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Abstract. We study the nonlocal equation

∆2u−m
(∫

Ω
|∇u|2dx

)
∆u = λa(x)|u|q−2u+ b(x)|u|p−2u, in Ω,

subject to the boundary condition u = ∆u = 0 on ∂Ω. For m continuous and
positive we obtain a nonnegative solution if 1 < q < 2 < p ≤ 2N/(N − 4) and

λ > 0 small. If the affine case m(t) = α + βt, we obtain a second solution if
4 < p < 2N/(N − 4) and N ∈ {5, 6, 7}. In the proofs we apply variational

methods.

1. Introduction

Consider the semilinear problem

−∆u = λa(x)|u|q−2u+ b(x)|u|p−2u in Ω, u ∈W 1,2
0 (Ω),

where Ω ⊂ RN is a bounded domain, N ≥ 3, λ > 0 is a parameter, 1 < q < 2 < p ≤
2N/(N−2) and a, b are potentials defined in Ω. In a celebrated paper, Ambrosetti,
Brezis and Cerami [2] supposed that a ≡ 1, b ≡ 1 and obtained two positive
solutions if λ > 0 is small. In [10], de Figueiredo, Gossez and Ubilla generalized
this result by considering nonconstant sign changing potentials. In this setting
the Maximun Principle can fail and therefore the solutions are only nonnegative.
Some other results for the Laplacian operator can be found in [1, 23, 20, 26] and
references therein. We also quote [8, 4, 15] for the p-Laplacian, fractional Laplacian
and Kirchhoff operator, respectively.

We consider here a nonlocal fourth-order version of the above problem, namely

(Pλ)

∆2u−m
(∫

Ω

|∇u|2dx
)

∆u = λa(x)|u|q−2u+ b(x)|u|p−2u, in Ω

u = ∆u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, N ≥ 5 and ∆2u = ∆(∆u) is the
biharmonic operator. The equation in (Pλ) is related with the so called Berger
plate model (see [5, 9])

utt + ∆2u+

(
Q+

∫
Ω

|∇u|2dx
)

∆u = f(x, u, ut),

and it is a simplification of the von Karman plate equation that describes large
deflection of plate. The parameter Q describes in-plane forces applied to the plate
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and the function f represents transverse loads which may depend on the displace-
ment u and the velocity ut. The equation is also related with some models which
describe the bending equilibrium states of a beam subjected to a force f(x, u) and
other elastic force (see [25]), namely

utt +
EI

ρ
uxxxx −

(
H

ρ
+
EA

2ρL

∫ L

0

|ux|2dx

)
uxx = f(x, u).

More recent references with important details about the physical motivation can
be found in [16, 3, 14, 27].

In [13], the authors supposed that m is increasing, a ≡ 1, b ≡ 1 and obtained
infinitely many solutions, for 1 < q < 2, p = 2∗ := 2N/(N − 4) and λ > 0 small.
This result was partially extended in [22] where they assumed that b ≡ 1, the
(nonautonomous) concave term were of type λh(x, u), with h(x, u) ≥ 0 if u ≥ 0,
and a technical assumption on the growth of the function m. Other results for
positive potentials in unbounded domains can be found in [21, 17] and references
there in.

Here we are going to consider sign-changing potentials under mild regularity
conditions. More specifically, we suppose that

(m1) m ∈ C([0,+∞)) is positive;
(a1) a ∈ Lσq (Ω), for some σq > 2∗/(2∗ − q);
(a2) if we set

Ω+
a := {x ∈ Ω : a(x) > 0},

then there exist x0 ∈ Ω+
a and δ > 0 such that Bδ(x0) ⊂ Ω+

a ;
(b1) b ∈ L∞(Ω).

In our first result we prove the following:

Theorem 1.1. Suppose that 1 < q < 2 < p ≤ 2∗. If (m1), (a1) − (a2) and (b1)
hold, then there exists λ∗ > 0 such that, for each λ ∈ (0, λ∗), the problem (Pλ) has
a nonnegative nonzero solution.

In the proof we minimize the energy functional Iλ : W 1,2
0 (Ω) ∩W 2,2(Ω) → R

given by

Iλ(u) :=
1

2
‖u‖2 +

1

2
M

(∫
Ω

|∇u|2dx
)
− λ

q

∫
a(x)(u+)q − 1

p

∫
b(x)(u+)p,

where M(t) :=
∫ t

0
m(τ)dτ and u+(x) := max{u(x), 0}. Although this is a standard

process in concave-convex problems we have a serious difficult for proving that the
minimum point is nonnegative. Actually, the usual procedure of using the negative
part of the solution as a test function in Iλ does not work here since, differently of the
second order problem, this function may not belong to W 2,2(Ω). It is worthwile to
mention that some ideas for proving nonnegativity of solutions were presented in [24,
18] for different fourth-order problems. However, all of these authors assume that
the right-hand side of the equation is nonnegative and therefore their techniques
fail in our case. Actually, the argument used here (see Proposition 2.3) has interest
in itself and we believe that it can be used in other kind of minimization problems
which involve high-order operators with indefinite nonlinearities.

