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Abstract. We establish existence and multiplicity of solutions for the elliptic
quasilinear Schrödinger equation

−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = h(x, u), x ∈ R
N ,

where g is a suitable function, V is a coercive like potential and the nonlin-
earity h is superlinear at infinity and at the origin. In the proofs, we apply
minimization on the Nehari manifold and Ljusternick-Schnirelman theory.

1. Introduction

Let us consider the nonlinear Schrödinger equation

i∂tz = −∆z +W (x)z −∆l(|z|2)l′(|z|2)z − h(x, z), x ∈ R
N , t > 0,

where W ∈ C(RN ,R) is a potential, l ∈ C(R+,R), h ∈ C(RN × R,R) is a given
nonlinearity and we look for solutions z ∈ C(R × RN ,C) with finite energy. This
equation has been accepted as a model in physical phenomena depending on the
function l. For instance, if l(t) = 1 we have the classical semilinear Schrödinger
equation [16]. When l(t) = t, the equation arises from fluid mechanics, plasma
physics and dissipative quantum mechanics, see [26, 19, 11, 14]. We also refer to
[15, 4, 13] for further physical applications.

If we are interested in solitary wave solutions, namely solutions with the special
form z(t, x) = exp(−iEt)u(x), with E ∈ R and u being a real valued function, we
are lead to consider the equation

(1.1) −∆u+ V (x)u −∆[l(u2)]l′(u2)u = h(x, u), x ∈ R
N ,

with V (x) =W (x)+E . In the simplest case l(t) = 1, we have a semilinear equation
and there exist a lot of papers concerning existence, non-existence, multiplicity and
concentration behavior of solutions (see [28, 7, 5, 17] and its references). In the
superfluid film case, namely l(t) = tα/2, for α > 0, the problem also has been
extensively studied during the last years, see [24, 25, 27, 31, 21, 33].

In order to present the object of study of this paper we notice that, if we set

g(t) =
√
1 + 2(tl′(t2))2,
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then the problem (1.1) can be written as

(P )

{
−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (x)u = h(x, u), x ∈ RN ,

u ∈ H1(RN ).

It will be considered in a general framework, by assuming that the function g verifies

(g0) g ∈ C1(R,R) is positive, even, non-decreasing in (0,+∞) and satisfies

g∞ := lim
t→∞

g(t)

t
∈ (0,+∞), β := sup

t∈R

tg′(t)

g(t)
≤ 1.

Notice that this includes the fluid mechanics, plasma physics and dissipative quan-
tum mechanics case g(t) =

√
1 + 2t2.

In the aforementioned works, different conditions are assumed on the potential
V . We consider here a class which includes the coercive ones. More specifically, we
suppose the following:

(V0) V ∈ C(RN ,R);
(V1) infx∈RN V (x) = V0 > 0;
(V2) for all M > 0, there holds

measure
(
{x ∈ R

N : V (x) ≤M}
)
< +∞.

The condition (V2) is satisfied, for example, if lim|x|→∞ V (x) = +∞. Actually,
(V2) could be replaced by any other hypotheses which provides compactness of the
embedding for the set {u ∈ H1(RN ) :

∫
RN V (x)u2dx < +∞} into the Lebesgue

spaces Lq(RN ), for 2 ≤ q < 2∗ := 2N/(N − 2) (see [2] for some weaker conditions).
Formally, the Euler-Lagrange functional associated to (P ) is

I(u) =
1

2

∫

RN

g(u)2|∇u|2dx+
1

2

∫

RN

V (x)u2dx−
∫

RN

H(x, u)dx,

with H(x, τ) :=
∫ τ

0
h(x, t)dt. It is well known that I is not well defined in the whole

space H1(RN ), since there exist functions u ∈ H1(RN ) such that
∫
RN g(u)

2|∇u|2dx
is not finite. In the case g(t) =

√
1 + 2t2, this difficult was avoided in [6, 20] by

considering a change of variable related with the solutions of the ODE

f ′(t) =
1√

1 + 2f2(t)
, in (0,+∞), f(0) = 0,

and working in an Orlicz-Sobolev framework. Since our function g is more general
than those of [6, 20], we borrow an idea from [32], which consists in defining G(t) :=∫ t

0 g(τ)dτ , notice that G ∈ C1(R,R) is invertible and consider the functional

J(v) :=
1

2

∫ (
|∇v|2 + V (x)[G−1(v)]2

)
−
∫
H(x,G−1(v)),

defined on the Orlicz space

E :=

{
v ∈ H1(RN ) :

∫
V (x)[G−1(v)]2 <∞

}
.

As we shall see in the next section this space has good properties. Moreover, if we
assume the natural conditions

(h0) h ∈ C1(RN × R,R);
(h1) there exists C > 0 and p ∈ (2, 2∗) such that

|h(x, t)| ≤ C(|t|+ g(t)|G(t)|p−1), for all (x, t) ∈ R
N × R,
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it can be proved that J ∈ C1(E,R) and that, if v is a sufficiently smooth critical
point of J , then u = G−1(v) is a classical solution of the problem (P ). We refer
the reader to [9, 21] for more details concerning the change of variable used here.

We are interested in the case that the function h is superlinear at the origin and
at the infinity. Hence, we define

Hg(x, t) :=
h(x, t)

g(t)G(t)
, x ∈ R

N , t ∈ R,

and suppose the following:

(h2) limt→0 Hg(x, t) = 0, uniformly in x ∈ RN ;
(h3) lim|t|→+∞Hg(x, t) = +∞, uniformly in x ∈ RN .

Under the monotonicity condition

(h4) for any x ∈ RN , the function Hg(x, ·) is decreasing in (−∞, 0) and increas-
ing in (0,+∞),

we prove the following existence result:

Theorem 1.1. Suppose that g and V satisfy (g0) and (V0)− (V2), respectively. If
h satisfies (h0)− (h4), then the problem (P ) has a ground state solution.

For the classical semilinear case g(t) = 1, the function Hg(x, t) turns to be
h(x, t)/t, and therefore the conditions (h2)− (h3) are the usual one for superlinear
problems, see [34]. Concerning (h4), it is a version of the classical monotonicity
condition on the ration h(x, t)/t and is extensively used (in the semilinear case) to
ensure unique projection properties on the Nehari manifold (see [29, 30] for related
results). For quasilinear elliptic problems there exist some related results concerning
on the existence of ground state solutions via the Nehari method. For example,
assuming that g(t) =

√
1 + t2, the monotonicity condition given in hypothesis (h4)

is equivalent to assume that h(x, t)/t3 is strictly increasing for t > 0 and strictly
decreasing for t < 0. We refer the reader to the important works [9, 25] where the
authors have used a minimization argument in the Nehari manifold to guarantee
that the problem

−∆u−∆(u)2u+ V (x)u = h(x, u), x ∈ R
N ,

admits one ground state solution in H1(RN ). In the present work, taking into
account that g is a general function satisfying (g0), we employ the Nehari method
to obtain existence of ground states solutions for (P ) when the nonlinear term h
interacts with g. Hence, Theorem 1.1 complement and/or extends the aforemen-
tioned works. We emphasize that h is not a powerlike function and g behaves like
t at infinity.

Under our assumptions, we prove that the Nehari manifold

N = {v ∈ E \ {0} : J ′(v)v = 0}
is a C1-manifold (see Proposition 3.2). In [9], the authors pointed out that it was not
known if N is regular when the involved functions are only continuous. Although
this result is expected in our differentiable set, it is worthing to notice that we need
to perform hard calculations due to the generality of the function g. Differently from
[25], we deal here with an unbounded potential V , more general functions g and
nonlinearities h which can be non-autonomous and non-homogeneous. Although
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in [8] they also considered nonlinearities without homogeneity, they assumed a
condition which implies

(2 + δ)H(t) ≤ G(t)

g(t)
h(t), t > 0,

for some δ > 0, which is an Ambrosetti-Rabinowitz type condition. We prove here
that the natural conditions (h2)− (h4) are sufficient to get the expected existence
result for the superlinear case.

Since we prove regularity for the Nehari manifold, we are able to set our problem
in a Ljusternik-Schnirelmann framework, see [5, 34]. This is a useful tool in order
to find multiplicity of solutions for quasilinear elliptic problems. If Y is a closed
subset of a topological spaceX , we denote by catX(Y ) the Ljusternik-Schnirelmann
category of Y in X , namely the least number of closed and contractible sets in X
which cover Y .

In our second result we consider a singularly perturbed version of the problem
(P ), namely

(Pε)

{
−ε2div(g2(u)∇u) + ε2g(u)g′(u)|∇u|2 + V (x)u = h(u), x ∈ RN ,

u ∈ H1(RN ),

with ε > 0. As in the first result, we assume that the function h verifies the
autonomous version of the conditions (h0)− (h4). Our aim is to establish, for small
values of ε > 0, a relation between the number of solutions of the problem and the
topology of the set

M := {x ∈ R
N : V (x) = V0}.

