \quad u \in H_{0}^{1}(\Omega)
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 3$, is a bounded smooth domain, $2^{*}=2 N /(N-2)$, $\lambda, \mu>0$ and m is an increasing positive function. The function f is odd in the second variable and has superlinear growth. In our first result we obtain, for each $k \in \mathbb{N}$, the existence of k pairs of nonzero solutions for all $\mu>0$ fixed and λ large. Under weaker assumptions of f, we also obtain a similar result if $N=3, \lambda>0$ is fixed and μ is close to 0 . In the proofs, we apply variational methods.

1. Introduction

Consider the problem

$$
\begin{equation*}
-m\left(\|u\|^{2}\right) \Delta u=g(x, u), \text { in } \Omega, \quad u=0, \text { on } \partial \Omega \tag{1.1}
\end{equation*}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain, the norm in $H_{0}^{1}(\Omega)$ is $\|u\|^{2}=$ $\int_{\Omega}|\nabla u|^{2} d x, m$ is a positive function and the nonlinear function g has polynomial growth. It is called nonlocal due to the presence of the term $m\left(\|u\|^{2}\right)$. The equation has its origin in the theory of nonlinear vibration. For instance, in the model case $m(t)=a+b t$, with $a, b>0$, it comes from the following model for the modified d'Alembert wave equation

$$
\rho \frac{\partial^{2} u}{\partial t^{2}}-\left(\frac{P_{0}}{h}+\frac{E}{2 L} \int_{0}^{L}\left|\frac{\partial u}{\partial x}\right|^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=g(x, u)
$$

for free vibrations of elastic strings. Here, L is the length of the string, h is the area of the cross-section, E is the Young modulus of the material, ρ is the mass density and P_{0} is the initial tension. This kind of nonlocal equation was first proposed by Kirchhoff [16] and it was considered theoretically or experimentally by several physicists after that (see [27, 7, 26, 25]). Nonlocal problems also appear in other fields as, for example, biological systems where u describes a process which depends on the average of itself (for instance, population density). We refer the reader to [10, 20, 19], and references therein, for more examples on the physical motivation of this problem.

[^0]We are interested here in the case that g is a small order perturbation of the critical power, namely the following problem:

$$
\left\{\begin{array}{l}
-m\left(\|u\|^{2}\right) \Delta u=\lambda f(x, u)+\mu|u|^{2^{*}-2} u, \quad x \in \Omega \tag{P}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

where $\Omega \subset \mathbb{R}^{N}, N \geq 3$, is a bounded smooth domain, $2^{*}:=2 N /(N-2), \lambda, \mu>0$ are parameters and the functions m and f verify
$\left(m_{0}\right) m \in C([0,+\infty),(0,+\infty))$ is increasing;
$\left(f_{0}\right) f \in C(\Omega \times \mathbb{R}, \mathbb{R})$ is odd in the second variable;
$\left(f_{1}\right)$ there exists $q \in\left(2,2^{*}\right)$ such that

$$
\lim _{|s| \rightarrow \infty} \frac{f(x, s)}{|s|^{q-1}}=0, \quad \text { uniformly in } \Omega
$$

$\left(f_{2}\right)$ there exists $\theta \in\left(2,2^{*}\right)$ such that

$$
0<\theta F(x, s):=\theta \int_{0}^{s} f(x, t) d t \leq s f(x, s), \quad \forall x \in \Omega, s \neq 0
$$

$\left(f_{3}\right)$ there holds

$$
\lim _{s \rightarrow 0} \frac{f(x, s)}{s}=0, \quad \text { uniformly in } \Omega .
$$

Under the above conditions, it is well-known that the weak solutions of the problem are the critical points of the energy functional

$$
I_{\lambda}(u):=\frac{1}{2} M\left(\|u\|^{2}\right)-\lambda \int_{\Omega} F(x, u) d x-\frac{\mu}{2^{*}} \int_{\Omega}|u|^{2^{*}} d x, \quad u \in H_{0}^{1}(\Omega)
$$

where M and F are primitives of the functions m and $f(x, \cdot)$, respectively. Since f is odd, the functional I is even and therefore we may expect that this symmetry provides multiple critical points. In the first result of this paper, we show that this true if the parameter λ is large.

Theorem 1.1. Suppose that m and f satisfy $\left(m_{0}\right)$ and $\left(f_{0}\right)-\left(f_{3}\right)$, respectively, and $\mu>0$. Then, for any given $k \in \mathbb{N}$, there exists $\lambda_{k}^{*}>0$ such that the problem (P) has at least k pairs of nonzero solutions for all $\lambda \geq \lambda_{k}^{*}$.

In the proof, we apply a version of the Symmetric Mountain Pass Theorem. The noncompactness of the embedding $H_{0}^{1}(\Omega) \hookrightarrow L^{2^{*}}(\Omega)$ is overcome by the ideas of Brezis and Nirenberg [6] and the Concentration Compactness Principle of Lions [21]. Since for high dimensions $N \geq 4$ the critical power 2^{*} is smaller than or equal to 4 , the integral $\int_{\Omega}|u|^{2^{*}} d x$ does not dominate the fourth-term $M\left(\|u\|^{2}\right)$. We deal with this difficult by using a truncation argument (see [1]) which consists in considering a truncated equation and, after solving this new problem, prove that its solutions have small norm and therefore solve the original problem. We also emphasize that the presence of a nonlocal term in the functional turns the proof of the geometric conditions more involved than that of [2] (see Proposition 3.3).

After J.L.Lions [20] presented an abstract functional analysis framework to deal with the evolution equation related with (P), this kind of problem has been extensively studied (see $[1,4,3,17,5]$ and references therein). As far as we know, the first paper dealing with Kirchhoff type equation via variational methods was [1]. By assuming some technical conditions of the functions m and f, they obtained a solution for the problem (1.1). Since then, there is a vast literature concerning
existence, nonexistence, multiplicity and concentration behavior of solutions for nonlocal problems. We just quote $[14,23,15,22,29]$ for subcritical problems and $[13,12,18]$ for critical growth problems. Our first result is closely related to that of [11], where the author considered $\left(f_{1}\right)-\left(f_{3}\right)$ and obtained a positive weak solution u_{λ} for $\lambda>0$ large, and also proved that $\left\|u_{\lambda}\right\| \rightarrow 0$, as $\lambda \rightarrow+\infty$. We finally mention the work [24], where the author obtained, for $N=3$ and $m(t)=a+t b$, the existence of one positive solution for any $\lambda>0$. Our first theorem complements the aforementioned works since we consider multiple solutions for a critical equation under a very weak condition for the nonlocal term m.

In the second part of the paper, we suppose that $N=3$ and consider the effect of the parameter μ on the number of solutions by assuming that m verifies:
$\left(\widehat{m_{0}}\right) m \in C([0,+\infty),(0,+\infty))$;
$\left(m_{1}\right) m(t) \geq \alpha_{0}>0$, for any $t \geq 0$;
$\left(m_{2}\right) 2 M(t) \geq m(t) t$, for any $t \geq 0$;
$\left(m_{3}\right)$ there exist $a>0$ and $b \geq 0$ such that

$$
m(t) \leq a+b t, \quad t \geq 0
$$

A simple computation shows that the function $m(t)=\alpha_{0}+b t^{\delta}$, with $\delta \in[0,1]$, verifies all the above conditions, and therefore the model case of linear m can be considered. They also hold for the function $m(t)=\alpha_{0}(1+\ln (1+t))$. Obviously, all these functions satisfy the condition $\left(m_{0}\right)$ of our first theorem.

