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Abstract. We prove the existence of ground state solution for the nonlocal
problem

m

(
∫

R2

(|∇u|2 + b(x)u2)dx

)

(−∆u+ b(x)u) = A(x)f(u) in R
2,

where m is a Kirchhoff type function, b may be negative and noncoercive, A is
locally bounded and the function f has critical exponential growth. We also
obtain new results for the classical Schrödinger equation, namely the local case
m ≡ 1. In the proofs, we apply Variational Methods besides a new Trudinger-
Moser type inequality.

1. Introduction

We study the problem

(P ) m

(∫

R2

(|∇u|2 + b(x)u2)dx

)
(−∆u+ b(x)u) = A(x)f(u) in R

2,

where m : [0,∞) → (0,∞) and f : R → [0,∞) are continuous functions and
b, A ∈ L∞

loc(R
2). The potential b may vanish on sets of positive measure or even be

negative and the nonlinearity f has critical growth. We look for solutions in the
subspace of W 1,2(R2) given by

H :=

{
u ∈ W 1,2(R2) :

∫

R2

b(x)u2dx < ∞
}
.

Due to the presence of the term m(
∫
R2(|∇u|2 + b(x)u2)dx) the equation in (P )

is no longer a pointwise identity and therefore the problem is called nonlocal. In
[20], G. Kirchhoff presented his study on transverse vibrations of elastic strings and
proposed a hyperbolic equation of the type

(1.1)
∂2u

∂t2
−
(
k1 + k2

∫ L

0

∣∣∣∣
∂u

∂x

∣∣∣∣
2

dx

)
∂2u

∂x2
= 0,
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where k1, k2 and L are positive constants. This extends the classical D’Alembert
wave equation by considering the effects of changes in the length of the strings dur-
ing vibrations. So, more general versions of (1.1) and the corresponding stationary
equations have been called Kirchhoff equations and became subject of intense re-
search mainly after the works of S.I. Pohozaev [28] and J.-L. Lions [24]. Variational
Methods have been used by many authors to obtain results of existence and multi-
plicity of solutions for stationary Kirchhoff equations since the pioneering work of
C.O. Alves et al. [3].

In order to present the conditions on the nonlocal term m we first define M(t) :=∫ t

0
m(τ)dτ , t ≥ 0. The hypotheses on m : [0,∞) → (0,∞) are:

(m1) m0 := inf
t≥0

m(t) > 0;

(m2) for any t1, t2 ≥ 0, it holds

M(t1 + t2) ≥ M(t1) +M(t2);

(m3)
m(t)

t
is decreasing in (0,∞).

Condition (m2) is valid, for instance, if m is non-decreasing. The typical example
of function satisfying (m1) − (m3) is m(t) = α + βt, with α > 0 and β ≥ 0.
Other examples are m(t) = α + βtδ, with δ ∈ (0, 1), m(t) = α(1 + log(1 + t)) or
m(t) = α+ βe−t.

Concerning the potential b ∈ L∞
loc(R

2), we set

λb
1 := inf

{∫

R2

(|∇u|2 + b(x)u2)dx : u ∈ H and ‖u‖L2(R2) = 1

}

and, for each Ω ⊂ R
2 open and nonempty,

νb(Ω) := inf

{∫

R2

(|∇u|2 + b(x)u2)dx : u ∈ W 1,2
0 (Ω) and ‖u‖L2(Ω) = 1

}

and νb(∅) = ∞. The hypotheses on b are:

(b1) λb
1 > 0;

(b2) lim
r→∞

νb

(
R

2\{x ∈ R2 : |x| < r}
)
= ∞;

(b3) there exists B0 > 0 such that

b(x) ≥ −B0, ∀x ∈ R
2.

For the function A ∈ L∞
loc(R

2), we suppose that

(A1) A(x) ≥ 1 for any x ∈ R
2;

(A2) there exists β0 > 1, C0 > 0 and R0 > 0 such that

A(x) ≤ C0

[
1 + (b+(x))1/β0

]
, ∀x ∈ R

2 \BR0
(0),

where b+(x) := max{0, b(x)}.
Conditions (b1) − (b3) and (A1) − (A2) were first considered by B. Sirakov [30] in
the study of a class of subcritical Schrödinger equations in dimension N ≥ 3. These
hypotheses ensure that H is a Hilbert space with inner product given by

〈u, v〉H =

∫

R2

(∇u · ∇v + b(x)uv)dx, ∀u, v ∈ H,
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and norm ‖u‖H =
√
〈u, u〉H . Moreover,H is continuously embedded into W 1,2(R2)

and, for every p ≥ 2, compactly embedded into the weighted Lebesgue space

Lp
A(R

2) :=

{
u : R2 → R measurable :

∫

R2

A(x)|u|pdx < ∞
}
,

which is a Banach space when endowed with the norm

‖u‖Lp
A(R2) =

(∫

R2

A(x)|u|pdx
)1/p

.

For the proof of these embeddings, see [30, Sections 2 and 3]. By (A1), L
p
A(R

2) →֒
Lp(R2) and, consequently, the embedding H →֒ Lp(R2) is also compact. In order to
guarantee the compactness of this last embedding, one normally use the conditions
b(x) ≥ b0 > 0 and

(1.2) lim
|x|→∞

b(x) = ∞, or 1/b ∈ L1(R2), or meas(Ωb,K) < ∞ ∀K > 0,

where Ωb,K := {x ∈ R
2 : b(x) < K}. One weaker geometric condition which

implies on (b2) is (see [30, Theorem 1.4]): for any K > 0, any r > 0 and any
sequence (xn) ⊂ R

2 with lim
n→∞

|xn| = ∞, we have

lim
n→∞

meas(Ωb,K ∩Br(xn)) = 0.

A potential satisfying the above condition is b(x) = b(x1, x2) = |x1x2|. Since
(b2) and (b3) are sufficient conditions for λb

1 to be achieved (see [30, Proposition
2.2]), it is easy to see that this potential also satisfies (b1). Moreover, since for any

constant C ∈ R we have Ωb−C,K = Ωb,K+C and λb−C
1 = λb

1 − C, other potential
satisfying (b1)− (b3) is b(x) = |x1x2|−C, for certain values of C. Notice that these
two examples do not satisfy (1.2).

Embedding H →֒ W 1,2(R2) implies that, for some constant ζ > 0,

(1.3) ‖u‖H ≥ ζ ‖∇u‖L2(R2) , ∀ u ∈ H.

If b ≤ 0 on some set with positive measure, then we cannot have ζ > 1. However,
we can consider ζ = 1 if

(b̂3) b(x) ≥ 0 for any x ∈ R
2.

