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Abstract. We prove the existence of positive solution for the problem

γ∆2u−m(u)∆u = µa(x)uq + b(x)up, in Ω, u = γ∆u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, γ ∈ {0, 1}, 0 < q < 1 < p, m

is weakly continuous in H2(Ω) ∩ H1
0 (Ω), a ∈ L∞(Ω) is nonnegative and b is

a bounded potential which can change sign. The solution is obtained via a
sub-supersolution approach when the parameter µ > 0 is small.

1. Introduction

In this paper we consider the equation

γ∆2u−m(u)∆u = fµ(x, u), x ∈ Ω,

where γ ∈ {0, 1}, the nonlinearity fµ depends on the parameter µ > 0 and m is
assumed to be weakly continuous in H2(Ω) ∩H1

0 (Ω). Due to the presence of this
last function the equation is not a pointwise identity and therefore the problem is
called nonlocal.

In what follows we make some comments on the physical importance of this kind
of problem. When γ = 1, the equation is related to the so called Berger plate model
(see [3, 7])

utt + ∆2u+

(
Q+

∫
Ω

|∇u|2dx

)
∆u = f(x, u, ut),

and it is a simplification of the von Karman plate equation that describes large
deflection of plate. The parameter Q describes in-plane forces applied to the plate
and the function f represents transverse loads which may depend on the displace-
ment u and the velocity ut. The equation is also related with some models which
describe the bending equilibrium states of a beam subjected to a force f and other
elastic force (see [34]), namely

utt +
EI

ρ
uxxxx −

(
h

ρ
+
EA

2ρL

∫ L

0

|ux|2dx

)
uxx = f(x, u).

When γ = 0, the equation has its origin in the theory of nonlinear vibration,
specially with the following model for the modified d’Alembert wave equation

ρ utt −

(
P0

h
+

E

2L

∫ L

0

|ux|2 dx

)
uxx = f(x, u),
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proposed by Kirchoff in [21]. Its main feature is to consider the effects of changes on
the length of the string during vibrations. In the two above models, the parameters
E, I, ρ, h, A, L and P0 are positive and have specific physical meanings.

We are interest here in the case that fµ is a combined nonlinearity. More specif-
ically, we shall consider the following nonlocal fourth-order problem

(Pµ)


γ∆2u−m(u)∆u = µa(x)uq + b(x)up, in Ω,

u > 0, in Ω,

u = γ∆u = 0, on ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, γ ∈ {0, 1}, µ > 0 is a parameter,
0 < q < 1 < p and the potentials a and b verify the following basic assumptions:

(a1) a ∈ L∞(Ω) is nonnegative;
(a2) there exist an open set Ωa ⊂ Ω and δ > 0 such that

inf
x∈Ωa

a(x) ≥ δ;

(b1) b ∈ L∞(Ω).

In the celebrated paper [2], Ambrosetti, Brezis and Cerami supposed that γ = 0,
m, a and b are constant and equal to 1 and obtained two positive solutions if
µ > 0 is small. In [10], de Figueiredo, Gossez and Ubilla generalized this result
by considering nonconstant sign-changing potentials. In this setting, the Maximum
Principle can fail and therefore the solutions obtained were only nonnegative. Some
other results for the Laplacian, s-Laplacian, fractional Laplacian and Kirchhoff
operator can be found in [1, 28, 12, 35, 5, 23] and references therein. In all this
paper, only the second order case γ = 0 was considered. Concerning the fourth-
order one, we notice that, in [15], the authors supposed that m is increasing, a ≡ 1,
b ≡ 1 and obtained infinitely many solutions, for 1 < q < 2 < p = 2N/(N − 4) and
µ > 0 small. This result was partially extended in [29], where the authors assumed
that b ≡ 1, the (nonautonomous) concave term were of type µh(x, u) with some
technical assumptions on h and the growth of the function m.

To present our main results, we denote by H the Hilbert space H2(Ω) ∩H1
0 (Ω)

endowed with the norm

‖u‖ :=

(∫
Ω

(∆u)2dx

)1/2

, ∀u ∈ H.

If g is a measurable function, we set g+(x) := max{g(x), 0} and g− := g+− g. The
first result of this paper can be stated as follows:

Theorem 1.1. Suppose that γ = 1, 0 < q < 1 < p and the potentials a, b satisfy
(a1)− (a2) and (b1). If m verifies

(m1) m : H → R is weakly continuous;
(m2) m(0) > 0,

then there exists µ∗ = µ∗(Ω, ‖a+‖L∞(Ω), ‖b+‖L∞(Ω), N) such that, for each µ ∈
(0, µ∗), the problem (Pµ) has a solution.

