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Abstract. We prove the existence of two nonnegative nontrivial solutions for

the equation

−∆u−
1

2
(x · ∇u) = λa(x)|u|q−2u+ f(u), x ∈ R2,

where 1 < q < 2, a is indefinite in sign and the function f(s) behaves like eαs
2

at infinity. The results holds for small values of the parameter λ > 0.

1. Introduction

In this paper, we address the existence of nonegative solutions for the equation

(Pλ) −∆u+
1

2
(x · ∇u) = λa(x)|u|q−2u+ f(u), x ∈ R2,

where 1 < q < 2, a is a radial function which can change sign and the function
f ∈ C(R,R) has critical growth, that is,

(f0) there exists α0 > 0 such that

lim
s→+∞

f(s)

eαs2
=

{
0, if α > α0,
+∞, if α < α0.

As it is well known, in dimension two the concept of criticality is related with the
so callled Trudinger-Moser inequality which appears in the pioneer works [18, 24].
After then, there is a vast literature concerning this kind of critical nonlinearities
(see [1, 6, 11, 19, 22, 14] and references therein).

Before presenting our asumptions let us recall that, as quoted by Escobedo and
Kavian in [10], the operator in (Pλ) naturally appears when we consider the ex-
istence of self-similar solutions for homogeneous heat equations. Actually, when
one seek for solutions of the form ω(t, x) = t−1/(p−2)u(t−1/2x) for the evolution
equation

ωt −∆ω = |ω|p−2ω, t > 0, x ∈ RN ,
we are lead to consider the elliptic equation

−∆u− 1

2
(x · ∇u) = λu+ |u|p−2u, x ∈ RN .

In [10] the authors noticed that, if K(x) := exp(|x|2/4), then

div(K(x)∇u) = K(x)

[
∆u+

1

2
(x · ∇u)

]
,
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and it is therefore natural to seek solutions of (Pλ) in the closure of the infinitely
differentiable radial functions with compact support C∞c,rad(R2) with respect to the
norm

‖u‖ :=

(∫
R2

K(x)|∇u|2dx

)1/2

.

As we shall see in Section 2, the space X defined above has nice properties. In
particular, some versions of the usual Trudinger-Moser inequalities hold in X as
well as continuous emdebbeding in the weighted Lebesgue spaces LpK(RN ) defined
as the set of measurable and radial functions u : R2 → R such that the integral∫
R2 K(x)|u|p dx is finite. Thus, for any p ≥ 2, it is well defined

(1.1) Sp := inf

{∫
R2

K(x)|∇u|2 dx : u ∈ X,
∫
R2

K(x)|u|p dx = 1

}
.

We denote by s′ := s/(s− 1) the conjugated exponent of s > 1. The basic assump-
tions on the potential a are the following:

(a0) a(x) = a(|x|) for a.e. x ∈ R2;
(a1) a ∈ LσqK (RN ) for some 2 ≤ σq ≤ (2/q)′;
(a2) the set Ω+

a := {x ∈ RN : a(x) > 0} has an interior point.

Concerning the nonlinearity f , besides the critical growth condition (f0), we also
assume the folllowing:

(f1) lim
s→0+

f(s)/s = 0;

(f2) there exists θ0 > 2 such that

0 ≤ θ0F (s) := θ0

∫ s

0

f(t) dt ≤ sf(s), ∀ s ≥ 0.

(f3) for each θ > 2, there exists sθ > 0 such that

0 ≤ θF (s) ≤ sf(s), ∀ s ≥ sθ.
(f4) there exists p0 > 2 such that

f(s) ≥ Cp0sp0−1, ∀ s ≥ 0,

where

Cp0 >

[
(p0 − 2)

2p0

α0

2π

](p0−2)/2

Sp0/2p0

and Sp0 is defined in (1.1).

In the main result of this paper we prove the following multiplicity result:

Theorem 1.1. Suppose that 1 < q < 2, a and f satisfy (a0)− (a2) and (f0)− (f4),
respectively. Then there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), Problem (Pλ)
has at least two nonzero nonnegative solutions.