Concerning the nonlinearity f : R → [0,∞), we first suppose that f(s) = 0, for
any s ≤ 0, and define F (s) :=

∫ s

0 f(τ)dτ , s ∈ R. The main hypotheses on f are:

(f1) there exists α0 > 0 such that

lim
s→∞

f(s)

eαs2
=

{
0, if α > α0,
∞, if α < α0;

(f2) there exists s0,K0 > 0 such that

F (s) ≤ K0f(s), ∀ s ≥ s0;

(f3) there exists θ0 > 4 such that

θ0F (s) ≤ sf(s), ∀ s > 0;

(f4)
f(s)

s3
is positive and non-decreasing in (0,∞).
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If θ > 4, an example of function f satisfying (f1)− (f4) is

f(s) =
d

ds

(
sθ

θ
(es

2 − 1)

)
= sθ−1(es

2 − 1) +
2sθ+1

θ
es

2

.

According to (f1) we are dealing with a function having critical growth. This
notion of criticality was originally motivated by the Trudinger-Moser inequality
(see [26, 31]), which states that W 1,2

0 (Ω) is continuously embedded into the Orlicz

space Lφα(Ω) associated with the function φα(t) := eαt
2 − 1, t ∈ R, for 0 < α ≤ 4π

and any bounded domain Ω ⊂ R
2. This result has been generalized in many ways

(see [6, 13, 29, 2, 22, 10, 11] and references therein). Here, we prove a version of
that result for functions belonging to the space H (see Lemma 2.3).

The main difficulty in dealing with critical growth is the lack of compactness from
the embeddings of the Sobolev spaces into Orlicz spaces Lφα . In [25, subsection I.7],
P.-L. Lions proved a concentration-compactness result that allows us to overcome
this trouble in W 1,2

0 (Ω), Ω ⊂ R
2 bounded domain. This result has had many

generalizations and applications in recent years (see [21, 32, 33, 7, 15] and references
therein). Corollary 2.4 in next section is a version of the result of P.-L. Lions for
space H .

Before stating our results, we introduce some notations:

(1.4) Sp := inf
u∈H\{0}

‖u‖H
‖u‖Lp(R2)

, p ≥ 2,

Cp := inf

{
C > 0 : pM(t2S2

p)− 2Ctp ≤ pM

(
4πζ2

α0

)
, ∀ t > 0

}
, p > 4.

The values Sp and Cp are finite, for p ≥ 2 and p > 4 respectively, due to the
embedding H →֒ Lp(R2) and the hypothesis (m3), which implies that m(t) < m(1)t
for any t > 1.

Our main results for the problem (P ) can be stated as follows:

Theorem 1.1. Suppose that (m1)− (m3), (b1)− (b3), (A1)− (A2) and (f1)− (f4)
are satisfied. Suppose also that

(f5) there exists p0 > 4 such that

f(s) > Cp0
sp0−1, ∀ s > 0.

Then problem (P ) has a nonnegative ground state solution.

Theorem 1.2. Suppose that (m1)− (m3), (b1)− (b2), (b̂3), (A1)− (A2) and (f1)−
(f4) are satisfied. Suppose also that

(f6) there exists γ0 > 0 such that

lim inf
s→∞

sf(s)

eα0s2
≥ γ0 > 4α−1

0 m

(
4π

α0

)
inf
R>0

{
R−2eR

2MR/2
}
,

where MR := ‖b‖L∞(BR(0)).

Then problem (P ) has a nonnegative ground state solution.

Hypotheses (m3) and (f4) ensure that the solutions given by Theorems 1.1 and
1.2 are ground state solutions. However, as we will see in the proofs, we still obtain
nonnegative nontrivial solution for the problem (P ), not necessarily ground state,
if we replace (m3) and (f4) by weaker conditions, namely:
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(m∗
3) there exist constants a1 > 0 and T > 0 such that

m(t) ≤ a1t, ∀ t ≥ T ;

(f∗
4 ) lim

s→0+

f(s)

s
= 0

and the conditions of monotonicity given in the conclusion of Lemma 2.5 in the
next section. Specifically, in the case of Theorem 1.2, this replacement allow us to
consider functions f that vanish on some neighborhood of origin.

The ideas used here permit us to obtain new results even in the local case.
Actually, if m ≡ 1, equation in (P ) is reduced to the Schrödinger equation

(P̂ ) −∆u+ b(x)u = A(x)f(u) in R
2.

In this case, instead of (f3) and (f4), we consider the hypotheses

(f̂3) there exists θ̂0 > 2 such that

θ̂0F (s) ≤ sf(s), ∀ s > 0;

(f̂4)
f(s)

s
is positive and non-decreasing in (0,∞).

In contrast to (f4), hypothesis (f̂4) does not imply on (f∗
4 ). Setting, for q > 2,

Ĉq := inf

{
C > 0 : qS2

q t
2 − 2Ctq ≤ 4πqζ2

α0
, ∀ t > 0

}
= Sq

q

(
α0(q − 2)

4πqζ2

)(q−2)/2

,

the main results for problem (P̂ ) can be stated as follows:

Theorem 1.3. Suppose that (b1) − (b3), (A1) − (A2), (f1) − (f2), (f̂3) and (f∗
4 )

are satisfied. Suppose also that

(f̂5) there exists q0 > 2 such that

f(s) > Ĉq0s
q0−1, ∀ s > 0.

Then problem (P̂ ) has a nonnegative nontrivial weak solution. If, in addition, f

satisfies (f̂4), the solution is ground state.

Theorem 1.4. Suppose that (b1) − (b2), (b̂3), (A1) − (A2), (f1) − (f2), (f̂3) and

(f∗
4 ) are satisfied. Suppose also that

(f̂6) there exists γ̂0 > 0 such that

lim inf
s→∞

sf(s)

eα0s2
≥ γ̂0 > 4α−1

0 inf
R>0

{
R−2eR

2MR/2
}
.

Then problem (P̂ ) has a nonnegative nontrivial weak solution. If, in addition, f

satisfies (f̂4), the solution is ground state.

As far we know, there is no paper on Kirchhoff equations in unbounded do-
mains under (b1)− (b3), even with nonlinearity having polynomial growth. But on
Schrödinger equations involving exponential growth, we can cite [9, 12]. In [9], the
author studied the nonhomogeneous singular problem

(1.5) −∆u+ b(x)u =
g(x)f(u)

|x|a + h(x), x ∈ R
2,
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with b satisfying (b1)− (b3), f having subcritical exponential growth and a ∈ [0, 2).
In [12], the authors studied the nonhomogeneous quasilinear problem

(1.6) −∆Nu+ b(x)|u|N−2u = c(x)|u|N−2u+ g(x)f(u) + εh(x), x ∈ R
N ,

where ∆Nu = div(|∇u|N−2∇u), N ≥ 2, with b and f satisfying hypotheses similar

to (b1), (b2), (b̂3) and (f1), (f2), (f̂3), (f
∗
4 ), (f̂5), respectively. The potential c was

taken nonnegative and belonging to an appropriated Lebesgue space, with norm, in
this space, bounded by a suitable constant. Notice that, for certain sign-changing
potentials b, this hypothesis does not include the case in which b is replaced by
b+ and c(x) = b−(x) := max{0,−b(x)} in equation (1.6). Actually, although b+

satisfies (b1), (b2), (b̂3) whenever b satisfies (b1) − (b3), powers of b− may not be
integrable, as for example b(x) = |x1x2|−C given previously. For h 6≡ 0 with small
norm in an apropriated dual space, two solutions were obtained in [9] and [12] for
problems (1.5) and (1.6), respectively.

