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ABSTRACT. We consider the problem
—m (/ |Vu\2d$> Au = Af(z,u) + plul> "2u, z€Q, u € HY(Q),
Q

where Q@ C RN, N > 3, is a bounded smooth domain, 2* = 2N/(N — 2),
A, 4 > 0 and m is an increasing positive function. The function f is odd in
the second variable and has superlinear growth. In our first result we obtain,
for each k € N, the existence of k pairs of nonzero solutions for all u > 0 fixed
and A large. Under weaker assumptions of f, we also obtain a similar result if
N =3, A > 0 is fixed and p is close to 0. In the proofs, we apply variational
methods.

1. INTRODUCTION

Consider the problem

(1.1) —m(||ul|?)Au = g(z,u), in Q, u =0, on 99,

where @ C RY is a bounded smooth domain, the norm in H}(Q) is |ul?> =
fQ |Vu|?dz, m is a positive function and the nonlinear function g has polynomial
growth. It is called nonlocal due to the presence of the term m(||u||?). The equation
has its origin in the theory of nonlinear vibration. For instance, in the model case
m(t) = a + bt, with a, b > 0, it comes from the following model for the modified
d’Alembert wave equation
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dm) Froie g(x,u),

for free vibrations of elastic strings. Here, L is the length of the string, h is the area
of the cross-section, F is the Young modulus of the material, p is the mass density
and Py is the initial tension. This kind of nonlocal equation was first proposed
by Kirchhoff [16] and it was considered theoretically or experimentally by several
physicists after that (see [27, 7, 26, 25]). Nonlocal problems also appear in other
fields as, for example, biological systems where u describes a process which depends
on the average of itself (for instance, population density). We refer the reader to
[10, 20, 19], and references therein, for more examples on the physical motivation
of this problem.
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We are interested here in the case that g is a small order perturbation of the
critical power, namely the following problem:

—m(||ul|*)Au = Af (2, u) + plul* "?u, z e,
{ u € Hy(Q),
where Q C RV, N > 3, is a bounded smooth domain, 2* := 2N/(N —2), A\, u > 0
are parameters and the functions m and f verify

(mg) m € C([0,4+00), (0, 4+00)) is increasing;

(fo) f € C(Q xR,R) is odd in the second variable;
(f1) there exists ¢ € (2,2*) such that

f(z,s)

|s]—o0 |S|q*1

(f2) there exists 6 € (2,2%) such that

(P)

=0, uniformly in ;

0<0F(x,s) ::9/Sf(x,t)dt <sf(z,s), Yxe,s#0;
0

(fs) there holds
o $@9)
s—0 S
Under the above conditions, it is well-known that the weak solutions of the
problem are the critical points of the energy functional

1 "
I(u) := §M(||uH2) — /\/QF(x,u)da: — ﬁ* /Q |u|?" du, u € Hi(Q),

=0, uniformly in €.

2

where M and F are primitives of the functions m and f(x,-), respectively. Since
f is odd, the functional I is even and therefore we may expect that this symmetry
provides multiple critical points. In the first result of this paper, we show that this
true if the parameter A is large.

Theorem 1.1. Suppose that m and [ satisfy (mg) and (fo) — (f3), respectively,
and @ > 0. Then, for any given k € N, there exists A\j, > 0 such that the problem
(P) has at least k pairs of nonzero solutions for all A > X}, .

In the proof, we apply a version of the Symmetric Mountain Pass Theorem. The
noncompactness of the embedding HE(Q) < L? (Q) is overcome by the ideas of
Brezis and Nirenberg [6] and the Concentration Compactness Principle of Lions
[21]. Since for high dimensions N > 4 the critical power 2* is smaller than or
equal to 4, the integral [, [u|?" dz does not dominate the fourth-term M (||u[[?). We
deal with this difficult by using a truncation argument (see [1]) which consists in
considering a truncated equation and, after solving this new problem, prove that
its solutions have small norm and therefore solve the original problem. We also
emphasize that the presence of a nonlocal term in the functional turns the proof of
the geometric conditions more involved than that of [2] (see Proposition 3.3).