In our next theorem we look for a second solution in the case that m is a affine
function. This occurs, for example, in the Berger plate model mentioned above.
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Although a and b can change sign, for obtaining a second solution it is important
to assure that, in some ball, both of them are positive. Hence, we suppose that

(m2) for some α > 0 and β ≥ 0 there holds

m(t) = α+ βt, t ≥ 0;

(ab1) if we set

Ω+
b := {x ∈ Ω : b(x) > 0},

then there exist x0 ∈ Ω+
a and δ > 0 such that Bδ(x0) ⊂ (Ω+

a ∩ Ω+
b );

(b2) there exists c1 > 0 and γ ∈ (N−4
2 , N) such that

‖b‖∞ − b(x) ≤ c1|x− x0|γ , for a.e. x ∈ Bδ(x0),

where δ, x0 come from (ab1);

and prove the following multiplicity result:

Theorem 1.2. Suppose that N ∈ {5, 6, 7}, 1 < q < 2 and 4 < p ≤ 2∗. If (m2),
(a1), (ab1) and (b1)− (b2) hold, then there exists λ∗ > 0 such that the problem (Pλ)
has at least two nonzero solution for each λ ∈ (0, λ∗).

The second solution will be obtained via the Mountain Pass Theorem. Due to the
presence of the nonlocal term the classical calculations turn to be more involved.
In the critical case p = 2∗ we also have an extra difficult since the embedding
W 2,2(Ω) ↪→ L2∗(Ω) is no longer compact. We follow the ideias introduced by
Brezis and Nirenberg [7] (see also [6]) to get a local compactness result. Thanks to
some fine estimates we can prove that the minimax level of the associated functional
belongs to the correct range. At this point, it is very important to know that the
first solution (given by Theorem 1.1) is nonnegative.

We make now some comments about the dimension restriction on the statement
of our second theorem. Actually, an important feature of the techniques used i our
proof is the interaction between the integral

∫
Ω
b(x)|u|2∗dx and the fourth order

term ‖u‖4
W 1,2

0 (Ω)
of the energy functional. Notice that, if N = 8, then 2∗ = 4 and

therefore these terms has the same degree. The situation becomes more difficult for
high dimensions N > 8 since is this case the nonlocal term dominates the critical
one. It is interest to notice that the range for N covered by our result is exactly the
so called noncritical dimensions for the biharmonic operator (see [24]). We learn in
a recent paper of Naimen [19] that the same occurs for the second order problem,
where the critical dimension is N = 4 and the spectrum of solution is very different
from the 3-dimensional case. We finally notice that, although the first solution is
nonnegative, the sign argument used in the proof of Theorem 1.1 does not apply
for the second solution and therefore we have no information about its sign.

The paper contains two more sections. In Section 2 we prove Theorem 1.1 and
in the last one we prove our multiplicity result.

2. The first solution

Let H be the Hilbert space W 1,2
0 (Ω)∩W 2,2(Ω) endowed with inner product and

associated norm given by

〈u, v〉 :=

∫
Ω

(∆u∆v)dx, ‖u‖ :=

(∫
Ω

(∆u)2dx

)1/2

,
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for any u, v ∈ H. We also use the following notations:

〈u, v〉∗ :=

∫
Ω

(∇u · ∇v)dx, ‖u‖∗ :=

(∫
Ω

|∇u|2dx
)1/2

.

We know that the embedding H ↪→ Lr(Ω) is continuous for 1 ≤ t ≤ 2∗ and compact
if 1 ≤ t < 2∗. Hence, the following constant is well defined

(2.1) St := inf
u∈H\{0}

∫
Ω

(∆u)2dx(∫
Ω
|u|rdx

)2/r ,
for any 1 ≤ t ≤ 2∗.

From now on we denote by ‖u‖t the Lt(Ω)-norm of a function u ∈ H. Moreover,
for shortness, we write

∫
u instead of

∫
Ω
u(x)dx.

Lemma 2.1. The space H is compactly embedded into W 1,2
0 (Ω).

Proof. Let (ϕk)k∈N be the eigenfunctions of (−∆,W 1,2
0 (Ω)) and (λk)k∈N it associ-

ated eigenvalues. It is well known that they are orthogonal in W 1,2
0 (Ω), L2(Ω) and

also in H. Hence, if u =
∑∞
k=1 akϕk ∈ H, we can compute

‖u‖2 =

∞∑
k=1

a2
k‖ϕk‖2 =

∞∑
k=1

a2
kλk‖ϕk‖2∗ ≥ λ1

∞∑
k=1

a2
k‖ϕk‖2∗ = λ1‖u‖2∗.

