TWO SOLUTIONS FOR A PLANAR EQUATION WITH COMBINED NONLINEARITIES AND CRITICAL GROWTH

MARCELO F. FURTADO

ABSTRACT. We prove the existence of two nonnegative nontrivial solutions for the equation

$$-\Delta u - \frac{1}{2}(x \cdot \nabla u) = \lambda a(x)|u|^{q-2}u + f(u), \quad x \in \mathbb{R}^2,$$

where 1 < q < 2, *a* is indefinite in sign and the function f(s) behaves like $e^{\alpha s^2}$ at infinity. The results holds for small values of the parameter $\lambda > 0$.

1. INTRODUCTION

In this paper, we address the existence of nonegative solutions for the equation

$$(P_{\lambda}) \qquad -\Delta u + \frac{1}{2}(x \cdot \nabla u) = \lambda a(x)|u|^{q-2}u + f(u), \quad x \in \mathbb{R}^2,$$

where 1 < q < 2, a is a radial function which can change sign and the function $f \in C(\mathbb{R}, \mathbb{R})$ has critical growth, that is,

 (f_0) there exists $\alpha_0 > 0$ such that

$$\lim_{s \to +\infty} \frac{f(s)}{e^{\alpha s^2}} = \begin{cases} 0, & \text{if } \alpha > \alpha_0, \\ +\infty, & \text{if } \alpha < \alpha_0. \end{cases}$$

As it is well known, in dimension two the concept of criticality is related with the so called Trudinger-Moser inequality which appears in the pioneer works [18, 24]. After then, there is a vast literature concerning this kind of critical nonlinearities (see [1, 6, 11, 19, 22, 14] and references therein).

Before presenting our asumptions let us recall that, as quoted by Escobedo and Kavian in [10], the operator in (P_{λ}) naturally appears when we consider the existence of self-similar solutions for homogeneous heat equations. Actually, when one seek for solutions of the form $\omega(t, x) = t^{-1/(p-2)}u(t^{-1/2}x)$ for the evolution equation

$$\omega_t - \Delta \omega = |\omega|^{p-2} \omega, \quad t > 0, \ x \in \mathbb{R}^N,$$

we are lead to consider the elliptic equation

$$-\Delta u - \frac{1}{2} \left(x \cdot \nabla u \right) = \lambda u + |u|^{p-2} u, \qquad x \in \mathbb{R}^N.$$

In [10] the authors noticed that, if $K(x) := \exp(|x|^2/4)$, then

$$\operatorname{div}(K(x)\nabla u) = K(x)\left[\Delta u + \frac{1}{2}(x \cdot \nabla u)\right],$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 35J60; Secondary 35B33.

Key words and phrases. concave-convex problems; critical exponential growth; Trudinger-Moser inequality.

The auhor was partially supported by CNPq/Brazil and FAPDF/Brazil.

and it is therefore natural to seek solutions of (P_{λ}) in the closure of the infinitely differentiable radial functions with compact support $C^{\infty}_{c,rad}(\mathbb{R}^2)$ with respect to the norm

$$\|u\| := \left(\int_{\mathbb{R}^2} K(x) |\nabla u|^2 \mathrm{d}x\right)^{1/2}$$

As we shall see in Section 2, the space X defined above has nice properties. In particular, some versions of the usual Trudinger-Moser inequalities hold in X as well as continuous emdebbeding in the weighted Lebesgue spaces $L^p_K(\mathbb{R}^N)$ defined as the set of measurable and radial functions $u: \mathbb{R}^2 \to \mathbb{R}$ such that the integral $\int_{\mathbb{R}^2} K(x) |u|^p dx$ is finite. Thus, for any $p \ge 2$, it is well defined

(1.1)
$$S_p := \inf \left\{ \int_{\mathbb{R}^2} K(x) |\nabla u|^2 \, \mathrm{d}x \, : \, u \in X, \, \int_{\mathbb{R}^2} K(x) |u|^p \, \mathrm{d}x = 1 \right\}.$$

We denote by s' := s/(s-1) the conjugated exponent of s > 1. The basic assumptions on the potential a are the following:

- $(a_0) \ a(x) = a(|x|)$ for a.e. $x \in \mathbb{R}^2$:
- $\begin{array}{l} (a_1) \quad a \in L_K^{\sigma_q}(\mathbb{R}^N) \text{ for some } 2 \leq \sigma_q \leq (2/q)'; \\ (a_2) \quad \text{the set } \Omega_a^+ := \{x \in \mathbb{R}^N : a(x) > 0\} \text{ has an interior point.} \end{array}$

Concerning the nonlinearity f, besides the critical growth condition (f_0) , we also assume the following:

- $(f_1) \lim_{s \to 0} f(s)/s = 0;$
- (f_2) there exists $\theta_0 > 2$ such that

$$0 \le \theta_0 F(s) := \theta_0 \int_0^s f(t) \, \mathrm{d}t \le s f(s), \quad \forall s \ge 0.$$

 (f_3) for each $\theta > 2$, there exists $s_{\theta} > 0$ such that 0

$$\leq \theta F(s) \leq sf(s), \quad \forall s \geq s_{\theta}.$$

 (f_4) there exists $p_0 > 2$ such that

$$f(s) \ge C_{p_0} s^{p_0 - 1}, \quad \forall s \ge 0,$$

where

$$C_{p_0} > \left[\frac{(p_0 - 2)}{2p_0} \frac{\alpha_0}{2\pi}\right]^{(p_0 - 2)/2} S_{p_0}^{p_0/2}$$

and S_{p_0} is defined in (1.1).

