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Abstract. We prove existence and multiplicity of solutions for the problem{
∆2u+ λ∆u = |u|2∗−2u, in Ω,

u, −∆u > 0, in Ω, u = ∆u = 0, on ∂Ω,

where Ω ⊂ RN , N ≥ 5, is a bounded regular domain, λ > 0 and 2∗ =
2N/(N − 4) is the critical Sobolev exponent for the embedding of W 2,2(Ω)

into the Lebesgue spaces.

1. Introduction

For a bounded smooth domain Ω ⊂ RN , consider the critical problem

(BNλ)

{
−∆u = λ|u|s−2u+ |u|4/(N−2)u, in Ω,

u > 0, in Ω, u = 0, on ∂Ω,

for 2 ≤ s < 2N/(N −2). In their celebrated paper [5], Brezis and Nirenberg proved
that, for s = 2, the existence of solution is related with the interaction of λ with
the first eigenvalue of (−∆,W 1,2

0 (Ω)), namely

λ1(Ω) := inf

{∫
Ω

|∇u|2dx : u ∈W 1,2
0 (Ω),

∫
Ω

|u|2dx = 1

}
.

More specifically, they proved the following:

• there is no solution for λ ≥ λ1(Ω) and, if Ω is starshaped, for λ ≤ 0;
• if N ≥ 4, there is a solution for 0 < λ < λ1(Ω);
• if N = 3, there is a solution for λ < λ1(Ω) close to λ1(Ω). Moreover, if Ω

is a ball, there is no solution for λ > 0 close to 0.

Since we cannot solve the problem in the entire range (0, λ1(Ω)) when N = 3, we
say that it is the critical dimension for problem (BNλ) (see [17] for the notion of
critical dimension for the polyharmonic operator). In the case 2 < s < 2N/(N−4),
they obtained solution for any λ > 0. After this, a lot of papers concerning critical
nonlinearities appeared. In particular, we recall that Rey [19] and Lazzo [12] proved,
for s = 2, that the problem has at least cat(Ω) solutions if λ > 0 is close to 0
(see [6, 7, 1] for related results). Here, cat(Ω) stands for the usual Ljusternik-
Schnirelmann category of Ω in itself.
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Some of the aforementioned results were extend to the fourth-order problem

(Vµ)

{
∆2u = µ|u|s−2u+ |u|2∗−2u, in Ω,

u, −∆u > 0, in Ω, u = ∆u = 0, on ∂Ω,

where 2 ≤ s < 2∗ := 2N/(N − 4). In this case, if we denote by µ1(Ω) the first
eigenvalue of

∆2u = µu, in Ω, u = ∆u = 0, on ∂Ω,

it was proved by van der Vorst in [22] that, for s = 2,

• there is no solution for µ ≥ µ1(Ω) and, if Ω is starshaped, for µ ≤ 0;
• if N ≥ 8, there is a solution for 0 < µ < µ1(Ω);
• if N ∈ {5, 6, 7}, there is a solution for µ < µ1(Ω) close to µ1(Ω).

In the same paper the author conjectured that these former dimensions are critical.
This conjecture was considered by Gazzola, Grunau and Squassina in [9], where
they proved that

• if N ∈ {5, 6, 7} and Ω is a ball, then (Vµ) has no solution for µ > 0 close to
0.

The case 2 < s < 2∗ was treated in [13], where the authors obtained a solution if
N ≥ 8 and 2 ≤ s < 2∗, or N ∈ {5, 6, 7} and 2∗− 2 < s < 2∗. They also proved that
the problem has cat(Ω) solutions for µ > 0 close to 0.

In this paper we address the problem

(Pλ)

{
∆2u+ λ∆u = |u|2∗−2u, in Ω,

u, −∆u > 0, in Ω, u = ∆u = 0, on ∂Ω,

where Ω ⊂ RN , N ≥ 5, is a bounded domain and λ > 0. Differently from
(Vµ), existence and non existence are related with the first eigenvalue λ1(Ω) of

(−∆,W 1,2
0 (Ω)). Indeed, our first aim is to identify the range of (possible) existence

for the parameter λ and therefore establish the notion of critical dimension. We
prove the following:

Theorem 1.1. The following holds:

(1) if λ ≥ λ1(Ω), then (Pλ) has no solution;
(2) if Ω is star shaped with respect to the origin and λ ≤ 0, then (Pλ) has no

solutions in C4(Ω);
(3) if N = 5 and Ω is a ball, then there exists λ∗ > 0 such that (Pλ) has no

solution if λ < λ∗.

The proof of the first two items rely on classical arguments and a Pohozaev
identity. For the last one, we take advantage of the radiality of the domain to
proceed with an ODE approach. The restriction on the dimension is closely related
with the existence of the embedding W 3,2(Ω) ↪→ L∞(Ω), which holds if N < 6.
The above nonexistence result complement those of [17, 15, 16, 9] which deal with
problem (Vµ) under Dirichlet or Navier boundary conditions.

In our second result we follow the ideas of Brezis and Nirenberg [5] for obtaining
existence of solution:

Theorem 1.2. Suppose that Ω ∈ C4,α, for some 0 < α < 1. Then (Pλ) has at
least one C4,α(Ω) solution if

(1) N ≥ 6 and λ ∈ (0, λ1(Ω));
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(2) N = 5 and λ ∈ (λ∗, λ1(Ω)), with λ∗ ∈ (0, λ1(Ω)).

