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Abstract. We obtain multiple solutions for the nonlinear boundary value
problem

−∆u−
1

2
(x · ∇u) = λa(x)|u|q−2u, in R

N
+ ,

∂u

∂ν
= b(x′)|u|p−2u, on ∂RN

+ ,

where RN
+ = {(x′, xN ) : x′ ∈ RN−1, xN > 0} is the upper half-space, N ≥ 3,

λ > 0 is a parameter, 1 < q < 2 < p ≤ 2∗ = 2(N − 1)/(N − 2). The potentials
a and b satisfy mild conditions which allow us to use variational methods. In
some results, they can be indefinite in sign.

1. Introduction and main results

Let RN
+ :=

{
(x′, xN ) : x′ ∈ R

N−1, xN > 0
}
be the upper half-space and consider

the following heat equation with nonlinear boundary condition

vt −∆v = 0, in R
N
+ × (0,+∞),

∂v

∂η
= |v|p−2v, on ∂RN

+ × (0,+∞),

where 2 < p ≤ 2∗ := 2(N − 1)/(N − 2) and ∂u/∂η denotes the partial outward
normal derivative. Solutions of type

v(x, t) = t−λu(t−1/2x),

with λ = 1/(2(p − 2)) > 0, are called self-similar solutions. Besides preserve the
PDE scaling, they carry simultaneously information about small and large scale
behaviors, providing also qualitative properties like global existence, blow-up and
asymptotic behavior (see e.g. [24, 26, 25]).

An easy computation shows that the profile u above needs to satisfy

−∆u−
1

2
(x · ∇u) = λu, in R

N
+ ,

∂u

∂η
= |u|p−2u, on ∂RN

+ .

Such problem was recently considered in [19, 20], where existence results were
presented according to the range of λ. Actually, these papers were strongly
motivated by the vast literature concerning the version of the problem for the whole
space R

N with different types of nonlinearities. We could quote [4, 11, 28, 13, 27,
22, 21] and their references for results about existence, nonexistence, multiplicity,
decay rate, among other properties of solutions.
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Here, we are going to study the effect of replacing the linear term λu in the above
equation by a sublinear indefinite function. Our main motivation comes from the
problem

−∆u = λa(x)|u|q−2u+ b(x)|u|r−2u, in Ω, u = 0, on ∂Ω,

where Ω ⊂ R
N is a bounded smooth domain, 1 < q < 2 < r ≤ 2N/(N − 2) and

the potentials a, b satisfy natural regularity conditions. In the celebrated paper
[3], Ambrosetti, Brezis and Cerami considered the constant case a ≡ 1, b ≡ 1
and obtained Λ > 0 such that the problem admits at least two positive solutions
whenever λ ∈ (0,Λ), at least one if λ = Λ and no solution if λ > Λ. Variable
and indefinite potentials were considered in [15] (see also [16]). In [23], the authors
obtained for

−∆u+ u = |u|r−2u, in Ω,
∂u

∂η
= λ|u|q−2u, on ∂Ω,

results which are analogous to that of [3]. Some of their results were extended in
[32] for the indefinite potential case (see also [29]). All the aforementioned works
belong to a huge class of problems which are now called of concave-convex type.

In this paper, we deal with the concave-convex boundary value problem

(Pλ)





−∆u−
1

2
(x · ∇u) = λa(x)|u|q−2u, x ∈ R

N
+ ,

∂u

∂η
= b(x′)|u|p−2u, x′ ∈ R

N−1,

where N ≥ 3, λ > 0 is a parameter, 1 < q < 2 < p ≤ 2∗ and we have identified
∂RN

+ ≃ R
N−1. For describing the assumptions on the potentials we need first to

present the functional space to deal with (Pλ). This is done in what follows.
As we shall see, the function K(x) = exp(|x|2/4) is closely related with the

appropriated space to look for solutions of our problem. In order to present the
assumptions on the coefficients, we denote for any 2 ≤ r ≤ 2∗ the weighted Lebesgue
space

(1.1) Lr
K(RN

+ ) =



u ∈ Lr(RN

+ ) : ‖u‖r =

(∫

RN
+

K(x)|u|rdx

)1/r

<∞



 .

If we denote by r′ = r/(r − 1) the conjugated exponent of r > 1, we can present
the basic hypothesis on a, b in the following way:

(a0) a ∈ L
σq

K (RN
+ ) ∩ L

N/2
loc (RN

+ ) for some
(
p

q

)′

< σq ≤

(
2

q

)′

;

(b0) b ∈ L∞(RN−1).

Since they can change it sign, we may define the sets

Ω+
a := {x ∈ R

N
+ : a(x) > 0}, Ω+

b := {x′ ∈ R
N−1 : b(x′) > 0}.

In our first results we obtain existence of two nonnegative solutions when roughly
speaking the closure of the set Ω+

a intersects Ω+
b and the parameter λ > 0

approaches zero. More specifically, denoting by Bδ(0) the open ball centered at
origin with radii δ > 0, we prove the following:
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Theorem 1.1. Suppose that a, b satisfy (a0) and (b0). If 1 < q < 2 < p < 2∗, then
there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), problem (Pλ) has at least two

nonnegative nonzero solutions provided

(ab) there exists δ > 0 such that

(Bδ(0) ∩ R
N
+ ) ⊂ Ω+

a , (Bδ(0) ∩ ∂R
N
+ ) ⊂ Ω+

b .

In our second result, we consider the critical case by adding a flatness condition
on the potential b:

Theorem 1.2. Suppose that N ≥ 7, p = 2∗ and the other conditions of Theorem

1.1 are verified. Then there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), problem
(Pλ) has at least two nonnegative nonzero solutions provided

(b1) there exist M > 0 and σ > N − 1 such that

b ∞ − b(x′) ≤M |x′|σ, for a.e. x′ ∈ Bδ(0) ∩ ∂R
N
+ .

The first solution will be obtained with a standard minimization argument while
the second one requires finer arguments. This is specially true when p = 2∗,
since the trace embedding we are going to use fails to be compact. Two points
are important to overcome this difficulty: a trick regularization study of the first
solution on the boundary and the application of an idea of Brezis and Nirenberg [10],
together with fine estimates of a modification of the instanton functions founded
by Escobar [17] and Beckner [8].

In the second part of the paper, we take advantage of the symmetry to get more
and more solutions (with no prescribed sign). Unfortunately, in this case we do not
assume that both the potentials are indefinite.

We prove the following:

Theorem 1.3. Suppose that 1 < q < 2, a ≥ 0 and b 6≡ 0 satisfiy (a0) and

(b0), respectively. Then problem (Pλ) has infinitely many solutions in each of the

following cases:

(1) 2 < p < 2∗ and λ > 0;
(2) p = 2∗, b ≤ 0 and λ > 0;
(3) p = 2∗ and λ > 0 is small.

