TWO SOLUTIONS FOR A PLANAR EQUATION WITH COMBINED NONLINEARITIES AND CRITICAL GROWTH

MARCELO F. FURTADO

$$
\begin{aligned}
& \text { ABSTRACT. We prove the existence of two nonnegative nontrivial solutions for } \\
& \text { the equation } \\
& \qquad-\Delta u-\frac{1}{2}(x \cdot \nabla u)=\lambda a(x)|u|^{q-2} u+f(u), \quad x \in \mathbb{R}^{2} \\
& \qquad \text { where } 1<q<2, a \text { is indefinite in sign and the function } f(s) \text { behaves like } e^{\alpha s^{2}} \\
& \text { at infinity. The results holds for small values of the parameter } \lambda>0 \text {. }
\end{aligned}
$$

1. Introduction

In this paper, we address the existence of nonegative solutions for the equation

$$
-\Delta u+\frac{1}{2}(x \cdot \nabla u)=\lambda a(x)|u|^{q-2} u+f(u), \quad x \in \mathbb{R}^{2},
$$

where $1<q<2, a$ is a radial function which can change sign and the function $f \in C(\mathbb{R}, \mathbb{R})$ has critical growth, that is,
$\left(f_{0}\right)$ there exists $\alpha_{0}>0$ such that

$$
\lim _{s \rightarrow+\infty} \frac{f(s)}{e^{\alpha s^{2}}}= \begin{cases}0, & \text { if } \alpha>\alpha_{0} \\ +\infty, & \text { if } \alpha<\alpha_{0}\end{cases}
$$

As it is well known, in dimension two the concept of criticality is related with the so callled Trudinger-Moser inequality which appears in the pioneer works [18, 24]. After then, there is a vast literature concerning this kind of critical nonlinearities (see [1, 6, 11, 19, 22, 14] and references therein).

Before presenting our asumptions let us recall that, as quoted by Escobedo and Kavian in [10, the operator in $\left(P_{\lambda}\right)$ naturally appears when we consider the existence of self-similar solutions for homogeneous heat equations. Actually, when one seek for solutions of the form $\omega(t, x)=t^{-1 /(p-2)} u\left(t^{-1 / 2} x\right)$ for the evolution equation

$$
\omega_{t}-\Delta \omega=|\omega|^{p-2} \omega, \quad t>0, x \in \mathbb{R}^{N}
$$

we are lead to consider the elliptic equation

$$
-\Delta u-\frac{1}{2}(x \cdot \nabla u)=\lambda u+|u|^{p-2} u, \quad x \in \mathbb{R}^{N}
$$

In [10] the authors noticed that, if $K(x):=\exp \left(|x|^{2} / 4\right)$, then

$$
\operatorname{div}(K(x) \nabla u)=K(x)\left[\Delta u+\frac{1}{2}(x \cdot \nabla u)\right]
$$

[^0]and it is therefore natural to seek solutions of $\left(P_{\lambda}\right)$ in the closure of the infinitely differentiable radial functions with compact support $C_{c, \text { rad }}^{\infty}\left(\mathbb{R}^{2}\right)$ with respect to the norm
$$
\|u\|:=\left(\int_{\mathbb{R}^{2}} K(x)|\nabla u|^{2} \mathrm{~d} x\right)^{1 / 2} .
$$

As we shall see in Section 2, the space X defined above has nice properties. In particular, some versions of the usual Trudinger-Moser inequalities hold in X as well as continuous emdebbeding in the weighted Lebesgue spaces $L_{K}^{p}\left(\mathbb{R}^{N}\right)$ defined as the set of measurable and radial functions $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that the integral $\int_{\mathbb{R}^{2}} K(x)|u|^{p} \mathrm{~d} x$ is finite. Thus, for any $p \geq 2$, it is well defined

$$
\begin{equation*}
S_{p}:=\inf \left\{\int_{\mathbb{R}^{2}} K(x)|\nabla u|^{2} \mathrm{~d} x: u \in X, \int_{\mathbb{R}^{2}} K(x)|u|^{p} \mathrm{~d} x=1\right\} \tag{1.1}
\end{equation*}
$$

We denote by $s^{\prime}:=s /(s-1)$ the conjugated exponent of $s>1$. The basic assumptions on the potential a are the following:
$\left(a_{0}\right) a(x)=a(|x|)$ for a.e. $x \in \mathbb{R}^{2}$;
$\left(a_{1}\right) a \in L_{K}^{\sigma_{q}}\left(\mathbb{R}^{N}\right)$ for some $2 \leq \sigma_{q} \leq(2 / q)^{\prime}$;
$\left(a_{2}\right)$ the set $\Omega_{a}^{+}:=\left\{x \in \mathbb{R}^{N}: a(x)>0\right\}$ has an interior point.
Concerning the nonlinearity f, besides the critical growth condition $\left(f_{0}\right)$, we also assume the folllowing:
$\left(f_{1}\right) \lim _{s \rightarrow 0^{+}} f(s) / s=0 ;$
$\left(f_{2}\right)$ there exists $\theta_{0}>2$ such that

$$
0 \leq \theta_{0} F(s):=\theta_{0} \int_{0}^{s} f(t) \mathrm{d} t \leq s f(s), \quad \forall s \geq 0
$$

$\left(f_{3}\right)$ for each $\theta>2$, there exists $s_{\theta}>0$ such that

$$
0 \leq \theta F(s) \leq s f(s), \quad \forall s \geq s_{\theta}
$$

$\left(f_{4}\right)$ there exists $p_{0}>2$ such that

$$
f(s) \geq C_{p_{0}} s^{p_{0}-1}, \quad \forall s \geq 0
$$

where

$$
C_{p_{0}}>\left[\frac{\left(p_{0}-2\right)}{2 p_{0}} \frac{\alpha_{0}}{2 \pi}\right]^{\left(p_{0}-2\right) / 2} S_{p_{0}}^{p_{0} / 2}
$$

and $S_{p_{0}}$ is defined in 1.1.
In the main result of this paper we prove the following multiplicity result:
Theorem 1.1. Suppose that $1<q<2$, a and f satisfy $\left(a_{0}\right)-\left(a_{2}\right)$ and $\left(f_{0}\right)-\left(f_{4}\right)$, respectively. Then there exists $\lambda_{*}>0$ such that, for any $\lambda \in\left(0, \lambda_{*}\right)$, $\operatorname{Problem}\left(P_{\lambda}\right)$ has at least two nonzero nonnegative solutions.

