MULTIPLICITY OF SOLUTIONS FOR A NONLINEAR
BOUNDARY VALUE PROBLEM IN THE UPPER HALF-SPACE

MARCELO FERNANDES FURTADO AND KARLA CAROLINA VICENTE DE SOUSA

ABSTRACT. We obtain multiple solutions for the nonlinear boundary value
problem

1 7]
—Au — B (@ - Vu) = da(x)|u|?" 2y, in Rf, 8—u = b(z")|u|P~2u, on 8]Rf,
v

where Rf ={(2',zn) : 2’ € RN=1 zx > 0} is the upper half-space, N > 3,
A > 0 is a parameter, 1 < ¢ < 2 <p < 24 =2(N —1)/(N —2). The potentials
a and b satisfy mild conditions which allow us to use variational methods. In
some results, they can be indefinite in sign.

1. INTRODUCTION AND MAIN RESULTS
Let RY := {(x’, ry) 2 € RN oy > 0} be the upper half-space and consider
the following heat equation with nonlinear boundary condition
v
on
where 2 < p < 2, := 2(N — 1)/(N — 2) and du/9n denotes the partial outward
normal derivative. Solutions of type

vz, t) =t u(t2x),

vy —Av =0, in RY x (0, +00), = [v["~2v, on ORY x (0,+00),

with A = 1/(2(p — 2)) > 0, are called self-similar solutions. Besides preserve the
PDE scaling, they carry simultaneously information about small and large scale
behaviors, providing also qualitative properties like global existence, blow-up and
asymptotic behavior (see e.g. [24, 26, 25]).

An easy computation shows that the profile u above needs to satisfy

du
on

Such problem was recently considered in [19, 20], where existence results were
presented according to the range of A. Actually, these papers were strongly
motivated by the vast literature concerning the version of the problem for the whole
space RY with different types of nonlinearities. We could quote [4, 11, 28, 13, 27,
22, 21] and their references for results about existence, nonexistence, multiplicity,
decay rate, among other properties of solutions.

1
—Au— 5 (x-Vu) = Au, in RY, = |u[P"%u, on ORY.
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Here, we are going to study the effect of replacing the linear term Au in the above
equation by a sublinear indefinite function. Our main motivation comes from the
problem

—Au = Aa(z)|u|?2u + b(z)|u|""?u, in Q, u=0, on 9%,

where Q C RY is a bounded smooth domain, 1 < ¢ < 2 < 7 < 2N/(N — 2) and
the potentials a, b satisfy natural regularity conditions. In the celebrated paper
[3], Ambrosetti, Brezis and Cerami considered the constant case a = 1, b = 1
and obtained A > 0 such that the problem admits at least two positive solutions
whenever A € (0,A), at least one if A = A and no solution if A > A. Variable
and indefinite potentials were considered in [15] (see also [16]). In [23], the authors
obtained for

0
—Au+u = |u/""%u, in Q, 8_u = AMu|?7%u, on 09,
n
results which are analogous to that of [3]. Some of their results were extended in
[32] for the indefinite potential case (see also [29]). All the aforementioned works
belong to a huge class of problems which are now called of concave-convex type.
In this paper, we deal with the concave-convex boundary value problem

1
—Au — 3 (x-Vu) = Xa(x)u|T%u, zeRY,
(PX) ou
an
where N > 3, A > 0 is a parameter, 1 < ¢ < 2 < p < 2, and we have identified
8Rf ~ RN~1 For describing the assumptions on the potentials we need first to
present the functional space to deal with (Py). This is done in what follows.

As we shall see, the function K(z) = exp(|z|?/4) is closely related with the
appropriated space to look for solutions of our problem. In order to present the
assumptions on the coefficients, we denote for any 2 < r < 2* the weighted Lebesgue
space

= b(a)|ulP~?u, 2’ €RNTL,

1/r
Ly Le®Y) =due I'®Y) : |lull, = (/RN K(x)|u|rdac> <o

If we denote by ' = r/(r — 1) the conjugated exponent of r > 1, we can present
the basic hypothesis on a, b in the following way:

(ap) a € LE(RY)N LN/Q(Rf) for some

loc
2) s ()
(bo) be LO(RN-1).