With the potential b satisfying hypotheses similar to (1.2), we also refer to [23],
for a Kirchhoff equation, and [14, 32], for Schrödinger equations. Other related
results can be founded in [4, 5, 15, 16, 17]. On Kirchhoff equations in bounded
domains, we refer to [18, 19, 27]. All of these papers deal with critical or subcritical
exponential growth of Trudinger-Moser type.

In addition to the aspects already mentioned, our results complement the afore-
mentioned works in other ways: with the exception of [18], in the other papers it
was not proved the existence of ground state solutions; differently from [4, 5, 14,
15, 16, 17, 23, 32], we consider a potential that may change sign or vanish; in these
same papers and in [9], the regularity of the potential is stronger than that consid-
ered here; in [9, 12], it was assumed that the weight function g in equations (1.5)
and (1.6) satisfies hypotheses similar to (A1) and (A2), but the regularity on A is
stronger than here; finally, although in [12] it has been considered a potential b of
the same type of ours, the Trudinger-Moser inequality proved here is more general

and allow us to consider the more natural hypotheses (f6) and (f̂6), instead of (f5)

and (f̂5).
The rest of this paper is organized as follows: in Section 2 we prove preliminary

results related with the Trudinger-Moser inequality; in Section 3 we detail the
variational framework of problem (P ); in Section 4 we prove estimates for the
Mountain Pass level of the energy functional; finally, in Section 5, we prove our
main results.

2. Preliminary results

Hereafter, we write
∫
Ω u instead of

∫
Ω u(x)dx, for any Ω ⊂ R

2 and u ∈ L1(Ω).

Norms in H , in W 1,2(R2) and in Lp(R2), 1 ≤ p ≤ ∞, are denoted by ‖·‖, ‖·‖1,2 and

‖·‖p, respectively. Notations C1, C2, . . . represent positive constants whose exact

values are irrelevant. Hypotheses (b1) − (b3), (A1) − (A2) are always be assumed
from now on.

The next result was proved in [13] (see also [6]).

Lemma 2.1. If α > 0 and v ∈ W 1,2(R2), then
∫
R2(e

αv2 − 1) < ∞. Moreover, if

α < 4π, ‖∇v‖2 ≤ 1 and ‖v‖2 ≤ M , then there exists C = C(α,M) > 0 such that
∫

R2

(eαv
2 − 1) ≤ C.
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We need a version of this last result adapted to our variational framework. We
start with a technical result.

Lemma 2.2. Let β0 be given by hypothesis (A2) and α > 0. For any v ∈ H and

r ∈ [1, β0), the function A(·)r(eαv2 − 1)r belongs to L1(R2).

Proof. Since (eαs
2 − 1)r ≤ erαs

2 − 1, for any s ∈ R, and A ∈ L∞
loc(R

2) we get

(2.1)

∫

R2

A(x)r(eαv
2 − 1)r ≤

∫

R2\BR0
(0)

A(x)r(erαv
2 − 1)+C1

∫

BR0
(0)

(erαv
2 − 1),

where R0 > 0 is given by hypothesis (A2). From Lemma 2.1, we conclude that the
last integral above is finite. In order to estimate the first one, notice that

(2.2)

∫

R2\BR0
(0)

A(x)r(erαv
2 − 1) =

∞∑

m=1

(rα)m

m!

∫

R2\BR0
(0)

A(x)rv2m.

Now, by (A2) and Hölder’s inequality, we have that
∫

R2\BR0
(0)

A(x)rv2m ≤

≤ C2 ‖v‖2m2m + C3

∫

R2\BR0
(0)

(b+(x))r/β0v2m(2.3)

≤ C2 ‖v‖2m2m + C3

(∫

R2

b+(x)v2
)r/β0

(∫

R2

v2(mβ0−r)/(β0−r)

)(β0−r)/β0

.

But, by (b3) and (b1),
∫

R2

b+(x)v2 =

∫

R2

b(x)v2 −
∫

{b(x)≤0}
b(x)v2 ≤ ‖v‖2 +B0 ‖v‖22

≤ ‖v‖2 +B0
‖v‖2
λb
1

= C4 ‖v‖2 .

This and (2.3) imply that

(2.4)

∫

R2\BR0
(0)

A(x)rv2m ≤ C5 ‖v‖2m + C6 ‖v‖2r/β0 ‖v‖2(mβ0−r)/β0

= C7 ‖v‖2m ,

where we have used that min{2m, 2(mβ0 − r)/(β0 − r)} ≥ 2 and H is continuously
embbeded into Lp(R2), for any p ≥ 2. Therefore, from (2.1), (2.2) and (2.4) we
obtain

∫

R2

A(x)r(eαv
2 − 1)r ≤ C7

∞∑

m=1

1

m!
(rα ‖v‖2)m + C1

∫

BR0
(0)

(erαv
2 − 1)

= C7(e
rα‖v‖2 − 1) + C1

∫

BR0
(0)

(erαv
2 − 1)(2.5)

< ∞,

which completes the proof. �

The following lemma is a version of Lemma 2.1 for our framework.
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Lemma 2.3. Let α > 0, q > 0 and ω, v ∈ H. Then
∫

R2

A(x)|ω|q(eαv2 − 1) < ∞.

Moreover, if α < 4πζ2 and ‖v‖ ≤ 1, then there exists C = C(α, q) > 0 such that
∫

R2

A(x)|ω|q(eαv2 − 1) ≤ C ‖ω‖q .

Proof. Let r ∈ (1, β0) be such that qr′ ≥ 2, where r′ := r/(r − 1). By Hölder’s

inequality, embbeding H →֒ Lqr′(R2) and Lemma 2.2 we obtain

(2.6)

∫

R2

A(x)|ω|q(eαv2 − 1) ≤ ‖ω‖qqr′
(∫

R2

A(x)r(eαv
2 − 1)r

)1/r

≤ C1 ‖ω‖q
(∫

R2

A(x)r(eαv
2 − 1)r

)1/r

,

and the first statement is proved.
If α < 4πζ2 and ‖v‖ ≤ 1, take r ∈ (1, β0) such that rα < 4πζ2. By using

(2.5)-(2.6) and writing v2 = ζ−2(ζv)2, we have that

∫

R2

A(x)|ω|q(eαv2 − 1) ≤ C2 ‖ω‖q
(
erα‖v‖

2 − 1 +

∫

BR0
(0)

(erαζ
−2(ζv)2 − 1)

)1/r

.