For the nonlinearity f, besides $\left(f_{0}\right)$, we shall suppose that
$\left(\widehat{f_{1}}\right)$ there holds

$$
\lim _{|s| \rightarrow \infty} \frac{f(x, s)}{|s|^{5}}=0, \quad \text { uniformly in } \Omega
$$

$\left(f_{4}\right)$ there exist $\sigma \in[0,2)$ and $c_{1}, c_{2} \in(0,+\infty)$ such that

$$
\frac{1}{4} f(x, s) s-F(x, s) \geq-c_{1}-c_{2}|s|^{\sigma}, \quad x \in \Omega, s \in \mathbb{R}
$$

where $F(x, s):=\int_{0}^{s} f(x, t) d t ;$
$\left(f_{5}\right)$ there exists an open set $\Omega_{0} \subset \Omega$ with positive measure, such that

$$
\liminf _{|s| \rightarrow \infty} \frac{F(x, s)}{s^{4}}=+\infty, \quad \text { uniformly in } \Omega_{0}
$$

Our result in the 3-dimensional case can be stated as follows:
Theorem 1.2. Suppose that $N=3$, m satisfies $\left(\widehat{m_{0}}\right),\left(m_{1}\right)-\left(m_{3}\right)$ and $\lambda>0$. Suppose also that f satisfies $\left(f_{0}\right),\left(\widehat{f}_{1}\right),\left(f_{4}\right),\left(f_{5}\right)$ and one of the conditions below:
$\left(f_{6}\right)$ there exist $q \in(2,6)$ and $c_{3}, c_{4} \in(0,+\infty)$ such that

$$
F(x, s) \leq c_{3}|s|^{q}+c_{4}, \quad x \in \Omega, s \in \mathbb{R}
$$

or
$\left(f_{7}\right)$ the function

$$
a(x):=\limsup _{s \rightarrow 0} \frac{F(x, s)}{s^{2}}
$$

is such that $a^{+}(x):=\max \{a(x), 0\} \in L^{\infty}(\Omega)$.
Then, for any given $k \in \mathbb{N}$, there exists $\mu_{k}^{*}>0$ such that the problem (P) has at least k pairs of nonzero solutions for all $\mu \in\left(0, \mu_{k}^{*}\right)$.

Obviously, $\left(\widehat{f}_{1}\right)$ is weaker than $\left(f_{1}\right)$. If we do not have a large parameter multiplying the term $f(x, u)$, the truncation argument used in the proof of Theorem 1.1 does not work, and therefore it will be natural to consider the modified AmbrosettiRabinowitz condition $\left(f_{2}\right)$ with $\theta>4$ (see $[9,24,13,15,29]$). In this case, we have that $F(x, s) \geq C_{1}|s|^{\theta}$ for any $x \in \Omega$ and $s \in \mathbb{R}$. So, the condition $\left(f_{4}\right)$ is weaker than $\left(f_{2}\right)$ with $\theta>4$. Moreover, the superlinearity condition $\left(f_{5}\right)$ holds only on a set of positive measure and therefore our conditions on f are weaker than those of Theorem 1.1. Unfortunately, the truncation argument does not work in this weak setting and we are not able to prove the second theorem if $N \geq 4$. The main point is that we do not know if the norm of the solutions given by Theorem 1.2 goes to zero as $\mu \rightarrow 0^{+}$.

It is worthwhile to mention that, although the local version of Theorem 1.2 was considered in [28], our result is new even in the local case. Actually, in this case we can prove our results with the quotient in $\left(f_{5}\right)$ being $F(x, s) / s^{2}$ (see Remark 5.3), and therefore our condition $\left(f_{5}\right)$ is more general than the hypothesis $\left(f_{6}\right)$ of [28]. Moreover, our condition $\left(f_{7}\right)$ is weaker than the condition $\left(f_{7}\right)$ of [28]. Thus, our second theorem generalize Theorems A and C of [28] besides complement the aforementioned works.

An example of nonlinearity verifying all the hypothesys of Theorem 1.1 is $f(x, s)=$ $a(x)|s|^{q-2} s$, with $a \in L^{\infty}(\Omega)$ positive and $q \in\left(2,2^{*}\right)$, or even a finite sums of this kind of functions with different (and positive) $a_{i} \in L^{\infty}(\Omega)$ and $q_{i} \in\left(2,2^{*}\right)$. For the second theorem, we pick $q \in(4,6)$ and notice that, since the superlinearity condition is just local, we can allow the potential a to vanish in a proper set of positive measure of Ω. Actually, we may also consider examples where f is negative, for instance, $f(s) \sim s$ near the origin, $f(s) \sim s^{q-1}$ at infinity and f is negative and bounded in some intervals $\left(s_{i}^{-}, s_{i}^{+}\right) \subset(0,+\infty)$.

In the next section, we prove a local compactness property for the energy functional under the setting of Theorem 1.1 which is proved in Section 3. In Section 4 we prove compactness for $\mu>0$ small and the final Section 5 is devoted to the proof of Theorem 1.2.

2. The local Palais Smale condition

Throughout the paper we write $\int_{\Omega} u$ instead of $\int_{\Omega} u(x) d x$. We are going to work on the space $H_{0}^{1}(\Omega)$ endowed with the norm

$$
\|u\|:=\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{1 / 2}
$$

We also denote by $\|u\|_{p}$ the $L^{p}(\Omega)$-norm of a function $u \in L^{p}(\Omega)$, for any $1 \leq p \leq \infty$. Throughout the two next sections we assume that (m_{0}) holds and that $\mu>0$ is fixed.

Let $\theta>2$ from $\left(f_{2}\right)$ and $a>0$ be a number in the range of m verifying

$$
\begin{equation*}
m(0)<a<\frac{\theta}{2} m(0) \tag{2.1}
\end{equation*}
$$

Since m is increasing, there exists $s_{0}>0$ such that $m\left(s_{0}\right)=a$. We define $m_{a} \in$ $C\left([0,+\infty), \mathbb{R}^{+}\right)$by setting

$$
m_{a}(s):= \begin{cases}m(s), & \text { if } 0 \leq s \leq s_{0} \\ a, & \text { if } s \geq s_{0}\end{cases}
$$

and consider the truncated problem

$$
\left\{\begin{array}{l}
-m_{a}\left(\|u\|^{2}\right) \Delta u=\lambda f(x, u)+\mu|u|^{2^{*}-2} u, \quad x \in \Omega \tag{a}\\
u \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

We say that $u \in H_{0}^{1}(\Omega)$ is a weak solution of $\left(P_{a}\right)$ if

$$
m_{a}\left(\|u\|^{2}\right) \int_{\Omega}(\nabla u \cdot \nabla \phi)=\lambda \int_{\Omega} f(x, u) \phi+\mu \int_{\Omega}|u|^{2^{*}-2} u \phi, \quad \forall \phi \in H_{0}^{1}(\Omega)
$$

with an analogous definition for weak solutions of (P). By using $\left(f_{0}\right)-\left(f_{1}\right)$ and standard calculations we can prove that the energy function $I_{a, \lambda}$ given by

$$
I_{a, \lambda}(u):=\frac{1}{2} M_{a}\left(\|u\|^{2}\right)-\lambda \int_{\Omega} F(x, u)-\frac{\mu}{2^{*}} \int_{\Omega}|u|^{2^{*}}, \quad u \in H_{0}^{1}(\Omega)
$$

is well defined. In the above definition we are denoting $M_{a}(s):=\int_{0}^{s} m_{a}(t) d t$ and $F(x, s):=\int_{0}^{s} f(x, t) d t$. Moreover, $I_{a, \lambda}$ belongs to $C^{1}\left(H_{0}^{1}(\Omega), \mathbb{R}\right)$ and the weak solutions of $\left(P_{a}\right)$ are the critical points of $I_{a, \lambda}$.

Notice that, by the definition of m_{a}, if $u \in H_{0}^{1}(\Omega)$ is a weak solution of $\left(P_{a}\right)$ such that $\|u\|<s_{0}$, then $m_{a}\left(\|u\|^{2}\right)=m\left(\|u\|^{2}\right)$ and therefore u is also a weak solution of the original problem (P). Hence, we are going to look for multiple critical points of $I_{a, \lambda}$ with small norm.

Lemma 2.1. Suppose that f satisfies $\left(f_{0}\right)-\left(f_{2}\right)$. If $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ is such that $I_{a, \lambda}\left(u_{n}\right) \rightarrow c$ and $I_{a, \lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$, then $\left(u_{n}\right)$ is bounded in $H_{0}^{1}(\Omega)$.
Proof. Condition $\left(m_{0}\right)$ and the definition of m_{a} imply that $M_{a}(s) \geq m(0) s$ and $m_{a}(s) \leq a$, for any $s \in \mathbb{R}$. Hence, we can use $\left(f_{2}\right)$ to get

$$
c+o_{n}(1)+o_{n}(1)\left\|u_{n}\right\|=I_{a, \lambda}\left(u_{n}\right)-\frac{1}{\theta} I_{a, \lambda}^{\prime}\left(u_{n}\right) u_{n} \geq\left(\frac{m(0)}{2}-\frac{a}{\theta}\right)\left\|u_{n}\right\|^{2}
$$

where $o_{n}(1)$ stands for a quantity approaching zero as $n \rightarrow+\infty$. By (2.1) the term into the parenthesis above is positive and we have done.