For our multiplicity result we add two technical conditions:

(V3) there holds

V0 < V∞ := lim inf
|x|→∞

V (x);

(h5) there exist 2 < p1 < p2 < 2∗ such that

lim
t→0

h′(t)

g(t)|G(t)|p1−2
= 0, lim

|t|→+∞

h′(t)

g(t)|G(t)|p2−2
< +∞.

It is important to emphasize that the coercive case V∞ = +∞ is allowed. Moreover,
under (V3), the setM is compact. The growth condition (h5) has already appeared
in the semilinear case g(t) = 1 and it provides some kind of splitting result for
Palais-Smale sequences (see Lemma 4.5).

For δ > 0, we define the set

Mδ := {x ∈ R
N : dist(x,M) ≤ δ}

and prove the following multiplicity result:

Theorem 1.2. Suppose that g and V satisfy (g0) and (V0)− (V3), respectively. If
h satisfies (h0) − (h5) then, for any δ > 0, there exists εδ > 0 such that, for any
ε ∈ (0, εδ), the problem (Pε) has at least catMδ

(M) solutions.

The key ingredient in the proof is obtaining a relationship between the topology
of the set M and that of subsets level of the energy functional. In order to do this,
we need to consider an autonomous version of the problem, namely

−div(g2(v)∇u) + g(v)g′(v)|∇u|2 + µu = h(v), x ∈ R
N ,
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for µ > 0 fixed. We prove (see Theorem 4.2) that, under (h0)− (h5), this problem
has a ground stated solution. Although this is an auxiliary step for the proof
of Theorem 1.2, this result has interest in yourself and complement some of the
aforementioned works.

It is worthwhile to mention the paper [22], where the authors considered a very
general equation which does not permit a change of variables approach. They
used a q-Laplacian regularization method to obtain infinitely many solutions by
assuming technical conditions on the gradient of the C1-potential V , that h is odd
and verifies an Ambrosetti-Rabinowitz type condition (see also [23] for a bounded
domain case). Despite the generality of the equation in their paper, we have no
hypotheses on the gradient of V , the function h here is not necessarily odd and we
consider just the natural superlinear condition (h3).

As far we know, there are no multiplicity results for general quasilinear equations
via Ljusternik-Schnirelmann theory. Actually, since we have proved that (h0)−(h4)
are the correct assumptions to guarantee regularity for N , we believe that some
calculations performed here can be useful to extend many results of the semilinear
case for this general setting. The main contribution of the second part of the paper
is providing multiplicity of solutions for a huge class of quasilinear Schrödinger
equations taking into account the fact that g can be general.

We finish this introduction by presenting some examples of functions which sat-
isfy our hypotheses. First we notice that, in some settings, Theorem 1.2 provides
an arbitrarily large number of solutions. Actually, supposeM = {xn : n ≥ 1}∪{x},
where xn → x and xn 6= x for infinitely many indices. Then, for any fixed k ∈ N,
it can be proved that catMδ

(M) ≥ k, if δ > 0 is small. Hence, for ε > 0 small,
we can find at least k solutions for the problem (Pε) (see [5] for more details).
Concerning examples for the function h, we first quote h(t) = g(t)|G(t)|p−2G(t).
A simples computation shows that it satisfies (h0) − (h4) for any p ∈ (2, 2∗). Fur-
thermore, it also verifies (h5) for each 2 < p1 < p2 < 2∗ such that p1 < p− 1 and
p2 > p− 1/2. Actually, this can be infered from the limits lim|t|→∞G(t)/t2 < +∞
and limt→0G(t)/t = g(0) > 0 which are consequence of L’Hospital’s rule. Another
example is h(t) = g(t)G(t) ln(1 + |t|), with the extra restriction 2 < p1 < 5/2 <
p2 < 2∗ in (h5). This last assumption makes sense only for N < 10. More generally,
we can consider h(t) = g(t)|G(t)|p−2G(t) ln(1 + |t|) with p ∈ (2, 2∗), p1 < p and
p2 > p+ 1/2.

The paper is organized as follows: in the next section, we present the variational
framework to deal with the problem as well as the main properties of the function
g. In Section 3, we consider the Nehari approach in order to get our main results.
Section 4 is devoted to the autonomous version of (P ). In the final section, we
prove our multiplicity result.

2. The variational framework

Hereafter we write
∫
u instead of

∫
RN u(x)dx and denote by ‖ · ‖Lp the Lp(RN )-

norm, for p ≥ 1.
As quoted in the introduction, the problem (P ) is formally the Euler-Lagrange

equation associated with the functional

(2.1) I(u) =
1

2

∫
g(u)2 |∇u|2 + 1

2

∫
V (x)u2 −

∫
H(x, u).
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Since it is not well defined in H1(RN ), we shall follow [32] and use the change of

variables v := G(u), where the function G is defined as G(t) :=
∫ t

0
g(τ)dτ . We list

in the sequel the main properties of the function G−1 whose proof can be found in
[10].

Lemma 2.1. Suppose that g satisfies (g0). Then, the function G−1 ∈ C2(R,R)
satisfies the following properties:

(g1) G
−1 is increasing;

(g2)
∣∣G−1(t)

∣∣ ≤ |t|
g(0) , for all t ∈ R;

(g3) lim
t→±∞

G−1(t)
g(G−1(t)) = ± 1

g∞
;

(g4) 1 ≤ tg(t)
G(t) ≤ 2 and 1 ≤ G−1(t) g(G−1(t))

t ≤ 2, for all t 6= 0;

(g5)
∣∣G−1(t)

∣∣ ≥
{

G−1(1) |t| , for all |t| ≤ 1,

G−1(1)
√
|t|, for all |t| ≥ 1 ;

(g6) G
−1 is concave and, for all s ≥ 1, t ∈ R, there holds

s[G−1(t)]2 ≤ [G−1(st)]2 ≤ s2[G−1(t)]2;

(g7) [G−1]2 is convex and, for all s ∈ [0, 1], t ∈ R, there holds

s2[G−1(t)]2 ≤ [G−1(st)]2 ≤ s[G−1(t)]2.

Let X be the Hilbert space

X :=

{
u ∈ H1(RN ) :

∫
V (x)u2 <∞

}
,

endowed with the inner product

〈u, v〉 :=
∫
(∇u · ∇v + V (x)uv), for all u, v ∈ X.

It is well known that the embedding X →֒ Lq(RN ) is continuous for q ∈ [2, 2∗] and
compact for q ∈ [2, 2∗) (see [12]).

We also define the Orlicz-Sobolev space

E :=

{
v ∈ H1(RN ) :

∫
V (x)[G−1(v)]2 <∞

}
.

Since [G−1]2 is a convex function, we can argue as in [25, 24] to conclude that E is
a Banach space when endowed with the norm

‖v‖ := ‖|∇v|‖L2 + v , for all v ∈ E,

where

v := inf
ξ>0

1

ξ

{
1 +

∫
V (x)[G−1(ξv)]2

}
.

By a weak solution of (P ) we mean a function u ∈ H1(RN ) ∩ L∞
loc(R

N ) such
that, for all ϕ ∈ C∞

0 (RN ), there holds
∫
[g2(u)∇u∇ϕ+ g(u)g′(u)|∇u|2ϕ+ V (x)uϕ] =

∫
h(x, u)ϕ.

After the change of variables u = G−1(v) in the map given in (2.1), we obtain the
following functional

J(v) :=
1

2

∫ (
|∇v|2 + V (x)[G−1(v)]2

)
−
∫
H(x,G−1(v)), v ∈ E.
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Under the growth conditions (g0) and (h1), we have that J ∈ C1(E,R) and its
critical points are weak solutions of the problem

−∆v + V (x)
G−1(v)

g (G−1(v))
=
h(x,G−1(v))

g (G−1(v))
, x ∈ R

N .

Moreover, if v ∈ E ∩C2(RN ) is a critical point of J , then the function u = G−1(v)
is a classical solution of (P ) (see [6]).

We list below the main properties of the space E.

Proposition 2.2. Suppose that V satisfies (V0)− (V2). Then the space E has the
following properties:

(1) if (vn) ⊂ E is such that vn(x) → v(x) a.e. in RN and

lim
n→+∞

∫
V (x)[G−1(vn)]

2 =

∫
V (x)[G−1(v)]2,

then

lim
n→+∞

vn − v = 0;

(2) the embeddings E →֒ D1,2(RN ), E →֒ H1(RN ) and X →֒ E are continuous;
(3) the map v 7→ G−1(v) from E to Lq(RN ) is continuous for q ∈ [2, 2 · 2∗] and

compact for q ∈ [2, 2 · 2∗);
(4) if v ∈ E and u = G−1(v), then

‖ug(u)‖ ≤ 4‖v‖;
(5) If vn ⇀ 0 in D1,2(RN ) and

(∫
V (x)[G−1(vn)]

2
)
is bounded then, up to a

subsequence, G−1(vn) → 0 strongly in Lq(RN ) for any 2 ≤ q < 2 · 2∗;
(6) if v ∈ E, then

v ≤ 2max

{∫
V (x)[G−1(v)]2,

(∫
V (x)[G−1(v)]2

)1/2
}
;

(7) if v ∈ E, then

v ≥ 1

4
min

{∫
V (x)[G−1(v)]2,

(∫
V (x)[G−1(v)]2

)1/2
}
;

(8) if v ∈ E, then

1

16
min

{
||v||, ||v||2

}
≤ Q(v) ≤ 16max

{
||v||, ||v||2

}
,

where

Q(v) :=

∫
(|∇v|2 + V (x)[G−1(v)]2).