In the proofs, we apply variational methods. The first solution is obtained by a minimization argument and the second one as an application of the Mountain Pass Theorem. We are going to use the variational framework introduced in [13] to deal with the critical range of the function f. The hypothesis $\left(f_{3}\right)$ is important to get some convergence results and it has already appeared in [20, 25]. Moreover, this condition is a consequence of
$\left(\widehat{f_{3}}\right)$ there exist constants $R_{0}, M_{0}>0$ such that

$$
0<F(s) \leq M_{0} f(s), \quad \forall s \geq R_{0}
$$

which has been used for instance in the papers [11, 12]. Condition $\left(f_{4}\right)$ is a version of another one introduced in [6] and it is used to correctly localize the minimax level of the energy functional associated to $\left(P_{\lambda}\right)$.

The main motivation for our result comes from the concave-convex equation

$$
-\Delta u=\lambda a(x)|u|^{q-2} u+b(x)|u|^{p-2} u, \quad u \in H_{0}^{1}(\Omega)
$$

with $1<q<2, \Omega \subset \mathbb{R}^{N}$ open and bounded, $N \geq 3$ and $2<p \leq 2 N /(N-2)$. In a celebrated work Ambrosetti, Brezis and Cerami [3] supposed that $a(x) \equiv b(x) \equiv 1$ and prove that the problem has at least two positive solutions provided $\lambda \in(0, \Lambda)$. After this work, many results with combined nonlinearities have appeared. Since it impossible to give a complet list of reference we cite [5, 7, 8, 20, 9, 21, 16] and the references therein. There are also some results for the unbounded case $\Omega=\mathbb{R}^{N}$. In this setting, we need to require some integrability conditions on a and b in order to deal with the problem variationally. We can cite, among other results, the papers 2, 23, 4, 17]. We also cite the recent paper 15 where the authors considered the version of $\left(P_{\lambda}\right)$ for higher dimensions $N \geq 3$. The main result of this paper complement the aforementioned works since we deal with the operator $u \mapsto \Delta u+(1 / 2)(x \cdot \nabla u)$ and consider the 2-dimensional case.

The paper contains two more sections: in the next one we present the variational setting to deal with $\left(P_{\lambda}\right)$ and obtain the first solution. In Section 3, we prove that Problem $\left(P_{\lambda}\right)$ has a second solution.

2. Variational setting and the first solution

Throughout the paper we write $\int u$ instead of $\int_{\mathbb{R}^{2}} u(x) \mathrm{d} x$. Since we are looking for nonnegative solutions we may assume that $f(s)=0$, for any $s \leq 0$. By $\left(f_{1}\right)$, this assumption does not affect the contintuity of f.

In order to present the functional space to deal with our problem we consider $C_{c, \text { rad }}^{\infty}\left(\mathbb{R}^{2}\right)$ the space of infinitely differentiable radial functions with compact support and denote by X the closure of $C_{c, r a d}^{\infty}\left(\mathbb{R}^{2}\right)$ with respect to the norm

$$
\|u\|:=\left(\int K(x)|\nabla u|^{2}\right)^{1 / 2}
$$

where

$$
K(x):=e^{|x|^{2} / 4}, \quad \forall x \in \mathbb{R}^{2}
$$

For each $p \geq 2$, we also consider the weighted Lebesgue space $L_{K}^{p}\left(\mathbb{R}^{2}\right)$ of all the radial measurable functions $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

$$
\|u\|_{p}:=\left(\int K(x)|u|^{p}\right)^{1 / p}<\infty
$$

As proved in [13, Lemma 2.1], the space X is compactally embedded into the Lebesgue spaces $L_{K}^{p}\left(\mathbb{R}^{2}\right)$ for any $p \in[2, \infty)$. Moreover, the following version of the Trudinger-Moser inequality holds:

Theorem 2.1. For any $p \geq 2, u \in X$ and $\alpha>0$ we have that the function $K(x)|u|^{p}\left(e^{\alpha u^{2}}-1\right) \in L^{1}\left(\mathbb{R}^{2}\right)$. Moreover, if $\|u\| \leq M$ and $\alpha M^{2}<4 \pi$, then there exists $C=C(M, \alpha, p)>0$ such that

$$
\int K(x)|u|^{p}\left(e^{\alpha u^{2}}-1\right) \leq C(M, \alpha, p)\|u\|^{p}
$$

Proof. See [13, Theorem 1.1 and Corollary 1.2].
Actually, in paper [13] the authors established the so called Trudinger-Moser inequalities for the space X. The above result is a counterpart of the following well known result (see [6, 19]): for any $u \in W^{1,2}\left(\mathbb{R}^{2}\right)$ and $\alpha>0$ it holds $\left(e^{\alpha u^{2}}-1\right) \in$ $L^{1}\left(\mathbb{R}^{2}\right)$. Moreover, if $\|\mid \nabla u\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq 1,\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq M<\infty$ and $\alpha<4 \pi$, then there exists $C=C(M, \alpha)$ such that

$$
\begin{equation*}
\int\left(e^{\alpha u^{2}}-1\right) \leq C(M, \alpha) \tag{2.1}
\end{equation*}
$$

Moreover, we also have the following improvement of the Trudinger-Moser inequality:

Theorem 2.2. Let $\left(v_{n}\right) \subset X$ be such that $\left\|v_{n}\right\|=1$ and $v_{n} \rightharpoonup v$ weakly in X, with $\|v\|<1$. Then, for each $0<p<4 \pi /\left(1-\|v\|^{2}\right)$, up to a subsequence it holds

$$
\sup _{n \in \mathbb{N}} \int K(x) v_{n}^{2}\left(e^{p v_{n}^{2}}-1\right)<\infty
$$