Theorem 1.4. Suppose that 1 < q < 2 < p < 2∗, a 6≡ 0 and b ≥ 0 satisfy (a0) and
(b0), respectively. Then, for any λ > 0, problem (Pλ) has infinitely many solutions.

The above theorems will be proved as application of suitable versions of the
Symmetric Mountain Pass Theorem [2]. They were proved by Tonkes in the paper
[30] which strongly motivated the second part of our work (see also [6, 7] for some
earlier results). In the critical case, when b ≤ 0, the boundary term is related with
a semi-norm and therefore we can argue as in the subcritical case. When p = 2∗
and b is indefinite in sign, we borrow an argument from [5]. It can be proved that,
when b ≤ 0, the energy of the solutions given by Theorem 1.3 are negative and goes
to zero. On the other hand, in Theorem 1.4, this energy goes to infinity, the same
occurring with the norm of the solutions.

The paper is organized as follows: in Section 2 we present the variational
framework to deal with our problem and obtained the first solution; in Section
3 we finish the proof of the first two theorems; Section 4 is devoted to the proof of
Theorems 1.3 and 1.4.
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2. Variational setting

Throughout the paper we assume that 1 < q < 2 < p ≤ 2∗ and conditions (a0),
(b0) hold. Following Escobedo and Kavian [18], we first set

K(x) := exp(|x|2/4), x ∈ R
N
+ ,

and notice that the first equation in (Pλ) is equivalent to

−div(K(x)∇u) = λK(x)a(x)|u|q−2u, x ∈ R
N
+ .

Hence, it is natural looking for solutions in the space X defined as the closure of

C∞
0 (RN

+ ) with respect to the norm

‖u‖ :=

(∫

RN
+

K(x)|∇u|2dx

)1/2

.

Recall the definition of Lr
K(RN

+ ) in (1.1) and define, for each 2 ≤ s ≤ 2∗, the space

Ls
K(RN−1) :=

{
u ∈ Ls(RN−1) : u s :=

(∫

RN−1

K(x′, 0)|u|sdx′
)1/s

<∞

}
.

We collect in the next proposition the abstract results proved in [19, 20].

Proposition 2.1. For any r ∈ [2, 2∗) and s ∈ [2, 2∗), the embeddings X →֒
Ls
K(RN

+ ) and X →֒ Ls
K(RN−1) are compact. In the critical cases r = 2∗ and

p = 2∗, we have only continuous embeddings.

Given 2 ≤ r ≤ 2∗ and 2 ≤ s ≤ 2∗, we can use the above result to define the
following embedding constants:

Sr := inf
u∈X/{0}

∫
RN

+

K(x)|∇u|2dx

(∫
RN

+

K(x)|u|rdx
)2/r ,

Ss,∂ := inf
u∈X/{0}

∫
RN

+

K(x)|∇u|2dx

(∫
RN−1 K(x′, 0)|u|sdx′

)2/s .

By condition (a0), we have that 2 ≤ qσ′
q < 2∗, and therefore we can use Hölder’s

inequality to get

(2.1)

∣∣∣∣∣

∫

R
N
+

K(x)a(x)(u+)qdx

∣∣∣∣∣ ≤ ‖a‖σq

(∫

R
N
+

K(x)|u|qσ
′
qdx

)1/σ′
q

< +∞,

for any u ∈ X . Hence, condition (b0) and standard arguments show that the
functional

Iλ(u) :=
1

2
‖u‖2 −

λ

q

∫

RN
+

K(x)a(x)(u+)q dx−
1

p

∫

RN−1

K(x′, 0)b(x′)(u+)p dx′

belongs to C1(X,R). Here and in what follows we will denote u+ := max{u, 0}
and u− := u+ − u. If I ′λ(u) = 0, then we can compute 0 = I ′λ(u)u

− to conclude
that ‖u−‖ = 0, and therefore the critical points of Iλ are nonnegative solutions of
problem (Pλ)

The first step in the proof of Theorem 1.1 is the study of Iλ near origin.
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Lemma 2.2. There exist ρ = ρ(q, p, b ∞) > 0, α = α(ρ) > 0 and λ∗ = λ∗(q, ρ) > 0
such that Iλ(u) ≥ α > 0, for any u ∈ X verifying ‖u‖ = ρ, and λ ∈ (0, λ∗).

Proof. By using (2.1) and Proposition 2.1, we get

Iλ(u) ≥
1

2
‖u‖2 −

λ

q
‖a‖σq

‖u‖qqσ′
q
−

1

p
b ∞ u p

p

=
‖u‖q

2

[
‖u‖2−q −

2

p
S
−p/2
p,∂ b ∞‖u‖p−q − λ

2

q
S
−q/2
qσ′

q
‖a‖σq

]
.

The function g : (0,∞) → R given by g(t) := t2−q − C1t
p−q, with C1 :=

2S
−p/2
p,∂ b ∞/p, achieves its maximum value at

ρ :=

[
(2− q)

C1(p− q)

]1/(p−2)

.

Thus, for any u ∈ X satisfying ‖u‖ = ρ, there holds

Iλ(u) ≥
ρq

2

(
g(ρ)− λ

2

q
S
−q/2
qσ′

q
‖a‖σq

)
≥
ρq

2

g(ρ)

2
= α > 0,

whenever

λ < λ∗ :=
qS

q/2
qσ′

q

4‖a‖σq

g(ρ),

and the result follows. �

We obtain in the next proposition our first solution.

Proposition 2.3. Let λ∗, ρ > 0 be as in the above lemma. For any λ ∈ (0, λ∗),
we have that

−∞ < c0 := inf
u∈Bρ(0)

Iλ(u) < 0

and the infimum is attained at u0 ∈ Bρ(0) such that u0 ∈ Lν
loc(R

N
+ ) ∩ Lν

loc(R
N−1)

for any ν ≥ 1.

Proof. The inequality c0 > −∞ is obvious, since Iλ maps bounded sets in
bounded sets. Let δ > 0 given by (ab) and consider ϕ ∈ C∞

0 (Bδ(0)) such that∫
RN

+

K(x)a(x)ϕqdx > 0. Then,

Iλ(tϕ)

tq
≤
t2−q

2
‖ϕ‖2 −

λ

q

∫

R
N
+

K(x)a(x)ϕqdx,

and therefore

lim sup
t→0+

Iλ(tϕ)

tq
≤ −

λ

q

∫

RN
+

K(x)a(x)ϕqdx < 0,

which proves that Iλ(tϕ) < 0, for any t > 0 small. This implies that c0 < 0.

Let (un) ⊂ Bρ(0) be a minimizing sequence for c0. We may assume that, for
some u0 ∈ X ,

(2.2)





un ⇀ u0 weakly in X,

un → u0 strongly in Lr
K(RN

+ ),

u+n (x) → u+0 (x), |un(x)| ≤ hr(x) for a.e. x ∈ R
N
+ ,
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for any 2 ≤ r < 2∗ and hr ∈ Lr
K(RN

+ ). Moreover, since Iλ ≥ α > 0 on ∂Bρ(0), we
can use 2 ≤ qσ′

q < 2∗ and the Ekeland Variational Principle to also assume that

lim
n→+∞

Iλ(un) = c0, lim
n→+∞

I ′λ(un) = 0.

