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Abstract. We consider the system
−m

(
‖u‖2

)
∆u = λFu(x, u, v) + 1

2∗Gu(u, v), in Ω,

−l
(
‖v‖2

)
∆v = λFv(x, u, v) + 1

2∗Gv(u, v), in Ω,

u, v ∈ H1
0 (Ω),

where Ω ⊂ RN , N ≥ 3, is a bounded smooth domain, ‖ · ‖2 =
∫
Ω |∇ · |

2dx,

λ > 0 is a parameter, the functions m and l are positive and increasing, the
function F is superlinear both at origin and at infinity, the function G is 2∗-

homogeneous. In our first result, we obtain a nonzero nonnegative solution for

large values of λ. We also prove that, for any k ∈ N, there exists λ∗k > 0 such
that the problem has at least k pairs of nonzero solutions if λ ≥ λ∗k.

1. Introduction

Given a bounded smooth domain Ω ⊂ RN and a positive function m, the Kirch-
hoff equation

−m
(∫

Ω

|∇u|2dx

)
∆u = g(x, u), in Ω, u = 0, on ∂Ω,

has its origin in the theory of nonlinear vibration. For instance, in the case m(t) =
a+bt, with a, b > 0, it comes from the following model for the modified d’Alembert
wave equation

(1.1) ρ
∂2u

∂t2
−

(
P0

h
+

E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= g(x, u),

proposed by Kirchhoff in [12]. Its main feature is to consider the effects of the
changes on the length of the string during vibrations. The parameters have the
following meaning: L is the length of the string, h is the area of cross-section, E
is the Young modulus of the material, ρ is the mass density and P0 is the initial
tension. Nonlocal problems also appear in other fields as, for example, biological
systems where u describes a process which depends on the average of itself (for
instance, population density). We refer the reader to [4, 15, 14] and their references
for more examples on the physical motivation of this problem.
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In this paper, we are interested in the nonlocal system

(Sλ)


−m

(∫
Ω
|∇u|2dx

)
∆u = λFu(x, u, v) + 1

2∗Gu(u, v) in Ω,

−l
(∫

Ω
|∇v|2dx

)
∆v = λFv(x, u, v) + 1

2∗Gv(u, v) in Ω,

u, v ∈ H1
0 (Ω),

where Ω ⊂ RN , N ≥ 3, is a bounded smooth domain, λ > 0 is a parameter,
2∗ := 2N/(N − 2) and the functions m, l satisfy

(m0) m : [0,+∞]→ R is continuous, nondecreasing in [0, σm] and m(0) > 0;
(l0) l : [0,+∞]→ R is continuous, nondecreasing in [0, σl] and l(0) > 0.

We are denoting by Fu and Fv the partial derivatives with respect to the sec-
ond and third variable, respectively, of the nonlinearity F : Ω × R2 → R. The
assumptions on F are:

(F0) F ∈ C1(Ω× R2,R);
(F1) there exists q ∈ (2, 2∗) such that

lim
|z|→∞

|∇F (x, z)|
|z|q−1

= 0, uniformly in Ω;

(F2) there exists θ ∈ (2, 2∗) such that

0 ≤ θF (x, z) ≤ z · ∇F (x, z), ∀ z ∈ R2,

where z1 · z2 denotes the inner product of z1, z2 ∈ R2;
(F3) there holds

lim
|z|→0

|∇F (x, z)|
|z|

= 0, uniformly in Ω;

(F4) Fu(x, 0, t) = 0, Fv(x, s, 0) = 0, for any (s, t) ∈ R2.

Setting R2
+ := {(s, t) ∈ R2 : s ≥ 0, t ≥ 0}, the hypotheses for G : R2 → R are

the following:

(G0) G ∈ C1(R2,R) is 2∗-homogeneous, that is,

G(σs, σt) = σ2∗
G(s, t), ∀σ > 0, (s, t) ∈ R2;

(G1) G(s, t) > 0, for any (s, t) ∈ R2
+ \ {(0, 0)};

(G2) one of the conditions below holds:
(a) Gu(0, 1) = 0, Gv(1, 0) = 0,
(b) Gu(0, 1) > 0, Gv(1, 0) > 0.

From now on, we denote by H the Hilbert space H1
0 (Ω)×H1

0 (Ω) endowed with
the norm

‖(u, v)‖ :=

[∫
Ω

(
|∇u|2 + |∇v|2

)
dx

]1/2

.

For each component of the vector (u, v), we also denote ‖ · ‖ =
(∫

Ω
|∇ · |2

)1/2
.

We say that a solution (u, v) ∈ H of the system (Sλ) is nonnegative if each
component is a nonnegative function. In our first, result we obtain the existence of
such kind of solution if λ is large:

Theorem 1.1. Suppose that m, l, F and G satisfy (m0), (l0), (F0) − (F4) and
(G0)− (G2). Then there exists λ∗ > 0 such that, for any λ > λ∗, problem (Sλ) has
a nonzero nonnegative solution (uλ, vλ) ∈ H such that ‖(uλ, vλ)‖ → 0 as λ→ +∞.