Proof. See [13, Theorem 1.3].
Finnaly, we quote an auxiliar result which will be useful (see [13, equation (2.4)]): for any $p \geq 1$, there exists $C_{p}>0$ such that

$$
\begin{equation*}
\left(\int K(x)^{p}|u|^{2 p}\right) \leq C_{p}\|u\|^{2}, \quad \forall u \in X \tag{2.2}
\end{equation*}
$$

Moreover, the space X is continuosly embedded into $W^{1,2}\left(\mathbb{R}^{2}\right)$.
In the sequel we show how we can use the Trundinger-Moser inequality to define the energy functional associated to the problem $\left(P_{\lambda}\right)$. Let $\alpha>\alpha_{0}$ be given by $\left(f_{1}\right)$ and $p \geq 1$. By using the critical growth condition $\left(f_{0}\right)$ we obtain

$$
\lim _{|s| \rightarrow+\infty} \frac{f(s)}{|s|^{p-1}\left(e^{\alpha s^{2}}-1\right)}=0
$$

This and $\left(f_{1}\right)$ imply that, for any given $\varepsilon>0$, there exists $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
\max \{|f(s) s|,|F(s)|\} \leq \varepsilon s^{2}+C_{\varepsilon}|s|^{p}\left(e^{\alpha s^{2}}-1\right), \quad \forall s \in \mathbb{R} \tag{2.3}
\end{equation*}
$$

This inequality with $p=2$ and Theorem 2.1 imply that the functional $u \mapsto$ $\int K(x) F(u)$ belongs to $C^{1}(X, \mathbb{R})$.

Given $u \in X$, we set $u^{+}(x):=\max \{u(x), 0\}$. By Hölder's inequality and $\left(a_{1}\right)$, we get

$$
\left|\int K(x) a(x)\left(u^{+}\right)^{q}\right| \leq\|a\|_{\sigma_{q}}\left(\int K(x)|u|^{q \sigma_{q}^{\prime}}\right)^{1 / \sigma_{q}^{\prime}}
$$

Since $q \sigma_{q}^{\prime} \geq 2$, the right-hand side above is finite. Thus, by using some standard calculations we can show that the functional $I_{\lambda}: X \rightarrow \mathbb{R}$ given by

$$
I_{\lambda}(u):=\frac{1}{2} \int K(x)|\nabla u|^{2}-\frac{\lambda}{q} \int K(x) a(x)\left(u^{+}\right)^{q}-\int K(x) F(u)
$$

is well defined, it belongs to $C^{1}(X, \mathbb{R})$ and its critical points are exactly the weak solutions of the equation $\left(P_{\lambda}\right)$. If $I_{\lambda}^{\prime}(u)=0$ and $u^{-}(x):=\max \{-u(x), 0\}$, then $0=I_{\lambda}(u) u^{-}=-\left\|u^{-}\right\|^{2}$, and therefore we conclude that $u \geq 0$ a.e. in \mathbb{R}^{2}.

Since $1<q<2$, we can find the first solution for our problem by using a minization argument in a small ball centered at the origin. More specifically, we have the following:
Lemma 2.3. Suppose that f satisfies $\left(f_{0}\right)-\left(f_{1}\right)$. Then there exists $\lambda^{*}, \rho>0$ such that, for any $\lambda \in\left(0, \lambda^{*}\right)$, there hold

$$
\begin{equation*}
I_{\lambda}(u) \geq \rho^{2} / 8, \text { if }\|u\|=\rho, \quad I_{\lambda}(u) \geq-\rho^{2} / 8, \text { if }\|u\| \leq \rho \tag{2.4}
\end{equation*}
$$

Proof. Since the map $J(u):=\int K(x) a(x)\left(u^{+}\right)^{q}$ is continuos at $u=0$, for any given $\varepsilon>0$, there exists $\rho_{1}>0$ such that $|J(u)| \leq q \varepsilon$, whenever $\|u\| \leq \rho_{1}$. Thus, we can pick $\alpha>\alpha_{0}$ and use 2.3 to obtain

$$
I_{\lambda}(u) \geq \frac{1}{2}\|u\|^{2}-\lambda \varepsilon-\varepsilon \int K(x) u^{2}-C_{\varepsilon} \int K(x)|u|^{p}\left(e^{\alpha u^{2}}-1\right), \quad \forall\|u\| \leq \rho_{1}
$$

By taking ρ_{1} small if necessary, we may assume that $\alpha \rho_{1}^{2}<4 \pi$, and therefore it follows from Theorem 2.1 with $p>2$ and the Sobolev embedding $X \hookrightarrow L_{K}^{2}\left(\mathbb{R}^{2}\right)$ that

$$
I_{\lambda}(u) \geq \frac{1}{2}\left(1-\varepsilon C_{1}-C\left(\rho_{1}, \alpha, p\right)\|u\|^{p-2}\right)\|u\|^{2}-\lambda \varepsilon, \quad \forall\|u\| \leq \rho_{1}
$$

Since $p>2$, we can take $\varepsilon>0$ small and obtain $0<\rho<\rho_{1}$ such that

$$
I_{\lambda}(u) \geq \frac{1}{4}\|u\|^{2}-\lambda \varepsilon, \quad \forall\|u\| \leq \rho
$$

