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Abstract. We consider the problem

−m
(∫

Ω
|∇u|2dx

)
∆u = λf(x, u) + µ|u|2

∗−2u, x ∈ Ω, u ∈ H1
0 (Ω),

where Ω ⊂ RN , N ≥ 3, is a bounded smooth domain, 2∗ = 2N/(N − 2),

λ, µ > 0 and m is an increasing positive function. The function f is odd in
the second variable and has superlinear growth. In our first result we obtain,

for each k ∈ N, the existence of k pairs of nonzero solutions for all µ > 0 fixed

and λ large. Under weaker assumptions of f , we also obtain a similar result if
N = 3, λ > 0 is fixed and µ is close to 0. In the proofs, we apply variational

methods.

1. Introduction

Consider the problem

(1.1) −m(‖u‖2)∆u = g(x, u), in Ω, u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, the norm in H1
0 (Ω) is ‖u‖2 =∫

Ω
|∇u|2dx, m is a positive function and the nonlinear function g has polynomial

growth. It is called nonlocal due to the presence of the term m(‖u‖2). The equation
has its origin in the theory of nonlinear vibration. For instance, in the model case
m(t) = a + bt, with a, b > 0, it comes from the following model for the modified
d’Alembert wave equation

ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= g(x, u),

for free vibrations of elastic strings. Here, L is the length of the string, h is the area
of the cross-section, E is the Young modulus of the material, ρ is the mass density
and P0 is the initial tension. This kind of nonlocal equation was first proposed
by Kirchhoff [16] and it was considered theoretically or experimentally by several
physicists after that (see [27, 7, 26, 25]). Nonlocal problems also appear in other
fields as, for example, biological systems where u describes a process which depends
on the average of itself (for instance, population density). We refer the reader to
[10, 20, 19], and references therein, for more examples on the physical motivation
of this problem.
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We are interested here in the case that g is a small order perturbation of the
critical power, namely the following problem:

(P )

{
−m(‖u‖2)∆u = λf(x, u) + µ|u|2∗−2u, x ∈ Ω,

u ∈ H1
0 (Ω),

where Ω ⊂ RN , N ≥ 3, is a bounded smooth domain, 2∗ := 2N/(N − 2), λ, µ > 0
are parameters and the functions m and f verify

(m0) m ∈ C([0,+∞), (0,+∞)) is increasing;
(f0) f ∈ C(Ω× R,R) is odd in the second variable;
(f1) there exists q ∈ (2, 2∗) such that

lim
|s|→∞

f(x, s)

|s|q−1
= 0, uniformly in Ω;

(f2) there exists θ ∈ (2, 2∗) such that

0 < θF (x, s) := θ

∫ s

0

f(x, t)dt ≤ sf(x, s), ∀x ∈ Ω, s 6= 0;

(f3) there holds

lim
s→0

f(x, s)

s
= 0, uniformly in Ω.

Under the above conditions, it is well-known that the weak solutions of the
problem are the critical points of the energy functional

Iλ(u) :=
1

2
M(‖u‖2)− λ

∫
Ω

F (x, u)dx− µ

2∗

∫
Ω

|u|2
∗
dx, u ∈ H1

0 (Ω),

where M and F are primitives of the functions m and f(x, ·), respectively. Since
f is odd, the functional I is even and therefore we may expect that this symmetry
provides multiple critical points. In the first result of this paper, we show that this
true if the parameter λ is large.

Theorem 1.1. Suppose that m and f satisfy (m0) and (f0) − (f3), respectively,
and µ > 0. Then, for any given k ∈ N, there exists λ∗k > 0 such that the problem
(P ) has at least k pairs of nonzero solutions for all λ ≥ λ∗k .

In the proof, we apply a version of the Symmetric Mountain Pass Theorem. The
noncompactness of the embedding H1

0 (Ω) ↪→ L2∗(Ω) is overcome by the ideas of
Brezis and Nirenberg [6] and the Concentration Compactness Principle of Lions
[21]. Since for high dimensions N ≥ 4 the critical power 2∗ is smaller than or
equal to 4, the integral

∫
Ω
|u|2∗dx does not dominate the fourth-term M(‖u‖2). We

deal with this difficult by using a truncation argument (see [1]) which consists in
considering a truncated equation and, after solving this new problem, prove that
its solutions have small norm and therefore solve the original problem. We also
emphasize that the presence of a nonlocal term in the functional turns the proof of
the geometric conditions more involved than that of [2] (see Proposition 3.3).

After J.L.Lions [20] presented an abstract functional analysis framework to deal
with the evolution equation related with (P ), this kind of problem has been exten-
sively studied (see [1, 4, 3, 17, 5] and references therein). As far as we know, the
first paper dealing with Kirchhoff type equation via variational methods was [1].
By assuming some technical conditions of the functions m and f , they obtained
a solution for the problem (1.1). Since then, there is a vast literature concerning
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existence, nonexistence, multiplicity and concentration behavior of solutions for
nonlocal problems. We just quote [14, 23, 15, 22, 29] for subcritical problems and
[13, 12, 18] for critical growth problems. Our first result is closely related to that of
[11], where the author considered (f1)− (f3) and obtained a positive weak solution
uλ for λ > 0 large, and also proved that ‖uλ‖ → 0, as λ → +∞. We finally men-
tion the work [24], where the author obtained, for N = 3 and m(t) = a + tb, the
existence of one positive solution for any λ > 0. Our first theorem complements the
aforementioned works since we consider multiple solutions for a critical equation
under a very weak condition for the nonlocal term m.