We claim that I ′λ(u0) = 0. Indeed, pick φ ∈ C∞
0 (RN

+ ) and call Ω its support.
Since σq > (p/q)′ = p/(p− q), its possible to choose p0 ∈ (2, p) close to p and such
that

σq >
p0

p0 − q
>

p0
p0 + 1− q

.

Thus, there exists t > 1 satisfying

1

σq
+

1

p0/(q − 1)
+

1

t
= 1.

Using Young’s inequality we get

|K(x)a(x)(u+n )
q−1φ(x)| ≤ C1

(
|a(x)|σq + |hp0

|p0 + |φ(x)|t
)

for a.e. x ∈ Ω. It follows from the pointwise convergence in (2.2) and the Lebesgue’s
Theorem that

lim
n→+∞

∫

RN
+

K(x)a(x)(u+n )
q−1φdx =

∫

RN
+

K(x)a(x)(u+0 )
q−1φdx.

A simpler argument shows that

lim
n→+∞

∫

RN−1

K(x′)b(x′)(u+n )
p−1φdx′ =

∫

RN−1

K(x′)b(x′)(u+0 )
p−1φdx′.

So, the claim follows from the weak convergence of (un) and the density of C∞
0 (RN

+ )
in X .

From Young’s inequality, we obtain

|K(x)a(x)(u+n )
q| ≤ |K(x)|

(
|a|σq

σq
+

|u+n |
qσ′

q

σ′
q

)
≤ K(x)

(
|a|σq + h

qσ′
q

qσ′
q
(x)
)
,

for a.e. x ∈ R
N
+ . Since 2 ≤ qσ′

q < p ≤ 2∗, we can use Hölder’s inequality to conclude
that this last function is integrable and we infer from Lebesgue’s Theorem again
that

lim
n→+∞

∫

RN
+

K(x)a(x)(u+n )
q dx =

∫

RN
+

K(x)a(x)(u+0 )
q dx.

Thus,

c0 = lim inf
n→+∞

[
Iλ(un)−

1

p
I ′λ(un)un

]

= lim inf
n→+∞

[(
1

2
−

1

p

)
‖un‖

2 − λ

(
1

q
−

1

p

)∫

RN
+

K(x)a(x)(u+n )
q dx

]

≥

[(
1

2
−

1

p

)
‖u0‖

2 − λ

(
1

q
−

1

p

)∫

RN
+

K(x)a(x)(u+0 )
q dx

]

= Iλ(u0)−
1

p
I ′λ(u0)u0 = Iλ(u0).

Hence I(u0) = c0 < 0 and it follows from Lemma 2.2 that u0 ∈ Bρ(0).
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In order to obtain regularity for the solution, we set w := exp(|x|2/8)u0 ∈

W 1,2
loc (R

N
+ ) and notice that w weakly solves





−∆w = f(x,w), in R
N
+ ,

∂w

∂η
= g(x′, w), on ∂RN

+ ,

where
f(x, t) := a(x) exp((2 − q)|x|2/8)|t|q−2t−

[
(|x|2 + 4N)/16

]
t

and

g(x′, t) := b(x′) exp((2 − p)|x′|2/8)|t|p−2t,

for x ∈ R
N
+ , x′ ∈ R

N−1 and t ∈ R. It is easy to check that

|f(x, t)| ≤ Γ1(x)(1 + |t|), |g(x′, t)| ≤ Γ2(x
′)(1 + |t|)

for the functions

Γ1(x) := |a(x)| exp((2− q)|x|2/8) +
[
(|x|2 + 4N)/16

]
, Γ2(x

′) := b(x′).

Using (a0) and (b0) we conclude that Γ1 ∈ L
N/2
loc (RN

+ ) and Γ2 ∈ LN−1
loc (RN−1).

Hence, we can use a version of Brezis-Kato’s Theorem [12] (see also [1, Appendix
4]) to conclude that u0 ∈ Lν

loc(R
N
+ )∩Lν

loc(R
N−1) for any ν ≥ 1. The proposition is

proved. �

3. Proof of Theorems 1.1 and 1.2

Recall that, if E is a Banach space, Φ ∈ C1(E,R) and c ∈ R, the functional Φ
satifies the (PS)c condition if any sequence (un) ⊂ E such that

lim
n→+∞

Φ(un) = c, lim
n→+∞

Φ′(un) = 0,

has a convergent subsequence. From now on, any such sequence will be called
(PS)c-sequence.

Lemma 3.1. If 2 < p < 2∗, then the functional Iλ satisfies the (PS)c condition

for any c ∈ R.

Proof. Let (un) ⊂ X be a (PS)c-sequence. Computing I ′λ(un) − (1/p)I ′λ(un)un,
using (a0) and Hölders’s inequality, we can check that (un) is bounded. Then,
up to a subsequence, we have that un ⇀ u weakly in X and un → u strongly in
Lr
K(RN

+ ) and Ls
K(RN−1), for any r ∈ [2, 2∗) and s ∈ [2, 2∗), respectively. Setting

q0 := qσ′
q ∈ [2, p) and applying Hölder’s inequality with exponents σq, q0/(q − 1)

and q0, we get
∣∣∣∣∣

∫

RN
+

K(x)a(x)(u+n )
q−1(un − u) dx

∣∣∣∣∣ ≤ ‖a‖σq
‖un‖

q−1
q0 ‖un − u‖q0 → 0,

as n→ +∞. Analogously,
∣∣∣∣
∫

RN−1

K(x′, 0)b(x′)(u+n )
p−1(un − u) dx′

∣∣∣∣ ≤ b ∞ un
p−1
p un − u p → 0.

From the two above expressions and the weak convergence we obtain

o(1) = I ′λ(un)(un − u) = ‖un‖
2 − ‖u‖2 + o(1),

as n→ +∞. The result is now a consequence of the weak convergence. �
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When dealing with the critical case, we need the following local compactness
result:

Lemma 3.2. If p = 2∗ and the function u0 given by Proposition 2.3 is the only

nonzero critical point of Iλ, then Iλ satisfies the Palais-Smale condition at any level

c < c := Iλ(u0) +
1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

.

Proof. Let (un) ⊂ X be a (PS)c-sequence. As in Lemma 3.1, we may assume that

un ⇀ u weakly in X and un → u strongly in L
qσ′

q

K (RN
+ ). Hence, we infer from the

Lebesgue Theorem that, as n→ +∞,
∫

RN
+

K(x)a(x)(u+n )
q dx =

∫

RN
+

K(x)a(x)(u+)q dx + o(1).