SOLUTIONS FOR A KIRCHHOFF SYSTEM WITH CRITICAL GROWTH 3

In the proof, we apply the Moutain Pass Theorem. The technical conditions
(F4), (G1)− (G2) are used only to verify that the critical points of the energy func-
tional associated with (Sλ) have nonnegative components (see [19]). For dimensions
N ≥ 4, the critical exponent 2∗ is smaller than or equal to 4, and therefore the
integral

∫
Ω
G(u, v)dx does not dominate the fourth-order term which comes from

the nonlocal part of the system. In order to overcome this difficulty, we follow the
procedure introduced in [1]. It consists in dealing with a truncated problem and,
after solving it, verify that the obtained solutions have small norm and therefore
solve the original problem.

In our second result, we replace the conditions (F4), (G1), (G2) by the following:

(F5) F (x, ·) is even;

(Ĝ1) G(s, t) ≥ 0, for any (s, t) ∈ R2;
(G3) G is even.

We prove the following:

Theorem 1.2. Suppose that m, l, F and G satisfy (m0), (l0), (F0) − (F3), (F5),

(G0), (Ĝ1), (G3). Then, for any k ∈ N, there exists λ∗k > 0 such that problem (Sλ)
has k pairs of nonzero solutions for any λ ≥ λ∗k.

Under conditions (F5) and (G3), the energy functional is even. Hence, we are
able to apply the Symmetric Mountain Pass Theorem to get multiple solutions.
Differently from Theorem 1.1, we have no information about the sign of such solu-
tions.

As far as we know, the first paper dealing with Kirchhoff type equation via
variational methods was [1]. By assuming some technical conditions on m and
the nonlinearity, they obtained a solution for the scalar version of the problem
(Sλ). Since then, there is a vast literature concerning existence, nonexistence,
multiplicity and concentration behavior of solutions for nonlocal problems. We just
quote [10, 18, 11, 17, 22] for subcritical problems and [9, 7, 20, 13] for the critical
ones. The main results of this paper extend and complement that of [6, 8, 5, 3] in
several senses: we consider system of equations, we deal with different functions and
higher dimensions and we prove a multiplicity result. Moreover, differently from
the aforementioned works, our hypotheses on m and l are only near the origin.

Before finishing the introduction we present some examples. Given l > 0, we set

Pl(s, t) := a1|s|l + a2|t|l +

k∑
i=1

bi|s|αi |t|βi ,

with αi, βi > 1, αi + βi = l and a1, a2, bi ∈ R. The following functions and your
combinations, with appropriated choices of the constants, verify our assumptions
on the critical homogeneous nonlinearity G:

G(s, t) = P2∗(s, t), G(s, t) = r
√
Pr2∗(s, t), G(s, t) =

P2∗+r(s, t)

Pr(s, t)
,

with r > 0. Although the same prototype can be used for F , with 2∗ replaced by
q0 verifying 2 < q0 < q < 2∗, we notice that F can also be nonhomogeneous.

The rest of this paper is organized as follows: in the next section, we present
the variational setting to deal with (Sλ). Section 3 is devoted to the proof of local
compactness condition for the energy functional. We prove our main theorems in
Sections 4 and 5.
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2. Variational setting and technical results

In what follows we write
∫

Ω
u instead of

∫
Ω
u(x)dx. We denote by ‖u‖p the

Lp(Ω)-norm of a function u ∈ Lp(Ω), for any 1 ≤ p ≤ ∞. Throughout the paper
we shall assume that conditions (m0), (l0), (F0) − (F3) and (G0) hold. We write
on(1) to denote a quantity approaching zero as n→ +∞.

Let θ > 2 be given by (F2). Using conditions (m0) and (l0), we can find s0 ∈
(0, σm) and s1 ∈ (0, σl) such that, for

(2.1) a := m(s0), b := l(s1),

there hold

(2.2) m(0) ≤ a < θ

2
m(0), l(0) ≤ b < θ

2
l(0).

Define the functions ma, lb ∈ C(R+,R+) by

ma(s) :=

{
m(s), if 0 ≤ s ≤ s0,

a, if s ≥ s0,
lb(s) :=

{
l(s), if 0 ≤ s ≤ s1,

b, if s ≥ s1,

and consider from now on the modified problem

(Ŝλ)


−ma(‖u‖2)∆u = λFu(x, u, v) + 1

2∗Gu(u, v), in Ω,

−lb(‖v‖2)∆v = λFv(x, u, v) + 1
2∗Gv(u, v), in Ω,

u, v ∈ H1
0 (Ω).

Since in our first result we are looking for nonnegative solutions, without loss of
generality we may suppose that

(2.3)

{
Fu(x, s, t) = 0, if x ∈ Ω, s ≤ 0, t ∈ R,

Fv(x, s, t) = 0, if x ∈ Ω, s ∈ R, t ≤ 0.