In our second result, we consider the second order case, namely γ = 0. In this
new setting, we need to consider a global sign assumption on m. More specifically,
we prove the following:
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Theorem 1.2. Suppose that γ = 0, 0 < q < 1 < p and the potentials a, b satisfy
(a1)− (a2) and (b1). If m verifies (m1) and

(m̂2) infu∈H m(u) > 0,

then there exists µ∗ = µ∗(Ω, ‖a+‖L∞(Ω), ‖b+‖L∞(Ω), N) such that, for each µ ∈
(0, µ∗), the problem (Pµ) has a solution.

For proving our results we use the sub-supersolution method. It is important
to emphasize that, for nonlocal problems, this is not a simple issue. Actually,
as quoted in [25, 13], the comparison principle may fail for the operator u 7→
m(u)∆u unless we impose some (nonnatural) restrictions on the function m. In
[25], the author assumed that m(u) = m(

∫
Ω
|∇u|2dx) and the function m(t)t1/2

was increasing. For the same type of functions m, the authors in [13] assumed
that m(t)t was invertible. Notice that we have no invertibility nor monotonicity
assumptions, and therefore our hypothesis are weaker than those considered in these
two papers. For example, besides the Kirchoff case m(u) = a+b

∫
Ω
|∇u|2dx, we can

also consider, among others, m(u) = a + b
∫

Ω
|u(x)|qdx, for any subcritical power

1 ≤ q < 2N/(N − 4), and a > 0, b ≥ 0. This kind of nonlocal term appears in
the study of population of bacteria subject to spreading when q = 1 (see [6]) and,
for q = 2, the problem reduces to Carrier’s equation which is related to nonlinear
deflection of beams (see [17]). Actually, our assumptions on m are weaker than
those of [16, 14, 25, 24, 13, 20] and many others. Moreover, even in the local
second order case, our result complement those of [10, 11] since our solution is
positive and we have no upper bound on p.

Roughly speaking, the difficulties presented in the above paragraph relies on
the nonvalidity of the Maximum Principle for operators of fourth order. This also
reflects on the strategy of proving the positivity of solutions of (Pµ). Some well-
known arguments do not work in our setting. For example, we cannot use the
positive part u+ of a function u ∈ H. Also, we cannot argue as in [31, 32, 4, 26]
since we deal here with an indefinite nonlinearity. The idea of replace −∆u by
−∆u+Bu, with B > 0 large (see the condition (H0)′ in [11]) does not work for the
biharmonic operator (see [27, Theorem 7.1] and [30, Theorem 5.5]). Finally, some
extension arguments used in the second order case cannot be used here because, if
Ω0 is a proper subset of Ω and u ∈ H1

0 (Ω), then the usual zero extension of u to
the entire set Ω can be outside H.

To overcome the difficulties pointed above, we use the Fixed Point Theorem
together with a sub-super solution approach without monotone iteration (see [8]).
The main problem relies on obtaining the subsolution and, to do that, we prove a
Krein-Rutman type result for an eigenvalue problem with sign-changing weight and
fourth-order operator (see Proposition 2.3). We think this result has an interest in
itself and it could be used to improve some other results which involve indefinite
nonlinearities. For the second-order problem, besides the former approach, we also
use a simple and instructive idea of working in H2(Ω) ∩ H1

0 (Ω). This enables us
to consider a condition on m which is weaker than those assumed in the previous
works.

The rest of this paper is organized as follows: in the next section, we develop
the sub-supersolution method. Theorems 1.1 and 1.2 are proved in Section 3 and
4, respectively.
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2. The sub-supersolution framework

In this section, we present the sub-super solution method to deal with problem
(Pµ). In what follows we denote by ‖g‖∞ the L∞(Ω)-norm of a bounded function
g. For any µ > 0, we define

fµ(x, s) := µa(x)sq + b(x)sp, x ∈ Ω, s ≥ 0.

We also consider the numbers

(2.1) r :=
1

2
diam(Ω), l :=

r4

4N2
,

and

(2.2) µ∗ :=


1

2‖a+‖∞lq

(
1

2‖b+‖∞lp

)(1−q)/(p−1)

, if ‖b+‖∞ > 0,

+∞, otherwise.

For each R > 0, we denote HR := H ∩ BR(0). In view of (m1) − (m2), there
exists R0 > 0 such that

(2.3) mR0
:= inf

u∈HR0

m(u) > 0.

In our first result we obtain a supersolution for the problem (Pµ), in the following
sense:

Lemma 2.1. For each µ ∈ (0, µ∗) there exists u ∈ H1
0 (Ω) ∩ C∞(Ω) such that

∆2u−m(ψ)∆u ≥ µa(x)uq + b(x)up, ∀ψ ∈ HR0 ,

u, −∆u > 0, in Ω,

u = ∆u = 0, on ∂Ω.