In the main result of this paper we prove the following multiplicity result:

Theorem 1.1. Suppose that 1 < q < 2, a and f satisfy $(a_0) - (a_2)$ and $(f_0) - (f_4)$, respectively. Then there exists $\lambda_* > 0$ such that, for any $\lambda \in (0, \lambda_*)$, Problem (P_{λ}) has at least two nonzero nonnegative solutions.

In the proofs, we apply variational methods. The first solution is obtained by a minimization argument and the second one as an application of the Mountain Pass Theorem. We are going to use the variational framework introduced in [13] to deal with the critical range of the function f. The hypothesis (f_3) is important to get some convergence results and it has already appeared in [20, 25]. Moreover, this condition is a consequence of

 (\widehat{f}_3) there exist constants $R_0, M_0 > 0$ such that

$$0 < F(s) \le M_0 f(s), \quad \forall s \ge R_0,$$

which has been used for instance in the papers [11, 12]. Condition (f_4) is a version of another one introduced in [6] and it is used to correctly localize the minimax level of the energy functional associated to (P_{λ}) .

The main motivation for our result comes from the concave-convex equation

$$-\Delta u = \lambda a(x)|u|^{q-2}u + b(x)|u|^{p-2}u, \quad u \in H^1_0(\Omega),$$

with 1 < q < 2, $\Omega \subset \mathbb{R}^N$ open and bounded, $N \ge 3$ and $2 . In a celebrated work Ambrosetti, Brezis and Cerami [3] supposed that <math>a(x) \equiv b(x) \equiv 1$ and prove that the problem has at least two positive solutions provided $\lambda \in (0, \Lambda)$. After this work, many results with combined nonlinearities have appeared. Since it impossible to give a complet list of reference we cite [5, 7, 8, 20, 9, 21, 16] and the references therein. There are also some results for the unbounded case $\Omega = \mathbb{R}^N$. In this setting, we need to require some integrability conditions on a and b in order to deal with the problem variationally. We can cite, among other results, the papers [2, 23, 4, 17]. We also cite the recent paper [15] where the authors considered the version of (P_λ) for higher dimensions $N \ge 3$. The main result of this paper complement the aforementioned works since we deal with the operator $u \mapsto \Delta u + (1/2)(x \cdot \nabla u)$ and consider the 2-dimensional case.

The paper contains two more sections: in the next one we present the variational setting to deal with (P_{λ}) and obtain the first solution. In Section 3, we prove that Problem (P_{λ}) has a second solution.

2. VARIATIONAL SETTING AND THE FIRST SOLUTION

Throughout the paper we write $\int u$ instead of $\int_{\mathbb{R}^2} u(x) dx$. Since we are looking for nonnegative solutions we may assume that f(s) = 0, for any $s \leq 0$. By (f_1) , this assumption does not affect the continuity of f.

In order to present the functional space to deal with our problem we consider $C_{c,rad}^{\infty}(\mathbb{R}^2)$ the space of infinitely differentiable radial functions with compact support and denote by X the closure of $C_{c,rad}^{\infty}(\mathbb{R}^2)$ with respect to the norm

$$||u|| := \left(\int K(x)|\nabla u|^2\right)^{1/2}$$

where

$$K(x) := e^{|x|^2/4}, \quad \forall x \in \mathbb{R}^2.$$

1

For each $p \geq 2$, we also consider the weighted Lebesgue space $L_K^p(\mathbb{R}^2)$ of all the radial measurable functions $u : \mathbb{R}^2 \to \mathbb{R}$ such that

$$||u||_p := \left(\int K(x)|u|^p\right)^{1/p} < \infty.$$

As proved in [13, Lemma 2.1], the space X is compactally embedded into the Lebesgue spaces $L_K^p(\mathbb{R}^2)$ for any $p \in [2, \infty)$. Moreover, the following version of the Trudinger-Moser inequality holds:

Theorem 2.1. For any $p \geq 2$, $u \in X$ and $\alpha > 0$ we have that the function $K(x)|u|^p(e^{\alpha u^2}-1) \in L^1(\mathbb{R}^2)$. Moreover, if $||u|| \leq M$ and $\alpha M^2 < 4\pi$, then there exists $C = C(M, \alpha, p) > 0$ such that

$$\int K(x)|u|^{p}(e^{\alpha u^{2}}-1) \leq C(M,\alpha,p)||u||^{p}.$$

Proof. See [13, Theorem 1.1 and Corollary 1.2].