By (F4), the above assumptions do not affect the continuity of Fu and Fv. Moreover,
by using (F0), (F1) and (F3), we obtain after integration

|F (x, z)| ≤ ε

2
|z|2 + C|z|q, ∀x ∈ Ω, z ∈ R2,

and therefore the functional (u, v) 7→
∫

Ω
F (x, u, v) is well defined. Moreover, by

using (F1) again, we can check that it belongs to C1(H,R).

Lemma 2.1. Suppose that G satisfies (G2). Then there exists G̃ ∈ C1(R2,R+)

such that G̃ satisfies (G0) − (G1) and G̃ ≡ G in R+ × R+. Moreover, if (G2)(b)
holds, then {

G̃u(s, t) ≥ 0, if s ≤ 0, t ∈ R,

G̃v(s, t) ≥ 0, if s ∈ R, t ≤ 0.

Proof. Since G is 2∗-homogeneous, its gradient is (2∗ − 1)-homogeneous and, for
any (s, t) ∈ R2, there hold

(2.4) (s, t) · ∇G(s, t) = 2∗G(s, t),

and

(2.5) |G(s, t)| ≤MG(|s|2
∗

+ |t|2
∗
),
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where MG := max{G(s, t) : s, t ∈ R, |s|2∗
+ |t|2∗

= 1}. Hence, we can check that
the lemma holds for the function

(2.6) G̃(s, t) =

G(s+, t+), if (G2)(a) holds,

G(s+, t+)− (s−, t−) · ∇G(s+, t+), if (G2)(b) holds,

defined for (s, t) ∈ R2. We omit the details. �

We are ready to introduce the energy functional associated with the modified
problem, namely Ia,b,λ : H → R given by

Ia,b,λ(u, v) :=
1

2
Ma(‖u‖2) +

1

2
Lb(‖v‖2)− λ

∫
Ω

F (x, u, v)− 1

2∗

∫
Ω

G̃(u, v),

with Ma(s) :=
∫ s

0
ma(t)dt and Lb(s) :=

∫ s
0
lb(t)dt. It is standard to check that

Ia,b,λ ∈ C1(H,R).
In order to simplify the notation, in the next two sections, we are going to write

G to denote the function G̃ given by the last lemma. Since G̃ satisfies (G0)− (G1)
this can be done without loss of generality. Moreover, we have the following:

Lemma 2.2. Suppose that (u, v) ∈ H is such that I ′a,b,λ(u, v) = 0, ‖u‖ < s0 and

‖v‖ < s1, where s0, s1 come from (2.1). Then (u, v) is a nonnegative solution of
problem (Sλ).

Proof. It is clear that (u, v) is a weak solution of the modified problem (Ŝλ). If (u, v)
is nonnegative then, since ‖u‖ < s0 and ‖v‖ < s1, it follows from the definition
of ma and lb that ma(‖u‖2) = m(‖u‖2) and lb(‖v‖2) = l(‖u‖2). Hence, (u, v) is a
nonnegative solution of (Sλ).

In order to check that (u, v) is nonnegative, we first notice that, by (2.3),∫
Ω

(u−, 0) · ∇F (x, u, v) =

∫
{u≥0}

u−Fu(x, u, v) dx+

∫
{u<0}

u−Fu(x, u, v) dx = 0,

where u+(x) := max{u(x), 0} and u− := u+−u. Moreover, if J(u, v) :=
∫

Ω
G(u, v)

and (G2)(a) holds, it follows from (2.6) that

〈J ′(u, v), (u−, 0)〉 =

∫
Ω

u−Gu(u+, v+) =

∫
{u≤0}

u−Gu(0, v+)dx = 0,

since Gu(0, 1) = 0. If (G2)(b) holds, we can argue as above and use Lemma 2.1 to
get

〈J ′(u, v), (u−, 0)〉 =

∫
{u≤0}

u−Gu(u, v) dx ≥ 0,

and therefore 〈J ′(u, v), (u−, 0)〉 ≥ 0, whenever (G2) holds.
The above considerations together with 〈I ′a,b,λ(u, v), (u−, 0)〉 = 0 imply that

0 ≤ −ma(‖u‖2)

∫
Ω

|∇u−|2,

and therefore we conclude that u ≥ 0 a.e. in Ω. Repeating the argument and using
〈I ′a,b,λ(u, v), (0, v−)〉 = 0, we also get v ≥ 0 a.e. in Ω. �
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We present now some technical results. Following [19], we introduce the number

SG := inf
(u,v)∈H\{(0,0)}

∫
Ω

(|∇u|2 + |∇v|2)(∫
Ω
G(u, v)

)2/2∗ .

We denote by C(Ω) the set of all continuos functions u : Ω→ R endowed with the
norm ‖u‖C(Ω) := maxx∈Ω |u(x)| and by M(Ω) its dual, namely the set of Radon

measures. The next result is a variant of the classical concentration-compactness
lemma of Lions [16, Lemma 1.1]. It was inspired by an earlier version presented
in [19, Lemma 6] and its proof can de done with natural changes in the arguments
presented in this last paper.