Moreover, the function u = u(µ, ‖a+‖∞, ‖b+‖∞,Ω, N,R0) is such that ‖u‖∞ → 0
uniformly as µ→ 0+.

Proof. Let ei ∈ H1
0 (Ω) ∩ C∞(Ω), i = 1, 2, be such that

−∆e1 = 1, −∆e2 = e1, in Ω.

From the Maximum Principle, we get

(2.4)


∆2e2 = 1, in Ω,

e2, −∆e2 > 0, in Ω,

e2 = ∆e2 = 0, on ∂Ω.

We now consider x0 ∈ Ω such that Ω ⊂ Br(x0), where r > 0 was defined in (2.1).
Then, if

ê1(x) := − 1

2N
|x− x0|2 +

r2

2N
, x ∈ Br(x0),

we have that −∆ê1 = 1 = −∆e1 in Ω, and ê1 ≥ e1 on ∂Ω, and therefore r2/(2N) =
‖ê1‖∞ ≥ ‖e1‖∞. Moreover, if

ê2(x) := − r2

4N2
|x− x0|2 +

r4

4N2
, x ∈ Br(x0),
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we obtain −∆ê2 = ‖ê1‖∞ ≥ e1 = −∆e2 in Ω, and ê2 ≥ e2 on ∂Ω. Thus,

‖e2‖∞ ≤ ‖ê2‖∞ =
r4

4N2
= l.

Let µ ∈ (0, µ∗), K > 0 to be choosed later and fix ψ ∈ HR0
. By using (2.4) and

m(ψ) ≥ 0, we obtain

(2.5) ∆2(Ke2)−m(ψ)∆(Ke2) ≥ K∆2e2 = K.

On the other hand, since ‖e2‖∞ ≤ l, we get

(2.6) fµ(x,Ke2) ≤ µ‖a+‖∞Kqlq + ‖b+‖∞Kplp.

So, if we pick

(2.7) K := (2µ‖a+‖∞lq)1/(1−q),

a straightfoward computation and µ < µ∗ provide

µ‖a+‖∞Kqlq =
K

2
, ‖b+‖∞Kplp ≤ K

2
.

Hence, we can use (2.5)-(2.6) to o btain

∆2(Ke2)−m(ψ)∆(Ke2) ≥ µa(x)(Ke2)q + b(x)(Ke2)p,

and the lemma holds for the function u := Ke2. �
We devote the rest of this section to the construction of a subsolution. This

process is more involved and we start by proving a variant of the Maximum Principle
presented in [33, Lemma 3.1].

Lemma 2.2. Let λ1 := λ1(Ω) be the first eigenvalue of (−∆, H1
0 (Ω)) and supoose

that β, θ ∈ R satisfy

β2 ≥ 4θ, β > −2λ1, λ2
1 + βλ1 + θ > 0.

If u, ∆u ∈ H, u 6= 0 and

∆2u− β∆u+ θu ≥ 0, in Ω,

then u > 0 in Ω.

Proof. Let
g(t) := t2 − βt+ θ, t ∈ R.

From β2 ≥ 4θ, β > −2λ1 and g(−λ1) > 0, we infer that the roots t± of the function
g, namely

t− :=
β −

√
β2 − 4θ

2
, t+ :=

β +
√
β2 − 4θ

2
,

verify t+ ≥ t− > −λ1. Moreover, if we set v := −∆u + t−u ∈ H1
0 (Ω), a direct

calcultion povides

−∆v + t+v = ∆2u− βu+ θu ≥ 0, in Ω.

By picking ϕ = v− ∈ H1
0 (Ω) as a test function in the above inequality and using

t+ > −λ1, we obtain∫
Ω

|∇v−|2dx ≤ −t+
∫

Ω

(v−)2dx < λ1

∫
Ω

(v−)2dx ≤
∫

Ω

|∇v−|2dx,

and therefore v ≥ 0 in Ω. The same argument and t− > −λ1 imply that u ≥ 0
in Ω. Since u 6≡ 0 the result follows from Harnack’s inequality (see [18, Theorem
8.20]). �
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The next result combines an idea introduced by Hess [19] with the standard
theory of Krein-Rutman.

Proposition 2.3 (Principal eigenvalue). Suppose that λ2
1 + βλ1 + θ > 0 and β >

−2λ1. Let c ∈ L∞(Ω) be a weight verifying

c(x) ≥ −1 for a.e. x ∈ Ω, αB := inf
x∈B

c(x) > 0,

where B ⊂ B ⊂ Ω. Set

dB := sup
ϕ∈C∞0 (B)\{0}

αB

∫
B

ϕ2dx∫
B

[
(∆ϕ)2 + β|∇ϕ|2 + θϕ2

]
dx

> 0.