Actually, in paper [13] the authors established the so called Trudinger-Moser inequalities for the space X. The above result is a counterpart of the following well known result (see [6, 19]): for any $u \in W^{1,2}(\mathbb{R}^2)$ and $\alpha > 0$ it holds $(e^{\alpha u^2} - 1) \in L^1(\mathbb{R}^2)$. Moreover, if $\||\nabla u\||_{L^2(\mathbb{R}^2)} \leq 1$, $\|u\|_{L^2(\mathbb{R}^2)} \leq M < \infty$ and $\alpha < 4\pi$, then there exists $C = C(M, \alpha)$ such that

(2.1)
$$\int (e^{\alpha u^2} - 1) \le C(M, \alpha).$$

Moreover, we also have the following improvement of the Trudinger-Moser inequality:

Theorem 2.2. Let $(v_n) \subset X$ be such that $||v_n|| = 1$ and $v_n \rightharpoonup v$ weakly in X, with ||v|| < 1. Then, for each 0 , up to a subsequence it holds

$$\sup_{n\in\mathbb{N}}\int K(x)v_n^2(e^{pv_n^2}-1)<\infty.$$

Proof. See [13, Theorem 1.3].

Finnaly, we quote an auxiliar result which will be useful (see [13, equation (2.4)]): for any $p \ge 1$, there exists $C_p > 0$ such that

(2.2)
$$\left(\int K(x)^p |u|^{2p}\right) \le C_p ||u||^2, \quad \forall u \in X$$

Moreover, the space X is continuously embedded into $W^{1,2}(\mathbb{R}^2)$.

In the sequel we show how we can use the Trundinger-Moser inequality to define the energy functional associated to the problem (P_{λ}) . Let $\alpha > \alpha_0$ be given by (f_1) and $p \geq 1$. By using the critical growth condition (f_0) we obtain

$$\lim_{|s| \to +\infty} \frac{f(s)}{|s|^{p-1}(e^{\alpha s^2} - 1)} = 0.$$

This and (f_1) imply that, for any given $\varepsilon > 0$, there exists $C_{\varepsilon} > 0$ such that

(2.3)
$$\max\{|f(s)s|, |F(s)|\} \le \varepsilon s^2 + C_{\varepsilon}|s|^p (e^{\alpha s^2} - 1), \quad \forall s \in \mathbb{R}.$$

This inequality with p = 2 and Theorem 2.1 imply that the functional $u \mapsto \int K(x)F(u)$ belongs to $C^1(X, \mathbb{R})$.

Given $u \in X$, we set $u^+(x) := \max\{u(x), 0\}$. By Hölder's inequality and (a_1) , we get

$$\left|\int K(x)a(x)(u^+)^q\right| \le \|a\|_{\sigma_q} \left(\int K(x)|u|^{q\sigma'_q}\right)^{1/\sigma'_q}$$

Since $q\sigma'_q \geq 2$, the right-hand side above is finite. Thus, by using some standard calculations we can show that the functional $I_{\lambda} : X \to \mathbb{R}$ given by

$$I_{\lambda}(u) := \frac{1}{2} \int K(x) |\nabla u|^2 - \frac{\lambda}{q} \int K(x) a(x) (u^+)^q - \int K(x) F(u)$$

is well defined, it belongs to $C^1(X, \mathbb{R})$ and its critical points are exactly the weak solutions of the equation (P_{λ}) . If $I'_{\lambda}(u) = 0$ and $u^-(x) := \max\{-u(x), 0\}$, then $0 = I_{\lambda}(u)u^- = -||u^-||^2$, and therefore we conclude that $u \ge 0$ a.e. in \mathbb{R}^2 .

4

Since 1 < q < 2, we can find the first solution for our problem by using a minimization argument in a small ball centered at the origin. More specifically, we have the following:

Lemma 2.3. Suppose that f satisfies $(f_0) - (f_1)$. Then there exists $\lambda^*, \rho > 0$ such that, for any $\lambda \in (0, \lambda^*)$, there hold

(2.4)
$$I_{\lambda}(u) \ge \rho^2/8, \text{ if } ||u|| = \rho, \quad I_{\lambda}(u) \ge -\rho^2/8, \text{ if } ||u|| \le \rho.$$

Proof. Since the map $J(u) := \int K(x)a(x)(u^+)^q$ is continuous at u = 0, for any given $\varepsilon > 0$, there exists $\rho_1 > 0$ such that $|J(u)| \le q\varepsilon$, whenever $||u|| \le \rho_1$. Thus, we can pick $\alpha > \alpha_0$ and use (2.3) to obtain

$$I_{\lambda}(u) \geq \frac{1}{2} \|u\|^2 - \lambda \varepsilon - \varepsilon \int K(x) u^2 - C_{\varepsilon} \int K(x) |u|^p (e^{\alpha u^2} - 1), \quad \forall \|u\| \leq \rho_1.$$

By taking ρ_1 small if necessary, we may assume that $\alpha \rho_1^2 < 4\pi$, and therefore it follows from Theorem 2.1 with p > 2 and the Sobolev embedding $X \hookrightarrow L^2_K(\mathbb{R}^2)$ that

$$I_{\lambda}(u) \geq \frac{1}{2} \left(1 - \varepsilon C_1 - C(\rho_1, \alpha, p) \|u\|^{p-2} \right) \|u\|^2 - \lambda \varepsilon, \quad \forall \|u\| \leq \rho_1.$$

Since p > 2, we can take $\varepsilon > 0$ small and obtain $0 < \rho < \rho_1$ such that

$$I_{\lambda}(u) \ge \frac{1}{4} \|u\|^2 - \lambda \varepsilon, \quad \forall \|u\| \le \rho.$$

A straightforward computation shows that the lemma holds for $\lambda^* := \rho^2/(8\varepsilon)$. \Box

We are able to obtain our first solution.