If zn := (un−u), we can use I ′λ(un)un = o(1) and Brezis-Lieb’s lemma [9] to obtain

o(1) = ‖un‖
2 − λ

∫

RN
+

K(x)a(x)(u+n )
q dx−

∫

RN−1

K(x′, 0)b(x′)(u+n )
2∗dx′

= I ′λ(u)u+ ‖zn‖
2 −

∫

RN−1

K(x′, 0)b(x′)(z+n )
2∗dx′ + o(1).

As in the proof of Proposition 2.3, we have that I ′λ(u) = 0. So, passing the above
expression to the limit, we obtain γ ≥ 0 such that

lim
n→+∞

‖zn‖
2 = γ = lim

n→+∞

∫

RN−1

K(x′, 0)b(x′)(z+n )
2∗dx′.

We need to prove that γ = 0. In order to do this, we first take the limit in the
inequality

∫

RN−1

K(x′, 0)b(x′)(z+n )
2∗dx′ ≤ b ∞S

−2∗/2
2∗,∂

(∫

RN
+

K(x)|∇zn|
2dx

)2∗/2

,

to obtain γ ≤ b ∞S
−2∗/2
2∗,∂

γ2∗/2. Suppose, by contradiction, that γ > 0. Then

(3.1) γ ≥
1

b N−2
∞

SN−1
2∗,∂

.

On the other hand, using Brezis-Lieb again, we obtain

c+ o(1) = Iλ(un) = Iλ(u) +
1

2
‖zn‖

2 −
1

2∗

∫

RN−1

K(x′, 0)b(x′)(z+n )
2∗ dx′ + o(1).

Passing to the limit and using (3.1), we conclude that

c = Iλ(u) +
1

2(N − 1)
γ ≥ Iλ(u) +

1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

.

Recalling that u is a critical point of Iλ, we conclude from the hypotheses that
u = 0 or u = u0. Since max{Iλ(0), Iλ(u0)} ≤ 0, the above expression contradicts
c < c. So, γ = 0 and we have done. �

Let δ > 0 be as in assumption (ab) and take φ ∈ C∞(RN
+ , [0, 1]) such that φ ≡ 1

in RN
+ ∩Bδ/2(0) and φ ≡ 0 in RN

+\Bδ(0). Set, for each ε > 0,

uε(x) := K(x)−1/2φ(x)Uε(x), x ∈ R
N
+ ,
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where

Uε(x
′, xN ) :=

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2
.

If N ≥ 7, it is proved in [20] that,

(3.2) ‖uε‖
2 = AN +O(ε2), uε

2∗
2∗

= B
2∗/2
N +O(ε2),

as ε→ 0+. Moreover, the constants AN , BN are such thatAN/BN = S2∗,∂ and the
following holds:

Lemma 3.3. If ψε := uε/ uε 2∗ and (N − 1)/(N − 2) < τ < 2∗, then

(3.3) ‖ψε‖
2(N−1) = SN−1

2∗,∂
+O(ε2), ψε

τ
τ = O(ε(N−1)−τ(N−2)/2),

as ε→ 0+.

Proof. Using the Mean Value theorem for g(r) = rs and a simple computation, we
can check that [

A+O(εt)
]s

= As +O(εt),

for any A, s, t > 0. Hence, we infer from (3.2) and the defintion of 2∗ that

‖ψε‖
2(N−1) =

[
AN +O(ε2)

]N−1

[
B

2∗/2
N +O(ε2)

]N−2
=

AN−1
N +O(ε2)

B
2∗(N−2)/2
N +O(ε2)

=

(
AN

BN

)N−1

+O(ε2).

Since AN/BN = S, we conclude that the first statement in (3.3) holds.
For the second one, we first notice that

uε
τ
τ = ε−τ(N−2)/2

∫

RN−1

K(x′, 0)−τ/2φ(x′, 0)τ

[|x′/ε|2 + 1]τ(N−2)/2
dx′

≤ C1ε
−τ(N−2)/2

∫

Bδ(0)∩∂RN
+

1

(|x′/ε|2 + 1)τ(N−2)/2
dx′

≤ C1ε
(N−1)−τ(N−2)/2

∫

RN−1

1

(|y′|2 + 1)τ(N−2)/2
dy′,

where we have used the definition of uε, 0 ≤ φ ≤ 1 and the change of variable
y′ = x′/ε. But
∫

RN−1

1

(|y′|2 + 1)τ(N−2)/2
dy′ ≤ C2 +

∫

∂RN
+
\B1(0)

1

|y′|τ(N−2)
dy′

= C2 + C3

∫ +∞

1

s−τ(N−2)+(N−2)ds < +∞,

whenever τ > (N − 1)/(N − 2). Since uε
τ
2∗ = B

τ/2
N + o(1), as ε → 0+, the result

follows from the above inequalities. �

We are ready to prove our first main results.

Proof of Theorems 1.1 and 1.2. According to Lemma 2.2 and Proposition 2.3,
there exists λ∗ > 0 such that, for any λ ∈ (0, λ∗), the problem (Pλ) has a
nonnegative solution u0 ∈ X \ {0} such that Iλ(u0) < 0. The second solution
will be obtained as an application of the Mountain Pass Theorem.
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Recall that ψε := uε/ uε 2∗ and notice that
∫

RN−1

K(x′, 0)b(x′)(u0 + tψε)
p dx′ = O(1) +

∫

Ω

K(x′, 0)b(x′)(u0 + tψε)
pdx′

≥ O(1) + tp
∫

Ω

K(x′, 0)b(x′)ψp
ε dx

′,

as t → +∞, where Ω := Bδ(0) ∩ R
N−1. Since a similar argument holds for the

integral inside the domain, we get

Iλ(u0 + tψε) ≤ O(t2) +O(tq)−
tp

p

∫

Ω

K(x′, 0)b(x′)ψp
εdx

′,

as t → +∞. The function in the last integral above is positive, and therefore we
can use 1 < q < 2 < p to obtain

(3.4) lim
t→+∞

Iλ(u0 + tψε) = −∞.

Hence, there exists t∗ > 0 large such that e := u0 + t∗ψε satisfies ‖e‖ > ρ given by
Lemma 2.2 and Iλ(e) ≤ 0. So, it is well defined

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}. From the Mountain Pass
Theorem [2] (see also [31, Theorem 1.15]), we obtain (un) ⊂ X such that

lim
n→+∞

Iλ(un) = c, lim
n→+∞

I ′λ(un) = 0.

If 2 ≤ p < 2∗, we can use Lemma 3.1 to conclude that, along a subsequence, (un)
converges to a critical point u1 ∈ X such that Iλ(u1) > 0. Hence, u1 6= u0 is the
second solution.

The final step in the above argument is more delicate in the critical case p = 2∗.
Actually, we need to prove that, for ε > 0 small, there holds

(3.5) max
t≥0

Iλ(u0 + tψε) < c := Iλ(u0) +
1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

.

If this is true, we can use Lemma 3.2, the Mountain Pass Theorem and a
contradiction argument to obtain a nonzero solution u1 6= u0.