It follows that the embedding H ↪→ W 1,2
0 (Ω) is continuous. Moreover, for any

u ∈ H, there holds

‖u‖2∗ =

∫
(∇u · ∇u) = −

∫
(u∆u) ≤ ‖u‖2‖u‖,

and therefore the compactness in the statement is a consequence of the compactness
of the embedding W 1,2

0 (Ω) ↪→ L2(Ω). �

Since we intending to apply variational methods, we introduce the energy func-
tional

Iλ(u) :=
1

2
‖u‖2 +

1

2
M(‖u‖2∗)−

λ

q

∫
a(x)(u+)q − 1

p

∫
b(x)(u+)p, u ∈ H,

where M(t) :=
∫ t

0
m(τ)dτ and u+(x) := max{u(x), 0}. Under the setting of Theo-

rem 1.1, we have that Iλ ∈ C1(H,R). Moreover, the solutions of (Pλ) are precisely
the critical points of Iλ.

Lemma 2.2. There exist ρ, δ > 0 such that Iλ(u) ≥ δ > 0, for any u ∈ H such
that ‖u‖ = ρ, provided λ > 0 is small enough.

Proof. Hölder’s inequality implies that
∫
a(x)(u+)q ≤ ‖a‖σq‖u‖

q
qσ′q
, for any u ∈

H. Since an analogous computation holds for the term
∫
b(x)(u+)p and M is

nonnegative, we can use (2.1) to obtain

Iλ(u) ≥ 1

2
‖u‖2 − λ

q
‖a‖σq ‖u‖

q
qσ′q
− 1

p
‖b‖∞ ‖u‖

p
p

≥ ‖u‖q

2

{
‖u‖2−q − 2

p
‖b‖∞ S−p/2p ‖u‖p−q − 2

λ

q
‖a‖σq S

−q/2
qσ′q

}
.

For B := (2/p) ‖b‖∞ S
−p/2
p , the function

f(t) := t2−q −Btp−q, t > 0,
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achieves its maximum value at

ρ :=

[
(2− q)
B(p− q)

]1/(p−2)

.

Let ρ0 := f(ρ) and notice that, for any ‖u‖ = ρ, there holds

Iλ(u) ≥ ρq

2

{
ρ0 − 2

λ

q
‖a‖σq S

−q/2
qσ′q

}
≥ ρq

2

ρ0

2
= δ > 0,

whenever

(2.2) λ ≤ ρ0

4

q

‖a‖σq
S
q/2
qσ′q

.

The lemma is proved. �

Proposition 2.3. Let ρ > 0 be as in the above lemma. We have that

−∞ < c0 := inf
u∈Bρ(0)

Iλ(u) < 0.

Moreover, if u0 ∈ Bρ(0) is such that Iλ(u0) = c0, then u0 ≥ 0 in Ω is a nonzero
solution of (Pλ).

Proof. Since Iλ maps bounded sets in bounded sets, we have that c0 > −∞. Let
Bδ(x0) ⊂ Ω+

a be as in the hypothesis (a2) and take a nonnegative function ϕ ∈
C∞0 (Bδ(x0)) such that

∫
a(x)ϕq > 0. If 0 < t < 1, we get

Iλ(tϕ) ≤ t2

2
‖ϕ‖2 +

c1
2
t2‖ϕ‖2∗ − λ

tq

q

∫
a(x)ϕq − tp

p

∫
b(x)ϕp,

with c1 := max
s∈[0,‖ϕ‖2∗]

m(s). Hence

lim sup
t→0+

Iλ(tϕ)

tq
≤ −λ

q

∫
a(x)ϕq < 0

and therefore Iλ(tφ) < 0, for any t > 0 small. This proves that c0 < 0.
We have that

Iλ(tϕ) ≤ t2

2
‖ϕ‖2 − λt

q

q

∫
a(x)ϕq − tp

p

∫
b(x)ϕp,

with c1 := max
s∈[0,‖φ‖2∗]

m(s). Hence

lim sup
t→0+

Iλ(tϕ)

tq
≤ −λ

q

∫
a(x)ϕq < 0

and therefore Iλ(tφ) < 0, for any t > 0 small. This proves that c0 < 0.
If u0 ∈ Bρ(0) is such that Iλ(u0) = c0 < 0 then u0 6= 0 and I ′λ(u0) = 0. Arguing

as in [6] we can prove that u0 verifies the boundary conditions of (Pλ) in the trace
sense. Hence, u0 is a solution of (Pλ). In order to prove that u0 ≥ 0 in Ω, we first
notice that, by elliptic regularity, u0 ∈ C2(Ω) ∩ C(Ω). Suppose, by contradiction,
that the open set Ω−u0