Since they can change it sign, we may define the sets
Qf ={zeRY: a(x) >0}, Qf :={z' eR¥"": b(2) >0}

In our first results we obtain existence of two nonnegative solutions when roughly
speaking the closure of the set Q intersects Q;’ and the parameter A > 0
approaches zero. More specifically, denoting by Bs(0) the open ball centered at
origin with radii § > 0, we prove the following:
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Theorem 1.1. Suppose that a,b satisfy (ag) and (by). If 1 < g <2 < p < 2, then
there exists A« > 0 such that, for any A € (0, \y), problem (Py) has at least two
nonnegative nonzero solutions provided

(ab) there exists § > 0 such that
(Bs(0)NRY) c Qf, (Bs(0)noRY) c Q.

In our second result, we consider the critical case by adding a flatness condition
on the potential b:

Theorem 1.2. Suppose that N > 7, p = 2, and the other conditions of Theorem
1.1 are verified. Then there exists A\, > 0 such that, for any A € (0, \.), problem
(Py) has at least two nonnegative nonzero solutions provided

(b1) there exist M >0 and 0 > N — 1 such that
bl — b(2") < M|2'|7,  for a.e. 2’ € Bs(0) N ORY.

The first solution will be obtained with a standard minimization argument while
the second one requires finer arguments. This is specially true when p = 2,,
since the trace embedding we are going to use fails to be compact. Two points
are important to overcome this difficulty: a trick regularization study of the first
solution on the boundary and the application of an idea of Brezis and Nirenberg [10],
together with fine estimates of a modification of the instanton functions founded
by Escobar [17] and Beckner [8].

In the second part of the paper, we take advantage of the symmetry to get more
and more solutions (with no prescribed sign). Unfortunately, in this case we do not
assume that both the potentials are indefinite.

We prove the following:

Theorem 1.3. Suppose that 1 < ¢ < 2, a > 0 and b # 0 satisfiy (ap) and
(bo), respectively. Then problem (P\) has infinitely many solutions in each of the
following cases:

(1) 2<p<2s and A > 0;

(2) p=2,,0<0and A>0;

(3) p=2. and A > 0 is small.

Theorem 1.4. Suppose that 1 < ¢ <2 <p <24, a£0 and b > 0 satisfy (ap) and
(bo), respectively. Then, for any A > 0, problem (Py) has infinitely many solutions.

The above theorems will be proved as application of suitable versions of the
Symmetric Mountain Pass Theorem [2]. They were proved by Tonkes in the paper
[30] which strongly motivated the second part of our work (see also [6, 7] for some
earlier results). In the critical case, when b < 0, the boundary term is related with
a semi-norm and therefore we can argue as in the subcritical case. When p = 2,
and b is indefinite in sign, we borrow an argument from [5]. It can be proved that,
when b < 0, the energy of the solutions given by Theorem 1.3 are negative and goes
to zero. On the other hand, in Theorem 1.4, this energy goes to infinity, the same
occurring with the norm of the solutions.

The paper is organized as follows: in Section 2 we present the variational
framework to deal with our problem and obtained the first solution; in Section
3 we finish the proof of the first two theorems; Section 4 is devoted to the proof of
Theorems 1.3 and 1.4.
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2. VARIATIONAL SETTING

Throughout the paper we assume that 1 < ¢ < 2 < p < 2, and conditions (ayp),
(bo) hold. Following Escobedo and Kavian [18], we first set

K(z) = exp(a*/4), =€ R,
and notice that the first equation in (Py) is equivalent to
—div(K (2)Vu) = MK (z)a(z)|u|? %y, zeRY.

Hence, it is natural looking for solutions in the space X defined as the closure of
C§°(RY) with respect to the norm

1/2
Il = (/RN K(:v)|Vu|2dx> .

Recall the definition of LY (RY) in (1.1) and define, for each 2 < s < 2,, the space

1/s
LRV .= {u e LRt ], = (/ K(x’,0)|u|5dx’) < oo} .
RN-1

We collect in the next proposition the abstract results proved in [19, 20].