Lemma 2.3. Suppose that ((un, vn)) ⊂ H is such that
(un, vn) ⇀ (u, v), weakly in H,

(|∇un|2 + |∇vn|2) ⇀ ζ, in the weak-∗ topology σ(M(Ω), C(Ω)),

G(un, vn) ⇀ ν, in the weak-∗ topology σ(M(Ω), C(Ω)),

where ζ, ν ∈M(Ω) are nonnegative bounded measures over Ω. Then there exist an
enumerable set J , which can be empty, a family of distinct points (xj)j∈J ⊂ Ω, and
(νj)j∈J , (ζj)j∈J ⊂ (0,+∞) such that

(a) ν = G(u, v) +
∑
j∈J

νjδxj ,

(b) ζ ≥ (|∇u|2 + |∇v|2) +
∑
j∈J

ζjδxj ,

where δx indicates the Dirac mass at x. Moreover, for any j ∈ J , we have that

SGν
2/2∗

j ≤ ζj.

We prove in the sequel that, for some special sequences, the set J is finite.

Lemma 2.4. Let (zn) ⊂ H be as in Lemma 2.3 and suppose that I ′a,b,λ(zn) → 0,
as n→∞. Then J has a finite number of elements. Moreover,

(2.7) νj ≥ (min{m(0), l(0)}SG)
N/2

, ∀ j ∈ J.

Proof. Let φ ∈ C∞0 (RN , [0, 1]) be such that φ ≡ 1 in B1/2(0) and φ ≡ 0 in RN \
B1(0). Suppose that J 6= ∅, fix j ∈ J and define φε(x) := φ((x− xj)/ε), for ε > 0.
Since (φεzn) ⊂ H is bounded, we have that 〈I ′a,b,λ(zn), (φεzn)〉 = on(1). This and

(2.4) provide

(2.8)

on(1) = ma(‖un‖2)

(
An,ε +

∫
Ω

|∇un|2φε
)

+ lb(‖vn‖2)

(
Bn,ε +

∫
Ω

|∇vn|2φε
)

−
∫

Ω

φεG(un, vn)− λ
∫

Ω

(φεzn) · ∇F (x, zn).

where

An,ε :=

∫
un(∇un · ∇φε), Bn,ε :=

∫
vn(∇vn · ∇φε).
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Since F has subcritical growth, we can use Sobolev embeddings and Lebesgue
Theorem to get

lim
n→+∞

∫
Ω

(φεzn) · ∇F (x, zn) =

∫
Ω

(φεz) · ∇F (x, z),

where z = (u, v) is the weak limit of (zn) in H. Recalling that ma(s) ≥ m(0) and
lb(s) ≥ l(0), we can use (2.8) and Lemma 2.3 to get

(2.9) min{m(0), l(0)}
(
An,ε +Bn,ε +

∫
Ω

φε dζ

)
≤
∫

Ω

φε dν+λ

∫
Ω

(φεz)·∇F (x, z).

We claim that

(2.10) lim
ε→0

lim sup
n→∞

An,ε = 0, lim
ε→0

lim sup
n→∞

Bn,ε = 0.

If this is true, we can take the limit as n→ +∞, ε→ 0 in (2.9) and use Lebesgue
Theorem to conclude that

min{m(0), l(0)}ζj ≤ νj .

Recalling that SGν
2/2∗

j ≤ ζj , we obtain

min{m(0), l(0)}SGν2/2∗

j ≤ min{m(0), l(0)}ζj ≤ νj ,

and therefore νj ≥ [min{m(0), l(0)}SG]
N
2 . Hence,

ν(Ω) ≥
∑
j∈J

νj ≥
∑
j∈J

(min{m(0), l(0)}SG)
N/2

and we infer from ν(Ω) < +∞ that J is finite.
In order to prove (2.10), we first use Hölder’s inequality to compute

|An,ε| ≤
∫

Ω

|un||∇un||∇φε| ≤ C
(∫

Ω

|un|2|∇φε|2
)1/2

.

Since un → u strongly in L2(Ω), the change of variables y := (x − xj)/ε and the
Sobolev embedding provide

lim sup
n→∞

|An,ε| ≤ C

(∫
Ω

|u|2|∇φε|2
)1/2

= ε(N−2)/2C

(∫
{|y|≤ε}

|u(yε+ xj)|2|∇φ(y)|2dy

)1/2

,

and the first result follows from N ≥ 3. The proof for Bn,ε is analogous. �

3. The Palais-Smale condition

Given a functional I ∈ C1(H,R) and c ∈ R, we say that I satisfies the Palais-
Smale condition at level c ((PS)c for short) if any sequence (zn) ⊂ H such that

lim
n→+∞

I(zn) = c, lim
n→+∞

I ′(zn) = 0,

has a convergent subsequence. We devote this section to the proof of the following
local compactness result:
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Proposition 3.1. If

c∗ :=

(
1

θ
− 1

2∗

)
(min{m(0), l(0)}SG)

N/2
,

then Ia,b,λ satisfies (PS)c for any c < c∗.