Proof. The proof of items (1)− (7) can be found in [10]. For the last item, we take
v ∈ E and consider two cases. If v ≤ ‖|∇v|‖L2 , it follows from the definition of
‖ · ‖ that

(2.2) min{‖v‖, ‖v‖2} ≤ ‖v‖2 ≤ 4‖∇v‖22 ≤ 4Q(v).

If v > ‖|∇v|‖L2 , we can use (6) to get

‖v‖ ≤ 2 v ≤ 4max

{∫
V (x)[G−1(v)]2,

(∫
V (x)[G−1(v)]2

)1/2
}
.
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Hence, ‖v‖ ≤ 4max{Q(v),
√
Q(v)}. This and (2.2) imply that, for any v ∈ E,

there holds

Q(v) ≥ 1

16
min

{
‖v‖, ‖v‖2

}
.

The proof of the second inequality in (8) can be proved with the same argument.
We omit the details. �

We finish this section with two technical results.

Lemma 2.3. Suppose that h satisfies (h0), (h3) and (h4). Then, for each x ∈ RN ,
the function

(2.3) L(x, t) := h(x, t)G(t)

g(t)
− 2H(x, t), t ∈ R,

is non-increasing in (−∞, 0) and non-decreasing in (0,+∞). Moreover, for each
x ∈ R

N , there holds

(2.4) lim
|t|→∞

L(x, t) = +∞.

Proof. Since

(2.5)
∂

∂t
L(x, t) = G2(t)

∂

∂t

{
h(x, t)

g(t)G(t)

}
,

the first statement is a direct consequence of (h4). For the second one, we notice
that

∂

∂s

H(x, s)

G(s)2
=
h(x, s)G(s) − 2H(x, s)g(s)

G(s)3
=

g(s)

G(s)3
L(x, s).

By fixing 0 < t0 < t, we can integrate the last identity over [t0, t] to get

H(x, t)

G(t)2
− H(x, t0)

G(t0)2
=

∫ t

t0

g(s)

G(s)3
L(x, s)ds

Since L is non-decreasing in [t0, t], we deduce that

H(x, t)

G(t)2
− H(x, t0)

G(t0)2
≤ L(x, t)

∫ t

t0

g(s)

G(s)3
ds = L(x, t)

(
− 1

2G(t)2
+

1

2G(t0)2

)
,

from which it follows that

H(x, t)

G(t)2
≤ H(x, t0)

G(t0)2
+ L(x, t) 1

2G(t0)2
.

By using (h3) and L’Hospital rule we conclude that the left-hand side above goes
to infinity as t → +∞. Hence, limt→∞ L(x, t) = +∞. Using a similar argument in
the interval [t, t0] ⊂ (−∞, 0) we conclude that the same occurs when t→ −∞. �

Lemma 2.4. Suppose that h satisfies (h0) and (h1). Then, if (vn) ⊂ E is such
that vn ⇀ 0 weakly in E, we have that

lim
n→+∞

max

{∣∣∣∣
∫
h(x,G−1(vn))

g(G−1(vn))
vn

∣∣∣∣ ,
∣∣∣∣
∫
H(x,G−1(vn))

∣∣∣∣
}

= 0.
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Proof. By (h1) and (h2) , for any ε > 0 there exists C1 = C1(ε) > 0 such that

(2.6) |h(x, t)| ≤ εg(t)|G(t)|+ C1g(t)|G(t)|p−1, for all (x, t) ∈ (RN ,R).

Hence, we can use the embedding E →֒ H1(RN ), (g2) and (g5) to obtain
∣∣∣∣
∫
h(x,G−1(vn))

g(G−1(vn))
vn

∣∣∣∣ ≤ ε

∫
|vn|2 + C1

∫
|vn|p

≤ εC2 + C3

∫ (
|G−1(vn)|p + |G−1(vn)|2p

)
.

By item (3) of Proposition 2.2 we have that G−1(vn) → 0 strongly in Lq(RN ), for
any q ∈ [2, 2 · 2∗). Hence,

lim sup
n→+∞

∣∣∣∣
∫
h(x,G−1(vn))

g(G−1(vn))
vn

∣∣∣∣ ≤ εC2,

and we conclude tat
∫ h(x,G−1(vn))

g(G−1(vn))
vn → 0. A similar argument holds for

∫
H(x,G−1(vn)).

�

3. Existence of solution via the Nehari approach

Throughout this section, for any given v ∈ E, we write u := G−1(v). We are
going to prove Theorem 1.1 by using minimization over the Nehari manifold. So,
we first define the set

N := {v ∈ E\{0} : J ′(v)v = 0}.
Alternatively, if J : E → R is given by J (v) := J ′(v)v, the set N can be equiva-
lently written as J −1(0) \ {0}. Hence, for any v ∈ N , there holds

(3.1) J (v) =

∫
|∇v|2 +

∫
V (x)

G−1(v)

g(G−1(v))
v −

∫
h(x,G−1(v))

g(G−1(v))
v = 0

We shall prove that this set is a C1-manifold which has some useful properties.
For this purpose, it is important to consider, for each fixed v ∈ E \{0}, the fibering
map

γv(t) := J(tv), t > 0, v ∈ E\{0}.
It satisfies the following.

Lemma 3.1. Suppose that h satisfies (h0)− (h3). Then

(3.2) lim
t→0

γ′v(t)

t
> 0, lim

t→∞

γv(t)

t2
= −∞, lim

t→∞

γ′v(t)

t
= −∞.

Proof. Let v ∈ E \ {0} be fixed and notice that

(3.3)
γ′v(t)

t
=

∫
|∇v|2 +

∫
V (x)

G−1(tv)

tg(G−1(tv))
v −

∫
h(x,G−1(tv))

tg(G−1(tv))
.

By using (g4), we get

G−1(ts)

tg(G−1(ts))
s =

ts

G−1(ts)g(G−1(ts))

[
G−1(ts)

t

]2
≥ 1

2

[
G−1(ts)

t

]2
≥ 0,

for any t, s 6= 0. Hence, we infer from (3.3) that

γ′v(t)

t
≥
∫

|∇v|2 −
∫
h(x,G−1(tv))

tg(G−1(tv))
.
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By using (h2) and the Lebesgue Theorem, we obtain

(3.4) lim
t→0

∫
h(x,G−1(tv))

tg(G−1(tv))
v = lim

t→0

∫
h(x,G−1(tv))

g(G−1(tv))G(G−1(tv))
v2 = 0.

Thus, the first limit in (3.2) holds true. We now use (g6) to compute

(3.5)
γv(t)

t2
≤ 1

2
Q(v)−

∫
H(x,G−1(tv))

t2
,

for any t ≥ 1. Using (h3) and L’Hospital rule we conclude that lim|s|→+∞
H(x,s)
G(s)2 =

+∞. By (g3), we have that G
−1(tv) → +∞, as t → +∞, in the set Ω+

v = {x ∈ RN :
v(x) > 0}. The same function goes to −∞ in the set Ω−

v = {x ∈ RN : v(x) < 0}.
Since v 6= 0, all these considerations and the Lebesgue Theorem imply that

lim
t→∞

∫
H(x,G−1(tv))

t2
= lim

t→∞

∫
H(x,G−1(tv))

G(G−1(tv))2
v2 = ∞

and therefore the second limit in (3.2) is a consequence of (3.5). For the last one
we notice that, by (g3),

lim
t→+∞

V (x)
G−1(tv(x))

g(G−1(tv(x)))

1

t
v(x) = 0,

a.e. in Ω+
v . By using (g3) again, we can prove that the same occurs on the set

RN \ Ω+
v . It is sufficient now to take the limit as t → +∞ in (3.3) and use the

Lebesgue Theorem. �

We present below the main properties of the set N . They are well known in the
semilinear case g(t) = 1 (see [34] for instance).

Proposition 3.2. Suppose that h satisfies (h0)− (h4). Then

(N1) for any v ∈ E \ {0}, there exists a unique tv > 0 such that tvv ∈ N . In
particular, N is non-empty;

(N2) there exists ρ > 0 such that

‖v‖ ≥ ρ, for all v ∈ N ;

(N3) the set N is a C1-manifold;
(N4) if v ∈ N is a critical point of J constrained to N , then J ′(v) = 0;
(N5) if v ∈ N , then

max
t≥0

J(tv) = J(v);

(N6) if (vn) ⊂ N is such that ‖vn‖ → +∞, then J(vn) → +∞.