If we set

$$
S:=\inf _{u \in H_{0}^{1}(\Omega) \backslash\{0\}} \frac{\|u\|^{2}}{\left(\int_{\Omega}|u|^{2^{*}}\right)^{2 / 2^{*}}},
$$

we can state the following well-known result due to Lions [21]:
Lemma 2.2. Suppose that $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ is such that $u_{n} \rightharpoonup u$ weakly in $H_{0}^{1}(\Omega)$ and $\left|u_{n}\right|^{2^{*}} \rightharpoonup \nu,\left|\nabla u_{n}\right|^{2} \rightharpoonup \zeta$ weakly in the sense of measures, where ν and ζ are non-negative and bounded measures on $\bar{\Omega}$. Then there exist a countable index set J, which can be empty, and a family $\left\{x_{j}\right\}_{j \in J} \subset \bar{\Omega}$ such that

$$
\begin{equation*}
\nu=|u|^{2^{*}} \mathrm{~d} x+\sum_{j \in J} \nu_{j} \delta_{x_{j}}, \quad \zeta \geq|\nabla u|^{2} \mathrm{~d} x+\sum_{j \in J} \zeta_{j} \delta_{x_{j}} \tag{2.2}
\end{equation*}
$$

with $\nu_{j}, \zeta_{j}>0$ satisfying $S \nu_{j}^{2 / 2^{*}} \leq \zeta_{j}$, for all $j \in J$.
In what follows we prove that, for some special sequences, the set J must be finite.

Lemma 2.3. Let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ be as in the statement of Lemma 2.2. If $I_{a, \lambda}^{\prime}\left(u_{n}\right) \rightarrow$ 0 , then the set J is empty or finite. Moreover,

$$
\begin{equation*}
\nu_{j} \geq\left(\frac{m(0) S}{\mu}\right)^{N / 2}, \quad \forall j \in J \tag{2.3}
\end{equation*}
$$

Proof. Let $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ be such that $\phi \equiv 1$ in $B_{1 / 2}(0)$ and $\phi \equiv 0$ in $\mathbb{R}^{N} \backslash B_{1}(0)$. Suppose that $J \neq \varnothing$, fix $j \in J$ and define $\phi_{\varepsilon}(x):=\phi\left(\frac{x-x_{j}}{\varepsilon}\right)$. Since $I^{\prime}\left(u_{n}\right)\left(\phi_{\varepsilon} u_{n}\right)=o_{n}(1)$, we have that

$$
\begin{equation*}
m\left(\left\|u_{n}\right\|^{2}\right)\left(A_{n, \varepsilon}+\int_{\Omega}\left|\nabla u_{n}\right|^{2} \phi_{\varepsilon}\right)=o_{n}(1)+\mu \int_{\Omega}\left|u_{n}\right|^{2^{*}} \phi_{\varepsilon}+\lambda \int_{\Omega} f\left(x, u_{n}\right) u_{n} \phi_{\varepsilon} \tag{2.4}
\end{equation*}
$$

with $A_{n, \varepsilon}:=\int_{\Omega} u_{n}\left(\nabla u_{n} \cdot \nabla \phi_{\varepsilon}\right)$. By using $\left(f_{3}\right)$ and the sub-critical growth condition $\left(f_{1}\right)$, we can prove that $\int_{\Omega} f\left(x, u_{n}\right) u_{n} \phi_{\varepsilon} \rightarrow \int_{\Omega} f(x, u) u \phi_{\varepsilon}$, as $n \rightarrow+\infty$. Thus, since (m_{0}) implies that $m(t) \geq \alpha_{0}>0$, for any $t \geq 0$, we infer from (2.4) and Lemma 2.2 that

$$
\alpha_{0}\left(\limsup _{n \rightarrow+\infty} A_{n, \varepsilon}+\int_{\bar{\Omega}} \phi_{\varepsilon} d \zeta\right) \leq \mu \int_{\bar{\Omega}} \phi_{\varepsilon} d \nu+\lambda \int_{\Omega} f(x, u) u \phi_{\varepsilon} .
$$

We claim that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \limsup _{n \rightarrow \infty} A_{n, \varepsilon}=0 \tag{2.5}
\end{equation*}
$$

If this is true can take $\varepsilon \rightarrow 0$ and use the Lebesgue Theorem to get $\alpha_{0} \zeta_{j} \leq \mu \nu_{j}$. Recalling that $S \nu_{j}^{2 / 2^{*}} \leq \zeta_{j}$, we obtain

$$
m(0) S \nu_{j}^{2 / 2^{*}} \leq m(0) \zeta_{j} \leq \alpha_{0} \zeta_{j} \leq \mu \nu_{j}
$$

and therefore $\nu_{j} \geq(m(0) S / \mu)^{N / 2}$. Hence,

$$
\nu(\bar{\Omega}) \geq \sum_{j \in J} \nu_{j} \geq \sum_{j \in J}\left(\frac{m(0) S}{\mu}\right)^{N / 2}
$$

Since $\nu(\bar{\Omega})<+\infty$, we conclude that set J is finite.
In order to prove (2.5), we compute

$$
\begin{aligned}
\left|A_{n, \varepsilon}\right| & \leq \frac{\||\nabla \phi|\|_{\infty}}{\varepsilon}\left(\int_{B_{\varepsilon}\left(x_{j}\right)}\left|\nabla u_{n}\right|^{2} d x\right)^{1 / 2}\left(\int_{B_{\varepsilon}\left(x_{j}\right)}\left|u_{n}\right|^{2} d x\right)^{1 / 2} \\
& \leq \frac{\||\nabla \phi|\|_{\infty}}{\varepsilon}\left\|u_{n}\right\|\left(\int_{B_{\varepsilon}\left(x_{j}\right)}\left|u_{n}\right|^{2} d x\right)^{1 / 2} \\
& \leq \frac{d_{1}}{\varepsilon}\left(\int_{B_{\varepsilon}\left(x_{j}\right)}|u|^{2} d x+o_{n}(1)\right)^{1 / 2}
\end{aligned}
$$

with $d_{1}>0$. Since $\int_{B_{\varepsilon}\left(x_{j}\right)}|u|^{2} d x=O\left(\varepsilon^{3}\right)$, as $\varepsilon \rightarrow 0$, equation (2.5) follows from the above inequality.

If E is a real Banach space and $I \in C^{1}(E, \mathbb{R})$, we say that I satisfies the PalaisSmale condition at level $c \in \mathbb{R},(P S)_{c}$ for short, if every sequence $\left(u_{n}\right) \subset E$ such that $I\left(u_{n}\right) \rightarrow c$ and $I^{\prime}\left(u_{n}\right) \rightarrow 0$ possesses a convergent subsequence.

Proposition 2.4. Suppose that f satisfies $\left(f_{0}\right)-\left(f_{2}\right)$ and define

$$
c^{*}:=\min \left\{\mu\left(\frac{1}{\theta}-\frac{1}{2^{*}}\right)\left(\frac{m(0) S}{\mu}\right)^{N / 2},\left(\frac{m(0)}{2}-\frac{a}{\theta}\right) s_{0}^{2}\right\} .
$$

Then the functional $I_{a, \lambda}$ satisfies the $\left(P S_{c}\right)$ condition at any level $c<c^{*}$.
Proof. Let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ be such that $I_{a, \lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ and $I_{a, \lambda}\left(u_{n}\right) \rightarrow c<c^{*}$. We start by proving that the set J given by Lemma 2.2 is empty. Indeed, suppose by contradiction that there exists some $j \in J$. If we consider ϕ_{ε} as in the proof of Lemma 2.3, we can use Lemma 2.1, $\left(f_{2}\right)$ and (2.1) to get

$$
\begin{aligned}
c+o_{n}(1) & =I_{a, \lambda}\left(u_{n}\right)-\frac{1}{\theta} I_{a, \lambda}^{\prime}\left(u_{n}\right) u_{n} \\
& \geq \mu\left(\frac{1}{\theta}-\frac{1}{2^{*}}\right) \int_{\Omega}\left|u_{n}\right|^{2^{*}} \geq \mu\left(\frac{1}{\theta}-\frac{1}{2^{*}}\right) \int_{\Omega}\left|u_{n}\right|^{2^{*}} \phi_{\varepsilon} .
\end{aligned}
$$