Proposition 2.4. Suppose that f satisfies $(f_0) - (f_1)$ and let $\lambda^* > 0$ be given by the previous lemma. Then, for any $\lambda \in (0, \lambda^*)$, the infimum

$$b_{\lambda} := \inf_{u \in \overline{B_{\rho}(0)}} I_{\lambda}(u) < 0,$$

is achieved by a nonzero solution u_{λ} of (P_{λ}) .

Proof. It follows from (2.4) that b_{λ} is well defined. In order to verify that $b_{\lambda} < 0$ we consider the set Ω_a^+ given by (a_2) and $\phi \in C_c^{\infty}(\Omega_a^+)$ such that $\int K(x)a(x)\phi^q > 0$. Given $\varepsilon > 0$, by (f_1) , there exists $\delta > 0$ such that $|F(s)| \leq \varepsilon s^2$, for any $|s| \leq \delta$. Thus,

$$I_{\lambda}(t\phi) \leq \frac{t^2}{2} \|\phi\|^2 - \lambda \frac{t^q}{q} \int K(x) a(x) \phi^q - \varepsilon^2 t^2 \int K(x) \phi^2,$$

whenever $0 < t \|\phi\|_{L^{\infty}(\mathbb{R}^2)} \leq \delta$. Then $I_{\lambda}(t\phi) < 0$ if t > 0 is small and we conclude that $b_{\lambda} < 0$. It follows from (2.4) and the Ekeland Variational Principle that, for each $\lambda \in (0, \lambda^*)$ fixed, there exists a sequence $(u_n) \subset B_{\rho}(0)$ such that

$$I_{\lambda}(u_n) \to b_{\lambda} < 0, \qquad I'_{\lambda}(u_n) \to 0.$$

We claim that, along a subsequence, $u_n \to u_\lambda$ strongly in X. If this is true, it follows that $I_\lambda(u_\lambda) = b_\lambda < 0$ and therefore $u_\lambda \neq 0$ is a nonegative critical point of I_λ .

It remains to prove the claim. Since $(u_n) \subset X$ is bounded we may suppose that $u_n \rightharpoonup u_\lambda$ weakly in X. We set $w_n := u_n - u_\lambda$ and notice that, since $w_n \rightharpoonup 0$ weakly in X, we have that

(2.5)
$$I'_{\lambda}(u_n)w_n = ||u_n||^2 - ||u_{\lambda}||^2 - \lambda \int K(x)a(x)(u_n^+)^{q-1}w_n - \int K(x)f(u_n)w_n.$$

We claim that

(2.6)
$$\lim_{n \to +\infty} \int K(x) a(x) (u_n^+)^{q-1} w_n = 0, \quad \lim_{n \to \infty} \int K(x) f(u_n) w_n = 0.$$

If this is true, it follows from (2.5) that $||u_n|| \to ||u_\lambda||$ and therefore the weak convergence of (u_n) implies that $u_n \to u_\lambda$ strongly in X.

In order to verify (2.6) we recall that $\sigma_q \leq 2/(2-q)$ to obtain $p \geq 2$ such that

$$\frac{1}{\sigma_q} + \frac{1}{2/(q-1)} + \frac{1}{p} = 1.$$

This and Hölder's inequality provide

$$\left|\int K(x)a(x)(u_n^+)^{q-1}w_n\right| \le ||a||_{\sigma_q} ||u_n||_2^{q-1} ||w_n||_p^p.$$

The first statament in (2.6) follows from this enquality and the compactness of the embedding $X \hookrightarrow L_K^p(\mathbb{R}^2)$. The proof of the second one is more envolved. We first apply (2.3) with p = 3 and Hölder's inequality to get

$$\left| \int K(x)f(u_n)w_n \right| \le \varepsilon \int K(x)|u_n||w_n| + C_\varepsilon \int K(x)|u_n|^2|w_n|(e^{\alpha u_n^2} - 1)$$
$$\le \varepsilon ||u_n||_2 ||w_n||_2 + C_\varepsilon D_n,$$

where

$$D_n := \int K(x) |u_n|^2 |w_n| (e^{\alpha u_n^2} - 1).$$

Since $w_n \to 0$ strongly in $L^2_K(\mathbb{R}^2)$ it is enough to verify that $D_n \to 0$. By picking $r_i > 1, i = 1, 2, 3$, such that $1/r_1 + 1/r_2 + 1/r_3 = 1$ and $r_2 > 2$, we can use Hölder inequality again to get

$$D_n \leq \left(\int K(x)^{r_1} |u_n|^{2r_1}\right)^{1/r_1} \|w_n\|_{L^{r_2}(\mathbb{R}^2)} \left(\int (e^{\alpha r_3 \|u_n\|^2 (u_n/\|u_n\|)^2} - 1)\right)^{1/r_3}$$
$$\leq C_{r_1} \|u_n\|^2 \|w_n\|_{r_2} \left(\int (e^{\alpha r_3 \|u_n\|^2 (u_n/\|u_n\|)^2} - 1)\right)^{1/r_3},$$

where we have used (2.2), $K(x) \ge 1$ and the inequality

(2.7)
$$(e^s - 1)^r \le (e^{sr} - 1), \quad \forall s \ge 0, r > 1.$$

Since $\alpha ||u_n||^2 \leq \alpha \rho^2 < 4\pi$, we can choose r_3 close to 1 in such way that $\alpha r_3 ||u_n||^2 \leq \gamma < 4\pi$, and therefore it follows from (2.1) that

$$\sup_{n \in \mathbb{N}} \int (e^{\alpha r_3 \|u_n\|^2 (u_n/\|u_n\|)^2} - 1) \le C_1$$