In the second part of the paper, we suppose that N = 3 and consider the effect
of the parameter µ on the number of solutions by assuming that m verifies:

(m̂0) m ∈ C([0,+∞), (0,+∞));
(m1) m(t) ≥ α0 > 0, for any t ≥ 0;
(m2) 2M(t) ≥ m(t)t, for any t ≥ 0;
(m3) there exist a > 0 and b ≥ 0 such that

m(t) ≤ a+ bt, t ≥ 0.

A simple computation shows that the function m(t) = α0 + btδ, with δ ∈ [0, 1],
verifies all the above conditions, and therefore the model case of linear m can be
considered. They also hold for the function m(t) = α0(1 + ln(1 + t)). Obviously,
all these functions satisfy the condition (m0) of our first theorem.

For the nonlinearity f , besides (f0), we shall suppose that

(f̂1) there holds

lim
|s|→∞

f(x, s)

|s|5
= 0, uniformly in Ω;

(f4) there exist σ ∈ [0, 2) and c1, c2 ∈ (0,+∞) such that

1

4
f(x, s)s− F (x, s) ≥ −c1 − c2|s|σ, x ∈ Ω, s ∈ R,

where F (x, s) :=

∫ s

0

f(x, t)dt;

(f5) there exists an open set Ω0 ⊂ Ω with positive measure, such that

lim inf
|s|→∞

F (x, s)

s4
= +∞, uniformly in Ω0.

Our result in the 3-dimensional case can be stated as follows:

Theorem 1.2. Suppose that N = 3, m satisfies (m̂0), (m1) − (m3) and λ > 0.

Suppose also that f satisfies (f0), (f̂1), (f4), (f5) and one of the conditions below:

(f6) there exist q ∈ (2, 6) and c3, c4 ∈ (0,+∞) such that

F (x, s) ≤ c3|s|q + c4, x ∈ Ω, s ∈ R;

or

(f7) the function

a(x) := lim sup
s→0

F (x, s)

s2

is such that a+(x) := max{a(x), 0} ∈ L∞(Ω).

Then, for any given k ∈ N, there exists µ∗k > 0 such that the problem (P ) has at
least k pairs of nonzero solutions for all µ ∈ (0, µ∗k).
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Obviously, (f̂1) is weaker than (f1). If we do not have a large parameter multi-
plying the term f(x, u), the truncation argument used in the proof of Theorem 1.1
does not work, and therefore it will be natural to consider the modified Ambrosetti-
Rabinowitz condition (f2) with θ > 4 (see [9, 24, 13, 15, 29]). In this case, we have
that F (x, s) ≥ C1|s|θ for any x ∈ Ω and s ∈ R. So, the condition (f4) is weaker
than (f2) with θ > 4. Moreover, the superlinearity condition (f5) holds only on a
set of positive measure and therefore our conditions on f are weaker than those of
Theorem 1.1. Unfortunately, the truncation argument does not work in this weak
setting and we are not able to prove the second theorem if N ≥ 4. The main point
is that we do not know if the norm of the solutions given by Theorem 1.2 goes to
zero as µ→ 0+.

It is worthwhile to mention that, although the local version of Theorem 1.2 was
considered in [28], our result is new even in the local case. Actually, in this case
we can prove our results with the quotient in (f5) being F (x, s)/s2 (see Remark
5.3), and therefore our condition (f5) is more general than the hypothesis (f6) of
[28]. Moreover, our condition (f7) is weaker than the condition (f7) of [28]. Thus,
our second theorem generalize Theorems A and C of [28] besides complement the
aforementioned works.

An example of nonlinearity verifying all the hypothesys of Theorem 1.1 is f(x, s) =
a(x)|s|q−2s, with a ∈ L∞(Ω) positive and q ∈ (2, 2∗), or even a finite sums of this
kind of functions with different (and positive) ai ∈ L∞(Ω) and qi ∈ (2, 2∗). For the
second theorem, we pick q ∈ (4, 6) and notice that, since the superlinearity condi-
tion is just local, we can allow the potential a to vanish in a proper set of positive
measure of Ω. Actually, we may also consider examples where f is negative, for
instance, f(s) ∼ s near the origin, f(s) ∼ sq−1 at infinity and f is negative and
bounded in some intervals (s−i , s

+
i ) ⊂ (0,+∞).

In the next section, we prove a local compactness property for the energy func-
tional under the setting of Theorem 1.1 which is proved in Section 3. In Section
4 we prove compactness for µ > 0 small and the final Section 5 is devoted to the
proof of Theorem 1.2.

2. The local Palais Smale condition

Throughout the paper we write
∫

Ω
u instead of

∫
Ω
u(x)dx. We are going to work

on the space H1
0 (Ω) endowed with the norm

‖u‖ :=

(∫
Ω

|∇u|2dx
)1/2

.

We also denote by ‖u‖p the Lp(Ω)-norm of a function u ∈ Lp(Ω), for any 1 ≤ p ≤ ∞.
Throughout the two next sections we assume that (m0) holds and that µ > 0 is
fixed.

Let θ > 2 from (f2) and a > 0 be a number in the range of m verifying

(2.1) m(0) < a <
θ

2
m(0).

Since m is increasing, there exists s0 > 0 such that m(s0) = a. We define ma ∈
C([0,+∞),R+) by setting

ma(s) :=

{
m(s), if 0 ≤ s ≤ s0,

a, if s ≥ s0,
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and consider the truncated problem

(Pa)

{
−ma(‖u‖2)∆u = λf(x, u) + µ|u|2∗−2u, x ∈ Ω,

u ∈ H1
0 (Ω).