Taking the limit and using (2.3), we conclude that

$$
c \geq \mu\left(\frac{1}{\theta}-\frac{1}{2^{*}}\right) \nu_{j} \geq \mu\left(\frac{1}{\theta}-\frac{1}{2^{*}}\right)\left(\frac{m(0) S}{\mu}\right)^{N / 2}
$$

which contradicts $c<c^{*}$.
Since the set J is empty, we can use (2.2) and the boundedness of Ω to conclude that

$$
\lim _{n \rightarrow+\infty} \int_{\Omega}\left|u_{n}\right|^{2^{*}}=\int_{\Omega}|u|^{2^{*}}
$$

where $u \in H_{0}^{1}(\Omega)$ is the $H_{0}^{1}(\Omega)$-weak limit of $\left(u_{n}\right)$. Recalling that $I_{a, \lambda}^{\prime}\left(u_{n}\right) u_{n}=$ $o_{n}(1)$, we can use $\left(f_{1}\right)$ to get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} m_{a}\left(\left\|u_{n}\right\|^{2}\right)\left\|u_{n}\right\|^{2}=\lambda \int_{\Omega} f(x, u) u+\mu \int_{\Omega}|u|^{2^{*}} \tag{2.6}
\end{equation*}
$$

On the other hand, if we set $\alpha_{0}:=\lim _{n \rightarrow \infty}\left\|u_{n}\right\|^{2}$, we can use $I_{a, \lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ to obtain

$$
m_{a}\left(\alpha_{0}^{2}\right) \int_{\Omega}(\nabla u \cdot \nabla \phi)=\lambda \int_{\Omega} f(x, u) \phi+\mu \int_{\Omega}|u|^{2^{*}-2} u \phi, \quad \forall \phi \in H_{0}^{1}(\Omega)
$$

By picking $\phi=u$, we infer from (2.6) that

$$
\lim _{n \rightarrow \infty} m_{a}\left(\left\|u_{n}\right\|^{2}\right)\left\|u_{n}\right\|^{2}=m_{a}\left(\alpha_{0}^{2}\right)\|u\|^{2}
$$

Since m_{a} is continuous and positive, we have that $\alpha_{0}=\|u\|$. Hence, the weak convergence implies that $u_{n} \rightarrow u$ strongly in $H_{0}^{1}(\Omega)$ and the proposition is proved.

3. Proof of Theorem 1.1

In this section, we present the proof of our first theorem. We are going to use the following version of Symmetric Mountain Pass Theorem (see [2, 28]):

Theorem 3.1. Let $E=V \oplus W$ be a real Banach space with $\operatorname{dim} V<\infty$. Suppose $I \in C^{1}(E, \mathbb{R})$ is an even functional satisfying $I(0)=0$ and
(I_{1}) there exist $\rho, \alpha>0$ such that

$$
\inf _{u \in \partial B_{\rho}(0) \cap W} I(u) \geq \alpha ;
$$

(I_{2}) there exist a subspace $\widehat{V} \subset E$ such that $\operatorname{dim} V<\operatorname{dim} \widehat{V}<\infty$ and

$$
\max _{u \in \widehat{V}} I(u) \leq M
$$

for some $M>0$;
$\left(I_{3}\right) I$ satisfies $(P S)_{c}$ for any $c \in(0, M)$, with M as in $\left(I_{2}\right)$.
Then I possesses at least $(\operatorname{dim} \widehat{V}-\operatorname{dim} V)$ pairs of non-trivial critical points.
In what follows we verify that the functional $I_{a, \lambda}$ satisfies the conditions $\left(I_{1}\right)$ and $\left(I_{2}\right)$.

Lemma 3.2. Suppose that f satisfies $\left(f_{0}\right)$, $\left(f_{1}\right)$ and $\left(f_{3}\right)$. Then, for each $\lambda>0$, there exists $\rho_{\lambda}, \alpha_{\lambda}>0$ such that

$$
\inf _{u \in \partial B_{\rho_{\lambda}}(0)} I_{a, \lambda}(u) \geq \alpha_{\lambda}
$$

Proof. Given $\varepsilon>0$, we can use $\left(f_{1}\right)$ and $\left(f_{3}\right)$ to obtain $C_{\varepsilon}>0$ such that

$$
F(x, s) \leq \frac{\varepsilon}{2}|s|^{2}+C_{\varepsilon}|s|^{q}, \quad \forall(x, s) \in \Omega \times \mathbb{R} .
$$

Hence,

$$
\begin{aligned}
I_{a, \lambda}(u) & \geq \frac{m(0)}{2}\|u\|^{2}-\frac{\varepsilon}{2} \int_{\Omega}|u|^{2}-\frac{C_{\varepsilon}}{q} \lambda \int_{\Omega}|u|^{q}-\frac{\mu}{2^{*}} \int_{\Omega} u^{2^{*}} \\
& \geq \frac{1}{2}\left(m(0)-\frac{\varepsilon \lambda}{\lambda_{1}(\Omega)}\right)\|u\|^{2}-d_{1} \lambda\|u\|^{q}-d_{2}\|u\|^{2^{*}}
\end{aligned}
$$

where $\lambda_{1}(\Omega)>0$ is the first eigenvalue of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$ and $d_{1}, d_{2}>0$ are constants independent of λ. The result easily follows if we choose $\varepsilon>0$ small and use the inequality $2<q<2^{*}$.

Proposition 3.3. Suppose that f satisfies $\left(f_{0}\right)-\left(f_{2}\right)$. Then, for any given $k \in \mathbb{N}$ and $M^{*}>0$, there exists $\lambda_{k}^{*}>0$ with the following property: for any $\lambda \geq \lambda_{k}^{*}$ we can find a k-dimensional subspace $V_{k}^{\lambda} \subset H_{0}^{1}(\Omega)$ such that

$$
\max _{u \in V_{k}^{\lambda}} I_{a, \lambda}(u)<M^{*} .
$$

Proof. Let $\varphi \in C_{0}^{\infty}\left(B_{1}(0)\right)$, choose $\left\{x_{1}, \ldots, x_{k}\right\} \subset \Omega$ and $\delta>0$ such that, for $i, j \in I:=\{1, \ldots, k\}, B_{\delta}\left(x_{i}\right) \subset \Omega$ and $B_{\delta}\left(x_{i}\right) \cap B_{\delta}\left(x_{j}\right)=\varnothing$, if $i \neq j$. For each $i \in I$, we set $\varphi_{i}^{\delta}(x):=\varphi\left(\frac{x-x_{i}}{\delta}\right)$ and notice that

$$
\begin{equation*}
A_{\delta}:=\frac{\left\|\varphi_{i}^{\delta}\right\|^{2}}{\left\|\varphi_{i}^{\delta}\right\|_{\theta}^{2}}=\delta^{\left(N-2-\frac{2 N}{\theta}\right)} \frac{\|\varphi\|^{2}}{\|\varphi\|_{\theta}^{2}} \tag{3.1}
\end{equation*}
$$

Since \mathbb{R}^{k} is finite dimensional, there exists $d_{1}=d_{1}(k, \theta)$ such that

$$
\begin{equation*}
\sum_{i=1}^{k}\left|y_{i}\right|^{\theta} \geq d_{1}\left(\sum_{i=1}^{k}\left|y_{i}\right|^{2}\right)^{\theta / 2}, \quad \forall\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{R}^{k} \tag{3.2}
\end{equation*}
$$

Hence, if we set

$$
V_{k, \delta}:=\operatorname{span}\left\{\varphi_{1}^{\delta}, \ldots, \varphi_{k}^{\delta}\right\}
$$

MULTIPLE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH CRITICAL GROWTH 9 we have that, for any $u=\sum_{i=1}^{k} \alpha_{i} \varphi_{i}^{\delta} \in V_{k, \delta}$, there holds

$$
\begin{align*}
\int_{\Omega}|u|^{\theta} d x & =\int_{B_{\delta}\left(x_{1}\right) \cup \cdots \cup B_{\delta}\left(x_{k}\right)}\left|\sum_{i=1}^{k} \alpha_{i} \varphi_{i}^{\delta}\right|^{\theta} d x \\
& =\sum_{i=1}^{k}\left\|\alpha_{i} \varphi_{i}^{\delta}\right\|_{\theta}^{\theta} \geq d_{1}\left(\sum_{i=1}^{k}\left\|\alpha_{i} \varphi_{i}^{\delta}\right\|_{\theta}^{2}\right)^{\theta / 2} \tag{3.3}\\
& =d_{1}\left(\sum_{i=1}^{k} A_{\delta}^{-1}\left\|\alpha_{i} \varphi_{i}^{\delta}\right\|^{2}\right)^{\theta / 2}=d_{2} \delta^{-\left(N-2-\frac{2 N}{\theta}\right) \frac{\theta}{2}}\|u\|^{\theta}
\end{align*}
$$

where $d_{2}=d_{1}\|\varphi\|^{2}\|\varphi\|_{\theta}^{-2}$ and we have used (3.2), (3.1) and the fact that the support of the functions φ_{i}^{δ} are disjoint.