Roughly speaking, Theorem 1.2 says that, differently from the biharmonic ver-
sion of the Brezis-Nirenberg problem (Vµ), the critical dimension for (Pλ) is only
N = 5. Actually, as obseved in [14], the notion of critical dimension is also
related with the integrability of the L2-norm of the gradient of the functions
which realize the best constant of the embedding W 2,2(Ω) ↪→ L2∗(Ω), namely
Uε(x) = cN [ε(ε2 + |x|2)−1](N−4)/2, for an appropriated value of cN > 0. It is clear
that, if N = 5 and Ω is a ball, then λ∗ ≤ λ∗. Unfortunately, we do not know what
happens if λ ∈ [λ∗, λ

∗] or even the sharp value of λ∗.
In view of the results proved in [12, 19, 13], it is natural to ask if, as in (BNλ)

and (Vµ), we have more solutions if Ω has rich topology. In our last result we give
a positive answer to this questions by proving the following multiplicity result:

Theorem 1.3. Suppose that Ω ∈ C4,α, for some 0 < α < 1 and N ≥ 6. Then there
exists λ∗∗ ∈ (0, λ1(Ω)) such that (Pλ) has at least catΩ(Ω) solutions if λ ∈ (0, λ∗∗).

In the proof we apply classical Ljusternik-Schnirelmann theory, as done in [12]
for the Brezis-Nirenberg problem (see also [2] for the fourth order problem with
Dirichlet boundary conditions). One of the key points is how to extend functions

of W 2,2(Ω) ∩W 1,2
0 (Ω) to D2,2(RN ). This kind of problem has already appeared

in [9] in the proof of a splitting lemma for problem (Vµ). Here, we borrow an
extension procedure from [4] which works if we have regularity for the solutions of
the problem (Pλ). Since we do not find in the literature the appropriated regularity
theorems we show in Section 2 how we can use the Lp-regularity theory even in the
case λ > 0. The same arguments show that, if u ∈W 2,2(Ω) ∩W 1,2

0 (Ω) is a critical
point of the associated energy functional, it verifies the boundary condition of (Pλ)
in the trace sense.

The main results of this paper complement the aforementioned works, since we
deal here with a different equation. It seems that the perturbation ∆u gives a new
nature for the problem, since the critical dimensions are different from (Vµ). We
believe that many others situations can be considered, for instance the existence of
nodal solutions, high-energy solutions or even other type of multiplicity results.

The paper is organized in the following way: Section 2 is devoted to the proof
of the non existence results. In Section 3 we present the proof of Theorem 1.2 and,
in Section 4, we prove our multiplicity result. The paper also contains an appendix
concerning the regularity of the solutions.

2. The nonexistence results

Throughout the paper we denote by H the Hilbert space W 1,2
0 (Ω) ∩ W 2,2(Ω)

endowed with the norm

‖u‖ :=

(∫
Ω

(∆u)2dx

)1/2

.

We denote by ‖u‖r the Lr(Ω)-norm of a function u ∈ H and write only
∫

Ω
u instead

of
∫

Ω
u(x)dx.

The following result is an easy consequence of the spectral theory of the Laplacian
and Holder’s inequality. We include the proof just for completeness.

Lemma 2.1. The space H is compactly embedded into W 1,2
0 (Ω).
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Proof. Let (ϕk)k∈N be the eigenfunctions of (−∆,W 1,2
0 (Ω)) and (λk)k∈N it associ-

ated eigenvalues. Since they are orthogonal in W 1,2
0 (Ω) and L2(Ω), the same occurs

in H. Hence, if u =
∑∞
k=1 αkϕk ∈ H, we can compute

(2.1)

‖u‖2 =

∞∑
k=1

α2
k‖ϕk‖2 =

∞∑
k=1

α2
kλk‖∇ϕk‖22 ≥ λ1(Ω)

∞∑
k=1

α2
k‖∇ϕk‖22 = λ1(Ω)‖∇u‖22,

which proves the continuous embedding H ↪→ W 1,2
0 (Ω). The compactness follows

from the inequality

‖∇u‖22 =

∫
(∇u · ∇u) = −

∫
(u∆u) ≤ ‖u‖2‖u‖

and the compactness of W 1,2
0 (Ω) ↪→ L2(Ω). �

We notice that, if u ∈ C4(Ω) verifies u = ∆u = 0 on ∂Ω, then

(2.2)

∫
Ω

∆2u(x · ∇u) dx = −N − 4

2

∫
Ω

(∆u)2dx+

∫
∂Ω

∂u

∂ν

∂∆u

∂ν
(x · ν) dσ,

(2.3)

∫
Ω

|u|2
∗−2u(x · ∇u) dx = −N

2∗

∫
Ω

|u|2
∗
dx,

(2.4)

∫
Ω

∆u(x · ∇u) dx =
1

2

∫
∂Ω

|∇u|2(x · ν) dσ +
N − 2

2

∫
Ω

|∇u|2dx,

where ν stands for the outward normal unitary vector. Actually, the last two
equalities are standard (see [23, Appendix B]) and the first one is proved in [10,
Section 7.4].

As a consequence of the above expression, we can prove our non existence result.