Since ‖v‖ ≤ 1, by (1.3) we have ‖∇(ζv)‖2 ≤ 1. Furthermore, ‖ζv‖2 ≤ C3ζ ‖v‖ ≤ M ,
for some M > 0 independent of v. The result follows from Lemma 2.1, the above
inequality and rαζ−2 < 4π. �

We present now a version of a famous result of Lions [25, subsection I.7] to our
space H .

Corollary 2.4. Let q > 0 and let (ωn), (vn) ⊂ H be such that (ωn) is bounded in

H, vn ⇀ v weakly in H and ‖vn‖ = 1, for any n ∈ N. Then, if ‖v‖ < 1, for any

0 < p < 4πζ2/(1− ‖v‖2) it holds

sup
n∈N

∫

R2

A(x)|ωn|q(epv
2
n − 1) < ∞.

The same holds if ‖v‖ = 1 and 0 < p < ∞.

Proof. First of all notice that, given a, b ∈ R and ε > 0, by Young’s inequality we
have

a2 = (a− b)2 + b2 + 2ε(a− b)bε−1

≤ (a− b)2 + b2 + 2

(
ε2(a− b)2

2
+

b2ε−2

2

)

= (1 + ε2)(a− b)2 + (1 + ε−2)b2.

Thus, if r1, r2 > 1 are such that 1/r1+1/r2 = 1, by using Young’s inequality again
we obtain

A(x)|ωn|qepv
2
n ≤ (A(x)|ωn|q)1/r1ep(1+ε2)(vn−v)2(A(x)|ωn|q)1/r2ep(1+ε−2)v2

≤ 1

r1
A(x)|ωn|qer1p(1+ε2)(vn−v)2 +

1

r2
A(x)|ωn|qer2p(1+ε−2)v2

.
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So,
∫

R2

A(x)|ωn|q(epv
2
n − 1) ≤ 1

r1

∫

R2

A(x)|ωn|q
(
er1p(1+ε2)(vn−v)2 − 1

)

+
1

r2

∫

R2

A(x)|ωn|q
(
er2p(1+ε−2)v2 − 1

)
.

Since (ωn) is bounded in H , inequality (2.6) with α = r2p(1 + ε−2) and Lemma
2.2 guarantee that the second integral on the right-hand side above is bounded
independently of n. In order to estimate the other integral notice that, since ‖vn‖ =
1 and vn ⇀ v weakly in H , we get

lim
n→∞

p ‖vn − v‖2 = p(1− ‖v‖2) < 4πζ2.

Then, by taking r1 > 1 sufficiently close to 1 and ε > 0 small, there exists n0 ∈ N

such that

r1p(1 + ε2) ‖vn − v‖2 < 4πζ2, ∀ n > n0.

Observing that (vn−v)2 = ‖vn−v‖2((vn−v)/‖vn−v‖)2, from the above inequality
and Lemma 2.3 it follows that∫

R2

A(x)|ωn|q
(
er1p(1+ε2)(vn−v)2 − 1

)
≤ C1 ‖ωn‖q ≤ C2, ∀ n > n0,

which concludes the proof. �

The next result is an easy consequence of the monotonicity conditions (m3) and
(f4).

Lemma 2.5. Suppose that (m3) and (f4) hold. Then

(i) the function L(t) := (1/2)M(t) − (1/4)m(t)t is increasing in [0,∞); in

particular, L(t) > L(0) = 0, for any t > 0;
(ii) the function G(s) := sf(s)−4F (s) is non-decreasing in [0,∞); in particular,

G(s) ≥ G(0) = 0, for any s > 0.

Proof. We only prove the first item since the other one is analogous. Let t1, t2 ∈ R

be such that 0 < t1 < t2. By (m3), we have

2M(t1)−m(t1)t1 = 2M(t2)− 2

∫ t2

t1

m(τ)

τ
τ dτ − m(t1)

t1
t21

< 2M(t2)−
m(t2)

t2
(t22 − t21)−

m(t2)

t2
t21

= 2M(t2)−m(t2)t2.

and therefore the function L̂(t) = 4L(t) = 2M(t) − m(t)t is increasing in (0,∞).
Continuity in t = 0 implies that this property holds in [0,∞). �

We finish this section by presenting a convergence result proved in [8].

Lemma 2.6. Let Ω ⊂ R
2 be a bounded domain. If f : Ω× R → R is a continuous

function and (un) ⊂ L1(Ω) is a sequence such that

un → u in L1(Ω), f(·, un), f(·, u) ∈ L1(Ω),

∫

Ω

|f(x, un)un| ≤ C,

where C > 0 is a constant, then f(·, un) → f(·, u) in L1(Ω).
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3. Variational framework

Given ε > 0, α > α0 and q ≥ 1, by (f1) and (f∗
4 ) there exists a constant

C = C(ε, α, q) > 0 such that

(3.1) max{|F (s)|, |sf(s)|} ≤ εs2 + C|s|q(eαs2 − 1), ∀ s ∈ R.

This, the embbeding H →֒ L2
A(R

2) and Lemma 2.3 show that the functional I :
H → R given by

I(u) :=
1

2
M(‖u‖2)−

∫

R2

A(x)F (u), u ∈ H,

is well defined. Moreover, Lemmas 2.2, 2.3 and standard arguments show that
I ∈ C1(H,R) and, for any u, v ∈ H , there holds

I ′(u)v = m(‖u‖2)
∫

R2

(∇u · ∇v + b(x)uv)−
∫

R2

A(x)f(u)v,

and therefore critical points of I are precisely the weak solutions of problem (P ).

Lemma 3.1. Suppose that (m1), (f1) and (f∗
4 ) hold. Then there exists ρ > 0 and

σ > 0 such that

I(u) ≥ σ , ∀ u ∈ H, ‖u‖ = ρ.

Proof. Let ε > 0, α > α0 and q > 2. By (3.1), the embbeding H →֒ L2
A(R

2) and

Lemma 2.3, if 0 < ρ1 < (4πζ2/α)1/2, then for u ∈ H with ‖u‖ ≤ ρ1 we have that
∫

R2

A(x)F (u) ≤ ε

∫

R2

A(x)u2 + C

∫

R2

A(x)|u|q(eαu2 − 1)

≤ εC1 ‖u‖2 + C

∫

R2

A(x)|u|q
(
eαρ

2
1(u/‖u‖)2 − 1

)

≤ εC1 ‖u‖2 + C2 ‖u‖q .
Let m0 > 0 be given by the hypothesis (m1). Since M(t) ≥ m0t, for any t ≥ 0, we
obtain

I(u) ≥ ‖u‖2
(m0

2
− εC1 − C2 ‖u‖q−2

)
,

whenever ‖u‖ ≤ ρ1. Now choose ε > 0 and 0 < ρ ≤ ρ1 such that (m0/2)− εC1 −
C2ρ

q−2 > 0. This choice is possible because q > 2. Thereby, for any u ∈ H with
‖u‖ = ρ, we have that I(u) ≥ σ, where

σ := ρ2
(m0

2
− εC1 − C2ρ

q−2
)
> 0.