By using $\left(f_{3}\right)$, we obtain $d_{3}, d_{4}>0$ such that

$$
F(x, s) \geq d_{3}|s|^{\theta}-d_{2}, \quad \forall(x, s) \in \Omega \times \mathbb{R}
$$

This and (3.3) provide

$$
\begin{aligned}
I_{a, \lambda}(u) & \leq \frac{a}{2}\|u\|^{2}-\lambda \sum_{i=1}^{k} \int_{B_{\delta}\left(x_{i}\right)} F(x, u) \\
& \leq \frac{a}{2}\|u\|^{2}-\lambda d_{2} d_{3} \delta^{-\left(N-2-\frac{2 N}{\theta}\right) \frac{\theta}{2}}\|u\|^{\theta}+\lambda d_{2} k \delta^{N} \omega_{N}
\end{aligned}
$$

where ω_{N} is the volume of the unitary ball $B_{1}(0) \subset \mathbb{R}^{N}$. Thus, for positive constants $d_{5}=d_{5}(k, \theta), d_{6}=d_{6}(k, N)$ and

$$
\gamma:=-\left(N-2-\frac{2 \theta}{N}\right) \frac{\theta}{2}>0
$$

there holds

$$
\begin{equation*}
I_{a, \lambda}(u) \leq \frac{a}{2}\|u\|^{2}-\lambda d_{5} \delta^{\gamma}\|u\|^{\theta}+\lambda d_{6} \delta^{N}, \quad \forall u \in V_{k, \delta} \tag{3.4}
\end{equation*}
$$

Since $\theta<2^{*}$, we have that $\gamma<N$ and therefore we can pick $\gamma_{0} \in(\gamma, N)$ and consider the function

$$
h_{\delta}(t):=\frac{a}{2} t^{2}-d_{5} \delta^{-\gamma_{0}+\gamma} t^{\theta}+d_{6} \delta^{-\gamma_{0}+N}, \quad t>0
$$

It attains its maximum value at $t_{\delta}=\left[a\left(d_{5} \theta\right)^{-1} \delta^{\gamma-\gamma_{0}}\right]^{1 /(\theta-2)}$. This and $\gamma_{0} \in(\gamma, N)$ imply that $h_{\delta}\left(t_{\delta}\right) \rightarrow 0$ as $\delta \rightarrow 0^{+}$. Thus, there exists $\delta^{*}=\delta^{*}(l, \theta, N, a)>0$ such that

$$
\max _{t \geq 0} h_{\delta}(t) \leq \frac{M^{*}}{2}, \quad \forall \delta \in\left(0, \delta^{*}\right]
$$

We now set $\lambda_{k}^{*}:=\left(\delta^{*}\right)^{-\gamma_{0}}$. Let $\lambda \geq \lambda_{k}^{*}$ and define the k-dimensional subspace $V_{k}^{\lambda}:=V_{k, \delta}$ for $\delta=\lambda^{-1 / \gamma_{0}}$. Since $\delta^{-\gamma_{0}}=\lambda \geq \lambda_{k}^{*}=\left(\delta^{*}\right)^{-\gamma_{0}}$, we obtain $\delta \leq \delta^{*}$. Thus, for any $u \in V_{k}^{\lambda}$, we can use (3.4) and the above inequality to get

$$
I_{a, \lambda}(u) \leq \frac{a}{2}\|u\|^{2}-\delta^{-\gamma_{0}} d_{5} \delta^{\gamma}\|u\|^{\theta}+\delta^{-\gamma_{0}} d_{6} \delta^{N} \leq \max _{t \geq 0} h_{\delta}(t) \leq \frac{M^{*}}{2}
$$

and we have done.

We are ready to prove our first theorem.

Proof of Theorem 1.1. Let $k \in \mathbb{N}$ be given. We are going to apply Theorem 3.1 with $W=H_{0}^{1}(\Omega)$. Condition $\left(I_{1}\right)$ is a direct consequence of Lemma 3.2. In order to verify the other conditions, we consider $M^{*}<c^{*}$, with c^{*} as in Proposition 2.4. Condition (I_{3}) follows from Proposition 2.4. It remains to obtain a k-dimensional subspace such that $\left(I_{2}\right)$ holds. But that condition always hold for the subsapce V_{k}^{λ} given by Proposition 3.3, if we take $\lambda \geq \lambda_{k}^{*}$.

Since $I_{a, \lambda}(0)=0$ and this functional is even, the above considerations and Theorem 3.1 provide, for each $\lambda \geq \lambda_{k}^{*}$, the existence of at least k pairs of nonzero solutions of the modified problem $\left(P_{a}\right)$. Let $u \in H_{0}^{1}(\Omega)$ be one of these solutions. Since $I_{a, \lambda}(u) \leq M^{*}<c^{*}$, we can use the definition of c^{*} and $\left(f_{2}\right)$ to obtain

$$
\left(\frac{m(0)}{2}-\frac{a}{\theta}\right) s_{0}^{2} \geq c^{*}>M^{*}=I_{a, \lambda}(u)-\frac{1}{\theta} I_{a, \lambda}^{\prime}(u) u \geq\left(\frac{m(0)}{2}-\frac{a}{\theta}\right)\|u\|^{2}
$$

Hence, $\|u\|<s_{0}$ and it follows from the definition of m_{a} that $m_{a}\left(\|u\|^{2}\right)=m(\|u\|)$, that is, the function $u \in H_{0}^{1}(\Omega)$ weakly solves (P). The theorem is proved.

4. The 3-Dimensional case

From now on we focus on Theorem 1.2. We assume hereafter that the conditions $\left(\widehat{m_{0}}\right),\left(m_{1}\right)-\left(m_{3}\right)$ hold and that $\lambda>0$ is fixed. For each $\mu>0$, we can use conditions $\left(f_{0}\right)-\left(\widehat{f_{1}}\right)$ to guarantee that the energy functional $I_{\mu}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ given by

$$
I_{\mu}(u):=\frac{1}{2} M\left(\|u\|^{2}\right)-\lambda \int_{\Omega} F(x, u)-\frac{\mu}{6} \int_{\Omega}|u|^{6}, \quad u \in H_{0}^{1}(\Omega)
$$

is well defined. Moreover, $I_{\mu} \in C^{1}\left(H_{0}^{1}(\Omega), \mathbb{R}\right)$ and the critical points of I_{μ} are weak solutions of (P).

The proof of the Palais-Smale condition is completely different from that done for the functional $I_{a, \lambda}$. In this case, we have the following:

Proposition 4.1. Suppose that f satisfies $\left(\widehat{f}_{1}\right),\left(f_{4}\right)$ and one of the conditions $\left(f_{6}\right)$ or $\left(f_{7}\right)$. Then, given $M>0$, there exist $\mu^{*}=\mu^{*}\left(\Omega, M, a, c_{3}, c_{4}, \sigma, \lambda\right)>0$ such that I_{μ} satisfies the $(P S)_{c}$ condition for any $c<M$ and $\mu \in\left(0, \mu^{*}\right)$.

The proof will be done in several steps. The first one is to prove that Palais-Smale sequences are bounded.

Lemma 4.2. Suppose that f satisfies $\left(\widehat{f}_{1}\right),\left(f_{4}\right)$ and one of the conditions $\left(f_{6}\right)$ or $\left(f_{7}\right)$. If $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ is such that $I_{\mu}\left(u_{n}\right) \rightarrow c$ and $I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0$, then $\left(u_{n}\right)$ is bounded in $H_{0}^{1}(\Omega)$.