A straightforward computation shows that the lemma holds for $\lambda^{*}:=\rho^{2} /(8 \varepsilon)$.
We are able to obtain our first solution.
Proposition 2.4. Suppose that f satisfies $\left(f_{0}\right)-\left(f_{1}\right)$ and let $\lambda^{*}>0$ be given by the previous lemma. Then, for any $\lambda \in\left(0, \lambda^{*}\right)$, the infimun

$$
b_{\lambda}:=\inf _{u \in \overline{B_{\rho}(0)}} I_{\lambda}(u)<0
$$

is achievied by a nonzero solution u_{λ} of $\left(P_{\lambda}\right)$.
Proof. It follows from (2.4) that b_{λ} is well defined. In order to verify that $b_{\lambda}<0$ we consider the set Ω_{a}^{+}given by $\left(a_{2}\right)$ and $\phi \in C_{c}^{\infty}\left(\Omega_{a}^{+}\right)$such that $\int K(x) a(x) \phi^{q}>0$. Given $\varepsilon>0$, by $\left(f_{1}\right)$, there exists $\delta>0$ such that $|F(s)| \leq \varepsilon s^{2}$, for any $|s| \leq \delta$. Thus,

$$
I_{\lambda}(t \phi) \leq \frac{t^{2}}{2}\|\phi\|^{2}-\lambda \frac{t^{q}}{q} \int K(x) a(x) \phi^{q}-\varepsilon^{2} t^{2} \int K(x) \phi^{2}
$$

whenever $0<t\|\phi\|_{L^{\infty}\left(\mathbb{R}^{2}\right)} \leq \delta$. Then $I_{\lambda}(t \phi)<0$ if $t>0$ is small and we conclude that $b_{\lambda}<0$. It follows from 2.4 and the Ekeland Variational Principle that, for each $\lambda \in\left(0, \lambda^{*}\right)$ fixed, there exists a sequence $\left(u_{n}\right) \subset B_{\rho}(0)$ such that

$$
I_{\lambda}\left(u_{n}\right) \rightarrow b_{\lambda}<0, \quad I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0
$$

We claim that, along a subsequence, $u_{n} \rightarrow u_{\lambda}$ strongly in X. If this is true, it follows that $I_{\lambda}\left(u_{\lambda}\right)=b_{\lambda}<0$ and therefore $u_{\lambda} \neq 0$ is a nonegative critical point of I_{λ}.

It remains to prove the claim. Since $\left(u_{n}\right) \subset X$ is bounded we may suppose that $u_{n} \rightharpoonup u_{\lambda}$ weakly in X. We set $w_{n}:=u_{n}-u_{\lambda}$ and notice that, since $w_{n} \rightharpoonup 0$ weakly in X, we have that

$$
\begin{equation*}
I_{\lambda}^{\prime}\left(u_{n}\right) w_{n}=\left\|u_{n}\right\|^{2}-\left\|u_{\lambda}\right\|^{2}-\lambda \int K(x) a(x)\left(u_{n}^{+}\right)^{q-1} w_{n}-\int K(x) f\left(u_{n}\right) w_{n} \tag{2.5}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \int K(x) a(x)\left(u_{n}^{+}\right)^{q-1} w_{n}=0, \quad \lim _{n \rightarrow \infty} \int K(x) f\left(u_{n}\right) w_{n}=0 \tag{2.6}
\end{equation*}
$$

If this is true, it follows from 2.5 that $\left\|u_{n}\right\| \rightarrow\left\|u_{\lambda}\right\|$ and therefore the weak convergence of $\left(u_{n}\right)$ implies that $u_{n} \rightarrow u_{\lambda}$ strongly in X.

In order to verify 2.6 we recall that $\sigma_{q} \leq 2 /(2-q)$ to obtain $p \geq 2$ such that

$$
\frac{1}{\sigma_{q}}+\frac{1}{2 /(q-1)}+\frac{1}{p}=1
$$

This and Hölder's inequality provide

$$
\left|\int K(x) a(x)\left(u_{n}^{+}\right)^{q-1} w_{n}\right| \leq\|a\|_{\sigma_{q}}\left\|u_{n}\right\|_{2}^{q-1}\left\|w_{n}\right\|_{p}^{p}
$$

The first statament in $(2.6$ follows from this enquality and the compactness of the embedding $X \hookrightarrow L_{K}^{p}\left(\mathbb{R}^{2}\right)$. The proof of the second one is more envolved. We first apply (2.3) with $p=3$ and Hölder's inequality to get

$$
\begin{aligned}
\left|\int K(x) f\left(u_{n}\right) w_{n}\right| & \leq \varepsilon \int K(x)\left|u_{n}\right|\left|w_{n}\right|+C_{\varepsilon} \int K(x)\left|u_{n}\right|^{2}\left|w_{n}\right|\left(e^{\alpha u_{n}^{2}}-1\right) \\
& \leq \varepsilon\left\|u_{n}\right\|_{2}\left\|w_{n}\right\|_{2}+C_{\varepsilon} D_{n}
\end{aligned}
$$

where

$$
D_{n}:=\int K(x)\left|u_{n}\right|^{2}\left|w_{n}\right|\left(e^{\alpha u_{n}^{2}}-1\right)
$$

Since $w_{n} \rightarrow 0$ strongly in $L_{K}^{2}\left(\mathbb{R}^{2}\right)$ it is enough to verify that $D_{n} \rightarrow 0$. By picking $r_{i}>1, i=1,2,3$, such that $1 / r_{1}+1 / r_{2}+1 / r_{3}=1$ and $r_{2}>2$, we can use Hölder inequality again to get

$$
\begin{aligned}
D_{n} & \leq\left(\int K(x)^{r_{1}}\left|u_{n}\right|^{2 r_{1}}\right)^{1 / r_{1}}\left\|w_{n}\right\|_{L^{r_{2}\left(\mathbb{R}^{2}\right)}}\left(\int\left(e^{\alpha r_{3}\left\|u_{n}\right\|^{2}\left(u_{n} /\left\|u_{n}\right\|\right)^{2}}-1\right)\right)^{1 / r_{3}} \\
& \leq C_{r_{1}}\left\|u_{n}\right\|^{2}\left\|w_{n}\right\|_{r_{2}}\left(\int\left(e^{\alpha r_{3}\left\|u_{n}\right\|^{2}\left(u_{n} /\left\|u_{n}\right\|\right)^{2}}-1\right)\right)^{1 / r_{3}}
\end{aligned}
$$

where we have used $2.2, K(x) \geq 1$ and the inequality

$$
\begin{equation*}
\left(e^{s}-1\right)^{r} \leq\left(e^{s r}-1\right), \quad \forall s \geq 0, r>1 \tag{2.7}
\end{equation*}
$$

Since $\alpha\left\|u_{n}\right\|^{2} \leq \alpha \rho^{2}<4 \pi$, we can choose r_{3} close to 1 in such way that $\alpha r_{3}\left\|u_{n}\right\|^{2} \leq$ $\gamma<4 \pi$, and therefore it follows from (2.1) that

$$
\sup _{n \in \mathbb{N}} \int\left(e^{\alpha r_{3}\left\|u_{n}\right\|^{2}\left(u_{n} /\left\|u_{n}\right\|\right)^{2}}-1\right) \leq C_{1} .
$$

Thus, since $w_{n} \rightarrow 0$ in $L_{K}^{r_{2}}\left(\mathbb{R}^{2}\right)$, we conclude that $D_{n} \rightarrow 0$.