Proof of Theorem 1.1. Let ϕ1 > 0 be an eigenfunction associated to λ1(Ω). By
using it as a test function in the weak formulation of (Pλ) we get

λ1(Ω)2

∫
Ω

uϕ1 =

∫
Ω

∆u∆ϕ1 = λ

∫
Ω

∇u · ∇ϕ1 +

∫
Ω

u2∗−1ϕ1 > λλ1(Ω)

∫
Ω

uϕ1,

and therefore λ < λ1(Ω) and the first item is proved.
If u ∈ C4(Ω) is a classical solution of (Pλ) we can set w := ∆u to get

∆(∆u+ λu) = ∆w + λw > 0, in Ω, w = 0, on ∂Ω.

Since λ ≤ 0, it follows from Hopf’s lemma that ∂(∆u)
∂ν > 0 on ∂Ω. By using the

Maximum Principle we obtain

∆u+ λu < 0, in Ω, u = 0, on ∂Ω,

and therefore ∂u
∂ν < 0 on ∂Ω. If Ω is starshaped with respect to the origin we have

that x · ν > 0 on ∂Ω, and therefore

A1 :=

∫
∂Ω

∂u

∂ν

∂∆u

∂ν
(x · ν) dσ < 0, A2 :=

1

2

∫
∂Ω

|∇u|2(x · ν) dσ ≥ 0.

By multiplying first equation in (Pλ) by (x · ∇u), integrating by parts and using
(2.2)− (2.4), we obtain

−N − 4

2
‖u‖2 +A1 = −λA2 −

λ(N − 2)

2
‖∇u‖22 −

N − 4

2
‖u‖2

∗

2∗ .



POSITIVE SOLUTIONS FOR A FOURTH-ORDER EQUATION 5

Since ‖u‖2 = λ‖∇u‖22 + ‖u‖2∗2∗ , A1 < 0 and A2 ≥ 0, the above expression implies
that

0 = λ‖∇u‖22 +A1 + λA2 < 0,

which is a contradiction.
We now prove the last statement of Theorem 1.1. Without loss of generality

we suppose that Ω = B := {x ∈ RN : ‖x‖ < 1}. By elliptic regularity ∆−1 is

continuous from W 1,2
0 (B) to W 3,2(B) ∩W 1,2

0 (B). Since N = 5, this last space is

embedded into L∞(B) and therefore (∆−1)∗ : (L∞(B))∗ → (W 1,2
0 (B))∗ 'W 1,2

0 (B)
is also continuous. Hence, there exists C1 > 0 such that

(2.5) |〈(∆−1)∗f, φ〉| ≤ C1‖f‖(L∞(B))∗‖φ‖W 1,2
0 (B),

for any f ∈ (L∞(B))∗ and φ ∈W 1,2
0 (B).

If u ∈ C4(B) is a solution of (Pλ) we can define fu ∈ (L∞(B))∗ by fu(v) :=∫
B
v(∆2u)dx and compute

〈(∆−1)∗fu, u〉 = fu(∆−1u) =

∫
B

(∆−1u)(∆2u)dx =

∫
B

u(∆u)dx = −
∫
B

|∇u|2dx.

Since ‖fu‖(L∞(B))∗ =
∫
B

(∆2u)dx, it follows from the above equality and (2.5) that,
for some C2 > 0, there holds

(2.6) C2

∫
B

|∇u|2dx ≤
(∫

B

(∆2u)dx

)2

.

On the other hand, we can use and the fact that u is a solution of (Pλ) to write

λ

∫
B

|∇u|2dx = −
∫
∂B

∂u

∂ν

∂∆u

∂ν
(x · ν)dσ − λ

2

∫
∂B

|∇u|2(x · ν)dσ

Notice that (u,−∆u) ∈ C2(B) × C2(B) satisfies the system −∆ui = fi(u1, u2) in

B, ui = 0 on ∂B, i = 1, 2, with f1(u1, u2) := u2 and f2(u1, u2) := λu2 + u2∗−1
1 .

By [20, Theorem 1], we conclude that u and ∆u are radially symmetric. Hence,
writing u = u(r), we obtain

λ‖∇u‖2L2(B) = −
∫
∂B

u′(1)(∆u)′(1)dσ − λ

2

∫
∂B

(u′(1))2dσ

= − 1

5ω5

(∫
∂B

u′(1)dσ

)(∫
∂B

(∆u)′(1)dσ

)
− λ

10ω5

(∫
∂B

u′(1)dσ

)2

,

where ω5 is volume of B1. If follows from Divergence’s Theorem that

(2.7) λ‖∇u‖2L2(B) =
1

5ω5

(∫
B

(−∆u)dx

)(∫
B

(∆2u)dx

)
− λ

10ω5

(∫
B

(∆u)dx

)2

.

Since the function w(x) := (1 − |x|2)/(2N) satisfies −∆w = 1 in B, w = 0 on
∂B, we have that

(2.8)

∫
B

−∆u dx =

∫
B

w(∆2u) dx.

As proved in [10, p. 278], there exists C3 > 0 such that∫
B

(∆2u)dx ≤ C3

∫
B

w(∆2u)dx ≤ C3

∫
B

(∆2u)dx.
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This, (2.7), (2.8) and (2.6) imply that

λ‖∇u‖2L2(B) ≥
1

ω5

(
1

5C3
− λ

10

)(∫
B

(∆2u)dx

)2

≥ C2

ω5

(
1

5C3
− λ

10

)
‖∇u‖2L2(B),

for any λ < 2/C3. Hence, if we set

λ∗ := min

{
2

C3
,

2C2

C3(C2 + 10ω5)

}
,

we can easily conclude that u = 0 whenever λ < λ∗. 2

3. The existence result

For each λ ≥ 0, we define the functional Iλ : H → R as

Iλ(u) =
1

2

∫
Ω

(∆u)2 − λ

2

∫
Ω

|∇u|2 − 1

2∗

∫
Ω

(u+)2∗ ,

where u+(x) := max{u(x), 0}. Standard arguments show that the critical points of
Iλ ∈ C1(H,R) weakly satisfy the equation in (Pλ).