We say that u ∈ H1
0 (Ω) is a weak solution of (Pa) if

ma(‖u‖2)

∫
Ω

(∇u · ∇φ) = λ

∫
Ω

f(x, u)φ+ µ

∫
Ω

|u|2
∗−2uφ, ∀φ ∈ H1

0 (Ω),

with an analogous definition for weak solutions of (P ). By using (f0) − (f1) and
standard calculations we can prove that the energy function Ia,λ given by

Ia,λ(u) :=
1

2
Ma(‖u‖2)− λ

∫
Ω

F (x, u)− µ

2∗

∫
Ω

|u|2
∗
, u ∈ H1

0 (Ω),

is well defined. In the above definition we are denoting Ma(s) :=
∫ s

0
ma(t)dt and

F (x, s) :=
∫ s

0
f(x, t)dt. Moreover, Ia,λ belongs to C1(H1

0 (Ω),R) and the weak
solutions of (Pa) are the critical points of Ia,λ.

Notice that, by the definition of ma, if u ∈ H1
0 (Ω) is a weak solution of (Pa) such

that ‖u‖ < s0, then ma(‖u‖2) = m(‖u‖2) and therefore u is also a weak solution of
the original problem (P ). Hence, we are going to look for multiple critical points
of Ia,λ with small norm.

Lemma 2.1. Suppose that f satisfies (f0) − (f2). If (un) ⊂ H1
0 (Ω) is such that

Ia,λ(un)→ c and I ′a,λ(un)→ 0, then (un) is bounded in H1
0 (Ω).

Proof. Condition (m0) and the definition of ma imply that Ma(s) ≥ m(0)s and
ma(s) ≤ a, for any s ∈ R. Hence, we can use (f2) to get

c+ on(1) + on(1)‖un‖ = Ia,λ(un)− 1

θ
I ′a,λ(un)un ≥

(
m(0)

2
− a

θ

)
‖un‖2,

where on(1) stands for a quantity approaching zero as n→ +∞. By (2.1) the term
into the parenthesis above is positive and we have done. �

If we set

S := inf
u∈H1

0 (Ω)\{0}

‖u‖2

(
∫

Ω
|u|2∗)2/2∗

,

we can state the following well-known result due to Lions [21]:

Lemma 2.2. Suppose that (un) ⊂ H1
0 (Ω) is such that un ⇀ u weakly in H1

0 (Ω)
and |un|2

∗
⇀ ν, |∇un|2 ⇀ ζ weakly in the sense of measures, where ν and ζ are

non-negative and bounded measures on Ω. Then there exist a countable index set
J , which can be empty, and a family {xj}j∈J ⊂ Ω such that

(2.2) ν = |u|2
∗
dx+

∑
j∈J

νjδxj , ζ ≥ |∇u|2dx+
∑
j∈J

ζjδxj ,

with νj , ζj > 0 satisfying Sν
2/2∗

j ≤ ζj, for all j ∈ J .

In what follows we prove that, for some special sequences, the set J must be
finite.
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Lemma 2.3. Let (un) ⊂ H1
0 (Ω) be as in the statement of Lemma 2.2. If I ′a,λ(un)→

0, then the set J is empty or finite. Moreover,

(2.3) νj ≥
(
m(0)S

µ

)N/2
, ∀ j ∈ J.

Proof. Let φ ∈ C∞0 (RN , [0, 1]) be such that φ ≡ 1 in B1/2(0) and φ ≡ 0 in

RN \ B1(0). Suppose that J 6= ∅, fix j ∈ J and define φε(x) := φ(
x−xj
ε ). Since

I ′(un)(φεun) = on(1), we have that
(2.4)

m(‖un‖2)

(
An,ε +

∫
Ω

|∇un|2φε
)

= on(1) + µ

∫
Ω

|un|2
∗
φε + λ

∫
Ω

f(x, un)unφε,

with An,ε :=
∫

Ω
un(∇un ·∇φε). By using (f3) and the sub-critical growth condition

(f1), we can prove that
∫

Ω
f(x, un)unφε →

∫
Ω
f(x, u)uφε, as n→ +∞. Thus, since

(m0) implies that m(t) ≥ α0 > 0, for any t ≥ 0, we infer from (2.4) and Lemma 2.2
that

α0

(
lim sup
n→+∞

An,ε +

∫
Ω

φεdζ

)
≤ µ

∫
Ω

φεdν + λ

∫
Ω

f(x, u)uφε.

We claim that

(2.5) lim
ε→0

lim sup
n→∞

An,ε = 0.

If this is true can take ε → 0 and use the Lebesgue Theorem to get α0ζj ≤ µνj .

Recalling that Sν
2/2∗

j ≤ ζj , we obtain

m(0)Sν
2/2∗

j ≤ m(0)ζj ≤ α0ζj ≤ µνj ,

and therefore νj ≥ (m(0)S/µ)
N/2

. Hence,

ν(Ω) ≥
∑
j∈J

νj ≥
∑
j∈J

(
m(0)S

µ

)N/2
.

Since ν(Ω) < +∞, we conclude that set J is finite.
In order to prove (2.5), we compute

|An,ε| ≤
‖|∇φ|‖∞

ε

(∫
Bε(xj)

|∇un|2dx

)1/2(∫
Bε(xj)

|un|2dx

)1/2

≤ ‖|∇φ|‖∞
ε

‖un‖

(∫
Bε(xj)

|un|2dx

)1/2

≤ d1

ε

(∫
Bε(xj)

|u|2dx+ on(1)

)1/2

,

with d1 > 0. Since
∫
Bε(xj)

|u|2dx = O(ε3), as ε → 0, equation (2.5) follows from

the above inequality. �

If E is a real Banach space and I ∈ C1(E,R), we say that I satisfies the Palais-
Smale condition at level c ∈ R, (PS)c for short, if every sequence (un) ⊂ E such
that I(un)→ c and I ′(un)→ 0 possesses a convergent subsequence.
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Proposition 2.4. Suppose that f satisfies (f0)− (f2) and define

c∗ := min

{
µ

(
1

θ
− 1

2∗

)(
m(0)S

µ

)N/2
,

(
m(0)

2
− a

θ

)
s2

0

}
.