Proof. Let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ be such that $I_{\mu}\left(u_{n}\right) \rightarrow c, I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ and consider $\sigma \in[0,2)$ given by $\left(f_{4}\right)$. For any $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that,

$$
\begin{equation*}
|s|^{\sigma} \leq \varepsilon|s|^{6}+C_{\varepsilon}, \quad \forall s \in \mathbb{R} \tag{4.1}
\end{equation*}
$$

This, $\left(m_{2}\right)$ and $\left(f_{4}\right)$ show that, for n large, there hold

$$
\begin{aligned}
c+o_{n}(1)+o_{n}(1)\left\|u_{n}\right\| & \geq I_{\mu}\left(u_{n}\right)-\frac{1}{4} I_{\mu}^{\prime}\left(u_{n}\right) u_{n} \\
& \geq \frac{\mu}{12}\left\|u_{n}\right\|_{6}^{6}+\lambda \int_{\Omega}\left(\frac{1}{4} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right) \\
& \geq \frac{\mu}{12}\left\|u_{n}\right\|_{6}^{6}-c_{1} \lambda|\Omega|-c_{2} \lambda \int_{\Omega}\left|u_{n}\right|^{\sigma} \\
& \geq\left(\frac{\mu}{12}-\varepsilon c_{2} \lambda\right)\left\|u_{n}\right\|_{6}^{6}-\left(c_{1} \lambda+C_{\varepsilon}\right)|\Omega|
\end{aligned}
$$

By picking $\varepsilon>0$ small, we obtain $d_{1}, d_{2}>0$ such that

$$
\begin{equation*}
\left\|u_{n}\right\|_{6}^{6} \leq d_{1}+d_{2}\left\|u_{n}\right\| \tag{4.2}
\end{equation*}
$$

On the other hand, since $I_{\mu}\left(u_{n}\right)=c+o_{n}(1)$, it follows from $\left(m_{2}\right),\left(m_{1}\right)$ and $\left(f_{6}\right)$ that

$$
\frac{\alpha_{0}}{4}\left\|u_{n}\right\|^{2} \leq \frac{1}{2} M\left(\left\|u_{n}\right\|^{2}\right) \leq \frac{\mu}{6}\left\|u_{n}\right\|_{6}^{6}+c_{3} \lambda|\Omega|+c_{4} \lambda\left\|u_{n}\right\|_{q}^{q}+c+o_{n}(1)
$$

Since $2<q<6$, we have an inequality analogous to (4.1) with σ replaced by q, and therefore it follows from (4.2) that

$$
\frac{\alpha_{0}}{4}\left\|u_{n}\right\|^{2} \leq d_{3}\left\|u_{n}\right\|_{6}^{6}+d_{4} \leq d_{5}\left\|u_{n}\right\|+d_{6}
$$

Hence, $\left(u_{n}\right)$ is bounded in $H_{0}^{1}(\Omega)$.
Suppose now that f satisfies $\left(f_{7}\right)$ instead of $\left(f_{6}\right)$. Given $\varepsilon>0$, we can use $\left(\widehat{f}_{1}\right)$ to obtain $d_{7}>0$ such that

$$
|F(x, s)| \leq d_{7}+\varepsilon|s|^{6}
$$

Letting $n \rightarrow+\infty$ and recalling that $\varepsilon>0$ is arbitrary, we conclude that

$$
\limsup _{s \rightarrow+\infty} \frac{|F(x, s)|}{s^{6}}=0
$$

This and $\left(f_{7}\right)$ provides $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
F(x, s) \leq C_{\varepsilon}|s|^{6}+\left(\left\|a^{+}\right\|_{\infty}+\varepsilon\right) s^{2} . \tag{4.3}
\end{equation*}
$$

The proof now follows as in the first case.
We prove now a version of Lemma 2.3 in this new setting.
Lemma 4.3. Suppose that f satisfies $\left(\widehat{f}_{1}\right)$ and let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ be as in the statement of Lemma 2.2. If $I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0$, then the set J is empty or finite. Moreover,

$$
\begin{equation*}
\nu_{j} \geq\left(\frac{\alpha_{0} S}{\mu}\right)^{\frac{3}{2}}, \quad \forall j \in J \tag{4.4}
\end{equation*}
$$

Proof. Let $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ as in the proof of Lemma 2.3. Since $I_{\mu}^{\prime}\left(u_{n}\right)\left(\phi_{\varepsilon} u_{n}\right)=$ $o_{n}(1)$, we have that

$$
m\left(\left\|u_{n}\right\|^{2}\right)\left(A_{n, \varepsilon}+\int_{\Omega}\left|\nabla u_{n}\right|^{2} \phi_{\varepsilon}\right)=o_{n}(1)+\mu \int_{\Omega}\left|u_{n}\right|^{6} \phi_{\varepsilon}+\lambda \int_{\Omega} f\left(x, u_{n}\right) u_{n} \phi_{\varepsilon}
$$

with $A_{n, \varepsilon}:=\int_{\Omega} u_{n}\left(\nabla u_{n} \cdot \nabla \phi_{\varepsilon}\right)$. By using $\left(\widehat{f}_{1}\right)$, the compactness embedding of $H_{0}^{1}(\Omega)$ into the Lebesgue spaces and a version of a compactness lemma due to Strauss (see [8, Lemma 1.2]) we can check that $\int f\left(u_{n}\right) u_{n} \phi_{\varepsilon} \rightarrow \int f(u) u \phi_{\varepsilon}$, as
$n \rightarrow+\infty$. Arguing as in as in the proof of Lemma 2.3, using (2.5) and (m_{1}), we obtain $\nu_{j} \geq\left(\alpha_{0} S / \mu\right)^{3 / 2}$. Hence,

$$
\begin{equation*}
\nu(\bar{\Omega}) \geq \sum_{j \in J} \nu_{j} \geq \sum_{j \in J}\left(\frac{\alpha_{0} S}{\mu}\right)^{3 / 2} \tag{4.5}
\end{equation*}
$$

and we conclude that set J is finite.
We are ready to present the proof of our compactness result.
Proof of Proposition 4.1. Let $\left(u_{n}\right) \subset H_{0}^{1}(\Omega)$ be such that $I_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0$ and $I_{\mu}\left(u_{n}\right) \rightarrow$ $c<M$. By Lemma 4.2, this sequence is bounded in $H_{0}^{1}(\Omega)$ and therefore there exist $u \in H_{0}^{1}(\Omega)$ and two bounded measures ν, ζ satisfying all the hypotheses of Lemma 2.2.

Arguing as in the proof of Lemma 4.2 and using Hölder's inequality we get, for n large,

$$
\begin{aligned}
M & >I_{\mu}\left(u_{n}\right)-\frac{1}{4} I_{\mu}^{\prime}\left(u_{n}\right) u_{n} \\
& \geq \frac{\mu}{12} \int_{\Omega}\left|u_{n}\right|^{6}-c_{1} \lambda|\Omega|-c_{2} \lambda \int_{\Omega}\left|u_{n}\right|^{\sigma} \\
& \geq \mu d_{1} \int_{\Omega}\left|u_{n}\right|^{6}-d_{2}-d_{3}\left(\int_{\Omega}\left|u_{n}\right|^{6}\right)^{\sigma / 6}
\end{aligned}
$$

with $d_{1}:=1 / 12, d_{2}:=c_{1} \lambda|\Omega|$ and $d_{3}:=c_{2} \lambda|\Omega|^{(6-\sigma) / 6}$. Letting $n \rightarrow+\infty$ and recalling that $\left|u_{n}\right|^{6} \rightharpoonup \nu$ weakly in the sense of measures, we obtain

$$
\mu d_{1} \nu(\bar{\Omega}) \leq M+d_{2}+d_{3} \nu(\bar{\Omega})^{\sigma / 6}
$$

If $\nu(\bar{\Omega})>1$, we can use the above estimate to obtain

$$
\nu(\bar{\Omega}) \leq \nu(\bar{\Omega})^{\sigma / 6}\left(\frac{M+d_{2}+d_{3}}{\mu d_{1}}\right)
$$