We notice that the boundary condition ∆u = 0 on ∂Ω is not satisfied for a
general function of the space H. However, we are able to adapt the Lp-regularity
theory to prove that the it holds for the critical points of Iλ. Actually, we shall
prove in the final section of this paper the following regularity result.

Proposition 3.1. Let q := 2N/(N + 4) and suppose that u ∈ H is such that
I ′λ(u) = 0. Then,

(i) if Ω ∈ C3,α, for some 0 < α < 1, then u ∈ W 4,q(Ω) ∩ W 1,q
0 (Ω), ∆u ∈

W 2,q(Ω) ∩W 1,q
0 (Ω) and ∆2u = −λ∆u+ u2∗−1 a.e. in Ω;

(ii) if Ω ∈ C4,α, for some 0 < α < 1, then u ∈ C4,α(Ω).

Proof. We present the proof in the appendix since the case λ > 0 requires an
adaptation of the classical elliptic regularity arguments. �

In what follows we are intending to apply the Mountain Pass Theorem to obtain
a nonzero critical point of Iλ.

Lemma 3.2. If λ < λ1(Ω) and (un) ⊂ H is such that

Iλ(un)→ c <
2

N
SN/4, I ′λ(un)→ 0,

then (un) has a convergent subsequence

Proof. Since I ′λ(un)→ 0, we can use (2.1) to obtain

c+ on(1) + on(1)‖un‖ ≥ Iλ(un)− 1

2∗
I ′λ(un)un ≥

2

N

(
λ1(Ω)− λ
λ1(Ω)

)
‖un‖2,

where on(1) stands for a quantity converging zero as n → +∞. Hence, (un) ⊂ H
is bounded and we may suppose that un ⇀ u weakly in H for some u ∈ H. This,
I ′λ(un) → 0 and Lemma 2.1 imply that I ′λ(u) = 0 and therefore we can compute

Iλ(u) = Iλ(u)− (1/2)I ′λ(u)u = (2/N)‖u+‖2
∗

2∗ ≥ 0.
If we set vn := un − u, it follows from a version of the Brezis-Lieb’s lemma (see

[23, Lemma 1.32]) that ‖v+
n ‖2

∗

2∗ = ‖u+
n ‖2

∗

2∗ − ‖u+‖2∗2∗ + on(1). Thus,

I ′λ(vn)vn = I ′λ(un)un − I ′λ(u)u+ on(1) = on(1).
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Since vn → 0 in W 1,2
0 (Ω), we conclude that, for some b ≥ 0,

(3.1) lim
n→+∞

‖vn‖2 = b = lim
n→+∞

‖v+
n ‖2

∗

2∗ .

By definition, ‖vn‖2 ≥ S‖vn‖22∗ ≥ S(‖v+
n ‖2

∗

2∗)
2∗/2, and therefore the above equa-

tions imply that b ≥ Sb2
∗/2. If b > 0, we conclude that b ≥ SN/4. However,

since
Iλ(vn) = Iλ(un)− Iλ(u) + on(1)

and Iλ(u) ≥ 0, we can take limit as n → +∞, use (3.1) and vn → 0 in W 1,2
0 (Ω)

again to get
2

N
SN/4 ≤

(
1

2
− 1

2∗

)
b ≤ c < 2

N
SN/4,

which does not make sense. Hence b = 0, that is, un → u in H. �

Let D2,2(RN ) be the closure of C∞0 (RN ) with respect to the norm ‖ · ‖ and
consider

S := inf
u∈D2,2(RN )\{0}

∫
RN (∆u)2(∫

RN |u|2
∗)2/2∗ .

We know from [21] that S > 0 is attained by the family of functions

Uε(x) := cN

(
ε

ε2 + |x|2

)(N−4)/2

,

with ε > 0 and cN := [N(N − 4)(N2 − 4)](N−4)/8.

Lemma 3.3. If N ≥ 6, there exists u ∈ H \ {0} such that

max
t≥0

Iλ(tu) <
2

N
SN/4.

The same holds if N = 5 and λ < λ1(Ω) is sufficiently close to λ1(Ω).

Proof. We first consider N ≥ 6 and assume, without loss of generality , that 0 ∈ Ω.
Let φ ∈ C∞0 (Ω, [0, 1]) be such that φ ≡ 1 in Br(0) and φ ≡ 0 outside B2r(0), where
r > 0 is such that B2r(0) ⊂ Ω. For ε > 0, we set uε(x) := φ(x)Uε(x) and use the
calculations of [3, p. 236] to write

(3.2) ‖uε‖2 = SN/4 +O(εN−4), ‖uε‖2
∗

2∗ = SN/4 +O(εN ),

as ε→ 0+. Moreover, we can compute

‖∇uε‖22 =

∫
B2r(0)

|∇Uε|2

+

∫
B2r(0)

[
(φ2 − 1)|∇Uε|2 + 2ρUε(∇φ · ∇Uε) + U2

ε |∇φ|2
]

=

∫
B2r(0)

|∇Uε|2 +O(εN−4).