3. The second solution

We devote this section to the proof that $\left(P_{\lambda}\right)$ has a second solution of Mountain Pass type. We recall that a sequence $\left(u_{n}\right) \subset X$ is called a $(P S)_{c}$ sequence for I_{λ} if $I_{\lambda}\left(u_{n}\right) \rightarrow c \in \mathbb{R}$ and $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$. We say that I_{λ} satisfies the Palais-Smale condition at level $c\left((P S)_{c}\right.$ for short) if any $(P S)_{c}$ sequence has a convergente subsequence.

Lemma 3.1. Suppose that f satisfies $\left(f_{0}\right)-\left(f_{3}\right)$ and let $\left(u_{n}\right) \subset X$ be a $(P S)_{c}$ sequence for I. Then, up to a subsequece, $u_{n} \rightharpoonup u$ weakly in X, with $I^{\prime}(u)=0$. Moreover,

$$
\int K(x) F\left(u_{n}\right) \rightarrow \int K(x) F(u), \quad \limsup _{n \rightarrow+\infty} \int_{B_{R}(0)^{c}} K(x) f\left(u_{n}\right) u_{n} \mathrm{~d} x=0
$$

for any $R>0$.
Proof. By using $\left(f_{2}\right)$, Hölder's inequality and the embedding $X \hookrightarrow L_{K}^{q \sigma_{q}^{\prime}}\left(\mathbb{R}^{\mathbb{N}}\right)$, we obtain

$$
\begin{aligned}
c+o_{n}(1)\left\|u_{n}\right\|+o_{n}(1) & =I_{\lambda}\left(u_{n}\right)-\frac{1}{\theta} I_{\lambda}^{\prime}\left(u_{n}\right) u_{n} \\
& \geq\left(\frac{1}{2}-\frac{1}{\theta}\right)\left\|u_{n}\right\|^{2}-C_{1}\left(\frac{1}{q}-\frac{1}{\theta}\right)\|a\|_{\sigma_{q}}\left\|u_{n}\right\|^{q}
\end{aligned}
$$

where $o_{n}(1)$ stands for a quantity approchng zero as $n \rightarrow+\infty$. Since $1<q<2$ the above inequality implies that $\left(u_{n}\right)$ is bounded and therefore, up to a subsequence, $u_{n} \rightharpoonup u$ weakly in X.

In order to verify that $I_{\lambda}^{\prime}(u)=0$ we consider $\phi \in C_{c, \text { rad }}^{\infty}\left(\mathbb{R}^{2}\right)$. Arguing as in the proof of Proposition 2.4 we can prove that

$$
\lim _{n \rightarrow+\infty} \int K(x) a(x)\left(u_{n}^{+}\right)^{q-1} \phi=\int K(x) a(x)\left(u^{+}\right)^{q-1} \phi
$$

Moreover, $I_{\lambda}^{\prime}\left(u_{n}\right) u_{n}=o_{n}(1)$ and Hölder's inequality show that $\left(\int K(x) f\left(u_{n}\right) u_{n}\right)$ is bounded. Thus, since $K \geq 1$, we obtain

$$
\int\left|f\left(u_{n}\right) u_{n}\right|=\int f\left(u_{n}\right) u_{n} \leq \int K(x) f\left(u_{n}\right) u_{n} \leq C_{2}
$$

and it follows from [11, Lemma 2.1] that $f\left(u_{n}\right) \rightarrow f(u)$ in $L_{l o c}^{1}\left(\mathbb{R}^{2}\right)$. Hence, since K is bounded in the support of ϕ, we have that

$$
\lim _{n \rightarrow+\infty} \int K(x) f\left(u_{n}\right) \phi=\int K(x) f(u) \phi
$$

Altogether, these convergences show that

$$
0=\lim _{n \rightarrow+\infty} I_{\lambda}^{\prime}\left(u_{n}\right) \phi=I_{\lambda}^{\prime}(u) \phi, \quad \forall \phi \in C_{c, r a d}^{\infty}\left(\mathbb{R}^{2}\right)
$$

By density we conclude that $I_{\lambda}^{\prime}(u)=0$.
The other two convergences stated in the lemma can be proved arguing along the same lines of [13, Lemma 4.5]. We omite the details.

As a consequence of the above lemma, we have the following local compactness result:

Proposition 3.2. Suppose that f satisfies $\left(f_{0}\right)-\left(f_{3}\right)$. For any $\lambda \in\left(0, \lambda^{*}\right)$, let $u_{\lambda} \in X$ be the solution given by Proposition 2.4. If $u=0$ and $u=u_{\lambda}$ are the only critical points of I_{λ} then this functional satisfies the $(P S)_{c}$ condition for any

$$
c<I_{\lambda}\left(u_{\lambda}\right)+\frac{2 \pi}{\alpha_{0}} .
$$

Proof. Let $\left(u_{n}\right) \subset X$ be such that $I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0$ and $I_{\lambda}\left(u_{n}\right) \rightarrow c<I_{\lambda}\left(u_{\lambda}\right)+2 \pi / \alpha_{0}$. Acoording to Lemma3.1, we may suppose that $u_{n} \rightharpoonup u$ weakly in X, with $I_{\lambda}^{\prime}(u)=0$. It follows from Young's inequality that, for a.e. $x \in \mathbb{R}^{2}$,

$$
K(x) a(x)\left(u_{n}^{+}\right)^{q} \leq \frac{1}{\sigma_{q}} K(x) a(x)^{\sigma_{q}}+\frac{1}{\sigma_{q}^{\prime}} K(x)\left|u_{n}\right|^{q \sigma_{q}^{\prime}}
$$