Since $0 \leq \sigma<2$, there exists $\widetilde{\mu}>0$ such that

$$
\begin{equation*}
\nu(\bar{\Omega}) \leq\left(\frac{M+d_{2}+d_{3}}{\mu d_{1}}\right)^{6 /(6-\sigma)} \leq\left(\frac{\alpha_{0} S}{\mu}\right)^{3 / 2}, \quad \forall \mu \in(0, \widetilde{\mu}) \tag{4.6}
\end{equation*}
$$

If $\nu(\bar{\Omega}) \leq 1$, we can choose $\widehat{\mu}<\alpha_{0} S$ and use a simple computation to obtain $\nu(\bar{\Omega})<\left(\alpha_{0} S \mu^{-1}\right)^{3 / 2}$, for any $\mu \in(0, \widehat{\mu})$. Hence, if we set $\mu^{*}:=\min \{\widetilde{\mu}, \widehat{\mu}\}$, we get

$$
\nu(\bar{\Omega})<\left(\frac{\alpha_{0} S}{\mu}\right)^{3 / 2}, \quad \forall \mu \in\left(0, \mu^{*}\right)
$$

and therefore it follows from (4.5) that the set J given by Lemma 2.2 is empty. Thus, we can use (2.2) and the boundedness of Ω to get

$$
\int_{\Omega}\left|u_{n}\right|^{6} \rightarrow \int_{\Omega}|u|^{6}
$$

Since $\left(u_{n}\right)$ is bounded in $H_{0}^{1}(\Omega)$ we easily conclude that $\int_{\Omega}\left|u_{n}\right|^{4} u_{n} u \rightarrow \int_{\Omega}|u|^{6}$. As before, we also have that $\int_{\Omega} f\left(x, u_{n}\right)\left(u-u_{n}\right) \rightarrow 0$. Thus,

$$
o_{n}(1)=I_{\mu}^{\prime}\left(u_{n}\right) u_{n}-I_{\mu}^{\prime}\left(u_{n}\right) u=m\left(\left\|u_{n}\right\|^{2}\right)\left(\left\|u_{n}\right\|^{2}-\|u\|^{2}\right)+o_{n}(1) .
$$

It follows from $\left(m_{1}\right)$ that $\left\|u_{n}\right\| \rightarrow\|u\|$. This and the weak convergence of (u_{n}) finishes the proof.

5. Proof of Theorem 1.2

In order to present the proof of Theorems 1.2 we consider $\left(\varphi_{j}\right)_{j \in \mathbb{N}}$ the normalized eigenfunctions of $\left(-\Delta, H_{0}^{1}(\Omega)\right)$. For any $m \in \mathbb{N}$, we set

$$
V_{m}:=\operatorname{span}\left\{\varphi_{1}, \ldots, \varphi_{m}\right\}
$$

and notice that $H_{0}^{1}(\Omega)=V_{m} \oplus V_{m}^{\perp}$. Moreover, as proved in [28, Lemma 4.1], for any given $2 \leq r<6$ and $\delta>0$, there is $m_{0} \in \mathbb{N}$ such that, for all $m \geq m_{0}$,

$$
\begin{equation*}
\|u\|_{r}^{r} \leq \delta\|u\|^{r}, \quad \forall u \in V_{m}^{\perp} \tag{5.1}
\end{equation*}
$$

We first prove that I_{μ} verifies the geometric condition $\left(I_{1}\right)$.
Lemma 5.1. Suppose that f satisfies $\left(f_{6}\right)$ or $\left(f_{7}\right)$. Then there exists

$$
\bar{\mu}=\bar{\mu}\left(a, b, \Omega, c_{3}, c_{4}, \lambda\right)>0
$$

$m \in \mathbb{N}$ and $\rho, \alpha>0$ such that, for any $\mu \in(0, \bar{\mu})$, there holds

$$
I_{\mu}(u) \geq \alpha, \quad \forall u \in \partial B_{\rho}(0) \cap V_{m}^{\perp}
$$

Proof. Suppose first that $\left(f_{6}\right)$ holds. If we use the inequality (5.1) with $r=q$ and $\delta>0$ to be chosen later, we obtain

$$
I_{\mu}(u) \geq\|u\|^{2}\left(\frac{\alpha_{0}}{4}-\delta c_{3} \lambda\|u\|^{q-2}\right)-c_{4} \lambda|\Omega|-\frac{\mu}{6 S^{3}}\|u\|^{6}, \quad \forall u \in V_{m}^{\perp}
$$

where we have used $\left(m_{2}\right),\left(m_{1}\right)$ and $\left(f_{6}\right)$. If $\rho=\rho(\delta)>0$ is such that $\delta c_{3} \lambda \rho^{q-2}=$ $\alpha_{0} / 8$, we obtain

$$
I_{\mu}(u) \geq \frac{\alpha_{0}}{8} \rho^{2}-c_{4} \lambda|\Omega|-\frac{\mu}{6 S^{3}} \rho^{6}, \quad \forall u \in \partial B_{\rho}(0) \cap V_{m}^{\perp} .
$$

Since $\rho(\delta) \rightarrow+\infty$, as $\delta \rightarrow 0^{+}$, we can take $\delta>0$ small in such way that $\left(\alpha_{0} / 8\right) \rho^{2}-$ $c_{4} \lambda|\Omega|>\left(\alpha_{0} / 16\right) \rho^{2}$, and therefore we can obtain $\bar{\mu}>0$ such that,

$$
I_{\mu}(u) \geq \frac{\alpha_{0}}{16} \rho^{2}-\frac{\bar{\mu}}{6 S^{3}} \rho^{6} \geq \alpha>0, \quad \forall u \in \partial B_{\rho}(0) \cap V_{m}^{\perp}
$$

The conclusion easily follows from the above inequality.
If $\left(f_{7}\right)$ holds, we consider $\varepsilon>0$ and use $\left(m_{2}\right),\left(m_{1}\right)$ and (4.3) to get

$$
I_{\mu}(u) \geq \frac{\alpha_{0}}{4}\|u\|^{2}-\frac{\left(\mu+6 \lambda C_{\varepsilon}\right)}{6 S^{3}}\|u\|^{6}-\lambda\left(\left\|a^{+}\right\|_{\infty}+\varepsilon\right)\|u\|_{2}^{2}
$$

for any $u \in H_{0}^{1}(\Omega)$. Choosing $r=2$ and $\delta=\frac{\alpha_{0}}{8 \lambda\left(\left\|a^{+}\right\|_{\infty}+\varepsilon\right)}$ in (5.1), we obtain $m \in \mathbb{N}$ such that

$$
I_{\mu}(u) \geq \frac{\alpha_{0}}{8} \rho^{2}-\frac{\left(\mu+6 \lambda C_{\varepsilon}\right)}{6 S^{3}} \rho^{6}, \quad \forall u \in \partial B_{\rho}(0) \cap V_{m}^{\perp}
$$

The lemma follows from the above inequality and the same argument used in the first case.

The local superlinearity condition $\left(f_{5}\right)$ provides $\left(I_{2}\right)$ as we can see from the next lemma.

Lemma 5.2. Suppose that f satisfies $\left(f_{5}\right)$. Then, for any given $l \in \mathbb{N}$, there is a l-dimensional subspace $\widehat{V} \subset H_{0}^{1}(\Omega)$ and a constant $M>0$ such that

$$
\sup _{u \in \widehat{V}} I_{\mu}(u) \leq M, \quad \forall \mu>0
$$

Proof. Let $\Omega_{0} \subset \Omega$ be given by condition $\left(f_{5}\right)$, consider $\left(\phi_{j}\right)_{j \in \mathbb{N}}$ the normalized eigenfunctions of $\left(-\Delta, H_{0}^{1}\left(\Omega_{0}\right)\right)$ and define the l-dimensional subspace

$$
\widehat{V}_{l}:=\operatorname{span}\left\{\phi_{1}, \ldots, \phi_{l}\right\} .
$$

Since \widehat{V}_{l} has finite dimension there exists $d_{1}=d(\widehat{V})>0$ such that

$$
\begin{equation*}
d_{1}\|u\|^{4} \leq\|u\|_{4}^{4}, \quad \forall u \in \widehat{V} . \tag{5.2}
\end{equation*}
$$

Given $\varepsilon>b /\left(4 d_{1}\right)$, it follows from $\left(f_{5}\right)$ and the continuity of F that, for some $d_{2}=d_{2}\left(d_{1}, b\right)$, there holds

$$
F(x, s) \geq \varepsilon|s|^{4}-d_{2}, \quad \forall x \in \Omega_{0}, s \in \mathbb{R}
$$

This, $\left(m_{3}\right)$ and (5.2) imply that, for any $u \in \widehat{V}_{l}$, we have that

$$
I_{\mu}(u) \leq \frac{a}{2}\|u\|^{2}-\left(\varepsilon \lambda d_{1}-\frac{b}{4}\right)\|u\|^{4}+d_{2} \lambda|\Omega| \leq \sup _{t>0}\left\{\frac{a}{2} t^{2}-\varepsilon_{0} t^{4}+d_{2} \lambda|\Omega|\right\}
$$

with $\varepsilon_{0}:=\left(\varepsilon \lambda d_{1}-b / 4\right)>0$. If we denote by M the supremum of the right-hand side above, we can use $a>0$ to conclude that $0<M<+\infty$ and we have done.