After J.L.Lions [20] presented an abstract functional analysis framework to deal
with the evolution equation related with (P), this kind of problem has been exten-
sively studied (see [1, 4, 3, 17, 5] and references therein). As far as we know, the
first paper dealing with Kirchhoff type equation via variational methods was [1].
By assuming some technical conditions of the functions m and f, they obtained
a solution for the problem (1.1). Since then, there is a vast literature concerning
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existence, nonexistence, multiplicity and concentration behavior of solutions for
nonlocal problems. We just quote [14, 23, 15, 22, 29] for subcritical problems and
[13, 12, 18] for critical growth problems. Our first result is closely related to that of
[11], where the author considered (f1) — (f3) and obtained a positive weak solution
uy for A > 0 large, and also proved that |Juy|| — 0, as A\ — +o00. We finally men-
tion the work [24], where the author obtained, for N = 3 and m(t) = a + tb, the
existence of one positive solution for any A > 0. Our first theorem complements the
aforementioned works since we consider multiple solutions for a critical equation
under a very weak condition for the nonlocal term m.

In the second part of the paper, we suppose that N = 3 and consider the effect
of the parameter p on the number of solutions by assuming that m verifies:
(mo) m € C([0,+00), (0, +00));
(m1) m(t) > ag >0, for any t > 0;
(ma) 2M(t) > m(t)t, for any t > 0;
(mg3) there exist @ > 0 and b > 0 such that

m(t) <a+bt, t>0.

A simple computation shows that the function m(t) = ag + bt’, with 6 € [0,1],
verifies all the above conditions, and therefore the model case of linear m can be
considered. They also hold for the function m(t) = ag(1 4+ In(1 4 ¢)). Obviously,
all these functions satisfy the condition (myg) of our first theorem.

For the nonlinearity f, besides (fy), we shall suppose that

(ﬁ) there holds

m
mq

f(z,s)

|s|—o0 |S|5

(f4) there exist o € [0,2) and ¢, 2 € (0, +00) such that

=0, uniformly in €;

1
Zf(x,s)57F(I,S)2—01—02|S|J, z€Q, seR,

where F(z,s) := /5 f(z, t)dt;
0

(f5) there exists an open set g C Q with positive measure, such that

F
lim inf @ = 400, uniformly in .
|s]—o0 S
Our result in the 3-dimensional case can be stated as follows:

Theorem 1.2. Suppose that N = 3, m satisfies (img), (m1) — (m3) and X > 0.
Suppose also that [ satisfies (fo), (f1), (fa), (fs) and one of the conditions below:
(fe) there exist ¢ € (2,6) and c3,cq4 € (0,400) such that
F(z,s) <c3ls|?4+ca, z€Q,seR,
or

(f7) the function

F(z,s)

a(x) := limsup ——

s—0 S
is such that a™(z) := max{a(z), 0} € L>(Q).
Then, for any given k € N, there exists uj > 0 such that the problem (P) has at
least k pairs of nonzero solutions for all p € (0, uj;).
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Obviously, (fl) is weaker than (f;). If we do not have a large parameter multi-
plying the term f(x,u), the truncation argument used in the proof of Theorem 1.1
does not work, and therefore it will be natural to consider the modified Ambrosetti-
Rabinowitz condition (f2) with 6 > 4 (see [9, 24, 13, 15, 29]). In this case, we have
that F(x,s) > Cy|s|? for any = € Q and s € R. So, the condition (f;) is weaker
than (f3) with > 4. Moreover, the superlinearity condition (f5) holds only on a
set of positive measure and therefore our conditions on f are weaker than those of
Theorem 1.1. Unfortunately, the truncation argument does not work in this weak
setting and we are not able to prove the second theorem if N > 4. The main point
is that we do not know if the norm of the solutions given by Theorem 1.2 goes to
zero as p — 07T,

It is worthwhile to mention that, although the local version of Theorem 1.2 was
considered in [28], our result is new even in the local case. Actually, in this case
we can prove our results with the quotient in (fs5) being F(z,s)/s* (see Remark
5.3), and therefore our condition (f5) is more general than the hypothesis (fg) of
[28]. Moreover, our condition (f7) is weaker than the condition (f7) of [28]. Thus,
our second theorem generalize Theorems A and C of [28] besides complement the
aforementioned works.