This concludes the proof. �

Lemma 3.2. Suppose that (m1), (m
∗
3), (f1), (f3) and (f∗

4 ) hold. If ρ > 0 is given

by Lemma 3.1, then there exists v0 ∈ H such that I(v0) < 0 and ‖v0‖ > ρ.

Proof. By the continuity of m and (m∗
3), there exists a0 > 0 such that

(3.2) M(t) ≤ a0t+ a1
t2

2
, ∀ t ≥ 0.

On the other hand, by (f3), there exist constants C1, C2 > 0 such that

F (s) ≥ C1s
θ0 − C2, ∀ s ≥ 0.
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Now choose v ∈ C0(R
2)\{0} with v ≥ 0 in R

2. If Ω ⊂ R
2 contains the support of

v, the above inequalities and (A1) provide, for any t ≥ 0,

I(tv) ≤ a0t
2 ‖v‖2

2
+ a1t

4 ‖v‖4
4

− C1t
θ0

∫

Ω

vθ0 + C2|Ω|.

Since
∫
Ω
vθ0 > 0 and θ0 > 4, we conclude that I(tv) → −∞, as t → ∞. Hence the

result holds for v0 = t0v, with t0 > 0 large enough. �

Remark 3.3. For future reference we notice that the above lemma can be proved

with a different argument if f(s) > 0 for any s > 0. In this case, for any w ∈ H
with w+ 6≡ 0, we have

∫
R2 A(x)F (w) > 0. On the other hand, defining, for any

s ∈ R,

φs(t) := t−θ0F (ts)− F (s), t > 0,

by (f3) we have that φ′
s(t) ≥ 0, for any t > 0. This implies that φs(t) ≥ φs(1) = 0

for any t ≥ 1. That is,

F (ts) ≥ tθ0F (s), ∀ t ≥ 1.

So, for t ≥ 1, by (3.2) and the above inequality we have

I(tw) ≤ a0t
2 ‖w‖2

2
+ a1t

4 ‖w‖4
4

− tθ0
∫

R2

A(x)F (w)

and the conclusion follows as before.

Lemmas 3.1 and 3.2 show that the energy functional I has the geometry of
Mountain Pass Theorem. Thus, there exists a sequence (un) ⊂ H such that

I(un) −→ c∗ := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) and I ′(un) −→ 0

as n → ∞, where Γ := {γ ∈ C([0, 1], H) : γ(0) = 0 and I(γ(1)) < 0}. It is worth
noticing that, by the definition of c∗ and the proof of Lemma 3.1, we easily see that
c∗ ≥ σ > 0.

4. Minimax estimates

In the first part of this section we will obtain an estimate for c∗ in terms of
the parameters ζ and α0, given in the inequality (1.3) and the hypothesis (f1),
respectively.

We first consider the case ζ < 1 and observe that Sp defined in (1.4) is the best
constant of the compact embedding H →֒ Lp(R2). Hence, there exists vp ∈ H such
that ‖vp‖p = 1 and Sp = ‖vp‖ > 0. Without loss of generality, we may assume that
vp ≥ 0 a.e. in R

2.

Proposition 4.1. Suppose that (m∗
3), (f1), (f3), (f

∗
4 ) and (f5) hold. If ζ < 1 then

c∗ <
1

2
M

(
4πζ2

α0

)
.

Proof. Let p0 > 4 be given in hypothesis (f5) and vp0
∈ H be such that ‖vp0

‖ = Sp0

and ‖vp0
‖p0

= 1. Recalling that (f5) implies that f(s) > 0 for any s > 0, by Remark
3.3 we have that I(tvp0

) → −∞ as t → ∞. Thus, it follows from the definition of
c∗ that

c∗ ≤ max
t>0

I(tvp0
).
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By (A1) and (f5),

I(tvp0
) <

1

2
M(t2 ‖vp0

‖2)− tp0
Cp0

p0

∫

R2

|vp0
|p0 , ∀ t > 0.

Hence, from the definition of Cp0
we obtain

max
t>0

I(tvp0
) < max

t>0

{
1

2
M(t2S2

p0
)− tp0

Cp0

p0

}
≤ 1

2
M

(
4πζ2

α0

)
,

which concludes the proof. �

In order to deal with the case ζ = 1 we define, for n ≥ 2 and R > 0, the following
sequence of scaled and truncated Green’s functions (see Moser [26]):

G̃n(x) =
1√
2π





(log n)1/2, if |x| ≤ R/n,

log(R/|x|)
(logn)1/2

, if R/n ≤ |x| ≤ R,

0, if |x| ≥ R.

Notice that G̃n ∈ W 1,2(R2) and supp(G̃n) = BR(0). Consequently, G̃n ∈ H .
Furthermore,

∫

R2

|∇G̃n|2 =
1

2π logn

∫

{R/n<|x|<R}
|x|−2 =

1

logn

∫ R

R/n

s−1ds = 1

and, recalling the notation MR = ‖b‖L∞(BR(0)),
∫

R2

b(x)|G̃n|2 =
log n

2π

∫

BR/n(0)

b(x) +
1

2π logn

∫

{R/n≤|x|≤R}
b(x) log2

(
R

|x|

)

≤ R2MR logn

2n2
+

MR

logn

∫ R

R/n

s log2
(
R

s

)
ds

=
R2MR logn

2n2
+

R2MR

logn

(
n2 − 1

4n2
− log2(n) + logn

2n2

)

≤ R2MR

4 logn
.

Then, if we set ξn := ‖G̃n‖, we have ξ2n ≤ 1 + R2MR/(4 logn) and ξn → 1 as
n → ∞.

We now consider the sequence of functions

Gn :=
G̃n

ξn

and prove the following technical result:

Lemma 4.2. We have that

lim inf
n→∞

∫

BR(0)

e4πG
2
n ≥ πR2e−R2MR/2 + πR2.

Proof. Since ξ2n ≤ 1 +R2MR/(4 logn), then

2(ξ−2
n − 1) logn = 2ξ−2

n (1− ξ2n) logn ≥ −ξ−2
n

R2MR

2
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and therefore

(4.1)

∫

BR/n(0)

e4πG
2
n =

∫

BR/n(0)

e2ξ
−2
n log n

= πR2e2(ξ
−2
n −1) logn ≥ πR2e−ξ−2

n R2MR/2.

On the other hand, by using the change of variable t = ξ−1
n log(R/s)/ logn, we

get
∫

{R/n≤|x|≤R}
e4πG

2
n =

∫

{R/n≤|x|≤R}
e2ξ

−2
n log2(R/|x|)/ logn

= 2π

∫ R

R/n

se2(ξ
−1
n log(R/s)/ logn)2 lognds

= 2πR2ξn logn

∫ ξ−1
n

0

e2(t
2−ξnt) logndt

≥ 2πR2ξn logn

∫ ξ−1
n

0

e−2ξnt logndt

= −πR2e−2 logn + πR2.