Proposition 2.1. For any r € [2,2%) and s € [2,2,), the embeddings X —
L5(RY) and X — L3 (RN™1) are compact. In the critical cases r = 2* and
p = 24, we have only continuous embeddings.

Given 2 < r < 2* and 2 < s < 2,, we can use the above result to define the

following embedding constants:

5 fRf K(z)|Vu|*dx

ueﬁ?/f{O} 2/r?
(fRf K(m)|u|’“dw)

K ()| Vul*da
inf fRf
weXx/{0} (fRNA K($/,0)|u|sdx/)

By condition (ag), we have that 2 < goj < 2%, and therefore we can use Hélder’s

inequality to get
l/a';
< Jlallo, / K@)u@ide | < +oo,
R

for any u € X. Hence, condition (by) and standard arguments show that the
functional

S 1= 575

(2.1) K(z)a(z)(u')%dx

N
R+

1 A 1
D)= glulf =2 [ K@a@)yds = [ K@M
2 q Jry P Jry-1
belongs to C1(X,R). Here and in what follows we will denote u* := max{u,0}
and v~ := ut —wu. If I{(u) = 0, then we can compute 0 = I} (u)u~ to conclude
that ||u~|| = 0, and therefore the critical points of Iy are nonnegative solutions of

problem (Py)
The first step in the proof of Theorem 1.1 is the study of I near origin.
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Lemma 2.2. There ezxist p = p(q, p,|ble) > 0, @ = a(p) > 0 and A\, = Ai(g,p) >0
such that Ix(u) > « > 0, for any u € X verifying ||u|| = p, and X € (0, \,).

Proof. By using (2.1) and Proposition 2.1, we get

1 A 1
Lw) > ;wﬁ—?wmmmw—4mqmg
[l 2 - 2
Sl [t s | I P e

The function g : (0,00) — R given by g(t) := 279 — C1tP~9, with C; :=
25, p/2|b| /D, achieves its maximum value at

(2 -q) 1/(p—2)

pi= =" .
{Cl (»— Q)}

Thus, for any v € X satisfying ||lu|| = p, there holds

I()>p—q(() Py sq/2|| ||gq>z”—qM_a>o

2 74 2 2
whenever p
q
A<\ @, (p),
= W, 2
and the result follows. O

We obtain in the next proposition our first solution.

Proposition 2.3. Let A\, p > 0 be as in the above lemma. For any A € (0, \,),
we have that
—00 < ¢ = inf In(u) <0
B,(0)
and the infimum is attained at ug € B,(0) such that ug € LY, (RY)N Ly (RV™1)
for any v > 1.

Proof. The inequality ¢y > —oco is obvious, since I, maps bounded sets in
bounded sets Let § > 0 given by (ab) and consider ¢ € C§°(Bs(0)) such that
fRN x)pldz > 0. Then,

I 21
S <l = [ Kt
and therefore ; \
t
lim sup Llte) < —— K(z)a(z)pldzx <0,
tso+ 4 q Jry

which proves that I (tp) < 0, for any ¢ > 0 small. This implies that ¢y < 0.
Let (u,) C B,(0) be a minimizing sequence for cg. We may assume that, for
some uy € X,

Uy — ug weakly in X,
(2.2) U, — ug strongly in L (RY),

uf (z) = ud (), |un(z)| < he(z) for ae. z € RY,
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for any 2 <r < 2* and h, € L}}(Rf) Moreover, since Iy > o > 0 on 0B,(0), we
can use 2 < qat’z < 2, and the Ekeland Variational Principle to also assume that
ngr_iloo In(up) = co, nll)rfoo I} (uy) = 0.
We claim that I}(up) = 0. Indeed, pick ¢ € C§° (@) and call €2 its support.