An example of nonlinearity verifying all the hypothesys of Theorem 1.11is f(z, s) =
a(z)|s|772s, with a € L>(2) positive and ¢ € (2,2*), or even a finite sums of this
kind of functions with different (and positive) a; € L*°(Q2) and ¢; € (2,2*). For the
second theorem, we pick ¢ € (4,6) and notice that, since the superlinearity condi-
tion is just local, we can allow the potential a to vanish in a proper set of positive
measure of €. Actually, we may also consider examples where f is negative, for
instance, f(s) ~ s near the origin, f(s) ~ s¢~! at infinity and f is negative and
bounded in some intervals (s;, s;") C (0, +00).

In the next section, we prove a local compactness property for the energy func-
tional under the setting of Theorem 1.1 which is proved in Section 3. In Section
4 we prove compactness for y > 0 small and the final Section 5 is devoted to the
proof of Theorem 1.2.

2. THE LOCAL PALAIS SMALE CONDITION

Throughout the paper we write [, u instead of [, u(x)dz. We are going to work
on the space Hi(Q) endowed with the norm

1/2
lu]| :== (/ |Vu|2d:17> .
Q

We also denote by ||u||, the L?(€2)-norm of a function u € LP(2), for any 1 < p < oc.
Throughout the two next sections we assume that (mg) holds and that p > 0 is
fixed.

Let 6 > 2 from (f3) and @ > 0 be a number in the range of m verifying

0
(2.1) m(0) <a < im(O)
Since m is increasing, there exists so > 0 such that m(sg) = a. We define m, €
C([0,+00),RT) by setting

if 0 <s<
O

a if s > s,

7
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and consider the truncated problem
{ —ma(ul2)Au = M (@, w) + plul 2, z e,

(Fo) ue HHQ).

We say that u € H}(Q) is a weak solution of (P,) if

a(lul?) / (V- V) = A / f (W) + g / W? g, Vo HA(S),

with an analogous definition for weak solutions of (P). By using (fo) — (f1) and
standard calculations we can prove that the energy function I, » given by

(@) = Ma(l?) = [ P = & [, we m@),

Q Q
is well defined. In the above definition we are denoting M,(s) := [ mq(t)dt and
F(z,s) == [; f(z,t)dt. Moreover, I, x belongs to C'(H{}(2),R) and the weak
solutions of (P,) are the critical points of I, x.

Notice that, by the definition of m,, if u € HJ () is a weak solution of (P,) such
that [Jul| < so, then mg(||ul?) = m(||ul|?) and therefore u is also a weak solution of
the original problem (P). Hence, we are going to look for multiple critical points
of I, » with small norm.

Lemma 2.1. Suppose that f satisfies (fo) — (f2). If (un) C HE(Q) is such that
T (un) = ¢ and I}, y(un) = 0, then (uy,) is bounded in Hg ().

Proof. Condition (mg) and the definition of m, imply that M,(s) > m(0)s and
me(s) < a, for any s € R. Hence, we can use (fz2) to get

1 m(0) a
et oul1) + oDl = Fan() = g Toatun)in = (52 = &) .
where 0,,(1) stands for a quantity approaching zero as n — 400. By (2.1) the term
into the parenthesis above is positive and we have done. (I
If we set
Jul®

2k )2/2* J

= inf
weHE@\{0} ([q v

we can state the following well-known result due to Lions [21]:

Lemma 2.2. Suppose that (u,) C Hg(Q) is such that u, — u weakly in Hg(£2)

and |un|* — v, |Vu,|?> = ¢ weakly in the sense of measures, where v and ¢ are

non-negative and bounded measures on . Then there exist a countable index set
J, which can be empty, and a family {x;}jes C 2 such that

(2.2) v=[ude+> vidy, (> |VulPdz+ ) G,

jeJ jeJ
with v;, (5 > 0 satisfying SV?/Q* <5, forallje J.