Since
∫
B2r(0)

|∇Uε|2 = c2N (4−N)2ε2Aε, with

Aε :=

∫
B(2r)/ε(0)

|y|2

(1 + |y|2)N−2
dy,

we have that
‖∇uε‖22 = c2N (4−N)2ε2Aε +O(εN−4).
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We infer from the above expression and (3.2)

max
t≥0

Iλ(tuε) =
2

N

[
‖uε‖2 − λ‖∇uε‖22

‖uε‖22∗

]N/4
=

2

N

[
S + ε2

(
O(εN−6)− λc2N (4−N)2Aε)

)]N/4
.

Since Aε → d > 0 if N > 6, and Aε → +∞ if N = 6, the lemma holds with u := uε,
ε > 0 small.

The above argument does not hold if N = 5. In this case we consider ϕ1 > 0
the first eigenfunction of (−∆,W 1,2

0 (Ω)), and notice that

lim
λ→λ1(Ω)−

‖ϕ1‖2 − λ‖∇ϕ1‖22
‖ϕ1‖210

= lim
λ→λ1(Ω)−

λ1(Ω)(λ1(Ω)− λ)
‖ϕ1‖22
‖ϕ1‖210

= 0.

Hence, there exists λ∗ ∈ (0, λ1(Ω)) such that,

max
t≥0

Iλ(tϕ1) =
2

5

[
‖ϕ1‖2 − λ‖∇ϕ1‖22

‖ϕ1‖210

]5/4

<
2

5
S5/4,

for any λ ∈ (λ∗, λ1(Ω)). The lemma is proved. �

We are ready to present the proof of our existence result.

Proof of Theorem 1.2. Suppose that λ belongs to an interval such that Lemma 3.3
holds. By using the definition of S we obtain

Iλ(u) ≥ ‖u‖2
(
λ1(Ω)− λ

2λ1(Ω)
− S−2/2∗

2∗
‖u‖2

∗−2

)
,

and therefore there exists ρ, α > 0 such that inf∂Bρ(0) Iλ ≥ α. If we consider ε > 0
small and uε ∈ H as in the proof of Lemma 3.3, we have that Iλ(tuε) → −∞ as
t → +∞. Hence, the set Γ := {γ ∈ C([0, 1], H) : γ(0) = 0, Iλ(γ(1)) < 0} is non
empty and we obtain from the Mountain Pass Theorem a sequence (un) ⊂ H such
that I ′λ(un)→ 0 and

(3.3) Iλ(un)→ cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)).

The definition of Γ and Lemma 3.3 imply that cλ < (2/N)SN/4. Hence, by Lemma
3.2, we may suppose that un → u strongly in H. By the regularity of Iλ we get
I ′λ(u) = 0 and Iλ(u) ≥ α > 0, that is, u is a nonzero weak solution of (Pλ).

From Theorem 3.1 we conclude that u ∈ C4,α(Ω) and ∆u = 0 on ∂Ω. We shall
prove that u ≥ 0 in Ω. Indeed, let ψ ∈ H be such that∫

Ω

∇ψ · ∇φ =

∫
Ω

u−φ, ∀φ ∈W 1,2
0 (Ω),

where u−(x) := max{−u(x), 0}. By picking φ = ψ−, we obtain −
∫

Ω
|∇ψ−|2 =∫

Ω
u−ψ− ≥ 0. Thus, ψ− ≡ 0 and we get

0 = I ′λ(u)ψ ≤
∫

Ω

∆u∆ψ − λ
∫

Ω

∇u · ∇ψ = −
∫

Ω

|∇u−|2 + λ

∫
Ω

(u−)2,

from which it follows that
(

1− λ
λ1(Ω)

)
‖∇u−‖22, that is, u− ≡ 0. We can now

decompose the equation of (Pλ) in two second-order equations and use 0 < λ <
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λ1(Ω) and the strong Maximum Principle to conclude that u > 0 in Ω, and−∆u > 0
in Ω. The theorem is proved. 2

4. The multiplicity result

In this section we prove Theorem 1.3. We start by introducing the following
minimax level

ĉλ := inf
u∈Nλ

Iλ(u),

where Nλ := {u ∈ H \ {0} : I ′λ(u)u = 0} is the Nehari manifold of Iλ. If λ ∈
(0, λ1(Ω)) and N ≥ 6, we may invoke Theorem 1.2 to obtain uλ ∈ H ∩ Nλ such
that I ′λ(uλ) = 0 and Iλ(uλ) = cλ. Thus, we get (see [18, Proposition 3.11])

cλ ≤ inf
u∈H\{0}

sup
t≥0

Iλ(tu) ≤ inf
u∈Nλ

sup
t≥0

Iλ(tu) = inf
u∈Nλ

Iλ(u) = ĉλ ≤ Iλ(uλ) = cλ.

and therefore cλ = ĉλ. Thus, arguing along the same lines of [13, Lemma 2.4], we
can prove that

(4.1) lim
λ→0+

cλ = c0 =
2

N
SN/4.

Given a function f ∈ C0,α(Ω) such that f ≡ 0 on ∂Ω, it is well defined its
C0,α-extension given by

f(x) =

{
f(x), if x ∈ Ω,

0, otherwise.

The proof of the next lemma can be found in [14, Lemma 3.2].