Thus, since $w_n \to 0$ in $L_K^{r_2}(\mathbb{R}^2)$, we conclude that $D_n \to 0$.

3. The second solution

We devote this section to the proof that (P_{λ}) has a second solution of Mountain Pass type. We recall that a sequence $(u_n) \subset X$ is called a $(PS)_c$ sequence for I_{λ} if $I_{\lambda}(u_n) \to c \in \mathbb{R}$ and $I'_{\lambda}(u_n) \to 0$. We say that I_{λ} satisfies the Palais-Smale condition at level c $((PS)_c$ for short) if any $(PS)_c$ sequence has a convergente subsequence. **Lemma 3.1.** Suppose that f satisfies $(f_0) - (f_3)$ and let $(u_n) \subset X$ be a $(PS)_c$ sequence for I. Then, up to a subsequece, $u_n \rightharpoonup u$ weakly in X, with I'(u) = 0. Moreover,

$$\int K(x)F(u_n) \to \int K(x)F(u), \qquad \limsup_{n \to +\infty} \int_{B_R(0)^c} K(x)f(u_n)u_n \, \mathrm{d}x = 0,$$

for any R > 0.

Proof. By using (f_2) , Hölder's inequality and the embedding $X \hookrightarrow L_K^{q\sigma'_q}(\mathbb{R}^{\mathbb{N}})$, we obtain

$$c + o_n(1) ||u_n|| + o_n(1) = I_{\lambda}(u_n) - \frac{1}{\theta} I'_{\lambda}(u_n) u_n$$

$$\geq \left(\frac{1}{2} - \frac{1}{\theta}\right) ||u_n||^2 - C_1 \left(\frac{1}{q} - \frac{1}{\theta}\right) ||a||_{\sigma_q} ||u_n||^q,$$

where $o_n(1)$ stands for a quantity approching zero as $n \to +\infty$. Since 1 < q < 2 the above inequality implies that (u_n) is bounded and therefore, up to a subsequence, $u_n \rightharpoonup u$ weakly in X.

In order to verify that $I'_{\lambda}(u) = 0$ we consider $\phi \in C^{\infty}_{c,rad}(\mathbb{R}^2)$. Arguing as in the proof of Proposition 2.4 we can prove that

$$\lim_{n \to +\infty} \int K(x) a(x) (u_n^+)^{q-1} \phi = \int K(x) a(x) (u^+)^{q-1} \phi.$$

Moreover, $I'_{\lambda}(u_n)u_n = o_n(1)$ and Hölder's inequality show that $(\int K(x)f(u_n)u_n)$ is bounded. Thus, since $K \ge 1$, we obtain

$$\int |f(u_n)u_n| = \int f(u_n)u_n \le \int K(x)f(u_n)u_n \le C_2$$

and it follows from [11, Lemma 2.1] that $f(u_n) \to f(u)$ in $L^1_{loc}(\mathbb{R}^2)$. Hence, since K is bounded in the support of ϕ , we have that

$$\lim_{n \to +\infty} \int K(x) f(u_n) \phi = \int K(x) f(u) \phi.$$

Altogether, these convergences show that

$$0 = \lim_{n \to +\infty} I'_{\lambda}(u_n)\phi = I'_{\lambda}(u)\phi, \qquad \forall \phi \in C^{\infty}_{c,rad}(\mathbb{R}^2).$$

By density we conclude that $I'_{\lambda}(u) = 0$.

The other two convergences stated in the lemma can be proved arguing along the same lines of [13, Lemma 4.5]. We omite the details. $\hfill \Box$

As a consequence of the above lemma, we have the following local compactness result:

Proposition 3.2. Suppose that f satisfies $(f_0) - (f_3)$. For any $\lambda \in (0, \lambda^*)$, let $u_{\lambda} \in X$ be the solution given by Proposition 2.4. If u = 0 and $u = u_{\lambda}$ are the only critical points of I_{λ} then this functional satisfies the $(PS)_c$ condition for any

$$c < I_{\lambda}(u_{\lambda}) + \frac{2\pi}{\alpha_0}.$$

Proof. Let $(u_n) \subset X$ be such that $I'_{\lambda}(u_n) \to 0$ and $I_{\lambda}(u_n) \to c < I_{\lambda}(u_{\lambda}) + 2\pi/\alpha_0$. According to Lemma 3.1, we may suppose that $u_n \rightharpoonup u$ weakly in X, with $I'_{\lambda}(u) = 0$. It follows from Young's inequality that, for a.e. $x \in \mathbb{R}^2$,

$$K(x)a(x)(u_n^+)^q \le \frac{1}{\sigma_q}K(x)a(x)^{\sigma_q} + \frac{1}{\sigma_q'}K(x)|u_n|^{q\sigma_q'}$$