If β2 − 4θ > 4d−1
B , then the eigenvalue problem{

∆2u− β∆u+ θu = λc(x)u, in Ω,

u = ∆u = 0, on ∂Ω,

has a principal eigenvalue λc1 > 0 with associated positive eigenfunction ϕ1 belonging

to W 1,2
0 (Ω) ∩W 4,2(Ω) ∩ C3(Ω).

Proof. For u, v ∈ H, we define

(u, v)∗ :=

∫
Ω

[∆u∆v + β(∇u · ∇v) + θuv] dx

and notice that

‖u‖2∗ := (u, u)∗ ≥ (λ2
1 + βλ1 + θ)

∫
Ω

u2dx.

Hence (·, ·)∗ is an inner product in H and, since ‖u‖ ≤ ‖u‖∗ for any u ∈ H, we have
that H2(Ω)∩H1

0 (Ω) endowed with this inner product is a Hilbert space. Thus, we
can apply the Riesz Theorem to obtain φ1 ∈ H such that

(2.8) (φ1, v)∗ = λc1

∫
Ω

c(x)φ1v dx, ∀ v ∈ H,

where the number λc1 is given by

(2.9)
1

λc1
:= sup

ϕ∈H\{0}

∫
Ω

c(x)ϕ2dx∫
Ω

[
(∆ϕ)2 + β|∇ϕ|2 + θϕ2

]
dx

> 0.

This shows that dB > 0.
For any α ∈ (0, 1) we denote

Cα0 (Ω) := {u ∈ Cα(Ω) : u ≡ 0 on ∂Ω},
and define the operator T : Cα0 (Ω)→ C3,α(Ω) ∩ Cα0 (Ω) in the following way:

Tu = v ⇐⇒

{
∆2v − β∆v + (θ + λc1)v = (1 + c(x))u, in Ω,

v = ∆v = 0, on ∂Ω.

Since (2.9) implies that β2 > 4(θ + λc1), the same argument used in the proof of
Lemma 2.2 provide

∆2v − β∆v + (θ + λc1)v = (−∆ + t−Id)(−∆− t+Id)v,
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with t+ ≥ t− > −λ1. So, the equality Tu = v can be rewritten as{
−∆v + t+v = w, in Ω,

v = 0, on ∂Ω.
,

and {
−∆w + t−w = (c(x) + 1)u, in Ω,

w = 0, on ∂Ω,

Recalling that c ∈ L∞(Ω), we can apply the standard Lp-theory to ensure that the
operator T is well defined and compact.

It is well known that K := {u ∈ Cα0 (Ω) : u ≥ 0 in Ω} is a total cone in Cα0 (Ω).
Moreover, β2 > 4(θ + λc1) and Lemma 2.2 imply that T (K) ⊂ K. Hence, we
can apply the Krein-Rutman Theorem (see [22] or [9, Theorem 19.2]) to obtain a
principal eigenvalue λ0 > 0 and a positive eigenfunction ϕ1 ∈ C3,α(Ω) ∩ Cα0 (Ω)
such that

(2.10)

{
∆2ϕ1 − β∆ϕ1 + (θ + λc1)ϕ1 = λ0(1 + c(x))ϕ1, in Ω,

ϕ1 = ∆ϕ1 = 0, on ∂Ω.

The eigenvalue λ0 can be characterized as

1

λ0
:= sup

ϕ∈H\{0}

∫
Ω

(1 + c(x))ϕ2dx∫
Ω

[
(∆ϕ)2 + β|∇ϕ|2 + (θ + λc1)ϕ2

]
dx

.

In what follows we shall verify that λ0 = λc1. If this is true, it follows from (2.10)
that ϕ1 > 0 is an eigenfunction of the linear problem presented in the statement of
the lemma.

In order to check that λ0 = λc1, we first use equality (2.8) with v = φ1 to get
‖φ1‖2∗ = λc1

∫
Ω
c(x)φ2

1dx. Hence, we infer from the characterization of λ0 that

1

λ0
≥
∫

Ω
c(x)φ2

1dx+ ‖φ1‖2L2(Ω)

‖φ1‖2∗ + λc1‖φ1‖2L2(Ω)

=
1

λc1
,

and therefore λc1 ≥ λ0. On the other hand, since

‖ϕ1‖2∗ + λc1‖ϕ1‖2L2(Ω) = λ0‖ϕ1‖2L2(Ω) + λ0

∫
Ω

c(x)ϕ2
1 dx,

we obtain from (2.9) that

1

λc1
≥
∫

Ω
c(x)ϕ2

1 dx

‖ϕ1‖2∗
=
λ−1

0

[
‖ϕ1‖2∗ + (λc1 − λ0)‖ϕ1‖2L2(Ω)

]
‖ϕ1‖2∗

≥ 1

λ0
.