Recalling that the embedding $X \hookrightarrow L^{q \sigma_{q}^{\prime}}\left(\mathbb{R}^{2}\right)$ is compact, we obtain an integrable function which dominates the left-hand side above. Since we also have pointwise convergence we can use Lebesgue's Theorem to get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} K(x) a(x)\left(u_{n}^{+}\right)^{q}=\int K(x) a(x)\left(u^{+}\right)^{q} \tag{3.1}
\end{equation*}
$$

So, we infer from Lemma 3.1 and $I_{\lambda}\left(u_{n}\right) \rightarrow c$ that

$$
\lim _{n \rightarrow+\infty}\left\|u_{n}\right\|^{2}=2 c+2\left[\frac{\lambda}{q} \int K(x) a(x)\left(u^{+}\right)^{q}+\int K(x) F(u)\right] .
$$

Since $I_{\lambda}^{\prime}(u)=0$, we have that $u=0$ or $u=u_{\lambda}$. If $u=0$, it follows from the above equation and $I_{\lambda}\left(u_{\lambda}\right)<0$ that

$$
\lim _{n \rightarrow+\infty}\left\|u_{n}\right\|^{2}=2 c<2 I_{\lambda}\left(u_{\lambda}\right)+\frac{4 \pi}{\alpha_{0}}<\frac{4 \pi}{\alpha_{0}}
$$

and therefore we can argue as in the proof of Proposition 2.4 to conclude that $u_{n} \rightarrow 0$ strongly in X. Actually, in the final part of the argument we need to choose $\alpha>\alpha_{0}$ and $r_{3}>1$ sufficienttly close to α_{0} and 1 , respectively, in order to guarantee that $\alpha r_{3}\left\|u_{n}\right\|^{2} \leq \gamma<4 \pi$.

It remains to consider the case $u=u_{\lambda}$. First notice that

$$
\begin{equation*}
o_{n}(1)=I_{\lambda}^{\prime}\left(u_{n}\right) u_{n}=\left\|u_{n}\right\|^{2}-\lambda \int K(x) a(x)\left(u_{n}^{+}\right)^{q}-\int K(x) f\left(u_{n}\right) u_{n} \tag{3.2}
\end{equation*}
$$

We claim that

$$
\lim _{n \rightarrow+\infty} \int K(x) f\left(u_{n}\right) u_{n}=\int K(x) f(u) u
$$

If this is true, we can use $(3.1)-(3.2)$ to obtain

$$
o_{n}(1)=I_{\lambda}^{\prime}\left(u_{n}\right) u_{n}=\left\|u_{n}\right\|^{2}-\|u\|^{2}+I_{\lambda}^{\prime}(u) u+o_{n}(1) .
$$

Recalling that $I_{\lambda}^{\prime}(u) u=0$, we conclude that $\left\|u_{n}\right\| \rightarrow\|u\|$ and therefore $u_{n} \rightarrow u$ strongly in X.

In order to prove the claim we first notice that, by Lemma 3.1, it is sufficient to show that, for any $R>0$, there holds

$$
\lim _{n \rightarrow+\infty} \int_{B_{R}(0)} K(x) f\left(u_{n}\right) u_{n} \mathrm{~d} x=\int_{B_{R}(0)} K(x) f(u) u \mathrm{~d} x
$$

As in the first case, we have that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\|u_{n}\right\|^{2}=2\left(c+c_{0}\right)>0 \tag{3.3}
\end{equation*}
$$

with

$$
c_{0}:=\frac{\lambda}{q} \int K(x) a(x)\left(u^{+}\right)^{q}+\int K(x) F(u)
$$

Hence, if we set $v_{n}:=u_{n} /\left\|u_{n}\right\|$, we conclude that $v_{n} \rightharpoonup v:=u_{\lambda}\left[2\left(c+c_{0}\right)\right]^{-1 / 2}$ weakly in X. If we pick $\alpha>\alpha_{0}$ in such way that $c<I_{\lambda}\left(u_{\lambda}\right)+(2 \pi) / \alpha$ a straightforward computation provides

$$
2 \alpha\left(c+c_{0}\right)<\frac{4 \pi}{1-\|v\|^{2}} .
$$

From (3.3), we obtain $\gamma>0$ such that $\alpha\left\|u_{n}\right\|^{2}<\gamma<(4 \pi) /\left(1-\|v\|^{2}\right)$. We now pick $1<\beta<2$ close to 1 in such way that

$$
\alpha \beta\left\|u_{n}\right\|^{2}<\gamma \beta<\frac{4 \pi}{1-\|v\|^{2}}
$$

By using Theorem 2.2 with $p=\gamma \beta$, we conclude that

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \int K(x) v_{n}^{2}\left(e^{\alpha \beta\left\|u_{n}\right\|^{2} v_{n}^{2}}-1\right)<\sup _{n \in \mathbb{N}} \int K(x) v_{n}^{2}\left(e^{\gamma \beta v_{n}^{2}}-1\right)<\infty . \tag{3.4}
\end{equation*}
$$