Recalling that the embedding $X \hookrightarrow L^{q\sigma'_q}(\mathbb{R}^2)$ is compact, we obtain an integrable function which dominates the left-hand side above. Since we also have pointwise convergence we can use Lebesgue's Theorem to get

(3.1)
$$\lim_{n \to +\infty} K(x)a(x)(u_n^+)^q = \int K(x)a(x)(u^+)^q.$$

So, we infer from Lemma 3.1 and $I_{\lambda}(u_n) \to c$ that

$$\lim_{n \to +\infty} \|u_n\|^2 = 2c + 2\left[\frac{\lambda}{q}\int K(x)a(x)(u^+)^q + \int K(x)F(u)\right].$$

Since $I'_{\lambda}(u) = 0$, we have that u = 0 or $u = u_{\lambda}$. If u = 0, it follows from the above equation and $I_{\lambda}(u_{\lambda}) < 0$ that

$$\lim_{n \to +\infty} \|u_n\|^2 = 2c < 2I_\lambda(u_\lambda) + \frac{4\pi}{\alpha_0} < \frac{4\pi}{\alpha_0}.$$

and therefore we can argue as in the proof of Proposition 2.4 to conclude that $u_n \to 0$ strongly in X. Actually, in the final part of the argument we need to choose $\alpha > \alpha_0$ and $r_3 > 1$ sufficiently close to α_0 and 1, respectively, in order to guarantee that $\alpha r_3 ||u_n||^2 \leq \gamma < 4\pi$.

It remains to consider the case $u = u_{\lambda}$. First notice that

(3.2)
$$o_n(1) = I'_{\lambda}(u_n)u_n = ||u_n||^2 - \lambda \int K(x)a(x)(u_n^+)^q - \int K(x)f(u_n)u_n.$$

We claim that

$$\lim_{n \to +\infty} \int K(x) f(u_n) u_n = \int K(x) f(u) u.$$

If this is true, we can use (3.1)-(3.2) to obtain

$$o_n(1) = I'_{\lambda}(u_n)u_n = ||u_n||^2 - ||u||^2 + I'_{\lambda}(u)u + o_n(1).$$

Recalling that $I'_{\lambda}(u)u = 0$, we conclude that $||u_n|| \to ||u||$ and therefore $u_n \to u$ strongly in X.

In order to prove the claim we first notice that, by Lemma 3.1, it is sufficient to show that, for any R > 0, there holds

$$\lim_{n \to +\infty} \int_{B_R(0)} K(x) f(u_n) u_n \, \mathrm{d}x = \int_{B_R(0)} K(x) f(u) u \, \mathrm{d}x.$$

As in the first case, we have that

(3.3)
$$\lim_{n \to +\infty} \|u_n\|^2 = 2(c+c_0) > 0,$$

with

$$c_0 := \frac{\lambda}{q} \int K(x)a(x)(u^+)^q + \int K(x)F(u).$$

Hence, if we set $v_n := u_n/||u_n||$, we conclude that $v_n \rightharpoonup v := u_\lambda [2(c+c_0)]^{-1/2}$ weakly in X. If we pick $\alpha > \alpha_0$ in such way that $c < I_\lambda(u_\lambda) + (2\pi)/\alpha$ a straightforward computation provides

$$2\alpha(c+c_0) < \frac{4\pi}{1-\|v\|^2}$$

From (3.3), we obtain $\gamma > 0$ such that $\alpha ||u_n||^2 < \gamma < (4\pi)/(1 - ||v||^2)$. We now pick $1 < \beta < 2$ close to 1 in such way that

$$\alpha\beta\|u_n\|^2 < \gamma\beta < \frac{4\pi}{1-\|v\|^2}$$

By using Theorem 2.2 with $p = \gamma \beta$, we conclude that

(3.4)
$$\sup_{n \in \mathbb{N}} \int K(x) v_n^2 (e^{\alpha \beta \|u_n\|^2 v_n^2} - 1) < \sup_{n \in \mathbb{N}} \int K(x) v_n^2 (e^{\gamma \beta v_n^2} - 1) < \infty.$$

Up to a subsequence, we have that $u_n \to u$ strongly in $L^2(B_R(0))$, and therefore there exists $\psi \in L^2(B_R(0))$ such that $|u_n(x)|^2 \leq \psi(x)^2$ a.e. in $B_R(0)$. By (2.3), we get

(3.5)
$$\int_{A} K(x) f(u_n) u_n \, \mathrm{d}x \le C_1 \int_{A} \psi(x)^2 \, \mathrm{d}x + C_2 \int_{A} K(x) |u_n|^{2/\beta} (e^{\alpha u_n^2} - 1) \mathrm{d}x,$$

for any measurable subset $A \subset B_R(0)$. Hölder's inequality, (2.7) and the definition of v_n provide

$$\begin{split} \int_{A} K(x) |u_{n}|^{2/\beta} (e^{\alpha u_{n}^{2}} - 1) \, \mathrm{d}x \\ &\leq \left(\int_{A} K(x) \, \mathrm{d}x \right)^{1/\beta'} \left(\int_{A} K(x) u_{n}^{2} (e^{\alpha \beta u_{n}^{2}} - 1) \, \mathrm{d}x \right)^{1/\beta} \\ &\leq \|u_{n}\|^{2/\beta} \|K\|_{L^{1}(A)}^{1/\beta'} \left(\int K(x) v_{n}^{2} (e^{\alpha \beta \|u_{n}\|^{2} v_{n}^{2}} - 1) \right)^{1/\beta}. \end{split}$$