Then the functional Ia,λ satisfies the (PSc) condition at any level c < c∗.

Proof. Let (un) ⊂ H1
0 (Ω) be such that I ′a,λ(un) → 0 and Ia,λ(un) → c < c∗. We

start by proving that the set J given by Lemma 2.2 is empty. Indeed, suppose by
contradiction that there exists some j ∈ J . If we consider φε as in the proof of
Lemma 2.3, we can use Lemma 2.1, (f2) and (2.1) to get

c+ on(1) = Ia,λ(un)− 1

θ
I ′a,λ(un)un

≥ µ

(
1

θ
− 1

2∗

)∫
Ω

|un|2
∗
≥ µ

(
1

θ
− 1

2∗

)∫
Ω

|un|2
∗
φε.

Taking the limit and using (2.3), we conclude that

c ≥ µ
(

1

θ
− 1

2∗

)
νj ≥ µ

(
1

θ
− 1

2∗

)(
m(0)S

µ

)N/2
,

which contradicts c < c∗.
Since the set J is empty, we can use (2.2) and the boundedness of Ω to conclude

that

lim
n→+∞

∫
Ω

|un|2
∗

=

∫
Ω

|u|2
∗
,

where u ∈ H1
0 (Ω) is the H1

0 (Ω)-weak limit of (un). Recalling that I ′a,λ(un)un =

on(1), we can use (f1) to get

(2.6) lim
n→∞

ma(‖un‖2)‖un‖2 = λ

∫
Ω

f(x, u)u+ µ

∫
Ω

|u|2
∗
.

On the other hand, if we set α0 := lim
n→∞

‖un‖2, we can use I ′a,λ(un) → 0 to

obtain

ma(α2
0)

∫
Ω

(∇u · ∇φ) = λ

∫
Ω

f(x, u)φ+ µ

∫
Ω

|u|2
∗−2uφ, ∀φ ∈ H1

0 (Ω).

By picking φ = u, we infer from (2.6) that

lim
n→∞

ma(‖un‖2)‖un‖2 = ma(α2
0)‖u‖2.

Since ma is continuous and positive, we have that α0 = ‖u‖. Hence, the weak
convergence implies that un → u strongly in H1

0 (Ω) and the proposition is proved.
�

3. Proof of Theorem 1.1

In this section, we present the proof of our first theorem. We are going to use
the following version of Symmetric Mountain Pass Theorem (see [2, 28]):

Theorem 3.1. Let E = V ⊕W be a real Banach space with dimV <∞. Suppose
I ∈ C1(E,R) is an even functional satisfying I(0) = 0 and

(I1) there exist ρ, α > 0 such that

inf
u∈∂Bρ(0)∩W

I(u) ≥ α;
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(I2) there exist a subspace V̂ ⊂ E such that dimV < dim V̂ <∞ and

max
u∈V̂

I(u) ≤M,

for some M > 0;
(I3) I satisfies (PS)c for any c ∈ (0,M), with M as in (I2).

Then I possesses at least (dim V̂ − dimV ) pairs of non-trivial critical points.

In what follows we verify that the functional Ia,λ satisfies the conditions (I1)
and (I2).

Lemma 3.2. Suppose that f satisfies (f0), (f1) and (f3). Then, for each λ > 0,
there exists ρλ, αλ > 0 such that

inf
u∈∂Bρλ (0)

Ia,λ(u) ≥ αλ.

Proof. Given ε > 0, we can use (f1) and (f3) to obtain Cε > 0 such that

F (x, s) ≤ ε

2
|s|2 + Cε|s|q, ∀ (x, s) ∈ Ω× R.

Hence,

Ia,λ(u) ≥ m(0)

2
‖u‖2 − ε

2

∫
Ω

|u|2 − Cε
q
λ

∫
Ω

|u|q − µ

2∗

∫
Ω

u2∗

≥ 1

2

(
m(0)− ελ

λ1(Ω)

)
‖u‖2 − d1λ‖u‖q − d2‖u‖2

∗
,

where λ1(Ω) > 0 is the first eigenvalue of (−∆, H1
0 (Ω)) and d1, d2 > 0 are constants

independent of λ. The result easily follows if we choose ε > 0 small and use the
inequality 2 < q < 2∗. �

Proposition 3.3. Suppose that f satisfies (f0)− (f2). Then, for any given k ∈ N
and M∗ > 0, there exists λ∗k > 0 with the following property: for any λ ≥ λ∗k we
can find a k-dimensional subspace V λk ⊂ H1

0 (Ω) such that

max
u∈V λk

Ia,λ(u) < M∗.

Proof. Let ϕ ∈ C∞0 (B1(0)), choose {x1, . . . , xk} ⊂ Ω and δ > 0 such that, for
i, j ∈ I := {1, . . . , k}, Bδ(xi) ⊂ Ω and Bδ(xi) ∩ Bδ(xj) = ∅, if i 6= j. For each
i ∈ I, we set ϕδi (x) := ϕ(x−xiδ ) and notice that

(3.1) Aδ :=
‖ϕδi ‖2

‖ϕδi ‖2θ
= δ(N−2− 2N

θ ) ‖ϕ‖2

‖ϕ‖2θ
.