In the proofs, we apply variational methods. The first solution is obtained by a
minimization argument and the second one as an application of the Mountain Pass
Theorem. We are going to use the variational framework introduced in [13] to deal
with the critical range of the function f . The hypothesis (f3) is important to get
some convergence results and it has already appeared in [20, 25]. Moreover, this
condition is a consequence of

(f̂3) there exist constants R0,M0 > 0 such that

0 < F (s) ≤M0f(s), ∀ s ≥ R0,
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which has been used for instance in the papers [11, 12]. Condition (f4) is a version
of another one introduced in [6] and it is used to correctly localize the minimax
level of the energy functional associated to (Pλ).

The main motivation for our result comes from the concave-convex equation

−∆u = λa(x)|u|q−2u+ b(x)|u|p−2u, u ∈ H1
0 (Ω),

with 1 < q < 2, Ω ⊂ RN open and bounded, N ≥ 3 and 2 < p ≤ 2N/(N − 2). In a
celebrated work Ambrosetti, Brezis and Cerami [3] supposed that a(x) ≡ b(x) ≡ 1
and prove that the problem has at least two positive solutions provided λ ∈ (0,Λ).
After this work, many results with combined nonlinearities have appeared. Since it
impossible to give a complet list of reference we cite [5, 7, 8, 20, 9, 21, 16] and the
references therein. There are also some results for the unbounded case Ω = RN .
In this setting, we need to require some integrability conditions on a and b in
order to deal with the problem variationally. We can cite, among other results,
the papers [2, 23, 4, 17]. We also cite the recent paper [15] where the authors
considered the version of (Pλ) for higher dimensions N ≥ 3. The main result of
this paper complement the aforementioned works since we deal with the operator
u 7→ ∆u+ (1/2)(x · ∇u) and consider the 2-dimensional case.

The paper contains two more sections: in the next one we present the variational
setting to deal with (Pλ) and obtain the first solution. In Section 3, we prove that
Problem (Pλ) has a second solution.

2. Variational setting and the first solution

Throughout the paper we write
∫
u instead of

∫
R2 u(x)dx. Since we are looking

for nonnegative solutions we may assume that f(s) = 0, for any s ≤ 0. By (f1),
this assumption does not affect the contintuity of f .

In order to present the functional space to deal with our problem we consider
C∞c,rad(R2) the space of infinitely differentiable radial functions with compact sup-

port and denote by X the closure of C∞c,rad(R2) with respect to the norm

‖u‖ :=

(∫
K(x)|∇u|2

)1/2

,

where

K(x) := e|x|
2/4, ∀x ∈ R2.

For each p ≥ 2, we also consider the weighted Lebesgue space LpK(R2) of all the
radial measurable functions u : R2 → R such that

‖u‖p :=

(∫
K(x)|u|p

)1/p

<∞.

As proved in [13, Lemma 2.1], the space X is compactally embedded into the
Lebesgue spaces LpK(R2) for any p ∈ [2,∞). Moreover, the following version of the
Trudinger-Moser inequality holds:

Theorem 2.1. For any p ≥ 2, u ∈ X and α > 0 we have that the function

K(x)|u|p(eαu2 − 1) ∈ L1(R2). Moreover, if ‖u‖ ≤ M and αM2 < 4π, then there
exists C = C(M,α, p) > 0 such that∫

K(x)|u|p(eαu
2

− 1) ≤ C(M,α, p)‖u‖p.
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Proof. See [13, Theorem 1.1 and Corollary 1.2]. �

Actually, in paper [13] the authors established the so called Trudinger-Moser
inequalities for the space X. The above result is a counterpart of the following well

known result (see [6, 19]): for any u ∈ W 1,2(R2) and α > 0 it holds (eαu
2 − 1) ∈

L1(R2). Moreover, if ‖|∇u|‖L2(R2) ≤ 1, ‖u‖L2(R2) ≤ M < ∞ and α < 4π, then
there exists C = C(M,α) such that

(2.1)

∫
(eαu

2

− 1) ≤ C(M,α).