This, (3.5), (3.4) and the boundedness of (u_n) imply that

$$\int_{A} K(x) f(u_n) u_n \, \mathrm{d}x \le C_1 \|\psi\|_{L^2(A)} + C_3 \|K\|_{L^1(A)}^{1/\beta'}$$

and therefore the first integral above is uniformly small provided the measure of A is small. Hence, the set $\{K(x)f(u_n)u_n\}$ is uniformly integrable and therefore a standard application of Egoroff's Theorem implies that $K(x)f(u_n)u_n \to K(x)f(u)u$ in $L^1(B_R(0))$. The proposition is proved.

Before presenting the proof of our main theorem, we shall verify that, for any $p \geq 2$, the constant S_p defined in (1.1) is attained by a nonnegative function $\omega_p \in X$ such that $\|\omega_p\|_p = 1$. Indeed, let $(u_n) \subset X$ be such that $\|u_n\|_p = 1$ and $\|u_n\|^2 \to S_p$. Up to a subsequence, $u_n \to \omega_p$ weakly in X and therefore $\|\omega_p\|^2 \leq \liminf_{n \to +\infty} \|u_n\|^2 = S_p$. Due to the compactness of the embedding $X \hookrightarrow L_K^p(\mathbb{R}^2)$, we have that $u_n \to \omega_p$ strongly in $L_K^p(\mathbb{R}^2)$, and therefore $\|\omega_p\|_p = 1$. Hence, $S_p \leq \|\omega_p\|^2$ and we conclude that S_p is attained by ω_p . Since we may replace u_n by $|u_n|$ in the former argument, the strong convergence in $L_K^p(\mathbb{R}^2)$ show that we may assume $\omega_p \geq 0$.

Proof of Theorem 1.1. Let $\lambda_* > 0$ be given by Proposition 2.4. For any $\lambda \in (0, \lambda^*)$ there exists a solution u_{λ} such that $I_{\lambda}(u_{\lambda}) < 0$. Recall that such solution was

M.F. FURTADO

obtained by a minimization argument on the ball $B_{\rho}(0)$. Hence, by considering a small ball if necessary, we may assume that the solutions $(u_{\lambda})_{\lambda \in (0,\lambda^*)}$ are close to zero.

Consider $p_0 > 2$ given by (f_4) and ω_{p_0} the function obtained before the beginning of this proof. By integrating the inequality in (f_4) we obtain $F(s) \ge (C_{p_0}/p_0)s^{p_0}$, for any $s \ge 0$. Thus

(3.6)
$$I(t\omega_{p_0}) \le \left[\frac{t^2}{2} \|\omega_{p_0}\|^2 - C_{p_0} \frac{t^p}{p}\right] - \lambda \frac{t^q}{q} \int K(x) a(x) \omega_{p_0}^q$$

from which it follows that $I_{\lambda}(t\omega_{p_0}) \to -\infty$ as $t \to +\infty$. Hence, there exists $t_0 > 0$ large such that $e := t_0 \omega_{p_0}$ verifies $||e|| > \rho$ and $I_{\lambda}(e) < 0$, for any $\lambda \in (0, \lambda^*)$. This and (2.4) show that we can define the Mountain Pass level

$$c_{\lambda} := \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I_{\lambda}(\gamma(t)),$$

where $\Gamma := \{\gamma \in C([0,1], X) : \gamma(0) = 0, \gamma(1) = e\}$. It is clear from this definition that

(3.7)
$$c_{\lambda} \leq \max_{t>0} I_{\lambda}(t\omega_{p_0}).$$

In order to estimate c_{λ} we call g(t) the function into the brackets in (3.6) and use (f_4) again to obtain, for any $t \ge 0$,

$$g(t) \le \max_{\tau \ge 0} \left[\frac{\tau^2}{2} \|\omega_{p_0}\|^2 - C_{p_0} \frac{\tau^p}{p} \right] = \gamma := \frac{(p_0 - 2)}{2p_0} \frac{S_{p_0}^{p_0/(p_0 - 2)}}{C_{p_0}^{2/(p_0 - 2)}} < \frac{2\pi}{\alpha_0}$$

Notice that γ is independent of λ . So, since $I_{\lambda}(u_{\lambda}) \to 0^{-}$ as $\lambda \to 0^{+}$, we can find $\lambda_* \in (0, \lambda^*)$ such that

$$\max_{t \ge 0} I_{\lambda}(t\omega_{p_0}) \le \max_{t \ge 0} \left\{ g(t) - \lambda \frac{t^q}{q} \int K(x) a(x) \omega_{p_0}^p \right\} < I_{\lambda}(u_{\lambda}) + \frac{2\pi}{\alpha_0}, \quad \forall \lambda \in (0, \lambda_*).$$