Proof. Let v ∈ E\{0} be fixed. A simple calculation shows that tv ∈ N if, and
only if, γ′v(t) = 0. Taking into account the first and third limit in (3.2) and the
continuity of γ′v, we obtain tv > 0 such that tvv ∈ N .

In order to prove the uniqueness of tv, we first notice that γ
′
v(t) = 0 is equivalent

to

kv(t) :=

∫
(φ(x, t) − V (x)ψ(x, t)) v2 =

∫
|∇v|2,

with

φ(x, t) :=
h(x,G−1(tv))

g(G−1(tv))G(G−1(tv))
, ψ(x, t) :=

G−1(tv)

g(G−1(tv))G(G−1(tv))
.



SOLITON SOLUTIONS FOR A GENERALIZED QUASILINEAR ELLIPTIC PROBLEM 11

So, it is sufficiency to prove that the above equation has at most one solution in
(0,+∞).

For each x ∈ Ω±
v := {x ∈ RN : v(x) 6= 0} we set s := G−1(tv). Since s has the

same sign of v(x), we can use (h4) to conclude that

d

dt
φ(x, t) =

(
d

ds

h(x, s)

g(s)G(s)

)
ds

dt

=

(
d

ds

h(x, s)

g(s)G(s)

)
v(x)

g(G−1(tv(x)))
> 0,

for any t ∈ (0,+∞) and for a.e. x ∈ Ω±
v . Analogously, we can use (g4) to obtain

d

dt
ψ(x, t) =

(
d

ds

s

G(s)g(s)

)
v(x)

g(G−1(tv(x)))

=
1

g(s)G(s)

{
1− sg(s)

G(s)
− sg′(s)

g(s)

}
v(x)

g(G−1(tv(x)))

≤ −
(

sg′(s)

g(s)2G(s)

)
v(x)

g(G−1(tv(x)))
< 0,

for any t ∈ (0,+∞) and for a.e. x ∈ Ω±
v . Since v 6= 0, the set Ω±

v has positive
measure. Hence, the above estimates imply that the function kv(t) is increasing in
(0,+∞). So, the equation kv(t) =

∫
|∇v|2 has at most one solution in this set and

the proof of (N1) is concluded.
It follows from (3.1) and (g4) that

(3.6)
1

2
Q(v) =

1

2

∫
(|∇v|2 + V (x)u2) ≤

∫
1

g(u)
h(x, u)v.

Given ε > 0, it follows from (h1) and (h2) that, for some C1 = C1(ε) > 0, there
holds

|h(x, t)| ≤ εg(t)|G(t)|+ C1g(t)|G(t)|2
∗−1, for all (x, t) ∈ R

N × R.

Hence, picking ε = V0/4, we obtain
∫

1

g(u)
h(x, u)v ≤ V0

4

∫
|G(u)||v|+ C1

∫
|G(u)|2∗−1|v|.

Since v = G(u), we can use V (x) ≥ V0, the embedding E →֒ D1,2(RN ) and (3.6),
to write

1

2
Q(v) ≤ 1

4
Q(v) + C2‖v‖2

∗

,

for some C2 > 0. This and item (8) of Proposition 2.2 provides

1

4 · 16 min{‖v‖, ‖v‖2} ≤ 1

4
Q(v) ≤ C2‖v‖2

∗

If follows that statement (N2) holds for

ρ := min

{
1,

(
1

64C2

)1/(2−2∗)
}
> 0.

For proving (N3) we take v ∈ E and notice that, by (3.1), we have that

J ′(v)φ = J ′′(v)(v, φ) + J ′(v)φ, for all φ ∈ E.

Picking φ = v, we obtain

(3.7) J ′(v)v = J ′′(v)(v, v),
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A direct computation gives

J ′′(v)(φ, ψ) =

∫
∇φ · ∇ψ +

∫
V (x)

(
1

g(u)2
− ug′(u)

g(u)3

)
φψ

+

∫ (
− 1

g(u)2
h′(x, u) +

g′(u)

g(u)3
h(x, u)

)
φψ,

for any φ, ψ ∈ E. Picking φ = ψ = v and using (3.1) and (3.7), we get

(3.8) J ′(v)v =

∫
V (x)Γ1(v) +

∫
Γ2(v)

with

Γ1(v) :=
1

g(u)2
v2 − u

g(u)
v − ug′(u)

g(u)3
v2

and

Γ2(v) := − 1

g(u)2
h′(x, u)v2 +

1

g(u)
h(x, u)v +

g′(u)

g(u)3
h(x, u)v2.

We claim that max{Γ1(v),Γ2(v)} < 0. If this is true, we infer from (3.8) that
J ′(v)v < 0, for all v ∈ N . Recalling that N = J−1({0}) \ {0} and the elements of
N are far way the origin, we can use the Implicit Function Theorem to conclude
that N is a C1-manifold, which is exactly the statement (N3).

Before presenting the proof of the above claim let us suppose that v ∈ N is a
critical point of J constrained to N . Then it follows that J ′(v) = λJ ′(v), for some
Lagrange Multiplier λ ∈ R. Thus, we have that

J (v) = J ′(v)v = λJ ′(v)v.

Since J (v) = 0 and J ′(v)v < 0, we have that λ = 0, that is, J ′(v) = 0 as stated in
(N4).

In what follows we prove that max{Γ1(v),Γ2(v)} < 0. By using (g4), we get

1

g(u)2
v2 ≤ 1

g(u)2
vg(G−1(v))G−1(v) =

u

g(u)
v.

Since g′(t)t ≥ 0 for any t ∈ R, the above expression provides Γ1(v) ≤ 0. In order
to estimate Γ2(v) we notice that hypothesis (h4) implies that

h′(x, t) >

(
g′(t)

g(t)
+
g(t)

G(t)

)
h(x, t),

for all x ∈ RN and t 6= 0. Thus, recalling that G(u) = v, we obtain

Γ2(v) < −
(
g′(u)

g(u)
+
g(u)

G(u)

)
h(x, u)

g(u)2
v2 +

h(x, u)

g(u)
v +

g′(u)h(x, u)

g(u)3
v2.

= − h(x, u)

g(u)G(u)
v2 +

h(x, u)

g(u)
v = 0.

This establishes (N4).
For proving (N5) we notice that, by the first limit in (3.2), the function γv(t) is

increasing near the origin. Since γv(0) = 0 and the second limit in (3.2) imply that
γv(t) → −∞, as t→ +∞, we conclude that the function γv(t) attains its maximum
value at some tv > 0. Since γ′v(tv) = 0, we have that tvv ∈ N . The uniqueness of
projection given by (N1) implies that tv = 1 and therefore (N5) holds.

Now we shall prove that J is coercive on the Nehari manifold N . Suppose, by
contradiction, that there exist (vn) ∈ N such that ‖vn‖ → +∞, but J(vn) ≤ C1,
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for some C1 > 0. If we take K > 0 free for now and define wn := vn
‖vn‖

, we can use

the above inequality and (N5) to get

(3.9)
1

2

∫ (
|∇Kwn|2 + V (x)[G−1(Kwn)]

2
)
−
∫
H(x,G−1(Kwn)) ≤ C1.

Since (wn) is bounded in E and E →֒ D1,2(RN ) we have that, up to a subsequence,
wn ⇀ w weakly in D1,2(RN ).

If w ≡ 0, it follows from the property (8) of Proposition 2.2 that
∫
V (x)[G−1(Kwn)]

2 ≤ Q(Kwn) ≤ 16max{‖Kwn‖, ‖Kwn‖2)} = 16K.

Hence, by (5) of Proposition 2.2, we conclude that G−1(wn) → 0 strongly in Lq(RN )
for any q ∈ [2, 2 · 2∗). In particular, there exists hq ∈ Lq(RN ) such that, for a.e.
x ∈ R

N , |G−1(wn(x))| ≤ hq(x) and G
−1(wn(x)) → 0. It follows from (h1) and the

Lebesgue Theorem that
∫
H(x,G−1(Kwn)) → 0. Hence, we infer from (3.9), that

Q(wn) =

∫ (
|∇Kwn|2 + V (x)[G−1(Kwn)]

2
)
≤ C2,

for some C2 > 0, independent of n and K. Using (8) of Proposition 2.2 again we
deduce that

K

16
=

1

16
min{‖Kwn‖, ‖Kwn‖2} ≤ Q(wn) ≤ C2,

which does not make sense, since K > 0 is arbitrary.
We shall prove that w 6≡ 0 also provides a contradiction. Since |vn(x)| → +∞

a.e. for x ∈ Ω±
w := {x ∈ RN : w(x) 6= 0}, it follows from Fatou’s Lemma, (g3) and

Lemma 2.3 that

(3.10) lim inf
n→+∞

∫

Ω±
w

L(x,G−1(vn)) ≥
∫

Ω±
w

lim inf
n→∞

L(x,G−1(vn)) = ∞.