Remark 5.3. In the local case $m \equiv 1$, the same conclusion of the last lemma holds if we drop $\left(f_{5}\right)$ by the weaker condition
$\left(\widehat{f}_{5}\right)$ there exists an open set $\Omega_{0} \subset \Omega$ with positive measure, such that

$$
\lim _{|s| \rightarrow \infty} \frac{F(x, s)}{s^{2}}=+\infty, \quad \text { uniformly in } \Omega_{0}
$$

Actually, if $\widehat{d_{1}}>0$ is such that $\widehat{d_{1}}\|u\|^{2} \leq\|u\|_{2}^{2}$, for all $u \in \widehat{V}$, the same argument provides

$$
I_{\mu}(u) \leq\left(\frac{a}{2}-\varepsilon \lambda \widehat{d_{1}}\right)\|u\|^{2}+d_{2} \lambda|\Omega| \leq \sup _{t>0}\left\{-\varepsilon_{0} t^{2}+d_{2} \lambda|\Omega|\right\}
$$

with $\varepsilon_{0}:=\varepsilon \lambda \widehat{d}_{1}-(a / 2)>0$. Hence, the lemma holds with $M=d_{2} \lambda|\Omega|$.
We are ready to prove our last result.
Proof of Theorem 1.2. Let $k \in \mathbb{N}$ be fixed. Since all the previous results hold with conditions $\left(f_{6}\right)$ or $\left(f_{7}\right)$, we present the proof in a unified way.

By Lemma 5.1 we can find $m \in \mathbb{N}$ large such that, for the decomposition $H=$ $V \oplus W$ with

$$
V:=\left\langle\varphi_{1}, \cdots, \varphi_{m}\right\rangle, \quad W:=\left\langle\varphi_{1}, \cdots, \varphi_{m}\right\rangle^{\perp}
$$

the functional I_{μ} verifies $\left(I_{1}\right)$ for any $\mu \in(0, \bar{\mu})$. Moreover, by Lemma 5.2, we obtain a subspace $\widehat{V} \subset H_{0}^{1}(\Omega)$ and $M>0$ such that

$$
\operatorname{dim} \widehat{V}=(k+m), \quad \sup _{u \in \widehat{V}} I_{\mu}(u) \leq M, \quad \forall \mu>0
$$

Hence, I_{μ} satisfies $\left(I_{2}\right)$. For the above choice of M we obtain, from Proposition 4.1, a number μ^{*} such that I_{μ} satisfies $\left(I_{3}\right)$ for any $\mu \in\left(0, \mu^{*}\right)$. Since $I_{\mu}(0)=0$ and I_{μ} is even, if we set $\mu_{k}^{*}:=\min \left\{\bar{\mu}, \mu^{*}\right\}$, we can invoke Theorem 3.1 to conclude that, for all $\mu \in\left(0, \mu_{k}^{*}\right)$, the functional I_{μ} has at least $(k+m-m)=k$ pairs of nonzero critical points. The theorems are proved.

References

[1] C.O. Alves, F.J.S.A. Corrêa and T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math. Appl. 49 (2005) 85-93.
[2] A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications. J. Functional Analysis 14 (1973) 349-381.
[3] A. Azzollini, The elliptic Kirchhoff equation in \mathbb{R}^{N} perturbed by a local nonlinearity, Differential Integral Equations 25 (2012), 543-554.
[4] A. Azzollini, P. d'Avenia and A. Pomponio, Multiple critical points for a class of nonlinear functionals, Ann. Mat. Pura Appl. 190 (2011), 507-523.
[5] A. Azzollini, A note on the elliptic Kirchhoff equation in \mathbb{R}^{N} perturbed by a local nonlinearity, Commun. Contemp. Math., 17 (2015), Art. ID 1450039, 5 pp.
[6] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983) 437-477.
[7] G.F. Carrier, On the nonlinear vibration problem of the elastic string, Quart. Appl. Math. 3, (1945) 157-165.
[8] J. Chabrowski, Weak convergence methods for semilinear elliptic equations. World Scientific, 1999.
[9] F.J.S.A. Corrêa and G.M. Figueiredo, On an elliptic equation of p-Kirchhoff type via variational methods. Bull. Austral. Math. Soc. 74 (2006), no. 2, 263-277.
[10] G. Eisley, Nonlinear vibrations of beams and rectangular plates, Z. Anger. Math. Phys. 15 (1964) 167-175.
[11] G.M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument, J. Math. Anal. Appl. 401 (2013) 706-713.
[12] G.M. Figueiredo and J.R.S. Junior, Multiplicity of solutions for a Kirchhoff equation with subcritical and critical growth, Diff. Int. Equations 25 (2012) 853-868.
[13] A. Hamydy, M. Massar and N. Tsouli, Existence of solutions for p-Kirchhoff type problems with critical exponent. Electron. J. Differential Equations 2011, No. 105, 8 pp.
[14] X.M. He and W.M. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009) 1407-1414.
[15] J. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in \mathbb{R}^{N}, J. Math. Anal. Appl. 369 (2010) 564-574.
[16] G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik, Teubner, Leipzig (1876).
[17] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type equations in \mathbb{R}^{3}, J. Differential Equations 257 (2014), 566-600.
[18] L. Li and X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local sublinear nonlinearities, J. Math. Anal. Appl. 435 (2016) 955-967.
[19] J. Limaco and L.A. Medeiros, Kirchhoff-Carrier elastic strings in noncylindrical domains, Portugaliae Mathematica 14 (1999) 464-500.
[20] J.L. Lions, On some questions in boundary value problems of mathematical physics. International Symposium on Continuum, Mechanics and Partial Differential Equations, Rio de Janeiro(1977), Mathematics Studies, North- Holland, Amsterdam, 30 (1978) 284-346.
[21] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit case, part 1, 2, Rev. Mat. Iberoamericana 1 (1985) 145-201, 45-121.
[22] D.C. Liu, On a p-Kirhhoff equation via fountain theorem and dual fountain theorem, Nonlinear Anal. 72 (2010) 208-302.
[23] A.M. Mao and J.T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009) 1275-1287.
[24] D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev exponent. NoDEA Nonlinear Differential Equations Appl. 21 (2014), no. 6, 885-914.
[25] R. Narashima, R., Nonlinear vibration of an elastic string, J. Sound Vib. 8, (1968) 134- 146.
[26] D.W. Oplinger, Frequency response of a nonlinear stretched string, J. Acoust. Soc. Am. 32, (1960) 1529-1538.
[27] K. Schlesinger, Saitenschwingungen mit endlicher amplitude., Z. Techn. Phys. 12 , (1931) 33-39.
[28] E.A.B. Silva and M.S. Xavier, Multiplicity of solutions for quasilinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 341-358.
[29] J. Sun and C. Tang, Existence and multiplicity of solutions for Kirchhoff type equations, Nonlinear Anal. 74 (2011) 1212-1222.

Universidade de Brasília, Departamento de Matemática, 70910-900, Brasília-DF, Brazil
Email address: mfurtado@unb.br
Universidade de Brasília, Departamento de Matemática, 70910-900, Brasília-DF, Brazil
Email address: luandiego2000@hotmail.com
Universidade Federal do Pará, Departamento de Matemática, 66075-110, Belém-PA, BRAZIL

Email address: jpabloufpa@gmail.com

[^0]: 1991 Mathematics Subject Classification. Primary 35J60; Secondary 35J20.
 Key words and phrases. Kirchhoff-type problems; multiple solutions; critical nonlinearities.
 The first author was partially supported by CNPq/Brazil.