Proof. Let (zn) ⊂ H be such that I ′a,b,λ(zn)→ 0 and Ia,b,λ(zn)→ c < c∗. We first

notice that, by (m0), (l0), (F2), (2.4) and (2.2), there exists C1 > 0 such that

c+ on(1)‖zn‖+ on(1) = Ia,b,λ(zn)− 1

θ
〈I ′a,b,λ(zn), zn〉

≥ 1

2
Ma(‖un‖2) +

1

2
Lb(‖vn‖2)

−1

θ
ma(‖un‖2)‖un‖2 −

1

θ
lb(‖vn‖2)‖vn‖2

≥
(

1

2
m(0)− 1

θ
a

)
‖un‖2 +

(
1

2
l(0)− 1

θ
b

)
‖vn‖2.

≥ C1‖zn‖2,
and therefore (zn) is bounded in H.

Let J be given by Lemma 2.3. We claim that J = ∅. Indeed, suppose by
contradiction that there exists j ∈ J and consider φε as in the proof of Lemma 2.4.
The boudedness of (zn), (F2), (2.2), (2.4), φε ≤ 1, and the same argument used
above provide

c ≥
(

1

θ
− 1

2∗

)∫
Ω

G(un, vn) + on(1) ≥
(

1

θ
− 1

2∗

)∫
Ω

φεG(un, vn) + on(1).

Taking the limit and using (2.7), we obtain

c ≥
(

1

θ
− 1

2∗

)
(min{m(0), l(0)}SG)

N/2
= c∗,

contrary to c < c∗.
Since J is empty, we infer from Lemma 2.3 that

lim
n→+∞

∫
Ω

G(un, vn) =

∫
Ω

G(u, v).

Up to a subsequence, we have that

(un, vn) ⇀ (u, v) weakly in H,

un → u, vn → v, strongly in Ls(Ω), 2 ≤ s < 2∗,

un(x)→ u(x), vn(x)→ v(x), a.e. in Ω,

max{|un(x)|, |vn(x)|} ≤ gs(x), a.e. in Ω,

with gs ∈ Ls(Ω), 2 ≤ s < 2∗. By using (F0), (F1), (F3) and the strong convergence
in Ls(Ω) we get

lim
n→+∞

∫
Ω

zn · ∇F (x, zn) =

∫
Ω

z · ∇F (x, z),

where z = (u, v). This and 〈I ′a,b,λ(zn), zn〉 → 0 provide

(3.1) lim
n→∞

[ma(‖un‖2)‖un‖2 + lb(‖vn‖2)‖vn‖2] = λ

∫
Ω

z · ∇F (x, z) +

∫
Ω

G(u, v).
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On the other hand, since 〈I ′a,b,λ(zn), z〉 → 0, there holds

(3.2) ma(‖un‖2)

∫
Ω

(∇un · ∇u) + lb(‖vn‖2)

∫
Ω

(∇vn · ∇v) = A1
n +A2

n + on(1),

where

A1
n := λ

∫
Ω

z · ∇F (x, zn), A2
n :=

1

2∗

∫
Ω

(u, v) · ∇G(un, vn).

Again, Lebesgue Theorem implies that

lim
n→+∞

∫
Ω

z · ∇F (x, zn) =

∫
Ω

z · ∇F (x, z).

Furthermore, since the partial derivatives of G are (2∗−1)-homogeneous, it follows
from (2.5) that∫

Ω

|Gu(un, vn)|2
∗/(2∗−1) ≤ M

2∗/(2∗−1)
G

∫
Ω

(
|un|2

∗−1 + |vn|2
∗−1
)2∗/2∗−1

≤ C2

∫
Ω

(
|un|2

∗
+ |vn|2

∗
)
,

and therefore (Gu(un, vn)) is bounded in L2∗/(2∗−1)(Ω). The pointwise convergence
of (un) and (vn) imply that G(un, vn) ⇀ G(u, v) weakly in L2∗/(2∗−1)(Ω). Since

u ∈
(
L2∗/2∗−1(Ω)

)′
= L2∗

(Ω), we obtain

lim
n→+∞

∫
Ω

uGu(un, vn) =

∫
Ω

uGu(u, v).

Analogously,
∫

Ω
vGv(un, vn) →

∫
Ω
vGv(u, v), as n → +∞. The above considera-

tions and (2.4) prove that

lim
n→+∞

∫
Ω

(u, v) · ∇G(un, vn) =

∫
Ω

(u, v) · ∇G(u, v) = 2∗
∫

Ω

G(u, v).

If we define

α0 := lim
n→∞

‖un‖, α1 := lim
n→∞

‖vn‖,

we can take the limit in (3.2) and use the continuity of ma and lb to get

ma(α2
0)‖u‖2 + lb(α

2
1)‖v‖2 = λ

∫
Ω

z · ∇F (x, z) +

∫
Ω

G(u, v).