In order to prove (3.5), we first notice that, since u0 ∈ Bρ(0) is a local minimum
of Iλ, we can use (3.4) to obtain tε > 0 such that

mε := Iλ(u0 + tεψε) = max
t≥0

Iλ(u0 + tψε).

We claim that tε = O(1), as ε → 0+. Indeed, suppose by contradiction that
tεn → +∞, for some sequence εn → 0+. Recalling that a, b > 0 in the support of
ψε, we can use I ′λ(u0 + tεψε)ψε = 0 and I ′λ(u0)ψε = 0 to get

t2∗−1
ε

∫

RN−1

K(x′, 0)b(x′)ψ2∗
ε dx′ ≤ tε‖ψε‖

2 +

∫

RN−1

K(x′, 0)b(x′)u2∗−1
0 ψε dx

′.

Thus, from (3.3), Hölder’s inequality and ψε 2∗ = 1, we obtain
∫

RN−1

K(x′, 0)b(x′)ψ2∗
ε dx′ ≤ t2−2∗

ε [S2∗,∂ +O(1)] + t1−2∗
ε b ∞ u0

2∗−1
2∗

,

for all ε > 0. In particular, we can take ε = εn in the above inequality to conclude
that
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lim
n→+∞

∫

RN−1

K(x′, 0)b(x′)ψ2∗
εndx

′ = 0.

On the other hand, using (b1) and ψεn 2∗ = 1 we obtain

(3.6) o(1) =

∫

RN−1

K(x′, 0)b(x′)ψ2∗
εndx

′ ≥ b ∞ −M

∫

RN−1

K(x′, 0)|x′|σψ2∗
εn dx

′.

Moreover, since uεn 2∗ = B
1/2
N + o(1),

∫

RN−1

K(x′, 0)|x′|σψ2∗
εn dx

′ ≤ C1
εN−1
n

uε
2∗
2∗

∫

Bδ(0)∩R
N−1

+

|x′|σ

[|x′|2 + ε2]N−1
dx′

= O(εN−1
n )

∫

Bδ(0)∩R
N−1

+

|x′|σ−2(N−1) dx′,

as n→ +∞. Since σ > N − 1, the last integral above is finite and therefore

(3.7)

∫

RN−1

K(x′, 0)|x′|σψ2∗
εndx

′ = O(εN−1
n ), as n→ +∞.

Thus, it follows from (3.6) that b ∞ = 0, which does not make sense. This proves
that (tε) is bounded.

Using I ′λ(u0)ψε = 0, we obtain

(3.8) mε = I(u0) +
t2ε
2
‖ψε‖

2 −
λ

q
Γ1,ε −

1

2∗
Γ2,ε,

where

Γ1,ε :=

∫

RN
+

K(x)a(x)[(u0 + tεψε)
q − uq0 − qtεu

q−1
0 ψε] dx

and

Γ2,ε :=

∫

RN−1

K(x′, 0)b(x′)[(u0 + tεψε)
2∗ − u2∗0 − 2∗tεu

2∗−1
0 ψε] dx

′

It follows from the Mean Value Theorem that there exists θ(x) ∈ [0, 1] such that

(u0(x) + tεψε(x))
q − u0(x)

q = q(u0(x) + θ(x)tεψε(x))
q−1tεψε(x)

≥ qtεu0(x)
q−1ψε(x),

for a.e. x ∈ R
N
+ . Since a ≥ 0 in the support of ψε we conclude that Γ1,ε ≥ 0. For

estimating Γ2,ε we notice that, given r, s ≥ 0 and 1 < µ < 2∗ − 1, there holds (see
[14])

(r + s)2∗ ≥ r2∗ + s2∗ + 2∗r
2∗−1s+ 2∗rs

2∗−1 −Aµr
2∗−µsµ,

for some constant Aµ > 0. Picking r = u0(x) and s = tεψε(x), we get

Γ2,ε ≥

∫

RN−1

K(x′, 0)b(x′)
[
t2∗ε ψ

2∗
ε + 2∗t

2∗−1
ε u0ψ

2∗−1
ε −Aµt

µ
εu

2∗−µ
0 ψµ

ε

]
dx′.

Since Γ1,ε ≥ 0 and ψε 2∗ = 1, we can use the above inequality and (3.8) to obtain

mε ≤ I(u0) +

[
t2ε
2
‖ψε‖

2 −
t2∗ε
2∗

b ∞

]
+ Γ2,ε,1 − Γ2,ε,2 + Γ2,ε,3,

with

Γ2,ε,1 :=
t2∗ε
2∗

∫

RN−1

K(x′, 0)[ b ∞ − b(x′)]ψ2∗
ε dx′,

Γ2,ε,2 := t2∗−1
ε

∫

RN−1

K(x′, 0)b(x′)u0ψ
2∗−1
ε dx′
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and

Γ2,ε,3 := Cµ
tµε
2∗

∫

RN−1

K(x′, 0)b(x′)u2∗−µ
0 ψµ

ε dx
′.

As in (3.7), the integral in Γ2,ε,1 has order εN−1, as ε → 0+. So, we infer from
the boundedness of (tε) that Γ2,ε,1 = O(εN−1). Moreover,

max
t≥0

{
t2

2
‖ψε‖

2 −
t2∗

2∗
b ∞

}
=

1

2(N − 1)

‖ψε‖
2(N−1)

b N−2
∞

and therefore we infer from (3.3) and the above estimate for mε that

(3.9) mε ≤ c+O(ε2)− Γ2,ε,2 + Γ2,ε,3.

In order to estimate the last two terms, we recall that u0 ∈ Lν
loc(R

N
+ )∩Lν

loc(R
N−1)

for any ν ≥ 1. So, if we denote Ω∂ := Bδ(0) ∩ R
N−1, we can choose τ1 > 1 such

that
2(N − 1)

(N + 4)
< τ1 <

2(N − 1)

N

and use Hölder’s inequality to get

∫

RN−1

K(x′, 0)b(x′)u0ψ
2∗−1
ε dx′ ≤ b ∞

(∫

Ω∂

K(x′, 0)u
τ ′
1

0 dx
′

)1/τ ′
1

ψε
2∗−1
(2∗−1)τ1

.

Since (N − 1)/(N − 2) < (2∗ − 1)τ1 < 2∗ and (tε) is bounded, we infer from (3.3)
and the choice of τ1 that

(3.10) Γ2,ε,2 = O(ε(N−1)/τ1−(N/2)).

We now set µ := (N − 1)/(N − 2), pick 1 < τ2 < 2 and apply Hölder’s inequality
again to obtain

∫

RN−1

K(x′, 0)b(x′)u2∗−µ
0 ψµ

ε dx
′ ≤ b ∞

(∫

Ω∂

K(x′, 0)u
(2∗−µ)τ ′

2

0 dx′
)1/τ ′

2

ψε
µ
µτ2 ,

from which we conclude that

(3.11) Γ2,ε,3 = O(ε(N−1)/τ2−(N−1)/2).