Since Rk is finite dimensional, there exists d1 = d1(k, θ) such that

(3.2)

k∑
i=1

|yi|θ ≥ d1

(
k∑
i=1

|yi|2
)θ/2

, ∀ (y1, . . . , yk) ∈ Rk.

Hence, if we set

Vk,δ := span{ϕδ1, . . . , ϕδk},
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we have that, for any u =
∑k
i=1 αiϕ

δ
i ∈ Vk,δ, there holds

(3.3)

∫
Ω

|u|θdx =

∫
Bδ(x1)∪···∪Bδ(xk)

∣∣∣ k∑
i=1

αiϕ
δ
i

∣∣∣θdx
=

k∑
i=1

‖αiϕδi ‖θθ ≥ d1

(
k∑
i=1

‖αiϕδi ‖2θ

)θ/2

= d1

(
k∑
i=1

A−1
δ ‖αiϕ

δ
i ‖2
)θ/2

= d2δ
−(N−2− 2N

θ ) θ2 ‖u‖θ,

where d2 = d1‖ϕ‖2‖ϕ‖−2
θ and we have used (3.2), (3.1) and the fact that the support

of the functions ϕδi are disjoint.
By using (f3), we obtain d3, d4 > 0 such that

F (x, s) ≥ d3|s|θ − d2, ∀ (x, s) ∈ Ω× R.

This and (3.3) provide

Ia,λ(u) ≤ a

2
‖u‖2 − λ

k∑
i=1

∫
Bδ(xi)

F (x, u)

≤ a

2
‖u‖2 − λd2d3δ

−(N−2− 2N
θ ) θ2 ‖u‖θ + λd2kδ

NωN ,

where ωN is the volume of the unitary ball B1(0) ⊂ RN . Thus, for positive constants
d5 = d5(k, θ), d6 = d6(k,N) and

γ := −
(
N − 2− 2θ

N

)
θ

2
> 0,

there holds

(3.4) Ia,λ(u) ≤ a

2
‖u‖2 − λd5δ

γ‖u‖θ + λd6δ
N , ∀u ∈ Vk,δ.

Since θ < 2∗, we have that γ < N and therefore we can pick γ0 ∈ (γ,N) and
consider the function

hδ(t) :=
a

2
t2 − d5δ

−γ0+γtθ + d6δ
−γ0+N , t > 0.

It attains its maximum value at tδ =
[
a(d5θ)

−1δγ−γ0
]1/(θ−2)

. This and γ0 ∈ (γ,N)
imply that hδ(tδ) → 0 as δ → 0+. Thus, there exists δ∗ = δ∗(l, θ,N, a) > 0 such
that

max
t≥0

hδ(t) ≤
M∗

2
, ∀ δ ∈ (0, δ∗].

We now set λ∗k := (δ∗)−γ0 . Let λ ≥ λ∗k and define the k-dimensional subspace

V λk := Vk,δ for δ = λ−1/γ0 . Since δ−γ0 = λ ≥ λ∗k = (δ∗)−γ0 , we obtain δ ≤ δ∗.
Thus, for any u ∈ V λk , we can use (3.4) and the above inequality to get

Ia,λ(u) ≤ a

2
‖u‖2 − δ−γ0d5δ

γ‖u‖θ + δ−γ0d6δ
N ≤ max

t≥0
hδ(t) ≤

M∗

2
,

and we have done. �
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We are ready to prove our first theorem.

Proof of Theorem 1.1. Let k ∈ N be given. We are going to apply Theorem 3.1
with W = H1

0 (Ω). Condition (I1) is a direct consequence of Lemma 3.2. In order
to verify the other conditions, we consider M∗ < c∗, with c∗ as in Proposition 2.4.
Condition (I3) follows from Proposition 2.4. It remains to obtain a k-dimensional
subspace such that (I2) holds. But that condition always hold for the subsapce V λk
given by Proposition 3.3, if we take λ ≥ λ∗k.

Since Ia,λ(0) = 0 and this functional is even, the above considerations and The-
orem 3.1 provide, for each λ ≥ λ∗k, the existence of at least k pairs of nonzero
solutions of the modified problem (Pa). Let u ∈ H1

0 (Ω) be one of these solutions.
Since Ia,λ(u) ≤M∗ < c∗, we can use the definition of c∗ and (f2) to obtain(

m(0)

2
− a

θ

)
s2

0 ≥ c∗ > M∗ = Ia,λ(u)− 1

θ
I ′a,λ(u)u ≥

(
m(0)

2
− a

θ

)
‖u‖2.

Hence, ‖u‖ < s0 and it follows from the definition of ma that ma(‖u‖2) = m(‖u‖),
that is, the function u ∈ H1

0 (Ω) weakly solves (P ). The theorem is proved. 2

4. The 3-dimensional case

From now on we focus on Theorem 1.2. We assume hereafter that the conditions
(m̂0), (m1) − (m3) hold and that λ > 0 is fixed. For each µ > 0, we can use

conditions (f0) − (f̂1) to guarantee that the energy functional Iµ : H1
0 (Ω) → R

given by

Iµ(u) :=
1

2
M(‖u‖2)− λ

∫
Ω

F (x, u)− µ

6

∫
Ω

|u|6, u ∈ H1
0 (Ω),

is well defined. Moreover, Iµ ∈ C1(H1
0 (Ω),R) and the critical points of Iµ are weak

solutions of (P ).
The proof of the Palais-Smale condition is completely different from that done

for the functional Ia,λ. In this case, we have the following:

Proposition 4.1. Suppose that f satisfies (f̂1), (f4) and one of the conditions (f6)
or (f7). Then, given M > 0, there exist µ∗ = µ∗(Ω,M, a, c3, c4, σ, λ) > 0 such that
Iµ satisfies the (PS)c condition for any c < M and µ ∈ (0, µ∗).