Since o4 > (p/q) = p/(p — q), its possible to choose py € (2, p) close to p and such

that
Do Do

> .
Po—q potl—gq
Thus, there exists ¢t > 1 satisfying
1 . 1 n 1 1
og  po/lg—1) ¢ '
Using Young’s inequality we get

K ()a(z)(u) " d(x)] < C1 (la(@)]7 + [hp|” + |¢(2)]")

for a.e. x € Q. It follows from the pointwise convergence in (2.2) and the Lebesgue’s
Theorem that

Oq >

lim K(z)a(z)(u )T o de = K(z)a(x)(ud)? ' pdr.

n——+oo Rf Rf
A simpler argument shows that

lim Kb ) (u/ )P toda’ = K(2)b(z') (ud )P~ pda’.
n—+00 JpN-1 RN-1
So, the claim follows from the weak convergence of (u,,) and the density of C§° (@)
in X.
From Young’s inequality, we obtain

jal7e | Jugp|*s
!/

—) < K(@) (Jal™ + kgt (@)

Oq

K (x)a(@)(uy)?] < |K ()] (

fora.e. z € Rf. Since 2 < qafl < p < 2%, we can use Holder’s inequality to conclude
that this last function is integrable and we infer from Lebesgue’s Theorem again
that

lim K(x)a(z)(u})?dz = K(z)a(z)(ud)? dw.
n—-+oo Rf Rf
Thus,
o 1
q = lmint {mun) -1, <un>un]
= liminf (1 - l) |un||* = A <l - 1) K(x)a(z)(u})?dx
n—t a p)Jey

|
| — |
7N
N —
|
| —
~
=
o
T
|
>
7N\
Q| =
|
D=
~_
=)
2
ha
8
S~—
2
8
S—
—
e
+
S~—
[te)
QU
S
| I

Hence I(up) = co < 0 and it follows from Lemma 2.2 that ug € B,(0).



MULTIPLE SOLUTIONS IN THE UPPER HALF-SPACE 7

In order to obtain regularity for the solution, we set w := exp(|z|*/8)uy €
Wllof (Rf ) and notice that w weakly solves
—Aw = f(z,w), in Rf,
0
8_1717} = g(z/,w), ondRY,
where
f(a,t) = a(w) exp((2 = @)|=/8)[t|]*7%t — [(Jz|* + 4N)/16] ¢
and

g(a’,t) := b(a") exp((2 — p)|a’[*/8) t}"~>t,
for x e RY, 2’ € RN~ and ¢ € R. It is easy to check that

|f(@, )] <Ti(x)(X+[t]),  [g(@’,¢)] < Ta(a’)(1+ [¢])
for the functions
Ui (x) = |a(z)|exp((2 — g)lz[*/8) + [(|z[* +4N)/16],  Ta(z’) :=b(a").

Using (ag) and (bg) we conclude that I'y € Lgf(Rf) and Ty € Ly 1(RN-1).
Hence, we can use a version of Brezis-Kato’s Theorem [12] (see also [1, Appendix
4]) to conclude that uo € L}, (RY)N LY (RN~') for any v > 1. The proposition is

loc loc

proved. (I

3. PROOF OF THEOREMS 1.1 AND 1.2

Recall that, if F is a Banach space, ® € C'(E,R) and ¢ € R, the functional ®
satifies the (PS). condition if any sequence (u,) C F such that

. _ . / _
AP Bl =0 Ly @) =0,

has a convergent subsequence. From now on, any such sequence will be called
(PS).-sequence.

Lemma 3.1. If 2 < p < 2,, then the functional I satisfies the (PS). condition
for any c € R.

Proof. Let (u,) C X be a (PS).-sequence. Computing I} (u,) — (1/p)I} (un)tn,
using (ag) and Holders’s inequality, we can check that (u,) is bounded. Then,
up to a subsequence, we have that u,, — u weakly in X and w,, — u strongly in
L7 (RY) and L5 (RN, for any r € [2,2%) and s € [2,2,), respectively. Setting
qo = qoy € [2,p) and applying Holder’s inequality with exponents o4, qo/(q — 1)
and qg, we get

K(z)a(x) (w7 (u, — u) do

; < lallollunl,  len = ullgo = 0,
RY

as n — +o0o. Analogously,

K(z',0)b(z") (w)P~  (un — u) da’

n
RN-1

< |b|oo|un|£7l|un —ul, = 0.