In what follows we prove that, for some special sequences, the set J must be
finite.
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Lemma 2.3. Let (u,) C Hj(Q) be as in the statement of Lemma 2.2. If I, 5 (un) —
0, then the set J is empty or finite. Moreover,

N/2
(2.3) v; > (m(0)5> . Vel
W
Proof. Let ¢ € C$°(RYM,[0,1]) be such that ¢ = 1 in Bi/3(0) and ¢ = 0 in
RN\ B1(0). Suppose that J # @, fix j € J and define ¢.(z) := ¢(*=2). Since
I'(un)(¢ettr) = 0n(1), we have that
(2.4)

m(HunH2) (An76+/glvun|2¢s> :On(l)‘hu/g|Un|2*¢s+/\/ﬂf(mvun)un¢a7

with A4, . := fQ Uun (Vg - Ve ). By using (f3) and the sub-critical growth condition
(f1), we can prove that [, f(z, un)unde — [ f(z,u)ug., as n — 4oco. Thus, since
(myg) implies that m(t) > ao > 0, for any ¢ > 0, we infer from (2.4) and Lemma 2.2

that
o (limsupAmE—i—/qudC) < ,u/iqbgdy—&—)\/ fz,u)ug..
n—s+oo Q Q Q
We claim that
(2.5) lim limsup 4,, . = 0.

e=0 nooo

If this is true can take ¢ — 0 and use the Lebesgue Theorem to get aop(; < pv;.

Recalling that SV?/Z* < (j, we obtain

m(0)Sv;"* <m(0)G < anly < pvj,
and therefore v; > (m(O)S/,u)N/Q. Hence,
N/2
V(Q)>ZVJ>Z<m(O)S> .
jeJ Jj€J K

Since v(€2) < +o0, we conclude that set J is finite.
In order to prove (2.5), we compute

1/2 1/2
|[An el < M (/ |Vun|2dx> (/ |un2d$>
€ Bs(xj) Bs(xj)
1/2
AV
[z ( / |un|2dx>
g B.(

e(xj

p 1/2
h / uPdz + 0n(1)]
€ Bs(wj)

with d; > 0. Since fBE(xj) |u|*dz = O(g%), as € — 0, equation (2.5) follows from
the above inequality. ([l

A

IN

IN

If E is a real Banach space and I € C'(E,R), we say that I satisfies the Palais-
Smale condition at level ¢ € R, (PS),. for short, if every sequence (u,) C E such
that I(u,) — ¢ and I’ (u,) — 0 possesses a convergent subsequence.
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Proposition 2.4. Suppose that f satisfies (fo) — (f2) and define

o (5-) (55) (5 -8) )

Then the functional I, x satisfies the (PS.) condition at any level ¢ < c*.

Proof. Let (un,) C Hj(Q) be such that I, \(un) = 0 and Iy x(un) — ¢ < ¢*. We
start by proving that the set J given by Lemma 2.2 is empty. Indeed, suppose by
contradiction that there exists some j € J. If we consider ¢. as in the proof of
Lemma 2.3, we can use Lemma 2.1, (f2) and (2.1) to get

1
cton(l) = Iox(un)— 9 a,A(Un)un

11 - 11 -
- > - = .
: (9 2*)/Qu" =N <9 2*>/Q|u"| o

Taking the limit and using (2.3), we conclude that

S (LY (1 1Y (m0)s\Y
=M\ T2 ) =\ 2 " ’

which contradicts ¢ < c¢*.
Since the set J is empty, we can use (2.2) and the boundedness of €2 to conclude

that
. 2%
"EI‘EOO/Q fual™ = /Q fu

where u € Hi(Q) is the H}(Q)-weak limit of (u,). Recalling that I (un)uy, =
on(1), we can use (f1) to get

o*
)

(2.6) lim mg (|Jun|]?)||un]|® = )\/ f(a:,u)u—i—u/ lul?".
On the other hand, if we set g := lim |lu,|/?, we can use I’ ,(u,) — 0 to
n— 00 ’
obtain

malod) [ (Vu-90) =2 [ fewo+u | W o, voe m@)
By picking ¢ = u, we infer from (2.6) that

Hm mg ([|tn]|?)][n]|? = ma(02)]ul|>.
n—oo

Since m, is continuous and positive, we have that ay = ||ul|. Hence, the weak
convergence implies that wu,, — u strongly in H} () and the proposition is proved.
O