Thus, the reverse inequality λ0 ≥ λc1 holds and we conclude that λ0 = λc1. �
We are ready to construct our supersolution.

Lemma 2.4. Let µ∗ be defined in (2.2), µ ∈ (0, µ∗) and u ∈ H1
0 (Ω)∩C∞(Ω) as in

Lemma 2.1. Then, for some R > 0, there exists u ∈ W 1,2
0 (Ω) ∩W 4,2(Ω) ∩ C3(Ω)

such that

(2.11)


∆2u−m(ψ)∆u ≤ µa(x)uq + b(x)up, ∀ψ ∈ HR,

0 < u < u, in Ω,

u = ∆u = 0, on ∂Ω.
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Proof. For any R > 0, we define

MR := sup
u∈HR

m(u) > 0.

By continuity, limR→0+ MR = m(0) > 0, and therefore we can choose δ, R > 0
small in such way that

(2.12)
M2
R − δ

4(MR −m(ψ))
>
MR

2
, ∀ψ ∈ HR.

Let Ωa ⊂ Ω be given by (a2) and set C1 = C1(Ωa,MR, δ) as

C1 := sup
ϕ∈C∞0 (B)\{0}

∫
B
ϕ2dx∫

B

[
(∆ϕ)2 +MR|∇ϕ|2 +

(
M2

R−δ
4

)
ϕ2
]

dx
> 0.

Pick α > 0 in such way that

dΩa := αC1 >
4

M2
R

and define c ∈ L∞(Ω) in the following way:

c(x) :=

α, if x ∈ Ωa,

−1, if x ∈ Ω \ Ωa.

By invoking Proposition 2.3 with the above weight and B = Ωa, we obtain λc1 > 0

and ϕ1 ∈W 1,2
0 (Ω) ∩W 4,2(Ω) ∩ C3(Ω) such that

(2.13)


∆2ϕ1 −MR∆ϕ1 +

(
M2

R−δ
4

)
ϕ1 = λc1c(x)ϕ1, in Ω,

ϕ1 > 0, in Ω,

ϕ1 = ∆ϕ1 = 0, on ∂Ω.

Since c ≡ α in Ωa, the variational characterization of the first eigenvalue easily gets
1/λca ≥ αC1, and therefore we can assume that δ − 4λc1 > 0. Thus, we can use
(2.12) to obtain

(2.14)
M2
R − δ

4(MR −m(ψ))
>
MR −

√
δ − 4λc1

2
, ∀ψ ∈ HR.

We now notice that, since c(x) ≥ −1 for a.e. x ∈ Ω, (2.13) implies that

∆2ϕ1 −MR∆ϕ1 +

(
M2
R − δ
4

+ λc1

)
ϕ1 ≥ 0, in Ω.

Arguing as in the proof of Lemma 2.2, we can write

(−∆ + t−Id)(−∆− t+Id)ϕ1 ≥ 0, in Ω,

with

t− :=
MR −

√
δ − 4λc1

2
, t+ :=

MR +
√
δ − 4λc1

2
,

and therefore it follows from the Maximum Principle that

−∆ϕ1 +
MR −

√
δ − 4λc1

2
ϕ1 ≥ 0, in Ω.
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Since ϕ1 > 0, the above expression and (2.14) imply that, for any ψ ∈ HR,

−∆ϕ1 +
M2
R − δ

4(MR −m(ψ))
ϕ1 ≥ 0, in Ω.

which is equivalent to

(2.15) ∆2ϕ1 −MR∆ϕ1 +

(
M2
R − δ
4

)
ϕ1 ≥ ∆2ϕ1 −m(ψ)∆ϕ1.

We now define

u := εϕ1,

with ε > 0 satisfying

ε <
K

αλc1‖ϕ1‖∞
.

For any ψ ∈ HR, it follows from (2.15) and (2.13) that

(2.16) ∆2u−m(ψ)∆u ≤ ελc1c(x)ϕ1 < K,

where K > 0 was defined in (2.7). The above expression and the definition of the
function u in that former lemma provide

∆2u−m(ψ)∆u < K ≤ ∆2u−m(ψ)∆u, in Ω.

Recalling that u = u = ∆u = ∆u = 0 on Ω, we infer from the above inequality and
Lemma 2.2 that u < u in Ω. Hence, the last two statements in (2.11) hold.

We now claim that, for some ε > 0 small, we have that

(2.17) ελc1c(x)ϕ1 ≤ fµ(x, u), in Ω.

If this is true, we can use (2.16) to conclude that u verifies the first statement of
(2.11).