Up to a subsequence, we have that $u_{n} \rightarrow u$ strongly in $L^{2}\left(B_{R}(0)\right)$, and therefore there exists $\psi \in L^{2}\left(B_{R}(0)\right)$ such that $\left|u_{n}(x)\right|^{2} \leq \psi(x)^{2}$ a.e. in $B_{R}(0)$. By (2.3), we get

$$
\begin{equation*}
\int_{A} K(x) f\left(u_{n}\right) u_{n} \mathrm{~d} x \leq C_{1} \int_{A} \psi(x)^{2} \mathrm{~d} x+C_{2} \int_{A} K(x)\left|u_{n}\right|^{2 / \beta}\left(e^{\alpha u_{n}^{2}}-1\right) \mathrm{d} x \tag{3.5}
\end{equation*}
$$

for any measurable subset $A \subset B_{R}(0)$. Hölder's inequality, 2.7) and the definition of v_{n} provide

$$
\begin{aligned}
\int_{A} K(x)\left|u_{n}\right|^{2 / \beta} & \left(e^{\alpha u_{n}^{2}}-1\right) \mathrm{d} x \\
& \leq\left(\int_{A} K(x) \mathrm{d} x\right)^{1 / \beta^{\prime}}\left(\int_{A} K(x) u_{n}^{2}\left(e^{\alpha \beta u_{n}^{2}}-1\right) \mathrm{d} x\right)^{1 / \beta} \\
& \leq\left\|u_{n}\right\|^{2 / \beta}\|K\|_{L^{1}(A)}^{1 / \beta^{\prime}}\left(\int K(x) v_{n}^{2}\left(e^{\alpha \beta\left\|u_{n}\right\|^{2} v_{n}^{2}}-1\right)\right)^{1 / \beta}
\end{aligned}
$$

This, (3.5), 3.4 and the boundedness of (u_{n}) imply that

$$
\int_{A} K(x) f\left(u_{n}\right) u_{n} \mathrm{~d} x \leq C_{1}\|\psi\|_{L^{2}(A)}+C_{3}\|K\|_{L^{1}(A)}^{1 / \beta^{\prime}}
$$

and therefore the first integral above is uniformly small provided the measure of A is small. Hence, the set $\left\{K(x) f\left(u_{n}\right) u_{n}\right\}$ is uniformly integrable and therefore a standard application of Egoroff's Theorem implies that $K(x) f\left(u_{n}\right) u_{n} \rightarrow K(x) f(u) u$ in $L^{1}\left(B_{R}(0)\right)$. The proposition is proved.

Before presenting the proof of our main theorem, we shall verify that, for any $p \geq 2$, the constant S_{p} defined in 1.1 is attained by a nonnegative function $\omega_{p} \in X$ such that $\left\|\omega_{p}\right\|_{p}=1$. Indeed, let $\left(u_{n}\right) \subset X$ be such that $\left\|u_{n}\right\|_{p}=1$ and $\left\|u_{n}\right\|^{2} \rightarrow S_{p}$. Up to a subsequence, $u_{n} \rightharpoonup \omega_{p}$ weakly in X and therefore $\left\|\omega_{p}\right\|^{2} \leq \liminf _{n \rightarrow+\infty}\left\|u_{n}\right\|^{2}=S_{p}$. Due to the compactness of the embedding $X \hookrightarrow L_{K}^{p}\left(\mathbb{R}^{2}\right)$, we have that $u_{n} \rightarrow \omega_{p}$ strongly in $L_{K}^{p}\left(\mathbb{R}^{2}\right)$, and therefore $\left\|\omega_{p}\right\|_{p}=1$. Hence, $S_{p} \leq\left\|\omega_{p}\right\|^{2}$ and we conlude that S_{p} is attained by ω_{p}. Since we may replace u_{n} by $\left|u_{n}\right|$ in the former argument, the strong convergence in $L_{K}^{p}\left(\mathbb{R}^{2}\right)$ show that we may assume $\omega_{p} \geq 0$.

Proof of Theorem 1.1. Let $\lambda_{*}>0$ be given by Proposition 2.4. For any $\lambda \in\left(0, \lambda^{*}\right)$ there exists a solution u_{λ} such that $I_{\lambda}\left(u_{\lambda}\right)<0$. Recall that such solution was
obtained by a minimization argument on the ball $B_{\rho}(0)$. Hence, by considering a small ball if necessary, we may assume that the solutions $\left(u_{\lambda}\right)_{\lambda \in\left(0, \lambda^{*}\right)}$ are close to zero.

Consider $p_{0}>2$ given by $\left(f_{4}\right)$ and $\omega_{p_{0}}$ the function obtained before the beginning of this proof. By integrating the inequality in $\left(f_{4}\right)$ we obtain $F(s) \geq\left(C_{p_{0}} / p_{0}\right) s^{p_{0}}$, for any $s \geq 0$. Thus

$$
\begin{equation*}
I\left(t \omega_{p_{0}}\right) \leq\left[\frac{t^{2}}{2}\left\|\omega_{p_{0}}\right\|^{2}-C_{p_{0}} \frac{t^{p}}{p}\right]-\lambda \frac{t^{q}}{q} \int K(x) a(x) \omega_{p_{0}}^{q} \tag{3.6}
\end{equation*}
$$

from which it follows that $I_{\lambda}\left(t \omega_{p_{0}}\right) \rightarrow-\infty$ as $t \rightarrow+\infty$. Hence, there exists $t_{0}>0$ large such that $e:=t_{0} \omega_{p_{0}}$ verifies $\|e\|>\rho$ and $I_{\lambda}(e)<0$, for any $\lambda \in\left(0, \lambda^{*}\right)$. This and (2.4) show that we can define the Mountain Pass level

$$
c_{\lambda}:=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]} I_{\lambda}(\gamma(t))
$$

where $\Gamma:=\{\gamma \in C([0,1], X): \gamma(0)=0, \gamma(1)=e\}$. It is clear from this definition that

$$
\begin{equation*}
c_{\lambda} \leq \max _{t \geq 0} I_{\lambda}\left(t \omega_{p_{0}}\right) \tag{3.7}
\end{equation*}
$$

In order to estimate c_{λ} we call $g(t)$ the function into the brackets in (3.6) and use $\left(f_{4}\right)$ again to obtain, for any $t \geq 0$,

$$
g(t) \leq \max _{\tau \geq 0}\left[\frac{\tau^{2}}{2} \|\left.\omega_{p_{0}}\right|^{2}-C_{p_{0}} \frac{\tau^{p}}{p}\right]=\gamma:=\frac{\left(p_{0}-2\right)}{2 p_{0}} \frac{S_{p_{0}}^{p_{0} /\left(p_{0}-2\right)}}{C_{p_{0}}^{2 /\left(p_{0}-2\right)}}<\frac{2 \pi}{\alpha_{0}} .
$$