Moreover, we also have the following improvement of the Trudinger-Moser inequal-
ity:

Theorem 2.2. Let (vn) ⊂ X be such that ‖vn‖ = 1 and vn ⇀ v weakly in X, with
‖v‖ < 1. Then, for each 0 < p < 4π/(1− ‖v‖2), up to a subsequence it holds

sup
n∈N

∫
K(x)v2

n(epv
2
n − 1) <∞.

Proof. See [13, Theorem 1.3]. �

Finnaly, we quote an auxiliar result which will be useful (see [13, equation (2.4)]):
for any p ≥ 1, there exists Cp > 0 such that

(2.2)

(∫
K(x)p|u|2p

)
≤ Cp‖u‖2, ∀u ∈ X.

Moreover, the space X is continuosly embedded into W 1,2(R2).
In the sequel we show how we can use the Trundinger-Moser inequality to define

the energy functional associated to the problem (Pλ). Let α > α0 be given by (f1)
and p ≥ 1. By using the critical growth condition (f0) we obtain

lim
|s|→+∞

f(s)

|s|p−1(eαs2 − 1)
= 0.

This and (f1) imply that, for any given ε > 0, there exists Cε > 0 such that

(2.3) max{|f(s)s|, |F (s)|} ≤ εs2 + Cε|s|p(eαs
2

− 1), ∀ s ∈ R.

This inequality with p = 2 and Theorem 2.1 imply that the functional u 7→∫
K(x)F (u) belongs to C1(X,R).
Given u ∈ X, we set u+(x) := max{u(x), 0}. By Hölder’s inequality and (a1),

we get ∣∣∣∣∫ K(x)a(x)(u+)q
∣∣∣∣ ≤ ‖a‖σq (∫ K(x)|u|qσ

′
q

)1/σ′q

.

Since qσ′q ≥ 2, the right-hand side above is finite. Thus, by using some standard
calculations we can show that the functional Iλ : X → R given by

Iλ(u) :=
1

2

∫
K(x)|∇u|2 − λ

q

∫
K(x)a(x)(u+)q −

∫
K(x)F (u)

is well defined, it belongs to C1(X,R) and its critical points are exactly the weak
solutions of the equation (Pλ). If I ′λ(u) = 0 and u−(x) := max{−u(x), 0}, then
0 = Iλ(u)u− = −‖u−‖2, and therefore we conclude that u ≥ 0 a.e. in R2.
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Since 1 < q < 2, we can find the first solution for our problem by using a
minization argument in a small ball centered at the origin. More specifically, we
have the following:

Lemma 2.3. Suppose that f satisfies (f0)− (f1). Then there exists λ∗, ρ > 0 such
that, for any λ ∈ (0, λ∗), there hold

(2.4) Iλ(u) ≥ ρ2/8, if ‖u‖ = ρ, Iλ(u) ≥ −ρ2/8, if ‖u‖ ≤ ρ.
Proof. Since the map J(u) :=

∫
K(x)a(x)(u+)q is continuos at u = 0, for any given

ε > 0, there exists ρ1 > 0 such that |J(u)| ≤ qε, whenever ‖u‖ ≤ ρ1. Thus, we can
pick α > α0 and use (2.3) to obtain

Iλ(u) ≥ 1

2
‖u‖2 − λε− ε

∫
K(x)u2 − Cε

∫
K(x)|u|p(eαu

2

− 1), ∀ ‖u‖ ≤ ρ1.

By taking ρ1 small if necessary, we may assume that αρ2
1 < 4π, and therefore it

follows from Theorem 2.1 with p > 2 and the Sobolev embedding X ↪→ L2
K(R2)

that

Iλ(u) ≥ 1

2

(
1− εC1 − C(ρ1, α, p)‖u‖p−2

)
‖u‖2 − λε, ∀ ‖u‖ ≤ ρ1.

Since p > 2, we can take ε > 0 small and obtain 0 < ρ < ρ1 such that

Iλ(u) ≥ 1

4
‖u‖2 − λε, ∀ ‖u‖ ≤ ρ.