This and (3.1) imply that

ma(α2
0)α2

0 + lb(α
2
1)α2

1 = ma(α2
0)‖u‖2 + lb(α

2
1)‖v‖2.

From the weak convergence of (vn), we know that ‖v‖2 ≤ α2
1. Hence,

ma(α2
0)α2

0 + lb(α
2
1)α2

1 = ma(α2
0)‖u‖2 + lb(α

2
1)‖v‖2 ≤ ma(α2

0)‖u‖2 + lb(α
2
1)α2

1,

that is

ma(α2
0)α2

0 ≤ ma(α2
0)‖u‖2.

Since ma(α2
0) > 0, this implies that α2

0 ≤ ‖u‖2 ≤ α2
0, and therefore ‖un‖ → α0. It

follows from the weak convergence of (un) that un → u strongly in H1
0 (Ω). In the

same way, vn → v strongly in H1
0 (Ω). This concludes the proof. �
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4. Proof of Theorem 1.1

We start by checking that Ia,b,λ satisfies the geometric conditions of the Mountain
Pass Theorem.

Lemma 4.1. Suppose that G satisfies (G1). Then,

(i) there eixst ρ > 0, α > 0 such that

Ia,b,λ(u, v) ≥ α > 0, ∀(u, v) ∈ H ∩ ∂Bρ(0);

(ii) there exists e ∈ H, independent of λ > 0, such that Ia,b,λ(e) < 0.

Proof. For any given ε > 0, we can use (F0), (F1) and (F3) to get

F (x, s, t) ≤ ε

2
(|s|2 + |t|2) + C(|t|q + |s|q), ∀x ∈ Ω, (s, t) ∈ R2.

Picking ε > 0 small, we can use the above inequality, (m0), (l0) and (2.5) to get

Ia,b,λ(u, v) ≥ 1

2
m(0)‖u‖2 +

1

2
l(0)‖v‖2 − ε

2

∫
Ω

(|u|2 + |v|2)

−C1λ

∫
Ω

(|u|q + |v|q)− 1

2∗

∫
Ω

G(u, v).

≥ ‖(u, v)‖2
(
C2 − λC3‖(u, v)‖q−2 − C3‖(u, v)‖2∗−2

)
.

Since q ∈ (2, 2∗), it is sufficient to choose ρ > 0 sufficiently small to obtain (i).
In order to prove (ii), we consider u0 ∈ H1

0 (Ω) such that ‖u0‖ = 1 and u0 ≥ 0.
By (F2), we have that F ≥ 0, and therefore

Ia,b,λ(tu0, tu0)) ≤ at2 + bt2 − t2
∗

2∗

∫
Ω

G(u0, u0).

It follows from (G1) that
∫

Ω
G(u0, u0) > 0. Thus, Ia,b,λ(tu0, tu0)→ −∞ as t→ +∞

and (ii) holds for e = t∗(u0, u0), with t∗ > 0 sufficiently large. �

In view of the above result we obtain a sequence (zn) ⊂ H such that

Ia,b,λ(zn)→ ca,b,λ, I ′a,b,λ(zn)→ 0,

where

ca,b,λ := inf
γ∈Γ

max
t∈[0,1]

Ia,b,λ(γ(t)) > 0,

and

Γ = {γ ∈ C([0, 1], H) : γ(0) = 0 and Ia,b,λ(γ(1)) < 0}.

Lemma 4.2. The minimax level defined above satisfies

lim
λ→∞

ca,b,λ = 0

Proof. Let u0 ∈ H1
0 (Ω) be such that ‖u0‖ = 1 and u0 ≥ 0. For z0 := (u0, u0), we

set φ(t) := Ia,b,λ(tz0), that is,

φ(t) := Ia,b,λ(tz0) =
1

2
Ma(t2) +

1

2
Lb(t

2)− λ
∫

Ω

F (x, tz0)− 1

2∗

∫
Ω

G(tz0).

Clearly Ia,b,λ(0) = 0. Moreover, from the proof of Lemma 4.1 we get Ia,b,λ(ρz0/‖z0‖) >
0 and Ia,b,λ(tz0) < 0, for any t > 0 large. Thus, there exists tλ > 0 such that

Ia,b,λ(tλz0) = max
t≥0

Ia,b,λ(z0).
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We claim that tλ → 0 as λ→ +∞. Indeed, since φ′(tλ)tλ = 0, we get

(4.1) t2λ(ma(t2λ) + lb(t
2
λ)) = λ

∫
Ω

(tλz0) · ∇F (x, tλz0) + t2
∗

λ

∫
Ω

G(u0, u0)

and it follows from (F2), (G0) and the definition of ma and lb that

t2
∗−2
λ

∫
Ω

G(u0, u0) ≤ a+ b,

which implies that (tλ) is bounded. Let (λn) ⊂ R be such that λn → +∞ and
suppose that

t∗ := lim
n→∞

tλn ≥ 0.