Notice that γ is independent of λ. So, since $I_{\lambda}\left(u_{\lambda}\right) \rightarrow 0^{-}$as $\lambda \rightarrow 0^{+}$, we can find $\lambda_{*} \in\left(0, \lambda^{*}\right)$ such that

$$
\max _{t \geq 0} I_{\lambda}\left(t \omega_{p_{0}}\right) \leq \max _{t \geq 0}\left\{g(t)-\lambda \frac{t^{q}}{q} \int K(x) a(x) \omega_{p_{0}}^{p}\right\}<I_{\lambda}\left(u_{\lambda}\right)+\frac{2 \pi}{\alpha_{0}}, \quad \forall \lambda \in\left(0, \lambda_{*}\right)
$$

Thus, we infer from (3.7) that

$$
c_{\lambda}<I_{\lambda}\left(u_{\lambda}\right)+\frac{2 \pi}{\alpha_{0}}, \quad \forall \lambda \in\left(0, \lambda_{*}\right)
$$

We can now obtain a second nonzero solution, for $\lambda \in\left(0, \lambda_{*}\right)$, in the following way: suppose, by contradiction, that the only critical points of I_{λ} are $u=0$ and $u=u_{\lambda}$. Then, it follows from the above inequality and Proposition 3.2 that I_{λ} satisfies the Palais-Smale condition at the level c_{λ}. The Mountain Pass Theorem provides a critical point $u_{M} \in X$ such that $I_{\lambda}\left(u_{M}\right)>0$. Since $I_{\lambda}(0)=0$ and $I_{\lambda}\left(u_{\lambda}\right)<0$, we have that $u_{M} \notin\left\{0, u_{\lambda}\right\}$, which is a contradiction. Hence, there is another critical point different from 0 and u_{λ}. The theorem is proved.

References

[1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 393-413.
[2] C.O. Alves, Multiple positive solutions for equations involving critical Sobolev exponent in \mathbb{R}^{N}, Electron. J. Differential Equations (1997), no. 13, 10 pp. (electronic).
[3] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
[4] A. Ambrosetti, J. Garcia Azorero and I. Peral, Elliptic variational problems in \mathbb{R}^{N} with critical growth, J. Differential Equations 168 (2000), 10-32.
[5] J.G. Azorero and I.P. Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), 941- 957
[6] D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in \mathbb{R}^{2}, Comm. Partial Differential Equations 17 (1992), 407-435.
[7] P. Drábek and Y.X. Huang, Multiplicity of positive solutions for some quasilinear elliptic equation in \mathbb{R}^{N} with critical Sobolev exponent, J. Differential Equations 140 (1997), 106-132.
[8] D.G. deFigueiredo, J.P. Gossez, P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Functional Analysis 199 (2003) 452-467.
[9] D.G. deFigueiredo, J.P. Gossez and P. Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc. 8 (2006), 269-286.
[10] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. 11 (1987), 1103-1133.
[11] D.G. deFigueiredo, O.H. Miyagaki and B. Ruf, Elliptic equations in \mathbb{R}^{2} with nonlinearities in the critical growth range, Calc. Var. Partial Differential Equations 4 (1995), 139-153.
[12] D.G. deFigueiredo, J.M.B. do Ó and B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math. 55 (2002), 135-152.
[13] M.F. Furtado, E.S. Medeiros and U.B. Severo, A Trudinger-Moser inequality in a weighted Sobolev space and applications, Math. Nach. 287 (2104), 1255-1473.
[14] M.F. Furtado, E.S. Medeiros and U.B. Severo, AOn a Class of Semilinear Elliptic Eigenvalue Problems in \mathbb{R}^{2}, Proc. Edinburgh Math. Society 60 (2107), 107-126.
[15] M.F. Furtado, R. Ruviaro and J.P.P. Silva, Two solutions for an elliptic equation with fast increasing weight and concave-convex nonlinearities, Journal of Mathematical Analysis and Applications 416 (2014), 698-709.
[16] M.F. Furtado, J.P.P. Silva and B.N. Souza, Elliptic equations with weight and combined nonlinearities, Advanced Nonlinear Studies 16 (2016), 509-517.
[17] Z. Liu and Z.Q. Wang, Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys. 56 (2005), 609-629.
[18] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1985), 185-201.
[19] J.M.B. do Ó, N-Laplacian equations in \mathbb{R}^{N} with critical growth, Abstr. Appl. Anal. 2 (1997), 301-315.
[20] J.C. Pádua, E.A.B. Silva and S.H.M. Soares, Positive solutions of critical semilinear problems involving a sublinear term on the origin, Indiana Univ. Math. J. 55 (2006), 1091-1111.
[21] F.O.V. de Paiva, Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity, J. Functional Analysis 261 (2011), 2569-2586.
[22] B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in \mathbb{R}^{2}, J. Funct. Anal. 219 (2005), 340-367.
[23] E. Tonkes, A semilinear elliptic equation with convex and concave nonlinearities, Topol. Methods Nonlinear Anal. 13 (1999), 251-271.
[24] N.S. Trudinger, On the imbedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-484.
[25] Z. Zhang, M. Calanchi, B. Ruf, Elliptic equations in \mathbb{R}^{2} with one-sided exponential growth, Commun. Contemp. Math. 6 (2004), 947-971.

Universidade de Brasília, Departamento de Matemática, 70910-900, Braília-Df, Brazil
Email address: mfurtado@unb.br

[^0]: 1991 Mathematics Subject Classification. Primary 35J60; Secondary 35B33.
 Key words and phrases. concave-convex problems; critical exponential growth; TrudingerMoser inequality.

 The auhor was partially supported by CNPq/Brazil and FAPDF/Brazil.