:= {x ∈ Ω : u0(x) < 0} is nonempty. Since u0 ≡ 0 on ∂Ω−u0
,

if ∆u0 ≤ 0 in Ω−u0
we could infer from the Maximum Principle that u0 ≡ 0 in Ω−u0

,
which does not make sense. Hence,

(2.3) A1 := ∆u(x1) > 0, A2 := −u(x1) > 0,

for some x1 ∈ Ω−u0
. For simplicity, we shall assume that x1 = 0 and B1(0) ⊂ Ω−u0

.
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Let ψ ∈ C∞(RN ) be such that ψ ≡ 0 in RN \ B1(0), ‖∇ψ‖∞ ≤ c2 and∫
B1(0)

∆ψ(y)dy > 0. We pick δ > 0 in such way that the function φ(x) := 1+δψ(x)

verifies

φ ≡ 1 in RN \B1(0), φ(x) ≥ 1/2, ∀x ∈ RN .
Since A1, A2 > 0, by taking δ smaller if necessary, we may assume that

0 < Γ1 :=

∫
B1(0)

[A1 −A2∆φ(y)]
2
dy < Γ2 :=

∫
B1(0)

A2
1dy.

For any 0 < ε < 1, we set

uε(x) =
[
1 + ε2

(
φ
(x
ε

)
− 1
)]
u0(x), x ∈ RN .

and call φε the function into the brackets above.
Clearly uε ∈ H and, since φε is nonnegative, we also have that u+

ε = u+
0 . We

claim that, for ε > 0 small, there holds

(2.4)

∫
(∆uε)

2 <

∫
(∆u0)2, M(‖uε‖2∗) +

∫
(∆uε)

2 < M(‖u0‖2∗) +

∫
(∆u0)2.

If this is true, we conclude that uε ∈ Bρ(0) verifies uε 6= u0 and Iλ(uε) < Iλ(u0) =
c0, which contradicts the definition of c0.

It remains to prove (2.4). We first notice that, by using a simple computation,
we can prove that ‖uε‖2∗ → ‖u0‖2∗, as ε → 0+, and therefore the second inequality
in (2.4) is a consequence of the first one and the continuity of M . For the proof of
the former we set

Γ1,ε :=

∫
{|x|<ε}

(φε∆u+ 2∇φε · ∇u0 + u0∆φε)
2dx.

and

Γ2,ε :=

∫
{|x|<ε}

(∆u0)2dx.

The change of variables y := x/ε provides

Γ1,ε = εNΓ1 + o(εN ), Γ2,ε = εNΓ2 + o(εN ),

as ε → 0+. Since Γ1 < Γ2, we conclude that Γ1,ε < Γ2,ε, for ε > 0 small. Hence,
for this values of ε, we obtain∫

Ω

(∆uε)
2dx = Γ1,ε +

∫
{|x|≥ε}

(∆u0)2dx < Γ2,ε +

∫
{|x|≥ε}

(∆u0)2dx =

∫
Ω

(∆u0)2dx,

and we have done.
�

We are ready to prove our first main result.

Proof of Theorem 1.1. Let ρ > 0 and c0 as in the last proposition and (un) ⊂ Bρ(0)
be a minimizing sequence for c0. Since I ≥ δ > 0 on ∂Bρ(0) and c0 < 0, we have
that un ∈ Bρ(0) for all n ≥ n0. Thus, by the Ekeland’s Variational Principle [12],
we may assume that

Iλ(un)→ c0, I ′λ(un)→ 0.
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The boundedness of (un) and Lemma 2.1 provides u0 ∈ H such that, up to a
subsequence,

(2.5)


un ⇀ u0 weakly in X,

un → u0 strongly in W 1,2
0 (Ω) and Lr(Ω), for 1 ≤ r < 2∗,

u+
n (x)→ u+

0 (x), for a.e. x ∈ Ω.

If σ := (2∗ − 1)/(q − 1), then σ′ = (2∗ − 1)/(2∗ − q) and we can use Young’s
inequality to obtain, for a.e. x ∈ Ω,

|a(x)(u+
n )q−1|2

∗/(2∗−1) ≤ 1

σ
|un|2

∗
+

1

σ′
|a(x)|2

∗/(2∗−q).

Since σq > 2∗/(2∗ − q), we infer from the above inequality that the sequence

(a(·)(u+
n )q−1) is bounded in L2∗/(2∗−1)(Ω). So, recalling that (2∗)′ = 2∗/(2∗ − 1),

we conclude that

lim
n→+∞

∫
a(x)(u+

n )q−1φ =

∫
a(x)(u+

0 )q−1φ, ∀φ ∈ H ⊂ L2∗(Ω).