Lemma 4.1. Let (vn) ⊂ H be such that∫
Ω

|vn|2
∗
≥ 1,

∫
Ω

(∆vn)2 = S + on(1),

and wn be the Newtonian potential of −∆vn, that is,

wn(x) :=
1

N(N − 2)ωN

∫
RN

−∆vn(z)

|x− z|N−2
dz,

with ωN being the volume of the unit ball B1(0) ⊂ RN . Then there exists (yn, µn) ⊂
RN × (0,+∞) such that yn → y ∈ Ω, µn → 0 and

φn(x) := µ(N−4)/2
n wn(µnx+ yn)

strongly converges to φ in D2,2(RN ), with ‖∆φ‖22 = S.

For r > 0, we define

Ω+
r :=

{
x ∈ RN : dist(x,Ω) ≤ r

}
, Ω−r := {x ∈ Ω : dist(x, ∂Ω) ≥ r} .

We suppose that r is small in such way that B2r(0) ⊂ Ω and catΩ(Ω) =catΩ+
r

(Ω−r ).

We also set Hr := W 2,2(Br(0)) ∩W 1,2
0 (Br(0)),

Jλ(u) :=
1

2

∫
Br(0)

(∆u)2 − λ

2

∫
Br(0)

|∇u|2 − 1

2∗

∫
Br(0)

(u+)2∗ , ∀u ∈ Hr,

and
mλ := inf

u∈Mλ

Jλ(u) = inf
u∈Hr\{0}

max
t≥0

Jλ(tu),

where Mλ is the Nehari manifold of the functional Jλ.
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Lemma 4.2. If 0 < λ < λ1(Ω), then cλ < mλ.

Proof. The first eigenvalue λ1(Br(0)) of (−∆,W 1,2
0 (Br(0)) verifies λ1(Ω) < λ1(Br(0)).

Thus, we obtain from Theorem 1.2 a function vλ ∈ C4,α(Br(0)) such that Jλ(vλ) =
mλ.

Since ∆vλ ∈ C2,α(Br(0)), we can consider u ∈ C2,α(Ω) as being the solution of{
−∆u = −∆vλ, in Ω,

u = 0, on ∂Ω.

Recalling that −∆vλ > 0 in Br(0) and using the Maximum Principle we conclude
that u > 0 in Ω. Moreover, since vλ = 0 on ∂Br(0), the Maximum Principle also
implies that u ≥ vλ in Br(0), with strict inequality in a subset of positive measure.
Hence,∫

Ω

|∇u|2 =

∫
Ω

u(−∆vλ) =

∫
Br(0)

u(−∆vλ) >

∫
Br(0)

vλ(−∆vλ) =

∫
Br(0)

|∇vλ|2

and ∫
Ω

(u+)2∗ >

∫
Br(0)

(v+
λ )2∗ ,

and therefore

mλ = Jλ(vλ) =
2

N

∫Br(0)
(∆vλ)2 − λ

∫
Br(0)

|∇vλ|2(∫
Br(0)

(v+
λ )2∗

]2/2∗

N/4

>
2

N

[
‖u‖2 − λ‖∇u‖22
‖u+‖22∗

]N/4
= max

t>0
Iλ(tu) ≥ cλ.

�

For λ > 0, we define the level set Imλλ := {u ∈ H : Iλ(u) ≤ mλ}. By Theorem
1.2 and the last lemma, this set is nonempty whenever 0 < λ < λ1(Ω). We also
consider the barycenter map β : Nλ → RN given by

β(u) :=

∫
Ω

(∆u)2xdx∫
Ω

(∆u)2dx

, u ∈ Nλ.

Lemma 4.3. There exists λ∗∗ ∈ (0, λ1(Ω)) such that β(u) ∈ Ω+
r , whenever λ ∈

(0, λ∗∗) and u ∈ Nλ ∩ Imλλ .

Proof. Suppose, by contradiction, that there exists λn → 0 and un ∈ Nλn ∩ Imλn
such that β(un) 6∈ Ω+

r . Then,

cλn ≤
1

2
‖un‖2 −

λn
2
‖∇un‖22 −

1

2∗
‖u+

n ‖2
∗

2∗ ≤ mλn .

and

0 = I ′λn(un)un = ‖un‖2 − λn‖∇un‖22 − ‖u+
n ‖2

∗

2∗ .
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As in Lemma 3.2, (un) is bounded, and therefore λn|∇un|22 = on(1). Since (4.1)
remains true cλ replaced by mλ, we can take the limit in the two above expressions
to get

1

2
‖un‖2 −

1

2∗
‖u+

n ‖2
∗

2∗ →
2

N
SN/4, ‖un‖2 − ‖u+

n ‖2
∗

2∗ → 0.

Thus, ‖un‖2 → SN/4 and ‖u+
n ‖2

∗

2∗ → SN/4. If we set vn := un/‖u+‖2∗2∗ we obtain∫
Ω

|vn|2
∗
≥ 1,

∫
Ω

(∆vn)2 = S + on(1).

Let (yn, µn), (wn), (φn) and φ given by Lemma 4.1 . By picking ψ ∈ C∞0 (RN ,RN )
such that ψ(z) = z in Ω, we obtain

β(un) =
‖u+

n ‖22∗
‖un‖2

∫
Ω

[∆vn(z)]2ψ(z)dz =
‖u+

n ‖22∗
‖un‖2

∫
RN

[∆wn(z)]2ψ(z)dz

=

(
(SN/4)2/2∗

SN/4
+ on(1)

)∫
RN

µNn [∆wn(µnx+ yn)]2ψ(µnx+ yn)dx

= (S−1 + on(1))

∫
RN

[∆φn(x)]2ψ(µnx+ yn)dx.