It remains to verify (2.17). We fist suppose that b− 6≡ 0 and consider x ∈ Ω\Ωa.
If

(2.18) εp−1 <
λc1

‖b−‖∞‖ϕ1‖p−1
∞

,

we can recall that a ≥ 0 and c ≡ −1 in Ω \ Ωa to get

fµ(x, u) ≥ −εp‖b−‖∞ϕ1(x)p ≥ −ελc1ϕ1(x) = ελc1c(x)ϕ1(x), for a.e. x ∈ Ω \ Ωa,

which implies (2.17). If b− ≡ 0 and x ∈ Ω \ Ωa, the above inequality holds in-
dependently of the value of ε. The proof for x ∈ Ωa is more involved. We first
set

g(ε) := µδ − εp−q‖b−‖∞‖ϕ1‖p−q∞ − ε1−qαλc1‖ϕ1‖1−q∞ , ε > 0.

Since g is continuos and g(0) = µδ, there exists ε > 0 small such that

(2.19) g(ε) ≥ µδ

2
.

Hence, recalling that a ≥ δ and c ≡ α in Ωa, we get

0 ≤ εqϕ1(x)q
µδ

2
≤ εqϕ1(x)qg(ε)

≤ εqϕ1(x)q
[
µδ + b(x)εp−qϕ1(x)p−q − ε1−qαλc1ϕ1(x)1−q]

≤ fµ(x, u)− ελc1c(x)ϕ1(x),



10 M.F. FURTADO AND J.P.P. DA SILVA

which is exactly (2.17). We now conclude the proof by picking ε > 0 small in such
way that (2.18) and (2.19) hold. �

3. The fourth-order case

We devote this section to the proof of our first theorem. Let µ∗ > 0 be defined
in (2.2), µ ∈ (0, µ∗) and u ∈ H1

0 (Ω) ∩ C∞(Ω), u ∈ W 1,2
0 (Ω) ∩W 4,2(Ω) ∩ C3(Ω) be

given by Lemmas 2.1 and 2.4. For each u ∈ H, we define the truncated function

û(x) :=


u(x), if u(x) ≥ u(x),

u(x), if u(x) ≤ u(x) ≤ u(x),

u(x), if u(x) ≤ u(x),

For θ > 0, we can use a ≥ 0 to obtain

d

dt
(fµ(x, t) + θt) = µqa(x)tq−1 + pb(x)tp−1 + θ ≥ −p‖b−‖∞tp−1 + θ,

for any x ∈ Ω, t ≥ 0. Hence, if we set

(3.1) θ := p‖b−‖∞‖u‖p−1
∞

we conclude that

(3.2) the map t 7→ (fµ(x, t) + θt) is nondecreasing in [0, ‖u‖∞], for any x ∈ Ω.

We now define the operator T : H → H ∩ C3,α(Ω) by

Tu = v ⇐⇒

{
∆2v −m(u)∆v + θv = fµ(x, û) + θû, in Ω,

v = ∆v = 0, on ∂Ω.

and prove the following:

Lemma 3.1. Let µ∗, R0, R > 0 be given by (2.2), (2.3) and Lemma 2.1, respec-
tively. Then there exist R∗ ∈ (0, R) and µ∗ ∈ (0, µ∗) such that, for any µ ∈ (0, µ∗),

the operator T above is well defined, compact and satisfies T (BR∗(0)) ⊂ BR∗(0).

Proof. Since m(0) > 0 and m is continuous, there exists R∗ ≤ min{R0, R} such
that

mR∗ := inf
u∈HR∗

m(u) > 0.

Moreover, since limµ→0+ ‖u‖∞ = 0, the equation (3.1) implies that θ → 0, as µ→
0+. Hence, we may also assume that µ is small in such way that m(u)2 ≥ m2

R∗ ≥ 4θ,
for any u ∈ HR∗ .

As in the proof the of Lemma 2.2, the equality Tu = v can be written as{
−∆v + t+u v = w, in Ω,

v = 0, on ∂Ω,

and {
−∆w + t−uw = fµ(x, û) + θû, in Ω,

w = 0, on ∂Ω.
,

with

t±u :=
m(u)±

√
m(u)2 − 4θ

2
.

By using the usual Lp-theory we can check that T is well defined. Moreover, by
(m1), for any boudend sequence (un) ⊂ H, we may assume that m(un) → m(u),
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as n → +∞, where u ∈ H is the weak limit of (un). Hence, we can use standard
arguments to prove that T is compact. Finally, the definitions of T , û and (3.2)
show that Tu ≥ 0, for any u ∈ HR∗ .

Let C1 > 0 be such that C1

∫
Ω
|u|dx ≤ ‖u‖, for any u ∈ H. By denoting v = Tu

and recalling that 0 ≤ û ≤ u in Ω, we infer from the definition of θ that

∆2v −m(u)∆v + θv ≤ µ‖a‖∞‖u‖q∞ + ‖b+‖∞‖u‖p∞ + p‖b−‖∞‖u‖p∞.