Since

lim
λ→+∞

∫
Ω

(tλz0) · ∇F (x, tλz0) =

∫
Ω

(t∗z0) · ∇F (x, t∗z0),

we infer from (4.1) that t∗ = 0.
We now consider the path γ∗(t) = te, t ∈ [0, 1], where e ∈ H comes from Lemma

4.1. Notice that

0 < ca,b,λ ≤ max
t∈[0,1]

I(γ∗(t)) = I(tλz0) ≤ 1

2
Ma(t2λ) +

1

2
Lb(t

2
λ).

Taking λ→ +∞ and recalling that tλ → 0, we conclude that ca,b,λn → 0 �

We are ready to prove our existence theorem.

Proof of Theorem 1.1. By the previous lemma there exists λ0 > 0 such that

ca,b,λ <

(
1

θ
− 1

2∗

)
(min{m(0), l(0)}SG)

N/2
, ∀λ ≥ λ0.

For each λ > λ0, we can use Proposition 3.1 and the Mountain Pass Theorem to
obtain zλ = (uλ, vλ) ∈ H such that Ia,b,λ(zλ) = ca,b,λ > 0 and I ′a,b,λ(zλ) = 0, that

is, zλ is a nonnegative solution of the modified problem (Ŝλ). According to Lemma
2.2, it remains to check that, if λ is large, then ‖u‖ ≤ s0 and ‖v‖ ≤ s1. Arguing by
contradiction, suppose that there exists a sequence (λn) ⊂ R such that λn → +∞
and the respective solutions zλn = (uλn , vλn) verifies ‖uλn‖ > s0 or ‖vλn‖ > s1. By
using (F2), (2.4) and (G1) we obtain

ca,b,λn = Ia,b,λ(uλn , vλn)− 1

θ
〈I ′a,b,λn(zλn), zλn〉

≥
(

1

2
m(0)− a

θ

)
s2

0 +

(
1

2
l(0) +

b

θ

)
s2

1,

which contradicts ca,b,λn → 0. Hence, there exists λ∗ > 0 such that, for any λ > λ∗,
the solution (uλ, vλ) obtained above satisfies the problem (Sλ). The same argument
shows that ‖(uλn , vλn)‖ → 0 as λn → +∞ and the theorem is proved. 2
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5. Proof of Theorem 1.2

In this final section we prove our multiplicity result. Beside the basic assumptions

(m0), (l0), (F0) − (F3) and (G0), we shall suppose in this section that (F5), (Ĝ1)
and (G3) hold. As before, the weak solutions of the problem are critical points of

Ia,b,λ(u, v) :=
1

2
Ma(‖u‖2) +

1

2
Lb(‖v‖2)− λ

∫
Ω

F (x, u, v)− 1

2∗

∫
Ω

G(u, v).

In order to obtain the critical points we shall apply the following version of the
Symmetric Mountain Pass Theorem (see [2, 21]).

Theorem 5.1. Let E = V ⊕W be a real Banach space with dimV <∞. Suppose
that I ∈ C1(E,R) is an even functional satisfying I(0) = 0 and

(I1) there exist ρ, α > 0 such that

inf
u∈∂Bρ(0)∩W

I(u) ≥ α;

(I2) there exists a subspace V̂ ⊂ E with dimV < dim V̂ < ∞ such that, for
some M > 0

max
u∈V̂

I(u) ≤M ;

(I3) I satisfies the (PS)c for any c ∈ (0,M).

Them I possesses at least (dim V̂ − dimV ) pairs of nonzero critical points.

The same argument used in the proof of Proposition 3.1 provides the local com-
pactness result below:

Proposition 5.2. If

c∗ := min

{
c∗,

(
m(0)

2
− a

θ

)
s2

0,

(
l(0)

2
− b

θ

)
s2

1

}
,

then Ia,b,λ satisfies (PS)c for any c < c∗.

We prove below the geometric condition (I2).

Proposition 5.3. Suppose that G satisfies (Ĝ1). Then, for each k ∈ N and M∗ >
0, there exist λ∗ > 0 with the following property: for any λ ≥ λ∗ we can find a
subspace V λk ⊂ H such that dimV λk = k and

sup
z∈V λk

Ia,b,λ(z) < M∗.

Proof. Let ϕ ∈ C∞0 (B1(0)) and fix {x1, . . . , xm} ⊂ Ω and δ > 0 in such way that,
for i, j ∈ I := {1, . . . ,m}, Bδ(xi) ⊂ Ω and Bδ(xi) ∩Bδ(xj) = ∅, if i 6= j. For each
i ∈ I, we set ϕδi (x) := ϕ((x−xi)/δ) and use the change of variables y := (x−xi)/δ
to compute

Aδ :=
‖ϕδi ‖2

‖ϕδi ‖2θ
=

∫
Ω

|∇ϕ ((x− xi)/δ)|2(∫
Ω

|ϕ ((x− xi)/δ)|θ
)2/θ

=

∫
Ω

δN

δ2
|∇ϕ(y)|2dy(∫

Ω

δN |ϕ(y)|θdy
)2/θ

,

that is

(5.1) Aδ = δ[N−2−(2N/δ)] ‖ϕ‖2

‖ϕ‖2θ
.
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Since Rm has finite dimension, there exists d1 = d1(k, θ) such that

(5.2)

k∑
i=1

|yi|θ ≥ d1

(
k∑
i=1

|yi|2
)θ/2

, ∀ (y1, . . . , ym) ∈ Rk.