A straightforward computation shows that the lemma holds for λ∗ := ρ2/(8ε). �

We are able to obtain our first solution.

Proposition 2.4. Suppose that f satisfies (f0) − (f1) and let λ∗ > 0 be given by
the previous lemma. Then, for any λ ∈ (0, λ∗), the infimun

bλ := inf
u∈Bρ(0)

Iλ(u) < 0,

is achievied by a nonzero solution uλ of (Pλ).

Proof. It follows from (2.4) that bλ is well defined. In order to verify that bλ < 0 we
consider the set Ω+

a given by (a2) and φ ∈ C∞c (Ω+
a ) such that

∫
K(x)a(x)φq > 0.

Given ε > 0, by (f1), there exists δ > 0 such that |F (s)| ≤ εs2, for any |s| ≤ δ.
Thus,

Iλ(tφ) ≤ t2

2
‖φ‖2 − λt

q

q

∫
K(x)a(x)φq − ε2t2

∫
K(x)φ2,

whenever 0 < t‖φ‖L∞(R2) ≤ δ. Then Iλ(tφ) < 0 if t > 0 is small and we conclude
that bλ < 0. It follows from (2.4) and the Ekeland Variational Principle that, for
each λ ∈ (0, λ∗) fixed, there exists a sequence (un) ⊂ Bρ(0) such that

Iλ(un)→ bλ < 0, I ′λ(un)→ 0.

We claim that, along a subsequence, un → uλ strongly in X. If this is true, it
follows that Iλ(uλ) = bλ < 0 and therefore uλ 6= 0 is a nonegative critical point of
Iλ.

It remains to prove the claim. Since (un) ⊂ X is bounded we may suppose that
un ⇀ uλ weakly in X. We set wn := un−uλ and notice that, since wn ⇀ 0 weakly
in X, we have that

(2.5) I ′λ(un)wn = ‖un‖2 − ‖uλ‖2 − λ
∫
K(x)a(x)(u+

n )q−1wn −
∫
K(x)f(un)wn.
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We claim that

(2.6) lim
n→+∞

∫
K(x)a(x)(u+

n )q−1wn = 0, lim
n→∞

∫
K(x)f(un)wn = 0.

If this is true, it follows from (2.5) that ‖un‖ → ‖uλ‖ and therefore the weak
convergence of (un) implies that un → uλ strongly in X.

In order to verify (2.6) we recall that σq ≤ 2/(2− q) to obtain p ≥ 2 such that

1

σq
+

1

2/(q − 1)
+

1

p
= 1.

This and Hölder’s inequality provide∣∣∣∣∫ K(x)a(x)(u+
n )q−1wn

∣∣∣∣ ≤ ‖a‖σq‖un‖q−1
2 ‖wn‖pp.

The first statament in (2.6) follows from this enquality and the compactness of the
embedding X ↪→ LpK(R2). The proof of the second one is more envolved. We first
apply (2.3) with p = 3 and Hölder’s inequality to get∣∣∣∣∫ K(x)f(un)wn

∣∣∣∣ ≤ ε∫ K(x)|un||wn|+ Cε

∫
K(x)|un|2|wn|(eαu

2
n − 1)

≤ ε‖un‖2‖wn‖2 + CεDn,

where

Dn :=

∫
K(x)|un|2|wn|(eαu

2
n − 1).

Since wn → 0 strongly in L2
K(R2) it is enough to verify that Dn → 0. By picking

ri > 1, i = 1, 2, 3, such that 1/r1 + 1/r2 + 1/r3 = 1 and r2 > 2, we can use Hölder
inequality again to get

Dn ≤
(∫

K(x)r1 |un|2r1
)1/r1

‖wn‖Lr2 (R2)

(∫
(eαr3‖un‖

2(un/‖un‖)2 − 1)

)1/r3

≤ Cr1‖un‖2‖wn‖r2
(∫

(eαr3‖un‖
2(un/‖un‖)2 − 1)

)1/r3

,

where we have used (2.2), K(x) ≥ 1 and the inequality

(2.7) (es − 1)r ≤ (esr − 1), ∀ s ≥ 0, r > 1.