3. PrRoOF OF THEOREM 1.1

In this section, we present the proof of our first theorem. We are going to use
the following version of Symmetric Mountain Pass Theorem (see [2, 28]):

Theorem 3.1. Let E =V ® W be a real Banach space with dimV < oco. Suppose
I € C1(E,R) is an even functional satisfying I(0) = 0 and
(I1) there exist p, o> 0 such that

inf I(u) >«
u€dB,(0)NW
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(I) there exist a subspace V C E such that dimV < dimV < oo and

max I(u) < M,
ueV

for some M > 0;
(I3) I satisfies (PS)c for any ¢ € (0, M), with M as in (I3).

Then I possesses at least (dim V — dim V') pairs of non-trivial critical points.

In what follows we verify that the functional I, » satisfies the conditions (I7)
and (I2).

Lemma 3.2. Suppose that f satisfies (fo), (f1) and (fs). Then, for each A > 0,
there exists px, ax > 0 such that

inf Ia)\(u) 2 Q).
u€dB,, (0)

Proof. Given € > 0, we can use (f1) and (f3) to obtain C. > 0 such that

F(z,s) < H +C|sl?, V(x,s) € A xR.

fal) = P [ - Con - £ [
Q Q

1 EA 9 q
2Qmm—Aﬂm)nm — A\l ~ do|

where A1 () > 0 is the first eigenvalue of (—A, H}(Q)) and d, d2 > 0 are constants
independent of A. The result easily follows if we choose £ > 0 small and use the
inequality 2 < ¢ < 2*. (]

Hence,

%

)

Proposition 3.3. Suppose that f satisfies (fo) — (f2). Then, for any given k € N
and M* > 0, there exists \j, > 0 with the following property: for any A > A} we
can find a k-dimensional subspace V) C H}(Q) such that

max I z(u) < M™.
uGVkA
Proof. Let ¢ € C§°(B

(
1,7 €l :={1,... k},
i€ I, weset o)(x):=

1(0)), choose {z1,...,zx} C Q and > 0 such that, for
Bs(z;) C Q and Bs(z;) N Bs(z;) = @, if i # j. For each
@(*5") and notice that

2 2
(3.1) Ay = 21> _ (n—2-2m) ||<,0||2_
le?lls el

Since R* is finite dimensional, there exists d; = d; (k, #) such that

X A 0/2
(3:2) Z lyil® > dy <Z |yi|2> . Y(yi,--,u) RN

i=1 i=1

Hence, if we set

Vk,5 = Span{@ilsv ERE) 902},
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we have that, for any u = Zle ;¢! € Vis, there holds
Z 041’90?

/|u\6da: = /
Q Ba(xl)U"‘UBé(xk) =1

k k /2
(3.3) = > llallls = di (Z ||041:<P§-§|3>
i=1 i=1

)
dx

. 0/2
= & (ZAallaM?IIQ) — dp= (N2 u ],
=1

where da = di||¢||?||¢|l, 2 and we have used (3.2), (3.1) and the fact that the support
of the functions ¢ are disjoint.
By using (f3), we obtain d3, d4 > 0 such that

F(x,s) > ds|s|” —da, V(x,5) € QxR
This and (3.3) provide

k
a
Loa(w) < Slull? =X / F(z,u)
2 ; Bs(x4)
< 2ful? - Adadyd~ N2 u] 4 Aok wy,

where wyy is the volume of the unitary ball By (0) C RY. Thus, for positive constants
ds = ds(k, ), dg = dg(k, N) and

20\ 6
=—(N-2-22)2
Y ( N>2>07

there holds
(3.4) Toa(u) < gHuHQ — 56" ||ull? + Adgd™, Vu € Vis.

Since 6§ < 2*, we have that v < N and therefore we can pick v9 € (v, N) and
consider the function

hs(t) := th —ds6 0T f dgsT TN > 0.