Since ‖u‖∞ → 0 as µ→ 0+, for small values of µ > 0 we have that

∆2v −m(u)∆v + θv ≤ R∗C1.

By multiplying the above inequality by v = Tu ≥ 0, integrating over Ω and recalling
that v = ∆v = 0 on ∂Ω, we get

‖v‖2 +m(u)‖|∇v|‖2L2(Ω) + θ‖v‖2L2(Ω) ≤ R
∗C1‖v‖L1(Ω) ≤ R∗‖v‖.

Hence, we conclude that T (BR∗(0)) ⊂ BR∗(0). �
We are ready to prove our first theorem.

Proof of Theorem 1.1. Let µ∗, R∗ > 0 as in the previous lemma and fix µ ∈ (0, µ∗).

Since the compact operador T is such that T (BR∗(0)) ⊂ BR∗(0), by Schauder’s

Fixed Point Theorem there exists u ∈ BR∗(0) such that Tu = u. Hence, û ≤ u,
(3.2) and Lemma 2.1 imply that

∆2u−m(u)∆u+ θu = fµ(x, û) + θû ≤ fµ(x, u) + θu ≤ ∆2u−m(u)∆u+ θu,

which is equivalent to

∆2(u− u)−m(u)∆(u− u) + θ(u− u) ≤ 0.

Since m(u)2 ≥ 4θ, we can use Lemma 2.2 to conclude that u ≤ u in Ω. Analagously,
we can use u ≤ û, (3.2) and Lemma 2.4, to get

∆2u−m(u)∆u+ θu ≤ fµ(x, u) + θu ≤ fµ(x, û) + θû = ∆2u−m(u)∆u+ θu,

from which we obtain u ≥ u in Ω. Thus, u ≤ u ≤ u in Ω and it follows from the
definition of û that û = u. Since Tu = u, this implies that u ∈ H is a solution of
the problem. 2

4. The second-order case

From now on we deal with the problem (Pµ) with γ = 0. In this new setting,
instead of (m2), we shall assume that

m0 := inf
u∈H

m(u) > 0.

The proof follows the same lines of that presented in the last section.

Lemma 4.1. Let

µ∗ :=


m0

2‖a+‖∞‖e‖p∞

(
m0

2‖b+‖∞‖e‖q∞

)(1−q)/(p−1)

, if ‖b+‖∞ > 0,

+∞, otherwise,
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For each µ ∈ (0, µ∗) there exists u ∈ H1
0 (Ω) ∩ C∞(Ω) such that

−m(ψ)∆u ≥ µa(x)uq + b(x)up, ∀ψ ∈ H,
u > 0, in Ω,

u = 0, on ∂Ω.

Moreover, the function u = u(µ, ‖a+‖∞, ‖b+‖∞,Ω, N) is such that ‖u‖∞ → 0
uniformly as µ→ 0+.

Proof. Let e ∈ H1
0 (Ω) ∩ C∞(Ω) be such that −∆e = 1 in Ω, since 0 < µ < µ∗, we

choice

(4.1) K :=

(
2µ‖a+‖∞‖e‖q∞

m0

)1/(1−q)

, u := Ke.

By using the definition of K together with µ < µ∗ we get

fµ(x, u) ≤ µ‖a‖∞Kp‖e‖p∞ + ‖b+‖∞Kq‖e‖q∞ ≤ Km0 ≤ Km(ψ) = −m(ψ)∆u,

for any ψ. The lemma is proved. �
We now turn our attention to the subsolution. As in the fourth-order case, it is

important to consider an eigenvalue problem with a suitable weigth.

Lemma 4.2. Let µ∗ and u as in Lemma 4.1. Then, there exists u ∈ W 1,2
0 (Ω) ∩

W 2,2(Ω) ∩ C3(Ω) such that, for any R > 0, it hold

(4.2)


−m(ψ)∆u ≤ µa(x)up + b(x)uq, ∀ψ ∈ HR,

0 < u < u, in Ω,

u = 0, on ∂Ω.

Proof. Let Ωa ⊂ Ω given by (a2) and define the weight c ∈ L∞(Ω) as

c(x) :=

1, if x ∈ Ωa,

−1, if x ∈ Ω \ Ωa.

Consider ϕ1 > 0 and λc1 > 0 ( see [19]) such that

−∆ϕ1 = λc1c(x)ϕ1, in Ω,

and set
u := εϕ1,

with ε > 0 such that

ε < ε∗ :=
K

λc1‖ϕ1‖∞
.

A simple computation shows that

−∆(εϕ1) = ελc1c(x)ϕ1 ≤ ελc1‖ϕ1‖∞ < K = −∆(Ke),

with K > 0 defined in (4.1), and therefore it follows from the Maximum Principle
that u < u in Ω.