On the other hand, by (g4), we have that

(3.11)
[G−1(t)]2

2
≤ tG−1(t)

g(G−1(t))
≤ [G−1(t)]2, for all t 6= 0.

Thus, recalling that J(vn) ≤ C1, using (3.1) and L(x, t) ≥ 0, we obtain

C1 ≥ 1

2

∫ (
|∇vn|2 + V (x)

G−1(vn)

g(G−1(vn))
vn

)
−
∫
H(x,G−1(vn))

=
1

2

∫ (
h(x,G−1(vn))G(G

−1(vn))

g(G−1(vn))
− 2H(x,G−1(vn))

)

=
1

2

∫
L(x,G−1(vn)) ≥

1

2

∫

Ω±
w

L(x,G−1(vn)).

The above expression contradicts (3.10) and therefore the proof is finished. �

We devote the rest of this section to the proof of our existence theorem. The
main idea is to consider the minimization problem

(3.12) c0 := inf
v∈N

J(v).

We notice that, if v ∈ N , it follows from (3.11) and Lemma 2.3 that

J(v) = J(v) − 1

2
J ′(v)v ≥ 1

2

∫
L(x,G−1(v)) > 0.
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Hence, the number c0 is well defined. We shall prove that it is attained at N by a
nonzero solution of (P ).

Proof of Theorem 1.1. Let (vn) ⊂ N be such that J(vn) → c0. By (N6), we may
assume that, up to a subsequence, vn ⇀ v weakly in E. Since vn ∈ N we can use
(g4) to obtain

1

2
Q(vn) ≤

∫
|∇vn|2 +

∫
V (x)

G−1(vn)

g(G−1(vn))
vn =

∫
h(x,G−1(vn))

g(G−1(vn))
vn.

If v = 0, we infer from Lemma 2.4 that Q(vn) → 0 and therefore, by item (8) of
Proposition 2.2, we would have ‖vn‖ → 0, contradicting (N2). This shows v 6= 0 and
therefore there exists tv > 0 such that v0 := tvv ∈ N . By using (g7) we conclude
that Q : E → R is convex. Thus, the functional J is weakly lower semicontinuous
and it follows that

c0 ≤ J(v0) = J(tvv) ≤ lim inf
n→∞

J(tvvn) ≤ lim inf
n→∞

J(vn) = c0.

Hence, J(v0) = c0. Arguing as in the proof of (N4) we can conclude that v0 is
a critical point of I constrained to N . Thus, v0 ∈ N is a solution of (P ). The
theorem is now proved.

4. The autonomous problem

For each µ > 0, we consider in this section the problem

(APµ)

{
−div(g2(v)∇u) + g(v)g′(v)|∇u|2 + µu = h(v), x ∈ RN ,

u ∈ H1(RN ),

where the autonomous function h verifies (h0)− (h5).
We denote by Hµ the space H1(RN ) endowed with the norm

‖v‖Hµ :=

(∫
|∇v|2 + µ|v|2

)1/2

, v ∈ Hµ.

It can be proved that, for the constant potential V (x) = µ, the Orlicz space defined
in Section 2 is equal to H1(RN ). Moreover, if we define the Orlicz norm by

‖v‖Oµ := ‖|∇v|‖L2 + inf
ξ>0

1

ξ

{
1 + µ

∫
[G−1(ξv)]2

}
, v ∈ Hµ,

convergence in the norms ‖ ·‖Hµ and ‖ ·‖Oµ are equivalent. More precisely, we have
the following:

Proposition 4.1. If

Qµ(v) :=

∫ (
|∇v|2 + µ[G−1(v)]2

)
, v ∈ Hµ,

then

(4.1)
1

16
min{‖v‖Oµ, ‖v‖2Oµ

} ≤ Qµ(v) ≤ 16max{‖v‖Oµ, ‖v‖2Oµ
}

and

c1 min{‖v‖Oµ, ‖v‖2Oµ
} ≤ ‖v‖2Hµ

≤ c2 max{‖v‖Oµ, ‖v‖2
∗

Oµ
},

for some constants c1, c2 > 0.
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Proof. We just prove the second statement, since the first one follows as in Propo-
sition 2.2. For v ∈ H1(RN ), it follows from (g5) and the Gagliardo-Nirenberg
inequality that, for constants Ci > 0, there holds∫

v2 ≤ 1

G−1(1)2

∫

|v|≤1

[G−1(v)]2 + C1

∫

|v|≥1

[G−1(v)2]2
∗

≤ C2

∫
[G−1(v)]2 + C1

(∫ ∣∣∣∣
2G−1(v)

g(G−1(v))
∇v
∣∣∣∣
2
)2∗/2

≤ C2

∫
[G−1(v)]2 + C3‖|∇v|‖2

∗

L2.

Thus,

‖v‖2Hµ
≤ ‖|∇v|‖2L2 +µC2

∫
[G−1(v)]2+µC3‖|∇v|‖2

∗

L2 ≤ C4 max{Qµ(v), Qµ(v)
2∗/2}.

On the other hand, using property (g2) we obtain

‖v‖2Hµ
≥ ‖|∇v|‖2L2 + µg(0)2

∫
[G−1(v)]2 ≥ min{1, g(0)2}Qµ(v).

All together, the above inequalities and (4.1) prove the result. �

We consider the functional Iµ : Hµ → R given by

Iµ(v) :=
1

2

∫
|∇v|2 + µ

2

∫
[G−1(v)]2 −

∫
H(G−1(v)).

As before, if v ∈ Hµ∩C2(RN ) is a critical point of Iµ, then the function u = G−1(v)
is a classical solution of (APµ).

The main result of this section if the following.

Theorem 4.2. Suppose that g satisfies (g0) and (h) satisfies (h0) − (h5). Then,
for any µ > 0, the autonomous problem (APµ) has a ground state solution.

In order to prove this result we define

(4.2) Mµ :=
{
v ∈ Hµ\{0} : I ′µ(v)v = 0

}
,

Arguing as in the Section 3 we can check that Mµ is a C1-manifold verifying
properties analogous to (N1)− (N5). Hence, it is well defined the number

mµ := inf
u∈Mµ

Iµ(v) > 0.

The property (N6) also holds, but we need a different proof since we lost the
compact embeddings.

Proposition 4.3. The functional Iµ is coercive in Mµ.

Proof. Let (vn) ⊂ Mµ be such that ‖vn‖µ → ∞ and suppose, by contradiction,
that Iµ(vn) ≤ C, for some C > 0. We set wn := vn/‖vn‖Hµ and claim that, for

some sequence (yn) ⊂ RN and constants r, η > 0, there holds

(4.3) lim inf
n→+∞

∫

Br(yn)

|wn|2 ≥ η.

Indeed, if this is not true, it follows from a result due to Lions [18, Lemma I.1] that
wn → 0 in Lp(RN ), where p ∈ (2, 2∗) comes from the condition (h1). Since Mµ

satisfies a property analogous to (N5), we have that Iµ(vn) ≥ Iµ(tvn), for all t > 0.
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Hence, if we consider M > 1, we get C1 ≥ Iµ(vn) ≥ Iµ(M‖vn‖−1vn) and therefore
we can use (g6), the definition of Qµ, ‖wn‖Hµ = 1 and (4.1) to obtain

(4.4)

C1 ≥ 1

2

∫ (
|∇Mwn|2 + µG−1(Mwn)

2
)
−
∫
H(G−1(Mwn))

≥ M

2

∫ (
|∇wn|2 + µG−1(wn)

2
)
−
∫
H(G−1(Mwn))

≥ M

32
−
∫
H(G−1(Mwn)).

The strong convergence of (wn) in Lp(RN ) and the same argument of the proof
of Lemma 2.4 provide

∫
H(G−1(Mwn)) → 0. Taking the limit in (4.4), we obtain

M ≤ 32C1, which is absurd since M > 1 is arbitrary.
By (4.3), if we set w̃n(x) := wn(x+ yn), there exists w̃ ∈ Hµ such that w̃n ⇀ w̃

weakly in Hµ, w̃n → w̃ in L2
loc(R

N ) and w̃n(x) → w̃(x) a.e. in RN . Moreover, by
(4.3) and the local convergence in L2(RN ), we have that w̃ 6= 0. It follows from
(g4) that

C1 ≥ Iµ(vn)−
1

2
I ′µ(vn)vn ≥ 1

2

∫
L(G−1(vn)) =

1

2

∫
L(G−1(ṽn)).

where ṽn(x) := vn(x + yn) = w̃n(x)‖vn‖Hµ . We have that |ṽn(x)| → ∞ for a.e.

x ∈ Ω±
w̃ := {x ∈ RN : |w̃(x)| 6= 0}. Since this set has positive Lebesgue measure,

we can use Fatou’s Lemma and Lemma 2.3 to conclude that

C1 ≥ 1

2

∫
lim inf
n→∞

L(G−1(ṽn)) = +∞,

which does not make sense. This contradiction finishes the proof. �

The following compactness result is a the keystone for the proof of Theorem 4.2.