From the two above expressions and the weak convergence we obtain
o(1) = I} (un) (un — u) = [lun]|* = [[ul® + o(1),

as n — +o00. The result is now a consequence of the weak convergence. (|
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When dealing with the critical case, we need the following local compactness
result:

Lemma 3.2. If p = 2* and the function uy given by Proposition 2.3 is the only

nonzero critical point of I, then I satisfies the Palais-Smale condition at any level
1 1 SN_l

2(N —1)[p] 2720

¢ <t:=Ix(up) +

Proof. Let (un) C X be a (PS).-sequence. As in Lemma 3.1, we may assume that

u, — u weakly in X and u,, — u strongly in L‘;gq (Rf) Hence, we infer from the
Lebesgue Theorem that, as n — 400,

K(z)a(x)(u})?dr = K(x)a(x)(u)?dz + o(1).
RY RY
If 2z, := (un —u), we can use I} (u,)u, = o(1) and Brezis-Lieb’s lemma [9] to obtain

o) = [un|?— / K (2)a(z)(uh)? do — K (', 0)b(') (u )2 da’

RN-1

= L(uu+|z|* — K(z',0)b(z")(z])>d2’ + o(1).
RN—I

As in the proof of Proposition 2.3, we have that I{(u) = 0. So, passing the above
expression to the limit, we obtain v > 0 such that

. 2 V25 ../
Jim el == tim [ K 0)b(a) () da

We need to prove that v = 0. In order to do this, we first take the limit in the
inequality

2./2
K(2',0)b(a") ()* da’ <[] oS 2/2</ K |Vzn|2dx> 7

RN-1
to obtain v < |b] 505, 2 /2 42+/2 Suppose, by contradiction, that v > 0. Then

1
(3.1) > e zsgj)(;.

On the other hand, using Brezis-Lieb again, we obtain

c+o(1) = In(uy) = In(u) + %Han2 - 2i K(z',0)b(z")(2,)% da’ + o(1).
* JRN-1

Passing to the limit and using (3.1), we conclude that
1 1 1
=17 > Si-1
c A(u)+2(N_1)FY— )\(u)+2(N_1)|b|]OVO—2 24,0 °
Recalling that u is a critical point of I, we conclude from the hypotheses that

u =0 or u = ug. Since max{Ix(0),I\(up)} < 0, the above expression contradicts
¢ < €. So, v =0 and we have done. O

Let § > 0 be as in assumption (ab) and take ¢ € C* (@, [0,1]) such that ¢ =1
in RY N Bs/2(0) and ¢ = 0 in RY\B;(0). Set, for each e > 0,

us(z) 1= K(I)_1/2¢(I)U6($)v S Rf,



MULTIPLE SOLUTIONS IN THE UPPER HALF-SPACE 9

where
o(N=2)/2

[P + (an + PV

U2 zn) =
If N > 7, it is proved in [20] that,
(3.2) luel? = An + O(e3),  ucl3: = BY/> + 0(e),

as ¢ — 07. Moreover, the constants Ay, By are such thatAy /By = S, o and the
following holds:

Lemma 3.3. If . := uc/Juc]2, and (N —1)/(N —2) <7 < 2, then
(33) PNV =8N 407, || T = 0N TN,
as € — 07T,

Proof. Using the Mean Value theorem for ¢g(r) = r® and a simple computation, we
can check that

[A+0(e")]” = A* + O(),
for any A, s, t > 0. Hence, we infer from (3.2) and the defintion of 2, that

o(N-1) _ [AN + 0(52)]1\7*1 B A%il +O(e2) [ Ax N—1 )
e | = N—2 — 2,(N-2)/2 »n \B +O(e%).
|:B]2\;/2—|—O(€2):| By + O(e?2) N

Since Ay /By = S, we conclude that the first statement in (3.3) holds.
For the second one, we first notice that