Since b ∈ L∞(RN ), a simpler argument shows that

lim
n→+∞

∫
b(x)(u+

n )p−1φ =

∫
b(x)(u+

0 )p−1φ, ∀φ ∈ H.

The strong convergence in W 1,2
0 (Ω) implies that

lim
n→+∞

m(‖un‖2∗)
∫

(∇un · ∇φ) = m(‖u0‖2∗)
∫

(∇u0 · ∇φ).

All together, the above equalities provide

0 = lim
n→+∞

I ′λ(un)φ = I ′λ(u0)φ, ∀φ ∈ H,

and therefore I ′λ(u0) = 0.
Since (2∗/q)′ = 2∗/(2∗ − q), it follows from (a1) that qσ′q < 2∗. This and (2.5)

show that |un(x)| ≤ ψ(x) a.e. in Ω, for some ψ ∈ Lqσ
′
q (Ω). By using Young’s

inequality again we obtain, for a.e. x ∈ Ω,

|a(x)(u+
n )q| ≤ |a(x)||ψ(x)|q ≤ 1

σq
|a(x)|σq +

1

σ′q
ψ(x)qσ

′
q .

The right-hand side above belongs to L1(Ω), and therefore we can use (2.5) and
the Lebesgue Theorem to obtain

lim
n→+∞

∫
a(x)(u+

n )q =

∫
a(x)(u+

0 )q.

Moreover, if we set

An :=
1

2
M(‖un‖2∗)−

1

p
m(‖un‖2∗)‖un‖2∗,

the strong convergence in W 1,2
0 (Ω) provides

lim
n→+∞

An = A0 :=
1

2
M(‖u0‖2∗)−

1

p
m(‖u0‖2∗)‖u0‖2∗.
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Thus, from the weak convergence of (un) in H, we get

c0 = lim inf
n→+∞

(
Iλ(un)− 1

p
I ′λ(un)un)

)
= lim inf

n→+∞

{(
1

2
− 1

p

)
‖un‖2 +An + λ

(
1

p
− 1

q

)∫
a(x)(u+

n )q
}

≥
(

1

2
− 1

p

)
‖u0‖2 +A0 + λ

(
1

p
− 1

q

)∫
a(x)(u+

0 )q

= Iλ(u0)− 1

p
I ′λ(u0)u0 = Iλ(u0).

Since u0 ∈ Bρ(0), we conclude that Iλ(u0) = c0. Lemma 2.2 implies that u0 ∈ Bρ(0)
and therefore we infer from Proposition 2.3 that u0 ≥ 0 is a nonzero solution of
(Pλ). 2

3. The second solution

We devote this section to the proof of Theorem 1.2. We start by noticing that,
since (ab1) is stronger than (a2), under the setting of our second theorem we can
apply Theorem 1.1 to obtain a first solution which is non negative and has negative
energy. This solution will be denoted by u0 from now on. We also assume that
m(t) = α+ βt, in such way that

(3.1) M(t) = αt+
β

2
t2, t ≥ 0.

Since we are intending to apply the Mountain Pass Theorem we first prove the
following:

Lemma 3.1. Suppose that there exists x1 ∈ RN and η > 0 such that Bη(x1) ⊂ Ω+
b .

If φ ∈ C∞0 (Bδ(x1)) \ {0} is nonnegative, then

lim
t→+∞

Iλ(u0 + tφ) = −∞,

whenever 4 < p ≤ 2∗.

Proof. From (3.1) we have that M(‖u0 + tφ‖2∗) = O(t4), as t → +∞. Hence,
recalling that φ ≡ 0 outside Bη(x1) ⊂ Ω+

b , a straightforward computation provides

Iλ(u0 + tφ) ≤ O(t2) +O(t4)−O(tq)− 1

p

∫
Ω+
b

b(x)(u0 + tφ)p dx

≤ O(t4)− c1
∫
Bδ(x1)

b(x)(u0 + tφ)p

≤ O(t4) +O(1)− c2tp
∫
Bδ(x1)

b(x)φp,

as t→ +∞. The result follows from p > 4. �

Lemma 3.2. If p = 2∗ and u0 is the unique nonzero critical points of Iλ, then Iλ
satisfies (PS)c condition for every

c < c̄ := Iλ(u0) +
2

N

1

‖b‖(N−4)/4
∞

SN/4.
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Proof. Let (un) ⊂ H be such that Iλ(un)→ c and I ′λ(un)→ 0. From (3.1), we get

O(1)‖un‖ = Iλ(un)− 1

p
I ′λ(un)un

≥
(

1

2
− 1

p

)
‖un‖2 − λ

(
1

q
− 1

p

)
S
−q/2
qσ′q

‖a‖σq ‖un‖
q
,

as n → +∞. It follows from 1 < q < 2 that the sequence (un) is bounded in H.
So, along a subsequence we have that