Proposition 4.4. Let (wn) ∈ Mµ be such that Iµ(wn) → mµ and wn ⇀ w weakly
in Hµ. Then there exists (yn) ⊂ RN such that w̃n := wn(· + yn) → w̃ ∈ Mµ

with Iµ(w̃) = mµ. Moreover, if w 6= 0, then (yn) can be taken identically zero and
therefore wn → w in Hµ.

Before proving this result we shall show how it can produce a solution for the
autonomous problem.

Proof of Theorem 4.2. Let (wn) ⊂ Mµ be such that Iµ(wn) → mµ. According
to the last proposition, up to translations, this sequence converges to wµ ∈ Mµ

such that Iµ(ωµ) = mµ. It follows from (N4) that this function is a ground state
solution of (APµ). ✷

We devote the rest of this section for the proof of Proposition 4.4. We need two
technical results. The fist one is a sort of the classical Lions result and the second
one is (weak) version of the well known Splitting Lemma.

Lemma 4.5. Suppose that (vn) ⊂ Hµ is such that I ′µ(vn)vn → 0 and vn ⇀ 0

weakly in Hµ. If vn 6→ 0 strongly in Hµ, then there exist a sequence (yn) ⊂ RN and
constants r, η > 0 such that

lim inf
n→∞

∫

Br(yn)

|vn|2 ≥ η.
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Proof. Indeed, if the conclusion does not hold, we have that vn → 0 in Lp(RN ) and

therefore we can argue as in the proof of Lemma 2.4 to get
∫ h(G−1(vn))

g(G−1(vn))
vn → 0.

Hence, it follows from (3.11) that

on(1) +

∫
h(G−1(vn))

g(G−1(vn))
vn =

∫
|∇vn|2 + µ

∫
G−1(vn)

g(G−1(vn))
vn

≥
∫

|∇vn|2 +
µ

2

∫
[G−1(vn)]

2,

where on(1) stands for a quantity approaching zero as n→ +∞. Thus, Qµ(vn) → 0
and we infer from Proposition 4.1 that ‖vn‖Hµ → 0, contrary to the hypothesis. �

Lemma 4.6. Suppose that (wn) ⊂ Hµ is a Palais-Smale sequence of Iµ such that
wn ⇀ w weakly in Hµ. Then, for zn := wn − w, there holds

Iµ(zn) = Iµ(wn)− Iµ(w) + on(1)

and

I ′µ(zn)zn = I ′µ(wn)wn − I ′µ(w)w + on(1).

Proof. Given δ > 0, it follows from (h5) that, for some Cδ > 0 there holds

(4.5) |h′(t)| ≤ δg(t)|G(t)|p1−2 + Cδg(t)|G(t)|p2−2,

and

(4.6) |h(t)| ≤ δp1|G(t)|p1−1 + Cδp2|G(t)|p2−1,

for all t ∈ R. For t > 0, we can use (g0) to get

|H(t)| ≤ δ

∫ t

0

p1g(τ)G(τ)
p1−1

g(τ)
dτ + Cδ

∫ t

0

p2g(τ)G(τ)
p2−1

g(τ)
dτ

≤ δ

g(0)
|G(t)|p1 +

Cδ

g(0)
|G(t)|p2 .

Since G is odd, we have the same inequality for t < 0. Hence, we obtain

|H(G−1(t))| ≤ δ

g(0)
|t|p1 +

Cδ

g(0)
|t|p2 , for all t ∈ R.

Thus, arguing as in the proof of [1, Lemma 3.1], we can check that

lim
n→+∞

∫ [
H(G−1(zn))−H(G−1(wn)) +H(G−1(w))

]
= 0.

Since [G−1]2 is convex, the same holds for the function Qµ defined in Proposition
4.1. We can use the above equality to obtain

Iµ(zn) = Iµ(wn)− Iµ(w) + on(1).

For the second statement we need to estimate the derivative of the function

f(t) :=
h(G−1(t))

g(G−1(t))
t, t ∈ R.

If we set s := G−1(t), a straightforward computation provides

f ′(t) =
h′(s)

g(s)2
t+

h(s)

g(s)
− h(s)g′(s)

g(s)3
t,
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and therefore we can use (g0) and (g4) to obtain

|f ′(t)| ≤ |s|
∣∣∣∣

t

g(s)s

∣∣∣∣
∣∣∣∣
h′(s)

g(s)

∣∣∣∣+
1

g(s)
|h(s)|

(
1 +

∣∣∣∣
t

g(s)s

∣∣∣∣
∣∣∣∣
sg′(s)

g(s)

∣∣∣∣
)

≤ |G−1(t)|
∣∣∣∣
h′(s)

g(s)

∣∣∣∣+
2

g(s)
|h(s)|

≤ |t|
g(0)

∣∣∣∣
h′(G−1(t))

g(G−1(t))

∣∣∣∣+
2

g(0)
|h(G−1(t))|.

This and (4.5)-(4.6) provides

|f ′(t)| ≤ c1δ|t|p1−1 + c2Cδ|t|p2−1, for all t ∈ R,

with c1 := (1 + 2p1)g(0)
−1 and c2 := (1 + 2p2)g(0)

−1. Using this estimate and the
argument of [1, Lemma 3.1], we get

(4.7) lim
n→+∞

∫ [
h(G−1(zn))

g(G−1(zn))
zn − h(G−1(wn))

g(G−1(wn))
wn +

h(G−1(w))

g(G−1(w))
w

]
= 0.

Since

0 ≤ Q′
µ(v)v ≤ Qµ(v), for all v ∈ Hµ

and Qµ is convex, we can use (4.7) to conclude that

I ′µ(zn)zn = I ′µ(wn)wn − I ′µ(w)w + on(1).

This ends the proof. ✷

Proof of Proposition 4.4. Thanks to the Ekeland’s Variational Principle we may
assume that I ′µ(wn) → 0. Since wn → w in Lq

loc(R
N ) for any 2 ≤ q < 2∗, we can

easily conclude that I ′µ(w) = 0 and wn(x) → w(x) for a.e. x ∈ RN .
We shall prove that, if w 6= 0, the proposition holds for the null sequence yn = 0.

First notice that w ∈ Mµ and

Iµ(w) = Iµ(w)−
1

2
I ′µ(w)w =

1

2

∫ [
µ

(
[G−1(w)]2 − G−1(w)

g(G−1(w))
w

)
+ L(G−1(w))

]
,

where L was defined in (2.3). It follows from (g4) and Lemma 2.3 that the term
into the brackets above is non-negative. Hence, we can use Fatou’s lemma to get

Iµ(w) ≤ lim inf
n→∞

1

2

∫ [
µ

(
G−1(wn)

2 − G−1(wn)

g(G−1(wn))
wn

)
+ L(G−1(wn))

]

= lim inf
n→∞

(
Iµ(wn)−

1

2
I ′µ(wn)wn

)
= lim inf

n→∞
Iµ(wn) = mµ,

and therefore we conclude that Iµ(w) = mµ.
In order to get the strong converge we suppose, by contradiction, that (zn) :=

(wn − w) is such that zn 6→ 0. We obtain from Lemma 4.5 a sequence (yn) ⊂ RN

and constants r, η > 0 such that

lim inf
n→∞

∫

Br(yn)

|zn|2 ≥ η.

Setting z̃n := zn(·+ yn), we have that z̃n ⇀ z̃ weakly in Hµ. The above inequality
and the local convergence of (z̃n) in L

2
loc(R

N ) implies that
∫
Br(0)

|z̃(x)|2dx > 0. On
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the other hand, from Lemma 4.6 we conclude that Iµ(zn) → 0 and I ′µ(zn)zn → 0.
Thus,

on(1) = Iµ(zn)−
1

2
I ′µ(zn)zn ≥ 1

2

∫

Br(0)

L(G−1(zn(x + yn)))dx.

Taking the limit we obtain
∫
Br(0)

L(G−1(z̃))dx ≤ 0 which is absurd, since L(t) > 0

for any t 6= 0, G−1 is increasing and the set {x ∈ Br(0) : z̃(x) 6= 0} has positive
Lebesgue measure. This contradiction shows that wn → w in Hµ.

It remains to consider the case w = 0. If wn 6→ 0, by using Lemma 4.5 again,
we obtain (yn) ⊂ RN and constants r, η > 0 such that

lim inf
n→+∞

∫

Br(yn)

|wn|2 ≥ η.