Since α‖un‖2 ≤ αρ2 < 4π, we can choose r3 close to 1 in such way that αr3‖un‖2 ≤
γ < 4π, and therefore it follows from (2.1) that

sup
n∈N

∫
(eαr3‖un‖

2(un/‖un‖)2 − 1) ≤ C1.

Thus, since wn → 0 in Lr2K (R2), we conclude that Dn → 0. �

3. The second solution

We devote this section to the proof that (Pλ) has a second solution of Mountain
Pass type. We recall that a sequence (un) ⊂ X is called a (PS)c sequence for Iλ
if Iλ(un) → c ∈ R and I ′λ(un) → 0. We say that Iλ satisfies the Palais-Smale
condition at level c ((PS)c for short) if any (PS)c sequence has a convergente
subsequence.



TWO SOLUTIONS FOR A PLANAR EQUATION WITH COMBINED NONLINEARITIES 7

Lemma 3.1. Suppose that f satisfies (f0) − (f3) and let (un) ⊂ X be a (PS)c
sequence for I. Then, up to a subsequece, un ⇀ u weakly in X, with I ′(u) = 0.
Moreover,∫

K(x)F (un)→
∫
K(x)F (u), lim sup

n→+∞

∫
BR(0)c

K(x)f(un)un dx = 0,

for any R > 0.

Proof. By using (f2), Hölder’s inequality and the embedding X ↪→ L
qσ′q
K (RN), we

obtain

c+ on(1)‖un‖+ on(1) = Iλ(un)− 1

θ
I ′λ(un)un

≥
(

1

2
− 1

θ

)
‖un‖2 − C1

(
1

q
− 1

θ

)
‖a‖σq‖un‖q,

where on(1) stands for a quantity approchng zero as n→ +∞. Since 1 < q < 2 the
above inequality implies that (un) is bounded and therefore, up to a subsequence,
un ⇀ u weakly in X.

In order to verify that I ′λ(u) = 0 we consider φ ∈ C∞c,rad(R2). Arguing as in the
proof of Proposition 2.4 we can prove that

lim
n→+∞

∫
K(x)a(x)(u+

n )q−1φ =

∫
K(x)a(x)(u+)q−1φ.

Moreover, I ′λ(un)un = on(1) and Hölder’s inequality show that (
∫
K(x)f(un)un) is

bounded. Thus, since K ≥ 1, we obtain∫
|f(un)un| =

∫
f(un)un ≤

∫
K(x)f(un)un ≤ C2

and it follows from [11, Lemma 2.1] that f(un) → f(u) in L1
loc(R2). Hence, since

K is bounded in the support of φ, we have that

lim
n→+∞

∫
K(x)f(un)φ =

∫
K(x)f(u)φ.

Altogether, these convergences show that

0 = lim
n→+∞

I ′λ(un)φ = I ′λ(u)φ, ∀φ ∈ C∞c,rad(R2).

By density we conclude that I ′λ(u) = 0.
The other two convergences stated in the lemma can be proved arguing along

the same lines of [13, Lemma 4.5]. We omite the details. �

As a consequence of the above lemma, we have the following local compactness
result:

Proposition 3.2. Suppose that f satisfies (f0) − (f3). For any λ ∈ (0, λ∗), let
uλ ∈ X be the solution given by Proposition 2.4. If u = 0 and u = uλ are the only
critical points of Iλ then this functional satisfies the (PS)c condition for any

c < Iλ(uλ) +
2π

α0
.
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Proof. Let (un) ⊂ X be such that I ′λ(un) → 0 and Iλ(un) → c < Iλ(uλ) + 2π/α0.
Acoording to Lemma 3.1, we may suppose that un ⇀ u weakly inX, with I ′λ(u) = 0.
It follows from Young’s inequality that, for a.e. x ∈ R2,

K(x)a(x)(u+
n )q ≤ 1

σq
K(x)a(x)σq +

1

σ′q
K(x)|un|qσ

′
q

Recalling that the embedding X ↪→ Lqσ
′
q (R2) is compact, we obtain an integrable

function which dominates the left-hand side above. Since we also have pointwise
convergence we can use Lebesgue’s Theorem to get

(3.1) lim
n→+∞

K(x)a(x)(u+
n )q =

∫
K(x)a(x)(u+)q.