(3.2)


un ⇀ u weakly in H,

un → u0 strongly in W 1,2
0 (Ω) and Lqσ

′
q (Ω),

u+
n (x)→ u+

0 (x), for a.e. x ∈ Ω,

where we have used Lemma 2.1 and (a1). Hence
∫
a(x)(u+

n )q →
∫
a(x)(u+)q and,

if we set vn := un − u, we can use the Brezies-Lieb lemma to get

0 = I ′λ(un)un = ‖un‖2 +m(‖un‖2∗)‖un‖2∗ − λ
∫
a(x)(u+

n )q −
∫
b(x)(u+

n )2∗

= ‖u‖2 + ‖vn‖2 +m(‖u‖2∗)‖u‖2∗ − λ
∫
a(x)(u+)q + o(1)

−
∫
b(x)(u+)2∗ −

∫
b(x)(v+

n )2∗

= I ′λ(u)u+ ‖vn‖2 −
∫
b(x)(v+

n )2∗ .

As in the proof of Theorem 1.1 we have that I ′λ(u) = 0, and therefore there exists
l ≥ 0 such that

lim
n→+∞

‖vn‖2 = l = lim
n→+∞

∫
b(x)(v+

n )2∗ .

We claim that l = 0. If this is true, it follows that ‖un−u‖ → 0 and we have done.
In order to prove that l = 0, we first notice that∫

b(x)(v+
n )2∗ ≤ ‖b‖∞S−2∗/2

(∫
(∆vn)2

)2∗/2

.

Taking the limit we obtain l ≤ ‖b‖∞S−2∗/2l2
∗/2. If l > 0, we infer from this last

inequality that

(3.3) l ≥ 1

‖b‖(N−4)/4
∞

SN/4.

On the other hand, the same argument of the beginning of the proof provides

c+ o(1) = Iλ(un) = Iλ(u) +
1

2
‖vn‖2 −

1

2∗

∫
b(x)(v+

n )2∗ + o(1),

as n→ +∞. Taking the limit and using (3.3) we get

c = Iλ(u) +

(
1

2
− 1

2∗

)
l = Iλ(u) +

2

N
l ≥ Iλ(u) +

2

N

1

‖b‖(N−4)/4
∞

SN/4.

But I ′λ(u) = 0 and therefore, by hypothesis, either u = 0 or u = u0. Since
max{Iλ(0), Iλ(u0)} ≤ 0, the above inequality contradicts c < c̄. �
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At this point we recall that, for t = 2∗ in (2.1) , the best constant S := S2∗ is
achieved by the family of functions

Uε,y(x) := CN

(
ε

ε2 + |x− y|2

)(N−4)/2

,

with ε > 0, y ∈ RN and cN := [N(N − 4)(N2 − 4)](N−4)/8. This function is a
classical solution of the equation ∆2u = u2∗−1 in RN , with N > 4.

In order to correct localize the minimax level of the energy functional we take
Bδ(x0) ⊂ (Ω+

a ∩ Ω+
b ) as in the condition (ab1), pick r > 0 small in such way that

B2r(x0) ⊂ Bδ(x0) and fix a smooth function satisfying φ ≡ 1 in Br(x0) and φ ≡ 0
outside B2r(x0). We also define

uε(x) := φ(x)Uε,x0
(x),

and consider the L2∗ -normalized function

(3.4) vε(x) :=
uε(x)

‖uε‖2∗
.

In what follows we assume, without loss of generality, that x0 = 0.

Lemma 3.3. As ε→ 0+, there hold

‖vε‖2 = S +O(εN−4), ‖vε‖2∗ =


O(ε2), if N = 7,

O(ε2| ln ε|), if N = 6,

O(ε), if N = 5.

Proof. It is proved in [6, Eqns. (7.8) and (7.9)] that

‖uε‖2 = SN/4 +O(εN−4), ‖uε‖2
∗

2∗ = SN/4 +O(εN ).

Hence,

‖vε‖2 =
SN/4 +O(εN−4)

(SN/4 +O(εN ))2/2∗
=

SN/4 +O(εN−4)

S(N−4)/4 +O(εN )
= SN/4 +O(εN−4),

and the first equality is proved. For the second one, we notice that

∇Uε = cN (4−N)
ε(N−4)/2

(ε2 + |x|2)(N−2)/2
x.

By using the definition of uε and a straightforward computation we obtain∫
|∇uε|2 =

∫
|∇φ|2U2

ε + 2

∫
φUε(∇φ · ∇Uε) +

∫
B2r(0)

φ2|∇Uε|2dx

= O(εN−4) + c2N (4−N)2εN−4

∫
B2r(0)

|x|2

(ε2 + |x|2)N−2
dx.