Since µn → 0, yn → y ∈ Ω, ψ(y) = y and ‖∆φ‖22 = S, we can use the Lebesgue
Theorem to obtain

lim
n→+∞

β(un) = S−1y‖∆φ‖22 = y ∈ Ω,

which contradicts β(un) 6∈ Ω+
r . The lemma is proved. �

We assume from now on that λ ∈ (0, λ∗∗). Let vλ ∈ Hr be such that Jλ(vλ) =
mλ and recall that vλ and ∆vλ are radially symmetric. For each y ∈ Ω−r , let
γλ(y) : Ω→ R be such that{

−∆γλ(y) = −∆vλ, in Ω,

γλ(y) = 0, on ∂Ω.

Arguing as in the proof of Lemma 4.2 we obtain∫
Ω

|∇γλ(y)|2 >
∫
Br(0)

|∇vλ|2,
∫

Ω

(γλ(y)+)2∗ >

∫
Br(0)

(v+
λ )2∗ .

Thus, since
∫

Ω
(∆γλ(y))2 =

∫
Br(0)

(∆vλ)2dx, we have that

Iλ(γλ(y)) < Iλ(vλ) = mλ, I ′λ(γλ(y))γλ(y) < I ′λ(vλ)vλ = 0,

and therefore γλ(y) 6∈ Nλ. Hence, if we set

ty :=

[
‖γλ(y)‖2 − λ‖∇γλ(y)‖22

‖γλ(y)+‖2∗2∗

]1/(2∗−2)

,

we conclude that tyγλ(y) ∈ Nλ. All these remarks show that the map γ̂λ : Ω−r →
Nλ ∩ Imλλ given by

γ̂λ(y) := tyγλ(y), y ∈ Ω−r
is well defined and continuous.

We can now present the proof of our multiplicity result.

Proof of Theorem 1.3. Suppose that λ ∈ (0, λ∗∗), where λ∗∗ comes from Lemma
4.3. The same argument used in the proof of Lemma 3.2 shows that Iλ constrained
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to Nλ satisfies the Palais-Smale condition at any level c < (2/N)SN/4. Moreover,
arguing as in the proof of Theorem 1.2, we can check that mλ < (2/N)SN/4. Hence,
if we set Σλ := Nλ∩ Imλλ , it follows from standard Lusternik–Schnirelmann Theory
(see [23, Theorem 5.19]) that Iλ constrained to Nλ has at least catΣλ(Σλ) critical
points. If u ∈ H is one of these critical points, we can easily prove that I ′λ(u) = 0.
Since u ∈ Nλ it is nonzero and, as in our first theorem, it is a classical solution of
(Pλ).

It remains to check that catΣλ(Σλ) ≥ catΩ(Ω). In order to do this we consider
the following diagram of continuous functions

Ω−r
γ̂λ−→ Σλ

β−→ Ω+
r

and notice that, for any y ∈ Ω−r , there holds

β(γ̂λ(y)) =

∫
Ω
|∆(tyγλ(y))|2x dx∫

Ω
|∆(tyγλ(y))|2dx

=

∫
Br(0)

(∆vλ(z))2(z + y)dz∫
Br(0)

(∆vλ(z))2dz
,

where we have used the change of variables z := x − y. Since ∆vλ is radial∫
Br(0)

(∆vλ(z))2z dz = 0, and therefore β(γ̂λ(y)) = y. Thus β ◦ γ̂λ is the iden-

tity map and we can argue as in [23, Lemma 5.25] to prove that each cover of Σλ
by closed and contractible sets lifts to a cover of Ω−r by closed sets contractible in
Ω+
r . Thus,

catΣλ(Σλ) ≥ catΩ+
r

(Ω−r ) = catΩ(Ω),

and the theorem is proved. 2.

5. Appendix

We devote this appendix to the proof of the regularity result for the weak solu-
tiond of the problem (Pλ). We start with the following technical lemma.

Lemma 5.1. Let λ < λ1(Ω), p > N
N−4 , t := Np

N+4p > 1 and a ∈ LN/4(Ω). If

Ω ∈ C3,1, then the linear operator Ta : Lp(Ω)→W 4,t(Ω) ∩W 1,t
0 (Ω) ⊂ Lp(Ω) given

by

(5.1) Ta(v) := w ⇐⇒


∆2w + λ∆w = a(x)v, in Ω,

w ∈W 4,t(Ω) ∩W 1,t
0 (Ω),

∆w ∈W 2,t(Ω) ∩W 1,t
0 (Ω)

is well defined and there exists C > 0 such that

‖Ta(v)‖p ≤ C‖a‖N/4‖v‖p, ∀ v ∈ Lp(Ω).