The proof will be done in several steps. The first one is to prove that Palais-Smale
sequences are bounded.

Lemma 4.2. Suppose that f satisfies (f̂1), (f4) and one of the conditions (f6) or
(f7). If (un) ⊂ H1

0 (Ω) is such that Iµ(un) → c and I ′µ(un) → 0, then (un) is

bounded in H1
0 (Ω).

Proof. Let (un) ⊂ H1
0 (Ω) be such that Iµ(un) → c, I ′µ(un) → 0 and consider

σ ∈ [0, 2) given by (f4). For any ε > 0, there exists Cε > 0 such that,

(4.1) |s|σ ≤ ε|s|6 + Cε, ∀ s ∈ R.
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This, (m2) and (f4) show that, for n large, there hold

c+ on(1) + on(1)‖un‖ ≥ Iµ(un)− 1

4
I ′µ(un)un

≥ µ

12
‖un‖66 + λ

∫
Ω

(
1

4
f(x, un)un − F (x, un)

)
≥ µ

12
‖un‖66 − c1λ|Ω| − c2λ

∫
Ω

|un|σ

≥
( µ

12
− εc2λ

)
‖un‖66 − (c1λ+ Cε)|Ω|.

By picking ε > 0 small, we obtain d1, d2 > 0 such that

(4.2) ‖un‖66 ≤ d1 + d2‖un‖.
On the other hand, since Iµ(un) = c+on(1), it follows from (m2), (m1) and (f6)

that
α0

4
‖un‖2 ≤

1

2
M(‖un‖2) ≤ µ

6
‖un‖66 + c3λ|Ω|+ c4λ‖un‖qq + c+ on(1).

Since 2 < q < 6, we have an inequality analogous to (4.1) with σ replaced by q,
and therefore it follows from (4.2) that

α0

4
‖un‖2 ≤ d3‖un‖66 + d4 ≤ d5‖un‖+ d6.

Hence, (un) is bounded in H1
0 (Ω).

Suppose now that f satisfies (f7) instead of (f6). Given ε > 0, we can use (f̂1)
to obtain d7 > 0 such that

|F (x, s)| ≤ d7 + ε|s|6.
Letting n→ +∞ and recalling that ε > 0 is arbitrary, we conclude that

lim sup
s→+∞

|F (x, s)|
s6

= 0.

This and (f7) provides Cε > 0 such that

(4.3) F (x, s) ≤ Cε|s|6 +
(
‖a+‖∞ + ε

)
s2.

The proof now follows as in the first case. �

We prove now a version of Lemma 2.3 in this new setting.

Lemma 4.3. Suppose that f satisfies (f̂1) and let (un) ⊂ H1
0 (Ω) be as in the

statement of Lemma 2.2. If I ′µ(un)→ 0, then the set J is empty or finite. Moreover,

(4.4) νj ≥
(
α0S

µ

) 3
2

, ∀ j ∈ J.

Proof. Let φ ∈ C∞0 (RN , [0, 1]) as in the proof of Lemma 2.3. Since I ′µ(un)(φεun) =
on(1), we have that

m(‖un‖2)

(
An,ε +

∫
Ω

|∇un|2φε
)

= on(1) + µ

∫
Ω

|un|6φε + λ

∫
Ω

f(x, un)unφε,

with An,ε :=
∫

Ω
un(∇un · ∇φε). By using (f̂1), the compactness embedding of

H1
0 (Ω) into the Lebesgue spaces and a version of a compactness lemma due to

Strauss (see [8, Lemma 1.2]) we can check that
∫
f(un)unφε →

∫
f(u)uφε, as
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n → +∞. Arguing as in as in the proof of Lemma 2.3, using (2.5) and (m1), we

obtain νj ≥ (α0S/µ)
3/2

. Hence,

(4.5) ν(Ω) ≥
∑
j∈J

νj ≥
∑
j∈J

(
α0S

µ

)3/2

.

and we conclude that set J is finite. �

We are ready to present the proof of our compactness result.

Proof of Proposition 4.1. Let (un) ⊂ H1
0 (Ω) be such that I ′µ(un)→ 0 and Iµ(un)→

c < M . By Lemma 4.2, this sequence is bounded in H1
0 (Ω) and therefore there exist

u ∈ H1
0 (Ω) and two bounded measures ν, ζ satisfying all the hypotheses of Lemma

2.2.
Arguing as in the proof of Lemma 4.2 and using Hölder’s inequality we get, for

n large,

M > Iµ(un)− 1

4
I ′µ(un)un

≥ µ

12

∫
Ω

|un|6 − c1λ|Ω| − c2λ
∫

Ω

|un|σ

≥ µd1

∫
Ω

|un|6 − d2 − d3

(∫
Ω

|un|6
)σ/6

with d1 := 1/12, d2 := c1λ|Ω| and d3 := c2λ|Ω|(6−σ)/6. Letting n → +∞ and
recalling that |un|6 ⇀ ν weakly in the sense of measures, we obtain

µd1ν(Ω) ≤M + d2 + d3ν(Ω)σ/6.

If ν(Ω) > 1, we can use the above estimate to obtain

ν(Ω) ≤ ν(Ω)σ/6
(
M + d2 + d3

µd1

)
.