Therefore, since lim
n→∞

ξn = 1, it follows from (4.1) and the above inequality that

lim inf
n→∞

∫

BR(0)

e4πG
2
n ≥ πR2e−R2MR/2 + πR2,

as stated. �

Now, for ζ = 1, we can use the previous lemma to obtain the same estimate of
Proposition 4.1 with condition (f6) instead of (f5):

Proposition 4.3. Suppose that (m∗
3), (f1), (f3), (f

∗
4 ) and (f6) hold. Then

c∗ <
1

2
M

(
4π

α0

)
.

Proof. As in the proof of Lemma 3.2, we have that I(tGn) → −∞ as t → ∞. By
definition of c∗, it follows that

c∗ ≤ max
t>0

I(tGn), ∀n ≥ 2.

Since the functional I has the Mountain Pass geometry, for each n there exists
tn > 0 such that

I(tnGn) = max
t>0

I(tGn).

Thus, it is enough to prove that, for some n ∈ N, we have

I(tnGn) <
1

2
M

(
4π

α0

)
.

Suppose, by contradiction, that the above inequality is false. Since ‖Gn‖ = 1,
we have that

I(tnGn) =
1

2
M(t2n)−

∫

R2

A(x)F (tnGn) ≥
1

2
M

(
4π

α0

)
, ∀n ≥ 2.
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Since A and F are nonnegative, this implies that M(t2n) ≥ M(4π/α0). But M is
an increasing function, because its derivative m is positive. We conclude that

(4.2) t2n ≥ 4π

α0
.

On the other hand, since I ′(tnGn)tnGn = 0, we can use (A1), f ≥ 0 and

supp(Gn) = BR(0) to obtain

(4.3)

m(t2n)t
2
n =

∫

BR(0)

A(x)f(tnGn)tnGn

≥
∫

BR/n(0)

f(tnGn)tnGn

=

∫

BR/n(0)

f

(
tnξ

−1
n√
2π

(log n)1/2
)

tnξ
−1
n√
2π

(log n)1/2.

But notice that, given 0 < δ < γ0, by (f6) there exists sδ > 0 such that

(4.4) f(s)s ≥ (γ0 − δ)eα0s
2

, ∀ s ≥ sδ.

Since tnξ
−1
n (logn)1/2 → ∞ as n → ∞, because ξn → 1 and tn 6→ 0, it follows that,

for n large,

m(t2n)t
2
n ≥

∫

BR/n(0)

(γ0 − δ)eα0t
2
n(ξn

√
2π)−2 logn

= πR2(γ0 − δ)e(α0t
2
n(ξn

√
2π)−2−2) logn.

This inequality and (m∗
3) imply that the sequence (tn) ⊂ (0,∞) is bounded and,

consequently, there exists t0 > 0 such that, up to a subsequence, tn → t0 as n → ∞.
In this case, the above inequality also implies that

lim
n→∞

(
α0t

2
n(ξn

√
2π)−2 − 2

)
= 2

(α0

4π
t20 − 1

)
≤ 0.

From this and (4.2), we infer that

(4.5) lim
n→∞

t2n =
4π

α0
.

Now, for each n ≥ 2, define the sets

Dn,δ := {x ∈ BR(0) : tnGn(x) ≥ sδ} , En,δ := BR(0)\Dn,δ.

By hypothesis (A1), (4.3) and (4.4), we have that

m(t2n)t
2
n ≥

∫

Dn,δ

f(tnGn)tnGn +

∫

En,δ

f(tnGn)tnGn

≥ (γ0 − δ)

(∫

BR(0)

eα0t
2
nG

2
n −

∫

En,δ

eα0t
2
nG

2
n

)
(4.6)

+

∫

En,δ

f(tnGn)tnGn.

But Gn(x) → 0 for a.e. x ∈ BR(0) and, therefore, χEn,δ
(x) → 1 for a.e. x ∈ BR(0),

as n → ∞, where χEn,δ
is the characteristic function of En,δ. Moreover, tnGn < sδ
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in En,δ. Then, it follows from the Lebesgue’s Theorem that
∫

En,δ

eα0t
2
nG

2
n −→ πR2,

∫

En,δ

f(tnGn)tnGn −→ 0.

Hence, by (4.2), (4.5), (4.6) and Lemma 4.2, we get

m

(
4π

α0

)
4π

α0
≥ (γ0 − δ) lim inf

n→∞

(∫

BR(0)

eα0t
2
nG

2
n

)
− (γ0 − δ)πR2

≥ (γ0 − δ) lim inf
n→∞

(∫

BR(0)

e4πG
2
n

)
− (γ0 − δ)πR2

≥ (γ0 − δ)πR2e−R2MR/2.

Since 0 < δ < γ0 is arbitrary, we can let δ → 0+ in the above inequality to obtain

γ0 ≤ 4

α0
m

(
4π

α0

)
R−2eR

2MR/2.

Since R > 0 is also arbitrary, we can take the infimum for R > 0 in this inequality
and obtain a contradiction with (f6). This concludes the proof. �

Let N be the Nehari manifold associated with the functional I, namely

N := {u ∈ H \ {0} : I ′(u)u = 0}

and define

d∗ := inf
u∈N

I(u).

The next result shows that obtaining a ground state solution is equivalent to show
that there exists a critical point u0 such that I(u0) = c∗.

Lemma 4.4. Suppose that (m3), (f1), (f3) and (f4) hold. Then c∗ ≤ d∗.

Proof. Let u ∈ N . Then, recalling that f(s) = 0 for s ≤ 0, the fact that u 6= 0 and
I ′(u)u = 0 imply that u+ 6≡ 0. If h(t) := I(tu), t ≥ 0, we have

h′(t) = I ′(tu)u = I ′(tu)u− t3I ′(u)u

= m(t2 ‖u‖2)t ‖u‖2 −
∫

R2

A(x)f(tu)u

− t3m(‖u‖2) ‖u‖2 + t3
∫

R2

A(x)f(u)u

= t3 ‖u‖4
(
m(t2 ‖u‖2)
t2 ‖u‖2

− m(‖u‖2)
‖u‖2

)

+ t3
∫

{u>0}
A(x)u4

(
f(u)

u3
− f(tu)

(tu)3

)
,

for any t > 0. Thus, by (m3) and (f4), we have that h′(t) ≥ 0 for 0 < t < 1 and
h′(t) ≤ 0 for t > 1. Since h′(1) = I ′(u)u = 0, then

I(u) = h(1) = max
t≥0

h(t) = max
t≥0

I(tu).
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On the other hand, since u+ 6≡ 0 and (f4) implies that f(s) > 0 for any s > 0, by
Remark 3.3 there exists t0 > 0 such that I(t0u) < 0. Defining γ : [0, 1] → H by
γ(t) := tt0u, from definition of c∗ it follows that

c∗ ≤ max
t∈[0,1]

I(γ(t)) ≤ max
t≥0

I(tu) = I(u).