It attains its maximum value at t5 = [a(d50)_167_’m] 1/(6-2) This and vy € (v, N)
imply that hs(ts) — 0 as § — 0. Thus, there exists §* = §*(,0, N,a) > 0 such
that

M*
< — .
I{l;gha(t) < 5 Ve (0,07]

We now set A} := (6*)77°. Let A > A} and define the k-dimensional subspace
V) i= Vis for 6 = A1/ Since 5770 = \ > Af = (6%)77°, we obtain § < §*.
Thus, for any u € Vk’\, we can use (3.4) and the above inequality to get
M*

2 )

Loa(w) < Fllul* = 670d58jul” 4 6770dg8" < max hs(t) <

and we have done. O
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We are ready to prove our first theorem.

Proof of Theorem 1.1. Let k € N be given. We are going to apply Theorem 3.1
with W = Hg (). Condition (I;) is a direct consequence of Lemma 3.2. In order
to verify the other conditions, we consider M* < ¢*, with ¢* as in Proposition 2.4.
Condition (I3) follows from Proposition 2.4. It remains to obtain a k-dimensional
subspace such that (I5) holds. But that condition always hold for the subsapce V;}
given by Proposition 3.3, if we take A > A}.

Since I, »(0) = 0 and this functional is even, the above considerations and The-
orem 3.1 provide, for each A > Aj, the existence of at least k pairs of nonzero
solutions of the modified problem (P,). Let u € Hg(£2) be one of these solutions.
Since I, x(u) < M* < ¢*, we can use the definition of ¢* and (f2) to obtain

e s e R YO IEY (S T

Hence, ||ul| < s and it follows from the definition of m, that mg(||ul|?) = m(||ul]),
that is, the function u € HE(Q) weakly solves (P). The theorem is proved. O

4. THE 3-DIMENSIONAL CASE

From now on we focus on Theorem 1.2. We assume hereafter that the conditions
(mo), (m1) — (m3) hold and that A > 0 is fixed. For each p > 0, we can use
conditions (fy) — (]?1) to guarantee that the energy functional I, : H}(Q) — R
given by

) = M) = A [ Pl =& [ ul®, we m@),

is well defined. Moreover, I, € C*(HJ(£2),R) and the critical points of I,, are weak
solutions of (P).

The proof of the Palais-Smale condition is completely different from that done
for the functional I, x. In this case, we have the following:

Proposition 4.1. Suppose that | satisfies (ﬁ), (f4) and one of the conditions (fs)
or (f7). Then, given M > 0, there exist p* = u*(Q, M, a, c3,cq,0,\) > 0 such that
I, satisfies the (PS). condition for any ¢ < M and p € (0, u*).

The proof will be done in several steps. The first one is to prove that Palais-Smale
sequences are bounded.

Lemma 4.2. Suppose that [ satisfies (fl), (f1) and one of the conditions (fg) or
(f2). If (un) C Hg(Q) is such that I,(un) — c and I, (u,) — 0, then (uy) is
bounded in Hg(S2).

Proof. Let (un,) C Hj(Q) be such that I,,(u,) — ¢, I},(un) — 0 and consider
o €[0,2) given by (f4). For any € > 0, there exists C. > 0 such that,

(4.1) 5|7 <els|+C., VsecR.
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This, (mg) and (f4) show that, for n large, there hold

1
c+o0n(1) + on()[jun|l > Iu(un)*ilﬁ(un)un
> P unl€ A [ (S F@ ) — Fla,u)
- 12 n|l6 o 4 y U n y Yn
> Eullf — A9 - ) / 1|7
12 0

> (£ = ce2) unll§ — (A + €)1,

12
By picking € > 0 small, we obtain d;, d2 > 0 such that
(4.2) lunllg < di + daflun]-

On the other hand, since I,,(u,) = c¢+0,(1), it follows from (m2), (m1) and (f)
that

-2
Since 2 < g < 6, we have an inequality analogous to (4.1) with o replaced by g,
and therefore it follows from (4.2) that

(e7)) 1 12
7 enll? < SM([[unl?) < Gllunlls + esAQY + caunl§ + ¢+ on(1).

«
IoHunH2 < dsf|un[§ + da < ds|lun| + de.

Hence, (u,,) is bounded in Hg ().
Suppose now that f satisfies (f7) instead of (fs). Given € > 0, we can use (f1)
to obtain dy > 0 such that

o~

|F(x,5)| < dr +e|s|°.