Since 0 ≤ σ < 2, there exists µ̃ > 0 such that

(4.6) ν(Ω) ≤
(
M + d2 + d3

µd1

)6/(6−σ)

≤
(
α0S

µ

)3/2

, ∀µ ∈ (0, µ̃).

If ν(Ω) ≤ 1, we can choose µ̂ < α0S and use a simple computation to obtain
ν(Ω) < (α0Sµ

−1)3/2, for any µ ∈ (0, µ̂). Hence, if we set µ∗ := min{µ̃, µ̂}, we get

ν(Ω) <

(
α0S

µ

)3/2

, ∀µ ∈ (0, µ∗),

and therefore it follows from (4.5) that the set J given by Lemma 2.2 is empty.
Thus, we can use (2.2) and the boundedness of Ω to get∫

Ω

|un|6 →
∫

Ω

|u|6.

Since (un) is bounded in H1
0 (Ω) we easily conclude that

∫
Ω
|un|4unu →

∫
Ω
|u|6.

As before, we also have that
∫

Ω
f(x, un)(u− un)→ 0. Thus,

on(1) = I ′µ(un)un − I ′µ(un)u = m(‖un‖2)
(
‖un‖2 − ‖u‖2

)
+ on(1).
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It follows from (m1) that ‖un‖ → ‖u‖. This and the weak convergence of (un)
finishes the proof. 2

5. Proof of Theorem 1.2

In order to present the proof of Theorems 1.2 we consider (ϕj)j∈N the normalized
eigenfunctions of (−∆, H1

0 (Ω)). For any m ∈ N, we set

Vm := span{ϕ1, . . . , ϕm}
and notice that H1

0 (Ω) = Vm ⊕ V ⊥m . Moreover, as proved in [28, Lemma 4.1], for
any given 2 ≤ r < 6 and δ > 0, there is m0 ∈ N such that, for all m ≥ m0,

(5.1) ‖u‖rr ≤ δ‖u‖r, ∀u ∈ V ⊥m .
We first prove that Iµ verifies the geometric condition (I1).

Lemma 5.1. Suppose that f satisfies (f6) or (f7). Then there exists

µ = µ(a, b,Ω, c3, c4, λ) > 0,

m ∈ N and ρ, α > 0 such that, for any µ ∈ (0, µ̄), there holds

Iµ(u) ≥ α, ∀u ∈ ∂Bρ(0) ∩ V ⊥m .

Proof. Suppose first that (f6) holds. If we use the inequality (5.1) with r = q and
δ > 0 to be chosen later, we obtain

Iµ(u) ≥ ‖u‖2
(α0

4
− δc3λ‖u‖q−2

)
− c4λ|Ω| −

µ

6S3
‖u‖6, ∀u ∈ V ⊥m ,

where we have used (m2), (m1) and (f6). If ρ = ρ(δ) > 0 is such that δc3λρ
q−2 =

α0/8, we obtain

Iµ(u) ≥ α0

8
ρ2 − c4λ|Ω| −

µ

6S3
ρ6, ∀u ∈ ∂Bρ(0) ∩ V ⊥m .

Since ρ(δ)→ +∞, as δ → 0+, we can take δ > 0 small in such way that (α0/8)ρ2−
c4λ|Ω| > (α0/16)ρ2, and therefore we can obtain µ̄ > 0 such that,

Iµ(u) ≥ α0

16
ρ2 − µ̄

6S3
ρ6 ≥ α > 0, ∀u ∈ ∂Bρ(0) ∩ V ⊥m .

The conclusion easily follows from the above inequality.
If (f7) holds, we consider ε > 0 and use (m2), (m1) and (4.3) to get

Iµ(u) ≥ α0

4
‖u‖2 − (µ+ 6λCε)

6S3
‖u‖6 − λ(‖a+‖∞ + ε)‖u‖22,

for any u ∈ H1
0 (Ω). Choosing r = 2 and δ = α0

8λ(‖a+‖∞+ε) in (5.1), we obtain m ∈ N
such that

Iµ(u) ≥ α0

8
ρ2 − (µ+ 6λCε)

6S3
ρ6, ∀u ∈ ∂Bρ(0) ∩ V ⊥m .

The lemma follows from the above inequality and the same argument used in the
first case. �

The local superlinearity condition (f5) provides (I2) as we can see from the next
lemma.

Lemma 5.2. Suppose that f satisfies (f5). Then, for any given l ∈ N, there is a

l-dimensional subspace V̂ ⊂ H1
0 (Ω) and a constant M > 0 such that

sup
u∈V̂

Iµ(u) ≤M, ∀µ > 0.
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Proof. Let Ω0 ⊂ Ω be given by condition (f5), consider (φj)j∈N the normalized
eigenfunctions of (−∆, H1

0 (Ω0)) and define the l-dimensional subspace

V̂l := span{φ1, . . . , φl}.

Since V̂l has finite dimension there exists d1 = d(V̂ ) > 0 such that

(5.2) d1‖u‖4 ≤ ‖u‖44, ∀u ∈ V̂ .

Given ε > b/(4d1), it follows from (f5) and the continuity of F that, for some
d2 = d2(d1, b), there holds

F (x, s) ≥ ε|s|4 − d2, ∀x ∈ Ω0, s ∈ R.