So, we infer from Lemma 3.1 and Iλ(un)→ c that

lim
n→+∞

‖un‖2 = 2c+ 2

[
λ

q

∫
K(x)a(x)(u+)q +

∫
K(x)F (u)

]
.

Since I ′λ(u) = 0, we have that u = 0 or u = uλ. If u = 0, it follows from the
above equation and Iλ(uλ) < 0 that

lim
n→+∞

‖un‖2 = 2c < 2Iλ(uλ) +
4π

α0
<

4π

α0
.

and therefore we can argue as in the proof of Proposition 2.4 to conclude that
un → 0 strongly in X. Actually, in the final part of the argument we need to
choose α > α0 and r3 > 1 sufficienttly close to α0 and 1, respectively, in order to
guarantee that αr3‖un‖2 ≤ γ < 4π.

It remains to consider the case u = uλ. First notice that

(3.2) on(1) = I ′λ(un)un = ‖un‖2 − λ
∫
K(x)a(x)(u+

n )q −
∫
K(x)f(un)un.

We claim that

lim
n→+∞

∫
K(x)f(un)un =

∫
K(x)f(u)u.

If this is true, we can use (3.1)-(3.2) to obtain

on(1) = I ′λ(un)un = ‖un‖2 − ‖u‖2 + I ′λ(u)u+ on(1).

Recalling that I ′λ(u)u = 0, we conclude that ‖un‖ → ‖u‖ and therefore un → u
strongly in X.

In order to prove the claim we first notice that, by Lemma 3.1, it is sufficient to
show that, for any R > 0, there holds

lim
n→+∞

∫
BR(0)

K(x)f(un)un dx =

∫
BR(0)

K(x)f(u)udx.

As in the first case, we have that

(3.3) lim
n→+∞

‖un‖2 = 2(c+ c0) > 0,

with

c0 :=
λ

q

∫
K(x)a(x)(u+)q +

∫
K(x)F (u).
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Hence, if we set vn := un/‖un‖, we conclude that vn ⇀ v := uλ[2(c+c0)]−1/2 weakly
in X. If we pick α > α0 in such way that c < Iλ(uλ) + (2π)/α a straightforward
computation provides

2α(c+ c0) <
4π

1− ‖v‖2
.

From (3.3), we obtain γ > 0 such that α‖un‖2 < γ < (4π)/(1 − ‖v‖2). We now
pick 1 < β < 2 close to 1 in such way that

αβ‖un‖2 < γβ <
4π

1− ‖v‖2
.

By using Theorem 2.2 with p = γβ, we conclude that

(3.4) sup
n∈N

∫
K(x)v2

n(eαβ‖un‖
2v2n − 1) < sup

n∈N

∫
K(x)v2

n(eγβv
2
n − 1) <∞.

Up to a subsequence, we have that un → u strongly in L2(BR(0)), and therefore
there exists ψ ∈ L2(BR(0)) such that |un(x)|2 ≤ ψ(x)2 a.e. in BR(0). By (2.3), we
get

(3.5)

∫
A

K(x)f(un)un dx ≤ C1

∫
A

ψ(x)2 dx+ C2

∫
A

K(x)|un|2/β(eαu
2
n − 1)dx,

for any measurable subset A ⊂ BR(0). Hölder’s inequality, (2.7) and the definition
of vn provide∫

A

K(x)|un|2/β(eαu
2
n − 1) dx

≤
(∫

A

K(x) dx

)1/β′ (∫
A

K(x)u2
n(eαβu

2
n − 1) dx

)1/β

≤ ‖un‖2/β‖K‖1/β
′

L1(A)

(∫
K(x)v2

n(eαβ‖un‖
2v2n − 1)

)1/β

.