Letting n — +o00 and recalling that € > 0 is arbitrary, we conclude that

lim sup M =0.
s—+o00 s
This and (f7) provides C. > 0 such that
(4.3) F(z,s) < Ccls® + (la™]lo + &) s*.
The proof now follows as in the first case. O

We prove now a version of Lemma 2.3 in this new setting.

Lemma 4.3. Suppose that f satisfies (f1) and let (u,) C HY(Q) be as in the
statement of Lemma 2.2. IfIl’L (un) — 0, then the set J is empty or finite. Moreover,

(4.4) yj>(0‘;5> . Vel

Proof. Let ¢ € Cg°(RN,[0,1]) as in the proof of Lemma 2.3. Since I/, (uy,)(¢ctin) =
on(1), we have that

m(lua]?) (A + [ |Vun|2¢a) = onW 4 [ a6+ [ Fortaunr

with A, . == [, un(Vuy, - Vée). By using (ﬁ), the compactness embedding of
H}(Q) into the Lebesgue spaces and a version of a compactness lemma due to
Strauss (see [8, Lemma 1.2]) we can check that [ f(un)unge — [ f(w)uge, as
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n — +o00. Arguing as in as in the proof of Lemma 2.3, using (2.5) and (m,), we
obtain v; > (aOS/u)3/2. Hence,

(4.5) v(Q) > Zuj > Z (O‘Os>3/z.

and we conclude that set J is finite. O

We are ready to present the proof of our compactness result.

Proof of Proposition 4.1. Let (u,) C Hy(9) be such that I}, (u,) — 0 and I,(u,) —
¢ < M. By Lemma 4.2, this sequence is bounded in H} () and therefore there exist
u € H(Q) and two bounded measures v, { satisfying all the hypotheses of Lemma
2.2.

Arguing as in the proof of Lemma 4.2 and using Holder’s inequality we get, for
n large,

M > I(up)— =TI (un)un

> ﬁ/ |un|6fcl>\|Q|702)\/ |t |7
12 Jq Q

c/6
> / un[6 — dy — ds ( / |un|6>
Q Q

with dy = 1/12, dy := c;\|Q| and d3 := cA\|Q|6~9)/6. Letting n — +oo and
recalling that |u,|® — v weakly in the sense of measures, we obtain
pdiv(Q) < M 4 do + dzv(Q)°/°.
If v(Q2) > 1, we can use the above estimate to obtain
_ _ M d
v(Q) < v(Q)7/° <+d2+3) )
pdy

Since 0 < o < 2, there exists g > 0 such that

M+d2+d3>6/<6"> - (aOS

3/2
. Ve (0,).
s u> n € (0, z)

(46) wmg<

If v(Q2) < 1, we can choose i < apS and use a simple computation to obtain
v(Q) < (gSp1)3/2, for any u € (0,7). Hence, if we set p* := min{f, i}, we get

v(Q) < <aZS

and therefore it follows from (4.5) that the set J given by Lemma 2.2 is empty.
Thus, we can use (2.2) and the boundedness of 2 to get

/mﬁﬁ/mﬁ
Q Q

Since (uy) is bounded in H} () we easily conclude that [, [un|*unu — [, [ulS.
As before, we also have that [, f(x, u,)(u — u,) — 0. Thus,

0n(1) = I}, (un)un = Ij,(un)u = m([[unl|*) (Jlun]|* = [[u]®) + 0 (1).

3/2
> , Ype(0,u"),
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It follows from (mg) that ||u,| — |lu||. This and the weak convergence of (uy)
finishes the proof. O

5. PROOF OF THEOREM 1.2
In order to present the proof of Theorems 1.2 we consider (¢;);en the normalized
eigenfunctions of (—A, H}(Q)). For any m € N, we set
Vi :=span{p1,...,om}

and notice that H(Q) = V,,, @ V,;-. Moreover, as proved in [28, Lemma 4.1], for
any given 2 < r < 6 and § > 0, there is my € N such that, for all m > my,

(5.1) lull” < 8|lul|”, YueVi.

We first prove that I, verifies the geometric condition (I).
Lemma 5.1. Suppose that f satisfies (fg) or (f7). Then there exists

o =1(a,b,Q,cs,c4,A) >0,
m € N and p, « > 0 such that, for any p € (0, ), there holds
I,(u) >a, Yu€dB,(0)NV,;.