This, (m3) and (5.2) imply that, for any u ∈ V̂l, we have that

Iµ(u) ≤ a

2
‖u‖2 −

(
ελd1 −

b

4

)
‖u‖4 + d2λ|Ω| ≤ sup

t>0

{a
2
t2 − ε0t

4 + d2λ|Ω|
}
,

with ε0 := (ελd1 − b/4) > 0. If we denote by M the supremum of the right-hand
side above, we can use a > 0 to conclude that 0 < M < +∞ and we have done. �

Remark 5.3. In the local case m ≡ 1, the same conclusion of the last lemma holds
if we drop (f5) by the weaker condition

(f̂5) there exists an open set Ω0 ⊂ Ω with positive measure, such that

lim
|s|→∞

F (x, s)

s2
= +∞, uniformly in Ω0.

Actually, if d̂1 > 0 is such that d̂1‖u‖2 ≤ ‖u‖22, for all u ∈ V̂ , the same argument
provides

Iµ(u) ≤
(a

2
− ελd̂1

)
‖u‖2 + d2λ|Ω| ≤ sup

t>0

{
−ε0t

2 + d2λ|Ω|
}
,

with ε0 := ελd̂1 − (a/2) > 0. Hence, the lemma holds with M = d2λ|Ω|.

We are ready to prove our last result.

Proof of Theorem 1.2. Let k ∈ N be fixed. Since all the previous results hold with
conditions (f6) or (f7), we present the proof in a unified way.

By Lemma 5.1 we can find m ∈ N large such that, for the decomposition H =
V ⊕W with

V := 〈ϕ1, · · · , ϕm〉, W := 〈ϕ1, · · · , ϕm〉⊥,
the functional Iµ verifies (I1) for any µ ∈ (0, µ̄). Moreover, by Lemma 5.2, we

obtain a subspace V̂ ⊂ H1
0 (Ω) and M > 0 such that

dim V̂ = (k +m), sup
u∈V̂

Iµ(u) ≤M, ∀µ > 0.

Hence, Iµ satisfies (I2). For the above choice of M we obtain, from Proposition 4.1,
a number µ∗ such that Iµ satisfies (I3) for any µ ∈ (0, µ∗). Since Iµ(0) = 0 and Iµ
is even, if we set µ∗k := min{µ̄, µ∗}, we can invoke Theorem 3.1 to conclude that,
for all µ ∈ (0, µ∗k), the functional Iµ has at least (k +m−m) = k pairs of nonzero
critical points. The theorems are proved. 2
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[9] F.J.S.A. Corrêa and G.M. Figueiredo, On an elliptic equation of p-Kirchhoff type via varia-

tional methods. Bull. Austral. Math. Soc. 74 (2006), no. 2, 263–277.
[10] G. Eisley, Nonlinear vibrations of beams and rectangular plates, Z. Anger. Math. Phys. 15

(1964) 167-175.

[11] G.M. Figueiredo, Existence of a positive solution for a Kirchhoff problem type with critical
growth via truncation argument, J. Math. Anal. Appl. 401 (2013) 706–713.

[12] G.M. Figueiredo and J.R.S. Junior, Multiplicity of solutions for a Kirchhoff equation with
subcritical and critical growth, Diff. Int. Equations 25 (2012) 853-868.

[13] A. Hamydy, M. Massar and N. Tsouli, Existence of solutions for p-Kirchhoff type problems

with critical exponent. Electron. J. Differential Equations 2011, No. 105, 8 pp.
[14] X.M. He and W.M. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Non-

linear Anal. 70 (2009) 1407–1414.

[15] J. Jin and X. Wu, Infinitely many radial solutions for Kirchhoff-type problems in RN , J.
Math. Anal. Appl. 369 (2010) 564–574.

[16] G. Kirchhoff, Vorlesungen über Mathematische Physik: Mechanik, Teubner, Leipzig (1876).

[17] G. Li and H. Ye, Existence of positive ground state solutions for the nonlinear Kirchhoff type
equations in R3, J. Differential Equations 257 (2014), 566-600.

[18] L. Li and X. Zhong, Infinitely many small solutions for the Kirchhoff equation with local

sublinear nonlinearities, J. Math. Anal. Appl. 435 (2016) 955-967.
[19] J. Limaco and L.A. Medeiros, Kirchhoff-Carrier elastic strings in noncylindrical domains,

Portugaliae Mathematica 14 (1999) 464-500.
[20] J.L. Lions, On some questions in boundary value problems of mathematical physics. Inter-

national Symposium on Continuum, Mechanics and Partial Differential Equations, Rio de

Janeiro(1977), Mathematics Studies, North- Holland, Amsterdam, 30 (1978) 284-346.
[21] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit

case, part 1, 2, Rev. Mat. Iberoamericana 1 (1985) 145–201, 45-121.
[22] D.C. Liu, On a p-Kirhhoff equation via fountain theorem and dual fountain theorem, Non-

linear Anal. 72 (2010) 208–302.

[23] A.M. Mao and J.T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems

without the P.S. condition, Nonlinear Anal. 70 (2009) 1275–1287.
[24] D. Naimen, Positive solutions of Kirchhoff type elliptic equations involving a critical Sobolev

exponent. NoDEA Nonlinear Differential Equations Appl. 21 (2014), no. 6, 885–914.
[25] R. Narashima, R., Nonlinear vibration of an elastic string, J. Sound Vib. 8, (1968) 134– 146.
[26] D.W. Oplinger, Frequency response of a nonlinear stretched string, J. Acoust. Soc. Am. 32,

(1960) 1529–1538.

[27] K. Schlesinger, Saitenschwingungen mit endlicher amplitude., Z. Techn. Phys. 12 , (1931)
33–39.

[28] E.A.B. Silva and M.S. Xavier, Multiplicity of solutions for quasilinear elliptic problems in-
volving critical Sobolev exponents. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003)
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