Proof. Given v ∈ Lp(Ω), we can use Hölder’s inequality to prove that a(x)v ∈
Lt(Ω). Thus, the equation ∆u = a(x)v is uniquely soluble in W 2,t(Ω) ∩W 1,t

0 (Ω).
Now we consider the equation ∆w+λw = u ∈W 2,t(Ω). If λ ≤ 0, it follows from [11,

Theorem 5.15] that is has unique solution in W 2,t(Ω)∩W 1,t
0 (Ω0. If λ > 0 we notice

that the operator λ(∆)−1 : Lt(Ω) → W 2,t(Ω) ∩ W 1,t
0 (Ω) is compact from Lt(Ω)

to Lt(Ω). Since λ < λ1(Ω), we have that ker(Id − λ(∆)−1) = {0} and therefore
the uniqueness of solution also holds. Thus, since u ∈ W 2,t(Ω) and ∂Ω ∈ C3,1, we
can argue as in the proof of [11, Theorem 9.15] to conclude that Ta is well defined.
Moreover, using λ < λ1(Ω) and arguing as in the proof of [11, Lemma 9.17], we
may check that

‖z‖W 2,t(Ω) ≤ C1‖(∆ + λId)‖t, ∀ z ∈W 2,t(Ω) ∩W 1,t
0 (Ω),
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and therefore Hölder’s inequality provides

‖Ta(v)‖p = ‖w‖p ≤ C2‖w‖W 4,t(Ω) ≤ C3‖av‖t ≤ C‖a‖N/4‖v‖p,

for any v ∈ Lp(Ω). �

Proof of Proposition 3.1. Let g ∈ Lq(Ω) and consider gn ⊂ C∞0 (Ω) such that
gn → g in Lq(Ω). Arguing as in the proof of the last lemma we obtain a solution

of ∆2vn = gn, with vn ∈ W 4,q(Ω) ∩ W 1,q
0 (Ω), ∆vn ∈ W 2,q(Ω) ∩ W 1,q

0 (Ω) and
‖vn‖W 4,q(Ω) ≤ C‖gn‖q, for some constant C > 0 (independent of n). This shows

that (vn) is a Cauchy’s sequence in W 4,q(Ω) and therefore, up to a subsequence,

vn → v strongly in W 4,q(Ω) for some v ∈ W 4,q(Ω) ∩ W 1,q
0 (Ω) such that ∆v ∈

W 2,q(Ω) ∩W 1,q
0 (Ω). So, by using the Sobolev embedding W 4,q(Ω) ↪→W 2,2(Ω), we

can write ∫
Ω

∆v∆φ =

∫
Ω

g(x)φ, ∀φ ∈ H.

We now set g := −λ∆u+ u2∗−1 ∈ Lq(Ω). Recalling that I ′λ(u) = 0, we obtain∫
Ω

∆u∆φ =

∫
Ω

g(x)φ, ∀φ ∈ H.

Since this problem has unique solution in H, we conclude that u = v, and therefore
u ∈W 4,q(Ω) ∩W 1,q

0 (Ω) and ∆u ∈W 2,q(Ω) ∩W 1,q
0 (Ω). Moreover,∫

Ω

(∆2u)φ =

∫
Ω

∆u∆φ =

∫
Ω

g(x)φ, ∀φ ∈ H,

which implies that ∆2u = −λ∆u+ u2∗−1 a.e. in Ω.
In order to prove that u is regular, we consider p > N/(N − 4) and set

a(x) :=

{
0, if u(x) < 1,

u2∗−2(x), if u(x) ≥ 1,
b(x) :=

{
u(x)2∗−1, if u(x) < 1,

0, if u(x) ≥ 1.

Then a ∈ LN/4(Ω), b ∈ L∞(Ω) and a(x)u+ b(x) = u2∗−1. Acording to [21], for any
given ε > 0 there exists aε ∈ LN/4(Ω) and bε ∈ L∞(Ω) such that

‖aε‖N/4 < ε, aε(x)u+ bε(x) = a(x)u+ b(x), a.e. in Ω.

Thus, we have that

(5.2)

∫
Ω

(∆u∆φ+ λ∇u · ∇φ) =

∫
Ω

(aεuφ+ bεφ), ∀φ ∈ H.

Let hε ∈ W 4,q(Ω) ∩W 4,q
0 (Ω) be such that ∆2hε + λ∆hε = bε. By taking ε > 0

smaller if necessary and using Lemma 5.1 we conclude that ‖Taε(v)‖p < (1/2)‖v‖p,
for any v ∈ Lp(Ω). Hence, (Id− Taε)−1 is well defined and we can set

vε := (Id− Taε)−1hε.

Then Taεvε = (vε − hε) and it follows from (5.1) that ∆2vε + λ∆vε = aεvε + bε
in Ω. Since bε ∈ L∞(Ω) we can use standard elliptic regularity to conclude that
vε ∈ H, and therefore∫

Ω

(∆vε∆φ+ λ∇vε · ∇φ) =

∫
Ω

(aεvεφ+ bεφ), ∀φ ∈ H.
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This and (5.2) provide∫
Ω

(∆zε∆φ+ λ∇zε · ∇φ) =

∫
Ω

aεzε, ∀φ ∈ H,

with zε := vε − u. By picking φ = zε ∈ H, using the Sobolev embedding and
Hölder’s inequality, we get

S

(
1− λ

λ1(Ω)

)
‖zε‖22∗ ≤ ‖zε‖2 + λ‖∇zε‖22 =

∫
aεz

2
ε ≤ ‖aε‖N/4‖zε‖22∗ .

This implies that zε = 0 and therefore u = vε ∈ Lp(Ω).
Since we have concluded that u ∈ Lp(Ω) for any p > N/(N − 4), we can argue

as in the proof of Lemma 5.1 to conclude that u ∈ W 4,p(Ω) for any p > N and
therefore, by the Sobolev embedding, u ∈ C3,α(Ω). We now invoke the high-order
regularity result [11, Theorem 9.19] to conclude that u ∈ C4,α(Ω). 2
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