Thus, we infer from (3.7) that

$$c_{\lambda} < I_{\lambda}(u_{\lambda}) + \frac{2\pi}{\alpha_0}, \quad \forall \lambda \in (0, \lambda_*).$$

We can now obtain a second nonzero solution, for $\lambda \in (0, \lambda_*)$, in the following way: suppose, by contradiction, that the only critical points of I_{λ} are u = 0 and $u = u_{\lambda}$. Then, it follows from the above inequality and Proposition 3.2 that I_{λ} satisfies the Palais-Smale condition at the level c_{λ} . The Mountain Pass Theorem provides a critical point $u_M \in X$ such that $I_{\lambda}(u_M) > 0$. Since $I_{\lambda}(0) = 0$ and $I_{\lambda}(u_{\lambda}) < 0$, we have that $u_M \notin \{0, u_{\lambda}\}$, which is a contradiction. Hence, there is another critical point different from 0 and u_{λ} . The theorem is proved. \Box .

References

- Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 393-413.
- [3] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122 (1994), 519-543.
- [4] A. Ambrosetti, J. Garcia Azorero and I. Peral, *Elliptic variational problems in* \mathbb{R}^N with critical growth, J. Differential Equations **168** (2000), 10-32.

10

- [5] J.G. Azorero and I.P. Alonso, Some results about the existence of a second positive solution in a quasilinear critical problem, Indiana Univ. Math. J. 43 (1994), 941-957
- [6] D. M. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in ℝ², Comm. Partial Differential Equations 17 (1992), 407-435.
- [7] P. Drábek and Y.X. Huang, Multiplicity of positive solutions for some quasilinear elliptic equation in \mathbb{R}^N with critical Sobolev exponent, J. Differential Equations 140 (1997), 106-132.
- [8] D.G. deFigueiredo, J.P. Gossez, P. Ubilla, Local superlinearity and sublinearity for indefinite semilinear elliptic problems, J. Functional Analysis 199 (2003) 452-467.
- [9] D.G. deFigueiredo, J.P. Gossez and P. Ubilla, Multiplicity results for a family of semilinear elliptic problems under local superlinearity and sublinearity, J. Eur. Math. Soc. 8 (2006), 269-286.
- [10] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. 11 (1987), 1103-1133.
- [11] D.G. deFigueiredo, O.H. Miyagaki and B. Ruf, *Elliptic equations in R² with nonlinearities in the critical growth range*, Calc. Var. Partial Differential Equations 4 (1995), 139-153.
- [12] D.G. deFigueiredo, J.M.B. do Ó and B. Ruf, On an inequality by N. Trudinger and J. Moser and related elliptic equations, Comm. Pure Appl. Math. 55 (2002), 135-152.
- [13] M.F. Furtado, E.S. Medeiros and U.B. Severo, A Trudinger-Moser inequality in a weighted Sobolev space and applications, Math. Nach. 287 (2104), 1255-1473.
- [14] M.F. Furtado, E.S. Medeiros and U.B. Severo, AOn a Class of Semilinear Elliptic Eigenvalue Problems in R², Proc. Edinburgh Math. Society 60 (2107), 107-126.
- [15] M.F. Furtado, R. Ruviaro and J.P.P. Silva, Two solutions for an elliptic equation with fast increasing weight and concave-convex nonlinearities, Journal of Mathematical Analysis and Applications 416 (2014), 698-709.
- [16] M.F. Furtado, J.P.P. Silva and B.N. Souza, *Elliptic equations with weight and combined nonlinearities*, Advanced Nonlinear Studies 16 (2016), 509-517.
- [17] Z. Liu and Z.Q. Wang, Schrödinger equations with concave and convex nonlinearities, Z. Angew. Math. Phys. 56 (2005), 609-629.
- [18] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20 (1985), 185-201.
- [19] J.M.B. do Ó, N-Laplacian equations in \mathbb{R}^N with critical growth, Abstr. Appl. Anal. 2 (1997), 301-315.
- [20] J.C. Pádua, E.A.B. Silva and S.H.M. Soares, Positive solutions of critical semilinear problems involving a sublinear term on the origin, Indiana Univ. Math. J. 55 (2006), 1091-1111.
- [21] F.O.V. de Paiva, Nonnegative solutions of elliptic problems with sublinear indefinite nonlinearity, J. Functional Analysis 261 (2011), 2569-2586.
- [22] B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in ℝ², J. Funct. Anal. 219 (2005), 340-367.
- [23] E. Tonkes, A semilinear elliptic equation with convex and concave nonlinearities, Topol. Methods Nonlinear Anal. 13 (1999), 251-271.
- [24] N.S. Trudinger, On the imbedding into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473-484.
- [25] Z. Zhang, M. Calanchi, B. Ruf, Elliptic equations in \mathbb{R}^2 with one-sided exponential growth, Commun. Contemp. Math. 6 (2004), 947-971.

UNIVERSIDADE DE BRASÍLIA, DEPARTAMENTO DE MATEMÁTICA, 70910-900, BRAÍLIA-DF, BRAZIL *Email address:* mfurtado@unb.br