In order to check the first statement in (4.2) we suppose that b− 6≡ 0 and consider
x ∈ Ω \ Ωa. If

εp−1 <
m0λ

c
1

‖b−‖∞‖ϕ1‖p−1
∞

,

we can recall that a ≥ 0 and c ≡ −1 in Ω \ Ωa, to get

fµ(x, u) ≥ −εp−1‖b−‖∞‖ϕ1‖p−1
∞ u ≥ −m0λ

c
1u = −m0∆(u) ≥ −m(ψ)∆(u),
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for a.e. x ∈ Ω \ Ωa and any ψ ∈ HR. If b− ≡ 0 and x ∈ Ωa, then fµ(x, u) ≥
0 ≥ −m0∆(u) and therefore the above inequality trivially holds for any ε > 0. It
remains to consider x ∈ Ωa. In this case, since c(x) = 1, we have that

(4.3) −m(ψ)∆(u) = εm(ψ)λc1c(x)ϕ1 ≤ εMRλ
c
1ϕ1,

with

MR := sup
u∈HR

m(u) > 0.

But

fµ(x, u)− εMRλ
c
1ϕ1 = µa(x)εqϕq1 + b(x)εpϕp1 − εMRλ

c
1ϕ1

≥ εqϕq1
[
µδ − εp−q‖b−‖∞‖ϕ1‖p−q∞ − ε1−qMRλ

c
1‖ϕ1‖1−q∞

]
.

If we call g(ε) the continuos function into the brackets above we obtain ε > 0 small
such that g(ε) ≥ (µδ)/2, and therefore

fµ(x, u)− εMRλ
c
1ϕ1 ≥

µδ

2
εqϕq1 > 0.

This and (4.3) imply that the fuction u verifies the first statement in (4.2) also in
the set Ωa. �

We are ready to prove our second theorem.

Proof of Theorem 1.2. As in the proof of Theorem 1.1 we define T : H → H ∩
C1,α(Ω) by

T (u) = v ⇐⇒

{
−m(u)∆v + θv = fµ(x, û) + θû, in Ω,

v = 0, on ∂Ω,

where θ > 0 is such that the function t 7→ fµ(x, t) is nondecreasing in [0, ‖u‖∞], for
any x ∈ Ω. As before, T is well defined and compact.

We now set

c0 := inf
x∈Ω, t∈[0,‖u‖∞]

|fµ(x, t) + θt|2.

For any u ∈ H, if we denote v = Tu and integrate by parts we obtain

c0|Ω| ≥
∫

Ω

(−m(u)∆v + θv)2dx

= m(u)2‖v‖2 + 2m(u)θ‖|∇v|‖2L2(Ω) + θ2‖v‖2L2(Ω)

≥ m2
0‖v‖2,

where |Ω| stands for the Lebesgue measure of Ω. Hence, if we define R∗ :=√
c0|Ω|/m0, we have that T (BR∗(0)) ⊂ BR∗(0) and the Schauder’s Fixed Point

Theorem provides u ∈ BR∗(0) such that Tu = u. The result now follows from the
Maximum Principle as in the proof of Theorem 1.1. 2
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[28] J.C.N. Pádua, E.A.B. Silva and S.H.M. Soares, Positive solutions of critical semilinear prob-
lems involving a sublinear term on the origin, Indiana Univ. Math. J. 55 (2006), 1091-1111.

[29] Y. Song and S. Shi, Multiplicity of Solutions for Fourth-Order Elliptic Equations of Kirchhoff

Type with Critical Exponent, Journal of Dynamical and Control Systems 23 (2017), 375-386.

[30] G. Sweers and K. Vassi, Positivity for a hinged convex plate with stress, SIAM J. Math. Anal.
50 (2018), 1163–1174.



POSITIVE SOLUTION FOR AN INDEFINITE FOURTH-ORDER NONLOCAL PROBLEM 15

[31] R.C.A.M. van der Vorst, Best constant for the embedding of the space H2 ∩ H1
0 (Ω) into

L2N/(N−4)(Ω), Differential Integral Equations 6 (1993), 259–276.
[32] R.C.A.M. van der Vorst, Fourth-order elliptic equations with critical growth, C.R. Math.

Acas. Sci. Paris 320 (1995), 295-299.

[33] Y-M. Wang, On fourth-order elliptic boundary value problems with nonmonotone nonlinear
function, J. Math. Anal. Appl. 307 (2005), 1–11.

[34] S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J. Appl.

Mech. 17 (1950), 35-36.
[35] T.F. Wu, Three positive solutions for Dirichlet problems involving critical Sobolev exponent

and sign-changing weight, J. Differential Equations 249 (2010), 1549-1578.
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