Hence, the change of variables y := x/ε provides∫
|∇uε|2 = O(εN−4) + c2N (4−N)2ε2Γε,

with

Γε :=

∫
B2r/ε(0)

|y|2

(ε2 + |y|2)N−2
dy.

If N = 7 then

Γε ≤
∫
R7

|y|2

(1 + |y|2)5
dy = C1 < +∞,
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and therefore

(3.5) ‖uε‖2∗ = O(εN−4) +O(ε2) = O(ε2), if N = 7.

For N ∈ {5, 6} we have that Γε → +∞, as ε → 0+, and we need a more precise
estimate. We consider first the case N = 6 and compute, for ε < 2r,

Γε =

∫
B1(0)

|y|2

(ε2 + |y|2)4
dy +

∫
{1≤|y|≤(2r/ε)}

|y|2

(|y|2)4
dy

= O(1) + C2

∫ 2r/ε

1

1

s
ds = O(| ln ε|),

from which it follows that

(3.6) ‖uε‖2∗ = O(εN−4) +O(ε2| ln ε|) = O(ε2| ln ε|), if N = 6.

Finally, if N = 5, we can proceed as above to obtain

Γε = O(1) + C3

∫ 2r/ε

1

1ds = O(ε−1),

and therefore
‖uε‖2∗ = O(εN−4) +O(ε) = O(ε), if N = 5.

This, (3.5) and (3.6) imply that

‖uε‖2∗ =


O(ε2), if N = 7,

O(ε2| ln ε|), if N = 6,

O(ε), if N = 5.

Since ‖uε‖22∗ → S(N−4)/4 > 0, as ε → 0+, the same equality holds for ‖vε‖2∗ and
the lemma is proved. �

Proposition 3.4. Suppose that a, b verify (a1), (b1), and (ab1). Then, for any
ε > 0 small, the function vε defined in (3.4) is such that

max
t>0

Iλ(u0 + tvε) < c̄ := Iλ(u0) +
1

N

1

‖b‖(N−2)/2
∞

SN/2.

Proof. For any ε > 0, it follows from Lemma 3.1 that the function t 7→ I(u0 + tvε)
achieves its maximum at a point tε > 0. Moreover, arguing as in [11, Lemma 4.1],
we can prove that (tε)ε>0 is bounded for ε ∈ (0, 1].

Since I ′λ(u0)vε = 0, we have that

〈u0, vε〉+ 〈u0, vε〉∗m(‖u0‖2∗) = λ

∫
a(x)uq−1

0 vε +

∫
b(x)up−1

0 vε.

This, (3.1) and a straightforward computation provide

(3.7) mε := Iλ(u0 + tεvε) = Iλ(u0) +
t2ε
2
‖vε‖2 −

λ

q
Γ1,ε −

1

2∗
Γ2,ε + t2εΓ3,ε,

with

Γ1,ε :=

∫
a(x)

[
(u0 + tεvε)

q − uq0 − qtεu
q−1
0 vε

]
,

Γ2,ε :=

∫
b(x)

[
(u0 + tεvε)

2∗ − u2∗

0 − 2∗tεu
2∗−1
0 vε

]
,

Γ3,ε := ‖vε‖2∗
(
α

2
+
βt2ε
4
‖vε‖2∗ +

β

2
‖u0‖2∗ + βtε〈u0, vε〉∗

)
+ β〈u0, vε〉2∗.
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It follows from the Mean Value Theorem that, for a.e. x ∈ Ω,

(u0 + tεvε)
q = uq0 + qt(u0 + tεθvε)

q−1vε,

for some θ(x) ∈ [0, 1]. Since vε ≡ 0 outside B2r(0) ⊂ supp(a), we get

a(x)(u0 + tεvε)
q = a(x)uq0 + qtεa(x)(u0 + tεθ(x)vε)

q−1vε ≥ a(x)(uq0 + qtεu
q−1
0 vε),

for a.e. x ∈ Ω. Thus, Γ1,ε ≥ 0.
We now consider the inequality

(z + y)s ≥ zs + ys + szs−1y + szys−1 − Cµzs−µyµ,

for all z, y ≥ 0, s > 2 and 1 < µ < s − 1. By picking s = 2∗ and recalling that
b(x) ≥ 0 in the support of vε, we get

Γ2,ε ≥
∫
b(x)

[
t2
∗

ε v
2∗

ε + 2∗t2
∗−1
ε u0v

2∗−1
ε − Cµtµεu

2∗−µ
0 vµε

]
.