Since

lim
τ→2(N−1)/N

(
N − 1

τ
−
N

2

)
= 0 <

N − 1

2
= lim

τ→1

(
N − 1

τ
−
N − 1

2

)
,

we can choose the numbers τ1, τ2 above in such way that

ν1 :=
N − 1

τ1
−
N

2
< 2, ν2 :=

N − 1

τ2
−
N − 1

2
> ν1.

Replacing (3.10) and (3.11) in (3.9) and using the above inequalities, we obtain

mε ≤ c+O(ε2)−O(εν1) +O(εν2 ) = c+ εν1
[
O(ε2−ν1)−O(1) +O(εν2−ν1)

]
,

as ε → 0+. We conclude that (3.5) holds, for any ε > 0 small. The theorem is
proved. �
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4. Proof of Theorems 1.3 and 1.4

We start this section presenting some definitions and abstract results which will
be used to obtain infinitely many solutions for (Pλ). Let E = V ⊕W be an infinite
dimensional Hilbert space, with V = span{ϕV

1 , ϕ
V
2 , . . . }, W = span{ϕW

1 , ϕW
2 , . . . }

and the the basis being orthonormal. For each n ∈ N, define the subspaces

V n := span{ϕV
1 , ϕ

V
2 , . . . ϕ

V
n }, Vn := span{ϕV

n , ϕ
V
n+1, . . . }.

Using the set
{
ϕW
i

}
i∈N

we define Wn and Wn in a similar way.

Given Φ ∈ C1(E,R) and c ∈ R, we say that Φ satisfies the (PS)∗c -condition
(with respect to V n ⊕Wn) if any sequence (un) ⊂ V n ⊕Wn such that

lim
n→+∞

Φ(un) = c, lim
n→+∞

Φ′
|V n⊕Wn

(un) = 0,

has a subsequence converging to a critical point of Φ. Any such sequence will be
called (PS)∗c -sequence.

We are going to obtain infinitely many solutions for (Pλ) as applications of the
following abstract theorems due to Tonkens [30] (see also [2, 6]):

Theorem 4.1. Let Φ ∈ C1(E,R) be an even functional. Suppose that, for every

n ≥ n0, there exist Rn > rn > 0 such that

(A1) inf {Φ(u) : u ∈ Vn ⊕W, ‖u‖E = Rn} ≥ 0;
(A2) bn := inf {Φ(u) : u ∈ Vn ⊕W, ‖u‖E ≤ Rn} → 0, as n→ +∞;

(A3) dn := sup {Φ(u) : u ∈ V n, ‖u‖E = rn} < 0;
(A4) Φ satisfies (PS)∗c-condition for all c ∈ [bn0

, 0).

Then Φ has a sequence of critical values cn ∈ [bn, dn] such that cn → 0, as n→ +∞.

Theorem 4.2. Let Φ ∈ C1(E,R) be a even functional. Suppose that, for every

n ∈ N, there exist Rn > rn > 0 such that

(Ã2) bn := inf{Φ(u) : u ∈ Vn ⊕W, ‖u‖ = rn} → ∞, as n→ ∞;

(Ã3) an := max{Φ(u) : u ∈ V n, ‖u‖ = Rn} ≤ 0;

(Ã4) Φ satisfies (PS)c-condition for all c > 0.

Then Φ has a sequence of critical values cn ∈ (0,+∞) such that cn → +∞, as

n→ +∞.

Since we are not interested in the sign of the solutions, we redefine the energy
function setting

Iλ(u) :=
1

2
‖u‖2 −

λ

q

∫

RN
+

K(x)a(x)|u|q dx−
1

p

∫

RN−1

K(x′, 0)b(x′)|u|p dx′.

We are intending to apply Theorem 4.1 with Φ = Iλ and E = X . In order
to define the space decomposition, we recall that Ω+

a =
{
x ∈ R

N
+ : a(x) > 0

}
and

define

W :=
{
u ∈ X : u(x) = 0 for a.e. x ∈ int(Ω+

a )
}
.

We call V the orthogonal complement of the closed subspace W , in such way that
X = V ⊕W .

We start with the required compactness properties.

Proposition 4.3. If 2 < p < 2∗, then Iλ satisfies the (PS)∗c condition at any level

c ∈ R. The same holds if p = 2∗ and b ≤ 0.
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Proof. Let (un) ⊂ V n ⊕ Wn be a (PS)∗c -sequence. Computing I ′λ(un) −
(1/p)I ′λ(un)un, using (a0) and Hölder’s inequality, we can check that (un) is
bounded. Then, up to a subsequence, we have that un ⇀ u weakly in X . Pick

φ ∈ C∞
0 (RN

+ ) and denote by φn its projection over the subspace V n ⊕Wn. Since
(I ′λ(un)) ⊂ X∗ is bounded, we have that

|I ′λ(un)(φ− φn)| ≤ ‖I ′λ(un)‖X∗‖φ− φn‖ = o(1),

as n→ +∞. Thus, recalling that I ′λ(un)φ
n = o(1), we obtain

I ′λ(un)φ = I ′λ(un)(φ − φn) + I ′λ(un)φ
n = o(1).

Arguing as in the proof of Proposition 2.3, we conclude that I ′λ(u)φ = 0, for any

φ ∈ C∞
0 (RN

+ ). It follows from a density argument that I ′λ(u) = 0.
Using Lebesgue Theorem as in the proof of Proposition 2.3, we get

(4.1) lim
n→∞

∫

RN
+

K(x)a(x)|un|
qdx =

∫

RN
+

K(x)a(x)|u|qdx.

Moreover, in the subcritical case 2 < p < 2∗, the same kind of convergence holds for
the term

∫
RN−1 K(x′, 0)b(x′)|un|

pdx′, since the trace embedding is compact. These
two convergences and I ′λ(u)u = 0 provide

o(1) = I ′λ(un)un − I ′λ(u)u = ‖u2n‖ − ‖u‖2 + o(1),

and we infer from the weak convergence that un → u strongly in X .
For the critical case p = 2∗, we first use assumption b ≤ 0 to guarantee that

ϕ 7→ −
∫
RN−1 K(x′, 0)b(x′)|ϕ|p dx′ is a seminorm in X . Hence, from the weak lower

semicontinuity of a seminorm, we get

lim sup
n→+∞

∫

RN−1

K(x′, 0)b(x′)|un|
2∗dx′ ≤

∫

RN−1

K(x′, 0)b(x′)|u|2∗dx′.

This, (4.1) and I ′λ(un)un = o(1) imply that

lim sup
n→+∞

‖un‖
2 ≤ ‖u‖2.

On the other hand, the weak convergence provides ‖u‖2 ≤ lim inf
n→+∞

‖un‖
2, and

therefore the result follows as in the former case. �

If p = 2∗ and b changes it sign, we need the following local compactness result.