Since u ∈ N is arbitrary, we conclude that c∗ ≤ d∗. �

5. Proof of the main theorems

We present in this final section the proofs for our main theorems. We first prove
that Palais-Smale sequences are bounded.

Proposition 5.1. Suppose that (m1), (m3), (f1)−(f3) and (f∗
4 ) hold. Let (un) ⊂ H

be a Palais-Smale sequence for the functional I in the level c ∈ R, that is,

I(un) −→ c and I ′(un) −→ 0

as n → ∞. Then (un) is bounded in H. Moreover, up to a subsequence,

(i)

∫

Ω

A(x)f(un) −→
∫

Ω

A(x)f(u), for any bounded domain Ω ⊂ R
2;

(ii)

∫

R2

A(x)F (un) −→
∫

R2

A(x)F (u).

Proof. By using Lemma 2.5(i) and (f3), we get

c+ o(1) + ‖un‖ ≥ I(un)−
1

θ0
I ′(un)un ≥

(
θ0 − 4

4θ0

)
m0 ‖un‖2 ,

as n → ∞, where m0 is given in hypothesis (m1). Since θ0 > 4 and m0 > 0, the
above inequality implies that the sequence (un) is bounded in H .

Let Ω ⊂ R
2 be a bounded domain. Since un ⇀ u weakly in H , it follows that

un → u in L1(Ω), up to a subsequence. Moreover, since I ′(un)un → 0 as n → ∞,
we get

(5.1)

∫

Ω

|f(un)un| ≤
∫

R2

A(x)f(un)un = m(‖un‖2) ‖un‖2 − I ′(un)un ≤ C1.

By (3.1), f(un), f(u) ∈ L1(Ω) and therefore we conclude from Lemma 2.6 that
f(un) → f(u) in L1(Ω). But

∫

Ω

A(x)|f(un)− f(u)| ≤ ‖A‖L∞(Ω)

∫

Ω

|f(un)− f(u)| −→ 0,

which proves (i). For the second item we take r > 0 and use (i) to obtain h ∈
L1(Br(0)) such that A(x)f(un(x)) ≤ h(x) for a.e. x ∈ Br(0). So, by using (f2) we
get

A(x)F (un(x)) ≤ ‖A‖L∞(Br(0))
max

s∈[0,s0]
F (s) +K0A(x)f(un(x))

≤ ‖A‖L∞(Br(0))
F (s0) +K0h(x)

for a.e. x ∈ Br(0). Since we may assume that un(x) → u(x) for a.e. x ∈ R
2 and F

is continuous, by Lebesgue’s Theorem we obtain
∫

Br(0)

A(x)F (un) −→
∫

Br(0)

A(x)F (u).
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Thus, in order to conclude the proof of item (ii), it is enough to show that, given
δ > 0, there exists r > 0 such that:

(5.2)

∫

R2\Br(0)

A(x)F (un) < δ, ∀ n ∈ N;

∫

R2\Br(0)

A(x)F (u) < δ.

Since A(·)F (u) is integrable, the second inequality holds for r > 0 large. For the
first one, we can use (f2) and (f∗

4 ) to write

F (s) ≤ C2|s|2 + C3f(s), ∀ s ∈ R.

Then, given K > 0, by the above inequality, the embbeding H →֒ L3
A(R

2), the
boundedness of (un) in H and (5.1), we have that
∫

{|un|>K}∩(R2\Br(0))

A(x)F (un) ≤ C2

∫

{|un|>K}∩(R2\Br(0))

A(x)|un|2

+ C3

∫

{|un|>K}∩(R2\Br(0))

A(x)f(un)

≤ C2

K

∫

R2

A(x)|un|3 +
C3

K

∫

R2

A(x)f(un)un

≤ C4

K
.

Thus, we can choose K large enough such that∫

{|un|>K}∩(R2\Br(0))

A(x)F (un) <
δ

2
, ∀ n ∈ N.

On the other hand, by inequality (3.1) with q = 2, for |s| ≤ K we have that

F (s) ≤ C5|s|2 + C6|s|2(eαs
2 − 1) ≤

(
C5 + C6(e

αK2 − 1)
)
|s|2 ≤ C7|s|2,

where α > α0 and C7 = C7(α,K) > 0 are constants. Then
∫

{|un|≤K}∩(R2\Br(0))

A(x)F (un) ≤ C7

∫

{|un|≤K}∩(R2\Br(0))

A(x)|un|2.

Since un → u in L2
A(R

2), there exists g ∈ L1(R2) such that A(x)|un(x)|2 ≤ g(x) for
a.e. x ∈ R

2. So, by choosing r > 0 large enough such that C7

∫
R2\Br(0)

g(x) < δ/2,

we have ∫

{|un|≤K}∩(R2\Br(0))

A(x)F (un) <
δ

2
, ∀ n ∈ N.

Combining the above estimates, we obtain (5.2), which concludes the proof of the
second item. �

We are ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. As previously observed there exists (un) ⊂ H such that

(5.3) I(un) −→ c∗ and I ′(un) −→ 0,

as n → ∞. By Proposition 5.1, this sequence is bounded in H and therefore we
may assume that, for some u0 ∈ H ,

(5.4) un ⇀ u0 weakly in H, un → u0 in L2
A(R

2).

We claim that

(5.5) I(u0) ≥ 0.
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Indeed, suppose by contradiction that I(u0) < 0. Then u0 6= 0 and, defining
h(t) := I(tu0), t ≥ 0, we have that h(0) = 0 and h(1) < 0. Arguing as in the
proof of Lemma 3.1 we see that h(t) > 0, for any t > 0 small. Thus, there exists
t0 ∈ (0, 1) such that

h(t0) = max
t∈[0,1]

h(t) = max
t∈[0,1]

I(tu0), h′(t0) = I ′(t0u0)u0 = 0.

So, by definition of c∗ and Lemma 2.5,

c∗ ≤ h(t0) = h(t0)−
1

4
h′(t0)t0

=
1

2
M(‖t0u0‖2)−

1

4
m(‖t0u0‖2) ‖t0u0‖2

+
1

4

∫

R2

A(x) (f(t0u0)t0u0 − 4F (t0u0))

<
1

2
M(‖u0‖2)−

1

4
m(‖u0‖2) ‖u0‖2

+
1

4

∫

R2

A(x) (f(u0)u0 − 4F (u0)) .