This, Γ1,ε ≥ 0 and (3.7) provide

(3.8)

mε ≤ Iλ(u0) +

(
t2ε
2
‖vε‖2 −

t2
∗

ε

2∗
‖b‖∞

)
+
t2
∗

ε

2∗

∫
(‖b‖∞ − b(x))v2∗

ε

+ t2εΓ3,ε − t2
∗−1
ε

∫
b(x)u0v

2∗−1
ε +

1

2∗
Cµt

µ
ε

∫
b(x)u2∗−µ

0 vµε ,

where we have used

− t
2∗

ε

2∗

∫
b(x)v2∗

ε =
t2
∗

ε

2∗

∫
(‖b‖∞ − b(x))v2∗

ε −
t2
∗

ε

2∗
‖b‖∞.

A simple computation provides

(3.9)

max
t≥0

(
t2

2
‖vε‖2 −

t2
∗

2∗
‖b‖∞

)
=

2

N

1

‖b‖(N−4)/4
∞

(
‖vε‖2

)N/4
=

2

N

1

‖b‖(N−4)/4
∞

SN/4 +O(εN−4).

Moreover, it follows from (ab1) and Lemma 3.3 that∫
(‖b‖∞ − b(x))v2∗

ε ≤ c1
‖uε‖2

∗
2∗

∫
B2r(0)

[
ε(N−4)/2

(ε2 + |x|2)(N−2)/2

]2N/(N−4)

|x|γdx

≤ c2ε
N

∫
B2r(0)

|x|γ

(ε2 + |x|2)N
dx

= c2ε
γ

∫
B(2r)/ε(0)

|y|γ

(1 + |y|2)N
dy.

Since γ < N , we conclude that

(3.10)

∫
(‖b‖∞ − b(x))v2∗

ε = O(εγ).

According to [6, Eqn. (7.10)], for some A0 > 0 we have that,∫
vsε = A0ε

N−(N−4)s/2 + o(εN−(N−4)s/2), if s > N/(N − 4).
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Thus, since µ < 2∗− 1 = (N + 4)/(N − 4) > N/(N − 4) and b ∈ L∞(Ω), we obtain

(3.11)

∫
b(x)u0v

2∗−1
ε = A0O(ε(N−4)/2),

and

(3.12)

∫
b(x)u2∗−µ

0 vµε = A0O(εN−(N−4)µ/2) = O(ε(N−4)/2+µ̄),

with µ̄ = µ̄(N) > 0. In this last equality we have used that N − (N − 4)µ/2 >
(N − 4)/2.

Since ‖vε‖∗ → 0, as ε→ 0+, we can use the Cauchy-Schwarz inequality and the
boundedness of (tε)ε>0 to obtain C2 > 0 such that

|Γ3,ε| ≤ C2‖vε‖2∗,

for ε > 0 small. Thus, replacing (3.9)−(3.12) in (3.8), we get

mε ≤ c̄+ ε(N−4)/2
[
O(εγ−(N−4)/2)−A0 +O(εµ̄)

]
+ C2‖vε‖2∗.

This and Lemma 3.3 provide

mε ≤ c̄+


ε3/2

[
O(εγ−(N−4)/2)−A0 +O(εµ̄) +O(ε1/2)

]
, if N = 7,

ε
[
O(εγ−(N−4)/2)−A0 +O(εµ̄) +O(ε| ln ε|)

]
, if N = 6,

ε1/2
[
O(εγ−(N−4)/2)−A0 +O(εµ̄) +O(ε1/2)

]
, if N = 5.

Since γ > (N − 4)/2, A0 > 0 and µ̄ > 0, we conclude that mε < c̄, for any ε > 0
small. �

We are ready to proof our second main theorem.

Proof of Theorem 1.2. As quoted in the beginning of the section, we already have
a solution u0 with negative energy whenever (2.2) holds. The second solution will
be obtained via the Mountain Pass Theorem.

We first consider the critical case p = 2∗. We take ρ > 0 given by Lemma 2.2
and consider φ ∈ H as in the statement of Lemma 3.1. We can obtain t0 > 0 large
in such way that e := u0 + tφ satisfies Iλ(e) ≤ Iλ(u0). If we define

(3.13) cM := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t))

where Γ := {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = e}, Lemma 2.2 and an usual
intersection argument show that cM ≥ α > 0. The Mountain Pass Theorem pro-
vides a sequence (un) ⊂ H such that Iλ(un) → cM and I ′λ(un) → 0. According
to Proposition 3.4, for ε > 0 small enough we have that cM < c̄, where c̄ comes
from Lemma 3.2. Hence, we have compactness on the level cM and therefore, up
to a subsequence, un → u1 strongly in H. By the regularity of Iλ we have that
Iλ(u1) ≥ δ > 0 and I ′λ(u1) = 0. Hence, we have obtained a second solution.

The proof for the subcritical case 4 < p < 2∗ is analogous (and easier) since, in
this setting, a standard argument shows that the Palais-Smale condition holds at
any level. 2
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