Proposition 4.4. If p = 2∗, then there exists C0 = C0(q,N, ‖a‖σq
) > 0 such that

the functional Iλ satisfies the (PS)∗c condition at any level

c <
1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

− C0λ
2/(2−q).

Proof. Let (un) ⊂ V n ⊕Wn be a (PS)∗c sequence. As in the proof of Proposition
4.3, we may assume that un ⇀ u weakly in X , with I ′λ(u) = 0. Since Iλ(u) =
Iλ(u)− (1/2∗)I

′
λ(u)u, we obtain

(4.2) Iλ(u) =
1

2(N − 1)
‖u‖2 − λ

(
2∗ − q

2∗q

)∫

RN
+

K(x)a(x)|u|qdx.

We now set zn := (un − u) and argue as in Proposition 3.2 to get

lim
n→∞

‖zn‖
2 = γ = lim

n→∞

∫

RN−1

K(x′, 0)b(x′)|zn|
2∗dx′.
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for some γ ≥ 0. If γ > 0, then

(4.3) γ ≥
1

b N−2
∞

SN−1
2∗,∂

.

On the other, we infer from Brezis-Lieb’s lemma that

c+ o(1) = Iλ(un) =
1

2
‖zn‖

2 −
1

2∗

∫

RN−1

K(x′, 0)b(x′)|zn|
2∗dx′ + Iλ(u) + o(1).

Passing to the limit, using (4.2), Hölder’s inequality and (4.3), we conclude that

(4.4) c ≥
1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

+ g(‖u‖),

where

g(t) :=
t2

2(N − 1)
− λγqt

q, t > 0,

and γq := ‖a‖σq
S
−q/2
qσ′

q
(2∗ − q)/(2∗q). Setting

C0 :=

(
2− q

2q

)
1

(N − 1)
[(N − 1)qγq]

2/(2−q)
,

a straightforward computation shows that g(t) ≥ −C0λ
2/(2−q), for any t > 0.

Hence, we infer from (4.4) that

c ≥
SN−1
2∗,∂

2(N − 1) b N−2
∞

− C0λ
2/(2−q),

which does not make sense. This contradiction proves that γ = 0 or, equivalently,
un → u strongly in X . �

We finish this section with an important tool for the proof of Theorem 1.3.

Lemma 4.5. Suppose that a ≥ 0 and set

µn := sup
{u∈Vn⊕W : ‖u‖≤1}

∫

RN
+

K(x)a(x)|u|q dx.

Then µn → 0, as n→ ∞.

Proof. Since (µn) ⊂ [0,+∞) is nonincreasing, we have that µn → µ0 ≥ 0, as
n→ ∞. Let (un) ⊂ Vn ⊕W be such that ‖un‖ = 1 and

(4.5)
µ0

2
≤
µn

2
≤

∫

RN
+

K(x)a(x)|un|
q dx.

We may assume that un ⇀ u = v + w weakly in X , with v ∈ V and w ∈ W . The
orthogonal decomposition and the definition of Vn imply that 〈un, ϕ

V
k 〉 = 0, for any

fixed k ∈ N and n > k. So,

0 = lim
n→+∞

〈un, ϕ
V
k 〉 = 〈u, ϕV

k 〉 = 〈v, ϕV
k 〉,

and therefore v = 0 or, equivalently, u = w. Using Lebesgue Theorem as in the
proof of Proposition 2.3, we conclude that

lim
n→∞

∫

RN
+

K(x)a(x)|un|
qdx =

∫

RN
+

K(x)a(x)|w|qdx = 0,

since w ∈W . The above expression and (4.5) imply that µ0 = 0. �
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We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. It follows from Lemma 4.5 and Proposition 2.1 that, for any
u ∈ Vn ⊕W , there holds

Iλ(u) ≥
1

2
‖u‖2 −

λ

q
µn‖u‖

q −
1

p
b ∞S

−p/2
p,∂ ‖u‖p.

Hence,

(4.6) Iλ(u) ≥
1

4
‖u‖2 −

λ

q
µn‖u‖

q, ∀u ∈ Bρ1
(0) ∩ (Vn ⊕W ),

where ρ1 :=
[
pS

p/2
p,∂ /(4 b ∞)

]1/(p−2)

. Since µn → 0, there exists n1 ∈ N such that

Rn :=

(
4λµn

q

)1/(2−q)

< ρ1, ∀n ≥ n1.

Using (4.6) we can check that Iλ(u) ≥ 0, for any u ∈ Vn ⊕W such that ‖u‖ = Rn.
This proves that (A1) holds.

In order to verify (A2) we notice that, for n ≥ n1,

Iλ(u) ≥ −
λ

q
µnR

q
n ∀u ∈ BRn

(0) ∩ (Vn ⊕W ).

Thus,

0 ≥ bn = inf
{
Iλ(u) : u ∈ BRn

(0) ∩ (Vn ⊕W )
}
≥ −

λ

q
µnR

q
n.

Since the right-hand side above goes to 0, as n→ +∞, we conclude that (A2) holds.
Given u ∈ V n, we have that

∫
RN

+

K(x)a(x)|u|qdx = 0 if, and only if, u = 0.

Hence, this integral defines a norm in the finite dimensional subspace V n. The
equivalence of norms provides 0 < βn < (8µn)/q, such that

βn‖u‖
q ≤

∫

RN
+

K(x)a(x)|u|q dx, ∀u ∈ V n.

Hence, we can argue as above to get

(4.7) Iλ(u) ≤ ‖u‖2 −
λ

q
βn‖u‖

q, ∀u ∈ Bρ2
(0) ∩ V n,

where ρ2 :=
[
pS

p/2
p,∂ /(2 b ∞)

]1/(p−2)

. Since βn → 0, there exists n2 ∈ N such that

rn :=

(
λβn
2

)1/(2−q)

< ρ2, ∀n ≥ n2.

A straightforward computation shows that the function g(t) := t2 − (λ/q)βnt
q, for

t > 0, attains its minimum value at t = rn and

dn := g(rn) = −
(2− q)

2q
λβn

(
λβm
2

)q/(2−q)

< 0.

Hence, we infer from (4.7) that Iλ(u) ≤ dn, for any u ∈ ∂Brn(0) ∩ V
n and n ≥ n2.

We now define n0 := max{n1, n2}. According to the above considerations, Iλ
verifies (A1) and (A2). Moreover, since βn < (8µn)/q, we have that rn < Rn and
therefore (A3) also holds. It remains to check (A4). If 2 < p < 2∗ or p = 2∗ and
b ≤ 0, condition (A4) is a direct consequence of Proposition 4.3. If p = 2∗ but we
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have no information about the sign of b, we have compactness at any negative level
provided λ > 0 is small in such way that

C0λ
2/(2−q) <

1

2(N − 1)

1

b N−2
∞

SN−1
2∗,∂

,

where C0 > 0 comes from Proposition 4.4. In any case, we may invoke Theorem
4.1 to obtain infinitely many critical points for Iλ. �

Remark 4.6. Suppose that b ≤ 0 and let (un) ⊂ X be a sequence of solutions given

by Theorem 1.3. If we denote by cn = Iλ(un) ∈ [bn, 0] the energy of the solutions,

we can use I ′λ(un)un = 0 and an easy computation to get

cn = λ

(
1

2
−

1

q

)∫

RN
+

K(x)a(x)|un|
q dx+

(
1

2
−

1

p

)∫

RN−1

K(x′, 0)b(x′)|un|
p dx′.