If we set w̃n := wn(·+ yn), we have that the Iµ(w̃n) → mµ and w̃n ⇀ w̃ weakly in
Hµ, with

∫
Br(0)

|w̃|2dx ≥ η > 0. Since w̃ 6= 0, we can argue as in the first part of

the proof to conclude that w̃n → w̃ strongly in Hµ. This finishes the proof. �

5. Multiplicity of solutions

In this section we prove our multiplicity result. We first notice that the problem
(Pε) is equivalent to

(P̃ε)

{
−div(g2(u)∇u) + g(u)g′(u)|∇u|2 + V (εx)u = h(u), x ∈ R

N ,

u ∈ H1(RN )

We devote the rest of this section for the proof of the following:

Theorem 5.1. Suppose that V and g satisfy (V0) − (V3) and (g0), respectively.
Suppose also that h satisfies (h0) − (h5). Then there exists ε∗ > 0 such that, for

any ε ∈ (0, ε∗), the problem (P̃ε) has at least cat(M) nonzero solutions

The variational framework to deal with this problem is analogous to that used
for the problem (P ). Actually, we consider

Eε :=

{
v ∈ H1(RN ) :

∫
V (εx)[G−1(v)]2 <∞

}

endowed with the norm
‖v‖ε := ‖|∇v|‖L2 + v ε

where

v ε := inf
ξ>0

1

ξ

[
1 +

∫
V (εx)[G−1(ξv)]2

]
.

The associated functional

Jε(v) :=
1

2

∫
|∇u|2 − 1

2

∫
V (εx)[G−1(v)]2 −

∫
H(G−1(v)), v ∈ Eε,

belongs to C1(Eε,R) and its critical points provide solutions to (Pε). If we define

Nε := {v ∈ Eε : J
′
ε(v)v = 0} ,

we can use the former arguments to show that Nε has properties analogous to
(N1)− (N6).

In the proof of Theorem 5.1 we shall apply the following abstract result for
C1-manifolds (see [34, Theorem 5.19]).
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Theorem 5.2. Let ψ be a C1-functional defined on a C1-manifold V. If ψ is
bounded from below and satisfies the Palais-Smale condition, then ψ has at least
cat(V) distinct critical points.

It is easy to prove that Jε is bounded from below on Nε. Moreover, thanks
to condition (V2), we can also check that this functional satisfies the Palais-Smale
condition. The difficult part is to relate the category of the set M with that of Nε.
The following result, whose proof is similar to that present in [3, Lemma 4.3], will
be used.

Lemma 5.3. Let A, B+, B− be closed sets with B− ⊂ B+. Let β : A → B+,
Φ : B− → A be two continuous maps such that β ◦ Φ is homotopical equivalent to
the embedding ι : B− → B+. Then cat(A) ≥ catB+(B−).

In what follows we construct the maps Φ and β.

5.1. The map Φε. Let ω ∈ MV0
be a ground state solution of the problem (APV0

)
given by Theorem 4.2 and take ξ > 0 such that

∫
Bξ/2(0)

ω(x)2dx > 0. We consider

a smooth cut-off function η ∈ C∞(R+, [0, 1]) such that η(s) = 1 if 0 ≤ s ≤ ξ/2 and
η(s) = 0 if s ≥ ξ. For each ε > 0 and y ∈M we define

Ψε,y(x) := η(|εx− y|)ω
(
εx− y

ε

)
.

We recall that M = {x ∈ RN : V (x) = V0} and define Φε :M → Nε by setting

Φε(y) := tεΨε,y,

where tε > 0 is the unique number such that tεΨε,y ∈ Nε. This function is well
defined due to (N1).

Lemma 5.4. We have that

lim
ε→0+

Jε(Φε(y)) = mV0
,

uniformly for y ∈M .

Proof. Suppose, by contradiction, that the lemma is false. Then there exist γ0 > 0,
(yn) ⊂M and εn → 0+ such that

(5.1) |Jεn(Φεn(yn))−mV0
| ≥ γ0.

For simplicity, we write only Φn, Ψn and tn to denote Φεn(yn), Ψεn,yn and tεn ,
respectively.

We claim that, for some subsequence, tn → t0 > 0. Assume that this is true and
set ŵn(z) := η(|εnz|)ω(z). Since tnΨn ∈ Nεn , we can use the change of variables
εnz := εnx− yn to write

∫

RN

|∇(tnŵn(z)|2dz +
∫

RN

V (εnz + yn)
G−1(tnŵn(z))

g(G−1(tnŵn(z)))
(tnŵn(z))dz

=

∫

RN

h(G−1(tnŵn(z)))

g(G−1(tnŵn(z)))
(tnŵn(z))dz.

Since ŵn(z) → ω(z) for a.e. z ∈ RN , yn → y ∈M and t0 > 0, we can take the limit
in the above expression and use the Lebesgue Theorem to conclude that t0ω ∈ MV0

.
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But, by (N1), the projection on MV0
is unique, and therefore we obtain t0 = 1.

Thus, taking the limit at the equality

Jεn(Φεn(yn)) =
t2εn
2

∫

RN

|∇η(|εnz|)w(z)|2dx

+
1

2

∫

RN

V (εnz + yn)G
−1(tεnη(|εnz|)w(z))2dz

−
∫

RN

H(G−1(tεnη(|εnz|)w(z)))dz,

we conclude that Jεn(Φεn(yn)) → IV0
(ω) = mV0

, which contradicts (5.1).
It remains to check the claim. We first prove that (tn) ⊂ R is bounded. Suppose,

by contradiction, that for some subsequence (still denote (tn)) we have that |tn| →
+∞. Since the map s 7→ h(s)/(g(s)G(s)) is non-negative, for n large there holds

∫
h(G−1(tnΨn))

g(G−1(tnΨn))
(tnΨn) =

∫
h(G−1(tnΨn))

g(G−1(tnΨn))G(G−1(tnΨn))
(tnΨn)

2

≥
∫

Bδ/2(0)

h(G−1(tnω(z)))

g(G−1(tnω(z)))G(G−1(tnω(z)))
t2nω(z)

2dz

Now notice that the set Ω := {z ∈ RN : ω(z) 6= 0} ∩Bδ/2(0) has positive measure.

Moreover, by (g3), we have that |G−1(tnω(z))| → +∞, for a.e. z ∈ Ω. So, we can
use Fatou’s Lemma to conclude that

(5.2) lim inf
n→+∞

1

t2n

∫
h(G−1(tnΨn))

g(G−1(tnΨn))
(tnΨn) = +∞.

On the other hand, since we may suppose that tn ≥ 1, it follows from (3.11) and
the Lebesgue Theorem that

∫
h(G−1(tnΨn))

g(G−1(tnΨn))
(tnΨn) = t2n

∫
|∇Ψn|2 +

∫
V (εnx)

G−1(tnΨn)

g(G−1(tnΨn))
(tnΨn)

≤ t2nAn,

where

An :=

∫
|∇Ψn|2 + V (εnx)[G

−1(Ψn)]
2.

By the Lebesgue Theorem we have that An → QV0
(ω) > 0. Hence, we can use

Fatou’s Lemma to obtain

QV0
(ω) ≥ lim inf

n→+∞

1

t2n

∫
h(G−1(tnΨn))

g(G−1(tnΨn))
(tnΨn),

which contradicts (5.2).
Since we have proved that (tn) is bounded we may suppose that tn → t0 ≥ 0. It

remains to discard the possibility t0 = 0. Suppose, by contradiction, that t0 = 0.
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Then, we may suppose that tn ≤ 1 and it follows from (g7), (3.11) and (2.6) that

t2n
2
An ≤ t2n

∫
|∇Ψn|2 +

1

2

∫
V (εnx)[G

−1(tnΨn)]
2

≤
∫

|∇(tnΨn)|2 +
∫
V (εnx)

G−1(tnΨn)

g(G−1(tnΨn))
(tnΨn)

=

∫
h(G−1(tnΨn))

g(G−1(tnΨn))
(tnΨn)

≤ εt2n

∫
|Ψn|2 + C1t

p
n

∫
|Ψn|p.

Dividing the above expression by t2n, taking the limit as n → +∞ and using the
Lebesgue Theorem we obtain 0 < QV0

(ω) ≤ 2ε
∫
ω2, for any ε > 0, which does not

make sense. Hence, t0 > 0 and the proof is concluded. �

5.2. The map βε. Given δ > 0, we consider the set

Mδ := {x ∈ R
N : dist(x,M) ≤ δ}.

We may assume that δ in chosen in such way that Mδ and M are homotopically
equivalent. Moreover, we can pick ρ > 0 such that Mδ ⊂ Bρ(0). Let χ : RN → R

N

be defined as χ(x) := x if |x| < ρ, χ(x) := ρx/|x| if |x| ≥ ρ. Finally, consider the
baricenter map βε : Nε → RN given by

βε(v) :=

∫
χ(εx)v2(x)dx∫
v2(x)dx

.

Since M ⊂ Bρ(0), we can use the definition of χ and the Lebesgue Theorem to
conclude that

(5.3) lim
ε→0+

βε(Φε(y)) = y, uniformly for y ∈M.

The following compactness result is the key stone to prove that the range of the
map βε is near to the set M .

Proposition 5.5. Let (εn) ⊂ (0,+∞) and (vn) ⊂ Nεn be such that εn → 0 and
Jεn(vn) → mV0

. Then there exists a sequence (ỹn) ⊂ RN such that ṽn := vn(·+ ỹn)
has a convergent subsequence in H1(RN ). Furthermore, up to a subsequence, yn :=
εnỹn → y ∈M .