Proof. Suppose first that (fs) holds. If we use the inequality (5.1) with » = ¢ and
0 > 0 to be chosen later, we obtain

Qo - H
Lu(w) = Jlull? (5 = desAllull =) = eaM€2] = S lull®, Vu € Vi,

where we have used (mgz), (m1) and (fs). If p = p(d) > 0 is such that deghp?=2 =
ap/8, we obtain

Qo

O

653"
Since p(§) — +o0, as § — 0T, we can take § > 0 small in such way that (ag/8)p? —
ca\|Q| > (ap/16)p?, and therefore we can obtain i > 0 such that,

Yu € dB,(0) N V.

I,(u) > Cf—gpQ — #pﬁ >a >0, Yu€dB,(0)NV,y.
The conclusion easily follows from the above inequality.

If (f7) holds, we consider € > 0 and use (mz), (m1) and (4.3) to get
(1 +6XC:)
653
for any u € H} (). Choosing r = 2 and § = (e =7ey i (5.1), we obtain m € N

such that

ag
Lu(u) = 1 lull* - lull® = Alla™ oo + &) [[ull3,

Qo o (M+6)‘Ca) 6

1L
The lemma follows from the above inequality and the same argument used in the
first case. u

The local superlinearity condition (f5) provides (I3) as we can see from the next
lemma.

Lemma 5.2. Suppose that f satisfies (f5). Then, for any given l € N, there is a
I-dimensional subspace V. C H}(Q) and a constant M > 0 such that

sup I, (u) <M, Vu>0.
ueV
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Proof. Let Qy C Q be given by condition (fs), consider (¢;);en the normalized
eigenfunctions of (—A, H}(Q)) and define the I-dimensional subspace

V= span{@1, ..., P}
Since V} has finite dimension there exists dy = d(‘A/) > 0 such that
(5.2) dillul® < [l Vue .
Given £ > b/(4dy), it follows from (f5) and the continuity of F' that, for some
ds = da(d1,b), there holds
F(x,s) >els|* —dy, VaeQo, scR.

This, (ms) and (5.2) imply that, for any u € Vi, we have that
b
Lo(u) < 2lull® = (erdy — = ) [Jull* + d2 M| < sup {%2 ettt d2A|Q|} ,
2 4 t>0 (2

with gg := (eAd; — b/4) > 0. If we denote by M the supremum of the right-hand
side above, we can use a > 0 to conclude that 0 < M < +oo and we have done. [

Remark 5.3. In the local case m = 1, the same conclusion of the last lemma holds
if we drop (fs) by the weaker condition

(J/"\5) there exists an open set Qg C Q) with positive measure, such that

F
lim 7(33’ )

5— = +00, uniformly in Q.
|s|—o0 S

Actually, if dy > 0 is such that dy||ul|®> < ||u||2, for all u € V, the same argument
provides

a ~
I, (u) < (5 - 5/\d1> ull® + daA|Q] < 21;13 {—eot® + d2AQ|},

with g = eAdy — (a/2) > 0. Hence, the lemma holds with M = da\|Q|.

We are ready to prove our last result.

Proof of Theorem 1.2. Let k € N be fixed. Since all the previous results hold with
conditions (fg) or (f7), we present the proof in a unified way.
By Lemma 5.1 we can find m € N large such that, for the decomposition H =
V & W with
Vi={p1, - om), W= (o, om)"
the functional I, verifies (I;) for any p € (0,). Moreover, by Lemma 5.2, we

obtain a subspace V C H}(Q2) and M > 0 such that

Y

dim V = (k +m), sup I,(u) <M, Vpu>0.
ueV
Hence, I, satisfies (I2). For the above choice of M we obtain, from Proposition 4.1,
a number p* such that I, satisfies (I3) for any p € (0, u*). Since 1,(0) =0 and I,
is even, if we set p} := min{f, u*}, we can invoke Theorem 3.1 to conclude that,
for all p € (0, 13, the functional I,, has at least (k +m — m) = k pairs of nonzero
critical points. The theorems are proved. O
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