Hence,

0 ≤ λ

∫

RN
+

K(x)a(x)|un|
qdx ≤ −

2q

(2− q)
cn

and
2p

(p− 2)
cn ≤

∫

RN−1

K(x′, 0)b(x′)|un|
pdx′ ≤ 0.

Recalling that bn → 0, the above inequalities and I ′λ(un)un = 0 imply that ‖un‖ → 0.

In order to prove Theorem 1.4 we recall that Ω+
b =

{
x′ ∈ R

N−1 : b(x′) > 0
}
and

redefine the subspace W in the following way:

W := {u ∈ X : u(x′) = 0 for a.e. x′ ∈ int(Ω+
b )}.

As before, V is the orthogonal complement ofW inX , in such way thatX = V ⊕W .

Proof of Theorem 1.4. Setting

µn := sup
{u∈Vn⊕W : ‖u‖≤1}

∫

RN−1

K(x′, 0)b(x′)|u|pdx′,

we can use 2 < p < 2∗ and the same argument of Lemma 4.5 to conclude that
µn → 0, as n→ +∞.

If u ∈ Vn ⊕W , then

Iλ(u) ≥
1

2
‖u‖2 −

λ

q
S
−q/2
qσ′

q
‖a‖σq

‖u‖q −
µn

p
‖u‖p,

and therefore

(4.8) Iλ(u) ≥
1

4
‖u‖2 −

µn

p
‖u‖p, ∀u ∈ Vn ⊕W, ‖u‖ ≥ ρ1,

where ρ1 :=
[
4λ‖a‖σq

S
−q/2
qσ′

q
/q
]1/(2−q)

. Since µn → 0, there exists n1 ∈ N such that

rn :=

(
p

8µn

)1/(p−2)

> ρ1, ∀ n ≥ n1.

So, using (4.8) we conclude that

bn = inf {Iλ(u) : u ∈ Vn ⊕W ; ‖u‖ = rn} ≥
1

8
r2n.

It follows from µn → 0 and the definition of rn that (Ã2) holds.
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Arguing as in Theorem 1.3, we have that
∫
RN−1 K(x′, 0)b(x′)|u|pdx′ defines a

norm in the finite dimensional subspace V n. Then, there exists 0 < βn < 8µn such
that

βn‖u‖
p ≤

∫

RN−1

K(x′, 0)b(x′)|u|pdx′, ∀u ∈ Vn.

Hence,

Iλ(u) ≤ ‖u‖2 −
βn
p
‖u‖p u ∈ V n, ‖u‖ ≥ ρ2,

where ρ2 :=
(
2λS

−q/2
qσ′

q
‖a‖σq

/q
)1/(2−q)

. Setting

Rn := max

{
2ρ2,

(
p

βn

)1/(p−2)
}
,

a straightforward computation shows that Iλ(u) ≤ 0, whenever u ∈ V n satisfies

‖u‖ = Rn. Since Rn > rn, we conclude that requirement (Ã3) if fulfilled.

Since (PS)∗c implies (PS)c condition, the proof of (Ã4) is analogous to that of
Proposition 4.3. So, we may invoke Theorem 4.2 to obtain a sequence of solutions
(un) ⊂ X such that Iλ(un) = cn → +∞, as n→ +∞. Since

cn = Iλ(un) ≤
1

2
‖un‖

2 +
λ

q
‖a‖σq

S
−q/2
qσ′

q
‖un‖

q +
1

p
b ∞S

−p/2
p,∂ ‖un‖

p,

we conclude that ‖un‖ → +∞. The theorem is proved. �
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[10] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical

Sobolev exponents. Comm. Pure Appl. Math. 36 (1983), 437–477. 3
[11] H. Brezis, L.A. Peletier and D. Terman, A very singular solution of the heat equation with

absorption. Arch. Rational Mech. Anal. 95 (1986), 185–209. 1
[12] H. Brézis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials.

J. Math. Pures. Appl. 58 (1979), 137–151. 7
[13] F. Catrina, M. Montenegro and M.F. Furtado, Positive solutions for nonlinear elliptic

equations with fast increasing weights. Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), 1157—
1178. 1



MULTIPLE SOLUTIONS IN THE UPPER HALF-SPACE 19

[14] J. Chabrowski, The critical Neumann problem for semilinear elliptic equations with concave

perturbations. Ric. Mat. - Springer Milan 56 (2007), 297-319. 11
[15] D.G. de Figueiredo, J.P. Gossez and P. Ubilla, Local superlinearity and sublinearity for

indefinite semilinear elliptic problems. J. Funct. Anal. 199(2003), 452–467. 2
[16] F.O. de Paiva, Nonnegative solutions of elliptic problems with sublinear indefinite

nonlinearity. J. Funct. Anal. 261(2011), 2569–2586. 2
[17] J.F. Escobar, Sharp constant in a Sobolev trace inequality. Indiana Univ. Math. J. 37 (1988),

687–698. 3
[18] M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat

equation. Nonlinear Anal.11(1987), 1103–1133. 4
[19] L.C.F. Ferreira, M.F. Furtado and E.S. Medeiros, Existence and multiplicity of self-

similar solutions for heat equations with nonlinear boundary conditions. Calc. Var. Partial
Differential Equations 54 (2015), 4065—4078. 1, 4

[20] L.C. Ferreira, M.F. Furtado, E.S. Medeiros and J.P.P. Silva, On a weighted trace embedding

and applications to critical boundary problems. to appear in Math. Nach. 1, 4, 9
[21] M.F. Furtado, R. Ruviaro and J.P.P Silva, Two solutions for an elliptic equation with fast

increasing weight and concave–convex nonlinearities. J. Math. Anal. Appl. 416 (2014), 698–
709. 1

[22] M.F. Furtado, J.P.P. da Silva and M.S. Xavier, Multiplicity of self-similar solutions for a

critical equation, J. Differential Equations 254 (2013), 2732-–2743. 1
[23] J. Garcia-Azorero, I. Peral and J.D. Rossi, A convex-concave problem with a nonlinear

boundary condition. J. Differential Equations 198(2004), 91–128. 2
[24] A. Haraux and F.B. Weissler, Nonuniqueness for a semilinear initial value problem. Indiana

Univ. Math. J. 31 (1982), 167–189. 1
[25] L. Herraiz, Asymptotic behaviour of solutions of some semilinear parabolic problems, Ann.
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