This, (3.5), (3.4) and the boundedness of (un) imply that∫
A

K(x)f(un)un dx ≤ C1‖ψ‖L2(A) + C3‖K‖1/β
′

L1(A)

and therefore the first integral above is uniformly small provided the measure of
A is small. Hence, the set {K(x)f(un)un} is uniformly integrable and therefore a
standard application of Egoroff’s Theorem implies thatK(x)f(un)un → K(x)f(u)u
in L1(BR(0)). The proposition is proved. �

Before presenting the proof of our main theorem, we shall verify that, for any
p ≥ 2, the constant Sp defined in (1.1) is attained by a nonnegative function
ωp ∈ X such that ‖ωp‖p = 1. Indeed, let (un) ⊂ X be such that ‖un‖p = 1
and ‖un‖2 → Sp. Up to a subsequence, un ⇀ ωp weakly in X and therefore
‖ωp‖2 ≤ lim infn→+∞ ‖un‖2 = Sp. Due to the compactness of the embedding
X ↪→ LpK(R2), we have that un → ωp strongly in LpK(R2), and therefore ‖ωp‖p = 1.
Hence, Sp ≤ ‖ωp‖2 and we conlude that Sp is attained by ωp. Since we may replace
un by |un| in the former argument, the strong convergence in LpK(R2) show that
we may assume ωp ≥ 0.

Proof of Theorem 1.1 . Let λ∗ > 0 be given by Proposition 2.4. For any λ ∈ (0, λ∗)
there exists a solution uλ such that Iλ(uλ) < 0. Recall that such solution was
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obtained by a minimization argument on the ball Bρ(0). Hence, by considering a
small ball if necessary, we may assume that the solutions (uλ)λ∈(0,λ∗) are close to
zero.

Consider p0 > 2 given by (f4) and ωp0 the function obtained before the beginning
of this proof. By integrating the inequality in (f4) we obtain F (s) ≥ (Cp0/p0)sp0 ,
for any s ≥ 0. Thus

(3.6) I(tωp0) ≤
[
t2

2
‖ωp0‖2 − Cp0

tp

p

]
− λt

q

q

∫
K(x)a(x)ωqp0

from which it follows that Iλ(tωp0)→ −∞ as t→ +∞. Hence, there exists t0 > 0
large such that e := t0ωp0 verifies ‖e‖ > ρ and Iλ(e) < 0, for any λ ∈ (0, λ∗). This
and (2.4) show that we can define the Mountain Pass level

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)),

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}. It is clear from this definition
that

(3.7) cλ ≤ max
t≥0

Iλ(tωp0).

In order to estimate cλ we call g(t) the function into the brackets in (3.6) and
use (f4) again to obtain, for any t ≥ 0,

g(t) ≤ max
τ≥0

[
τ2

2
‖ωp0 |2 − Cp0

τp

p

]
= γ :=

(p0 − 2)

2p0

S
p0/(p0−2)
p0

C
2/(p0−2)
p0

<
2π

α0
.

Notice that γ is independent of λ. So, since Iλ(uλ) → 0− as λ → 0+, we can find
λ∗ ∈ (0, λ∗) such that

max
t≥0

Iλ(tωp0) ≤ max
t≥0

{
g(t)− λt

q

q

∫
K(x)a(x)ωpp0

}
< Iλ(uλ) +

2π

α0
, ∀λ ∈ (0, λ∗).

Thus, we infer from (3.7) that

cλ < Iλ(uλ) +
2π

α0
, ∀λ ∈ (0, λ∗).

We can now obtain a second nonzero solution, for λ ∈ (0, λ∗), in the following
way: suppose, by contradiction, that the only critical points of Iλ are u = 0 and
u = uλ. Then, it follows from the above inequality and Proposition 3.2 that Iλ
satisfies the Palais-Smale condition at the level cλ. The Mountain Pass Theorem
provides a critical point uM ∈ X such that Iλ(uM ) > 0. Since Iλ(0) = 0 and
Iλ(uλ) < 0, we have that uM 6∈ {0, uλ}, which is a contradiction. Hence, there is
another critical point different from 0 and uλ. The theorem is proved. 2.
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