From this inequality, the lower semicontinuity of the norm, Fatou’s lemma and
(5.3), it follows that

c∗ < lim inf
n→∞

(
1

2
M(‖un‖2)−

1

4
m(‖un‖2) ‖un‖2

)

+
1

4
lim inf
n→∞

∫

R2

A(x) (f(un)un − 4F (un))

≤ lim inf
n→∞

(
I(un)−

1

4
I ′(un)

)
= c∗,

which is absurd. This proves (5.5).
Now we will show that I ′(u0) = 0 and I(u0) = c∗. Let ρ0 ≥ 0 such that

‖un‖ → ρ0. Clearly ‖u0‖ ≤ ρ0 and we shall prove that the equality holds. Suppose,
by contradiction, that ‖u0‖ < ρ0. Defining vn := un/ ‖un‖ and v0 := u0/ρ0, we
have that vn ⇀ v0 weakly in H and ‖v0‖ < 1. So, by Corollary 2.4, it follows that

(5.6) sup
n

∫

R2

A(x)|un − u0|q(epv
2
n − 1) < ∞, ∀ q > 0, ∀ p <

4πζ2

1− ‖v0‖2
.

On the other hand, by using (5.3), Proposition 5.1(ii), Proposition 4.1, (5.5) and
hypothesis (m2), we have that

M(ρ20) = lim
n→∞

M(‖un‖2) = lim
n→∞

2

(
I(un) +

∫

R2

A(x)F (un)

)

= 2c∗ + 2

∫

R2

A(x)F (u0) = 2c∗ +M(‖u0‖2)− 2I(u0)

< M

(
4πζ2

α0

)
+M(‖u0‖2) ≤ M

(
4πζ2

α0
+ ‖u0‖2

)
.
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Since M is increasing, it follows that ρ20 < (4πζ2/α0)+ ‖u0‖2. Hence, by observing

that ρ20 = (ρ20 − ‖u0‖2)/(1− ‖v0‖2), we get

α0ρ
2
0 <

4πζ2

1− ‖v0‖2
.

Then, there exists η > 0 such that α0 ‖un‖2 < η < 4πζ2/(1−‖v0‖2) for any n large
enough. Thus, we can choose r ∈ (1, 2) close to 1 and α > α0 close to α0 such that

we still have rα ‖un‖2 < η < 4πζ2/(1− ‖v0‖2) and, by (5.6),

∫

R2

A(x)|un − u0|2−r(erαu
2
n − 1) =

∫

R2

A(x)|un − u0|2−r(erα‖un‖2v2
n − 1)

≤
∫

R2

A(x)|un − u0|2−r(eηv
2
n − 1) ≤ C1,

for any n large. Therefore, by using inequality (3.1) with q = 1, Hölder’s inequality,
H →֒ L2

A(R
2), Lemma 2.2(i) and (5.4), we obtain

∣∣∣∣
∫

R2

A(x)f(un)(un − u0)

∣∣∣∣ ≤

≤ C2

∫

R2

A(x)|un||un − u0|+ C3

∫

R2

A(x)|un − u0|(eαu
2
n − 1)

= C2

∫

R2

√
A(x)|un|

√
A(x)|un − u0|

+ C3

∫

R2

(A(x)|un − u0|2)(r−1)/r(A(x)|un − u0|2−r)1/r(eαu
2
n − 1)

≤ C4 ‖un‖ ‖un − u0‖L2
A(R2)

+ C3 ‖un − u0‖2(r−1)/r

L2
A(R2)

(∫

R2

A(x)|un − u0|2−r(erαu
2
n − 1)

)1/r

≤ C5 ‖un − u0‖L2
A(R2) + C6 ‖un − u0‖2(r−1)/r

L2
A(R2)

−→ 0,

as n → ∞. Since I ′(un)(un − u0) → 0 as n → ∞, we conclude that

0 = lim
n→∞

(
I ′(un)(un − u0) +

∫

R2

A(x)f(un)(un − u0)

)

= lim
n→∞

m(‖un‖2) 〈un, un − u0〉H
= m(ρ20)(ρ

2
0 − ‖u0‖2)

> 0,

which does not make sense. Thus, we have that ‖u0‖ = ρ0 = limn→∞ ‖un‖ and
therefore un → u0 strongly in H . Since I ∈ C1(H,R), from (5.3) we conclude that
I(u0) = c∗ 6= 0 and I ′(u0) = 0. Recalling that f(s) = 0, for s ≤ 0, we can use
Lemma 4.4 to conclude that u0 ≥ 0 is a ground state solution. ✷

Proof of Theorem 1.2. It is sufficient to argue as in the proof of Theorem 1.1,
considering now ζ = 1 and using Proposition 4.3 instead of Proposition 4.1. ✷
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From now on we suppose that m ≡ 1. Hence, the equation in (P ) becomes the
Schrödinger equation

(P̂ ) −∆u+ b(x)u = A(x)f(u) in R
2.

The energy functional associated to this problem is

J(u) :=
1

2
‖u‖2 −

∫

R2

A(x)F (u), u ∈ H.

Under hypotheses (f1), (f̂3) and (f∗
4 ), we can prove that J ∈ C1(H,R),

J ′(u)v =

∫

R2

(∇u · ∇v + b(x)uv)−
∫

R2

A(x)f(u)v, ∀ u, v ∈ H,

and J has the geometry of Mountain Pass Theorem. This ensure the existence of
a sequence (un) ⊂ H such that

(5.7) J(un) −→ c∗∗ and J ′(un) −→ 0,

as n → ∞, where
c∗∗ := inf

λ∈Λ
max
t∈[0,1]

J(λ(t)) > 0

and Λ := {λ ∈ C([0, 1], H) : λ(0) = 0 and J(λ(1)) < 0}.
Evidently, estimates for the minimax level c∗∗ analogous to that of Section 4

are valid, with hypotheses (f̂3)− (f̂6) instead of (f3) − (f6), where necessary. Un-

der hypotheses (f1), (f2), (f̂3) and (f∗
4 ), we also obtain the same conclusions of

Proposition 5.1 for the functional J .

Proof of Theorem 1.3. Let (un) ⊂ H be the sequence given in (5.7). As in the proof
of Theorem 1.1, the boundedness of (un) in H implies on the existence of u0 ∈ H
such that, up to a subsequence,

(5.8) un ⇀ u0 weakly in H, un → u0 in L2
A(R

2).

Moreover, as we learned from the proof of Proposition 5.1, we have that Af(un) →
Af(u0) in L1(Ω), for any bounded domain Ω ⊂ R

2. By this, by the weak conver-
gence in (5.8) and the convergence J ′(un) → 0, we get

J ′(u0)φ = 〈u0, φ〉H −
∫

R2

A(x)f(u0)φ = 0, ∀ φ ∈ C∞
0 (R2).

By the same arguments of [1, Theorem 3.22], we can verify that C∞
0 (R2) is dense in

H . Hence J ′(u0)u0 = 0. Since, by (f̂3), we have J(u0) ≥ (1/θ̂0)J
′(u0)u0, it follows

that J(u0) ≥ 0. Hence, we can use the estimate c∗∗ < (2πζ2)/α0 and proceed as in
the proof of Theorem 1.1. ✷

Proof of Theorem 1.4. It is sufficient to argue as in the proof of Theorem 1.3,
considering now ζ = 1 and using the estimate c∗∗ < (2π)/α0. ✷
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