Set

Vk,δ := span{(ϕδ1, 0), . . . , (ϕδk, 0)},

and consider u =
∑k
i=1 αiϕ

δ
i ∈ Vk,δ. By using (5.1), (5.2) and the fact that the

support of the functions ϕδi are disjoints, we obtain

(5.3)

∫
Ω

|u|θ =

∫
Bδ(x1)∪···∪Bδ(xk)

∣∣∣∣∣
k∑
i=1

αiϕ
δ
i

∣∣∣∣∣
θ

dx

=

k∑
i=1

‖αiϕδi ‖θθ ≥ d1

(
k∑
i=1

‖αiϕδi ‖2θ

)θ/2

= c1

(
k∑
i=1

A−1
δ ‖αiϕ

δ
i ‖2
)θ/2

= d2δ
γ‖u‖θ,

where d2 := d1‖ϕ‖2‖ϕ‖−2
q > 0 and

γ := −
(
N − 2− 2θ

N

)
θ

2
> 0,

Integrating the inequality in (F2) we get

F (x, s, 0) ≥ d3|s|θ − d4, ∀ (x, s) ∈ Ω× R,

and therefore can use (5.3) to get, for any z = (u, 0) ∈ Vk,δ,

Ia,b,λ(z) ≤ a

2
‖u‖2 − λ

m∑
i=1

∫
Bδ(xi)

F (x, u, 0) dx

≤ a

2
‖u‖2 − λd2d3δ

γ‖u‖θ − λd2kδ
NωN ,

where ωN is the volume of the unitary ball. Hence, for some positive constants
d5 = d5(k, θ), d6 = d6(k,N) we have that

(5.4) Ia,b,λ(z) ≤ a

2
‖u‖2 − λd5δ

γ‖u‖θ + λd6δ
N , ∀ z = (u, 0) ∈ Vk,δ.

Since θ < 2∗, we have that γ < N and therefore we can pick γ0 ∈ (γ,N) and
consider the function

hδ(t) :=
a

2
t2 − d5δ

−γ0+γtθ + d6δ
−γ0+N , t > 0.

which attains its maximun value at tδ :=
[
a(d5θ)

−1δγ−γ0
]1/(θ−2)

. This and γ0 ∈
(γ,N) imply that hδ(tδ) → 0 as δ → 0+. So, there exists δ∗ = δ∗(k, θ,N, a) > 0
such that

max
t≥0

hδ(t) <
M∗
2
, ∀ δ ∈ (0, δ∗].
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We now set λ∗k := (δ∗)−γ0 . Let λ ≥ λ∗k and define the k-dimensional subspace

V λk := Vk,δ, for δ = λ−1/γ0 . Since δ−γ0 = λ ≥ λ∗k = (δ∗)−γ0 , we obtain δ ≤ δ∗.
Hence, for any z = (u, 0) ∈ V λk , we can use (5.4) and the above inequality to get

Ia,b,λ(z) ≤ a

2
‖u‖2 − δ−γ0d5δ

γ‖u‖θ + δ−γ0d6δ
N ≤ max

t≥0
hδ(t) <

M∗
2
,

and we have done. �

Proof of Theorem 1.2. Given k ∈ N, we are intending to apply Theorem 5.1 with
W = H. The condition (I1) can be proved as in Lemma 4.1. If we consider M∗ < c∗
as in the statement of Proposition 5.2, it remains to obtain a subspace of dimension
k such that (I2) holds. However, this condition is always true for the subspace V λk
given in Proposition 5.3, provide we consider λ ≥ λ∗k. Since Ia,b,λ(0) = 0 and the
functional is even, the hypotheses of Theorem 5.1 are satisfied and therefore, for

each λ ≥ λ∗k, there exist k pairs of nonzero solutions for the modified problem (Ŝλ).
Let z = (u, v) ∈ H be one of the solutions obtained above. Since Ia,b,λ(z) ≤

M∗ ≤ c∗, we can use the definition of c∗, (F2), (2.4) and (Ĝ1) to get(
1

2
m(0)− a

θ

)
‖u‖2 ≤ Ia,b,λ(z)− 1

θ
〈I ′a,b,λ(z), z〉 ≤M∗ < c∗ ≤

(
1

2
m(0)− a

θ

)
s2

0,

from which it follows that ‖u‖ < s0. The same argument provides ‖v‖ ≤ s1 and
therefore, as in the proof of Lemma 2.2, we conclude that z is a nonzero solution
of (Sλ). 2
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