Proof. We first prove that (‖vn‖εn) ⊂ R is bounded. Indeed, suppose by contra-
diction that this is not the case. Let wn := vn/‖vn‖εn and notice that, arguing as
in the proof of item (8) of Proposition 2.2, we have that

∫ (
|∇wn|2 + V (εnx)[G

−1(wn)]
2
)
≤ 16max{‖wn‖εn , ‖wn‖2εn} = 16

and therefore∫
|wn|2 ≤ 1

(V0G−1(1))2

∫

{|wn|≤1}

V (εnx)[G
−1(wn)]

2dx+

∫

{|wn|≥1}

|wn|2
∗

dx

≤ 16

(V0G−1(1))2
+ C1

(∫
|∇wn|2

)2∗/2

≤ C2,
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for some C1, C2 > 0. Hence, the sequence (wn) is bounded in H1(RN ) and we
may assume that wn ⇀ w weakly in H1(RN ) and wn(x) → w(x) for a.e. x ∈ RN .
Suppose that there exists (zn) ⊂ RN and r, η > 0 such that

(5.4) lim inf
n→+∞

∫

Br(zn)

|wn|2 ≥ η > 0

Then we may assume that ŵn(x) := wn(x + zn) is such that ŵn ⇀ ŵ weakly in
H1(RN ), with ŵ 6= 0. But

mV0
+ on(1) = Jεn(vn)−

1

2
J ′
εn(vn)vn ≥ 1

2

∫
L(G−1 (ŵn(x)‖vn‖εn)).

Since the set {x ∈ RN : ŵ(x) 6= 0} has positive Lebesgue measure, we can use (g3),
Lemma 2.3 and Fatou’s Lemma to get

mV0
≥ lim inf

n→+∞

1

2

∫
L(G−1 (ŵn(x)‖vn‖εn)) = +∞,

which is absurd. Hence, (5.4) does not occur and therefore we have that wn → 0 in
Lp(RN ), 2 < p < 2∗. Thus, for any K > 1, we have that

∫
H(G−1(Kwn)) → 0 and

we can use (N5), (g6) and the same argument of the proof of item (8) of Proposition
2.2 to get

mV0
+ on(1) = Jεn(vn) ≥ Jεn

(
K

‖vn‖εn
vn

)
= Jεn(Kwn)

=
K2

2

∫
|∇wn|2 +

1

2

∫
V (εnx)[G

−1(Kwn)]
2 + on(1)

≥ K

2

(∫
|∇wn|2 + V (εnx)[G

−1(wn)]
2

)
+ on(1)

≥ K

2

(
1

16
min{‖wn‖εn , ‖wn‖2εn}

)
+ on(1) =

K

32
+ on(1).

Since K > 1 is arbitrary, we obtain a contradiction taking n→ +∞.
Since (‖vn‖εn) ⊂ R is bounded, we obtain C3 > 0 verifying

∫ (
|∇vn|2 + V (εnx)[G

−1(vn)]
2
)
≤ 16max{‖vn‖εn , ‖vn‖2εn} ≤ C3.

As in the beginning of the proof, this implies that (vn) is bounded in H1(RN ).
Again, we cannot have vn → 0 in Lp(RN ), and therefore there exist (ỹn) ⊂ RN and
constants r, η > 0 verifying

lim inf
n→∞

∫

Br(ỹn)

|vn|2 ≥ η.

Setting ṽn := vn(· + ỹn) we may assume that ṽn ⇀ ṽ 6= 0 weakly in H1(RN ). Let
tn > 0 be such that wn = tnṽn ∈ MV0

. After a change of variable, it is easy to see
that

mV0
≤ IV0

(wn) = IV0
(tnvn) ≤ Jεn(tnvn) ≤ Jεn(vn),

and therefore
lim
n→∞

IV0
(wn) = mV0

.

Since the sequence (‖ṽn‖H1(RN )) is far away from zero, the above limit and
Proposition 4.3 imply that tn → t0 ≥ 0. Recalling that the manifold MV0

verifies
(N2), we conclude that t0 > 0. Hence, wn ⇀ w := t0ṽ 6= 0 weakly in H1(RN ).
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According to Proposition 4.4 the sequence (wn) strongly converges in H1(RN ) and
therefore ṽn → ṽ in H1(RN ).

It remains to prove that (yn) := (εnỹn) → y is such that V (y) = V0. We
first prove that (yn) ⊂ RN is bounded. Suppose by contradiction that, along a
subsequence, |yn| → +∞ and first assume that V (x) → +∞, as |x| → +∞. Since
(vn) ⊂ Nεn is bounded, we can use (3.11) and (2.6) to obtain C4 > 0 such that

∫
V (εnx+ yn)[G

−1(ṽn)]
2 ≤ 2

∫
|∇vn|2 + V (εnz)

G−1(vn)vn
g(G−1(vn))

= 2

∫
h(G−1(vn))

g(G−1(vn))
vn ≤ C4,

where z = x + ỹn. On the other hand, since V (εnx + yn) → +∞ for all x ∈ RN

and ṽn → ṽ 6= 0, we can use Fatou’s lemma to obtain

lim inf
n→+∞

∫
V (εnx+ yn)[G

−1(ṽn)]
2 = +∞,

which is a contradiction. In the case V∞ < +∞, we can use (V3) and the strong
convergence of (wn), to get

mV0
<

1

2

∫
|∇w|2 + 1

2

∫
V∞[G−1(w)]2 −

∫
H(G−1(w))

≤ lim inf
n→+∞

(
1

2

∫ (
|∇wn|2 + V (εnx+ yn)[G

−1(wn)]
2
)
−
∫
H(G−1(wn))

)

= lim inf
n→+∞

(
1

2

∫ (
|∇(tnvn)|2 + V (εnz)[G

−1(tnvn)]
2
)
−
∫
H(G−1(tnvn))

)
.

It follows that

mV0
< lim inf

n→+∞
Jεn(tnvn) = lim inf

n→+∞
Jεn(vn) = mV0

,

which does not make sense.
Since (yn) is bounded, we may assume that yn → y. If y 6∈ M , then V (y) > V0

and we can use εn → 0 and the same argument above to get a contradiction. The
proposition is proved. �

Following [5], we introduce the set

Σε := {v ∈ Nε : Jε(u) ≤ mV0
+ f(ε)},

where f : R+ → R+ is such that f(ε) → 0 as ε → 0+. Given y ∈ M , we can use
Lemma 5.4 to conclude that f(ε) := |Jε(Φε(y)) − mV0

| is such that f(ε) → 0 as
ε→ 0+. Thus, Φε(y) ∈ Σε and therefore Σε 6= ∅ for any ε > 0 small.

Lemma 5.6. For any δ > 0 we have that

lim
ε→0+

sup
v∈Σε

dist(βε(v),Mδ) = 0.

Proof. Let (εn) ⊂ R+ be such that εn → 0. By definition there exists (vn) ⊂ Σεn

such that

dist(βεn(vn),Mδ) = sup
u∈Σεn

dist(βεn(v),Mδ) + on(1).

Thus, it sufficient to find a sequence (yn) ⊂Mδ such that

(5.5) |βεn(vn)− yn| = on(1).
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In order to obtain such sequence, we notice that (un) ⊂ Σεn ⊂ Nεn , and we can
use (N5) to get

mV0
≤ max

t≥0
IV0

(tvn) ≤ max
t≥0

Jεn(tvn) = Jεn(vn) ≤ mV0
+ f(εn),

from which follows that Jεn(vn) → mV0
. Thus, we may invoke Proposition 5.5 to

obtain a sequence (ỹn) ⊂ RN such that (yn) := (εnỹn) ⊂Mδ for n sufficiently large.
Hence,

βεn(vn) = yn +

∫
RN [χ(εnz + yn)− yn]ṽn(z)

2dz∫
RN ṽn(z)2dz

and it follows from the strong convergence of ṽn that (5.5) holds. �

We are now ready to present the proof of Theorem 5.1

Proof of Theorem 5.1. Let δ > 0 be such that Mδ and M are homotopically
equivalent. We can use (5.3), Lemmas 5.4 and 5.6, and argue as in [5, Section 6] to
obtain ε∗ > 0 such that, for any ε ∈ (0, εδ), the diagram

M
Φε−→ Σε

βε−→Mδ

is well defined and βε ◦Φε is homotopical equivalent to the embedding ι : M →Mδ.
In view of item (3) of Proposition 2.2 and the proof of (N4), we can use a standard
argument to check that Jε restricted to Nε verifies the Palais-Smale condition.
Thus, we can use Theorem 5.2 and Lemma 5.3 to obtain at least catMδ

(M) critical
points of Jε restricted to Nε. By (N4), each of these critical points is a non-zero

solution of (P̃ε). The theorem is proved. �
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