A (N— K(2',0)"72¢(z',0)"
T _ T(N—-2)/2 ’ ) /
IUEIT € ~/]RN*1 [|I//5|2+1]7-(N72)/2 dx

1

< Cla’T(N*Q)ﬂ/ iy
Bs(0)NORY (|’ Je]? +1)T(N=2)/2
1
< C (Nfl)*T(N72)/2/ "y
- ryv—1 (Jy]2 +1)7T(V=2)/2 Y

where we have used the definition of u., 0 < ¢ < 1 and the change of variable
y =a'/e. But

1 1
dy’' C —|—/ W
/RN’I (ly']? + 1)V =272 / ? oRN\ B, (0) V|7 Y

—+oo
= Cy+ Cg/ s TIN=2FIN=2) g « +00,
1

IN

whenever 7 > (N —1)/(N —2). Since |u:|3, = BJT\,/2 +0(1), as e — 0T, the result

follows from the above inequalities. O
We are ready to prove our first main results.

Proof of Theorems 1.1 and 1.2. According to Lemma 2.2 and Proposition 2.3,
there exists A. > 0 such that, for any A € (0, ), the problem (P)) has a
nonnegative solution ug € X \ {0} such that Iy(up) < 0. The second solution
will be obtained as an application of the Mountain Pass Theorem.
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Recall that 1. := uc/Juc] 2, and notice that
/RN?1 K(2',0)b(x")(ug + tp. )P da’ = / K(z',0)b(z") (ugp + tp )P dx’
> )+ tp/ K(2',0)b(z")y? da,

as t — +o0o, where Q := Bs(0) N RY~!. Since a similar argument holds for the
integral inside the domain, we get

In(ug + t.) < O(t*) 4+ O(t9) — %/ K(2',0)b(2")yPdx’,
Q

as t — 4o00. The function in the last integral above is positive, and therefore we
can use 1 < ¢ < 2 < p to obtain

(34) tl)llf_gloo I)\(’U,O + t’(/}a) = —0OQ.

Hence, there exists t, > 0 large such that e := ug + ¢, satisfies ||e|]| > p given by
Lemma 2.2 and Ix(e) < 0. So, it is well defined

;= inf I
¢:i= Inf max I(v(t)),

where I' := {v € C([0,1],X) : 4(0) = 0,v(1) = e}. From the Mountain Pass
Theorem [2] (see also [31, Theorem 1.15]), we obtain (u,) C X such that
ngr}rloo In(up) = ¢, ngr}rloo I (uy) = 0.

If 2 < p < 2*, we can use Lemma 3.1 to conclude that, along a subsequence, (uy)
converges to a critical point u; € X such that Iy(ui) > 0. Hence, u; # ug is the
second solution.

The final step in the above argument is more delicate in the critical case p = 2,.
Actually, we need to prove that, for € > 0 small, there holds

1 1 GN-1.
2(N — 1)) X279
If this is true, we can use Lemma 3.2, the Mountain Pass Theorem and a
contradiction argument to obtain a nonzero solution u; # ug.

In order to prove (3.5), we first notice that, since ug € B,(0) is a local minimum
of I, we can use (3.4) to obtain . > 0 such that

me 1= I)\(UO + tawa) = 1?3541,\(”0 + t"/’a)'

(3.5) I%l;ig( I)\(UO + twg) <cC:= I)\(U()) +

We claim that t. = O(1), as ¢ — 07. Indeed, suppose by contradiction that
te, — +o0, for some sequence &, — 0". Recalling that a, b > 0 in the support of
e, we can use I} (uo + t-v: ). = 0 and I} (up)e = 0 to get

tg*—l/ K(a:',())b(x’)wg*da:'§t5|\1/)5||2+/ K(a',0)b(z"Yua*'ep. da’.
RN-1 RN-1

Thus, from (3.3), Holder’s inequality and J¢. |2, = 1, we obtain
K(a',0)b(a")y2 da’ < 272 [Sz. .0+ O(1)] + t2~ > bl ocluol3: ™
RN-1

for all € > 0. In particular, we can take € = €, in the above inequality to conclude
that
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lim K(2',0)b(z")2: da’ = 0.

n—+00 RN-1

On the other hand, using (b1) and |¢., |2, = 1 we obtain

B o= [ KGouEE 2Pl M [ KGO
RN-1 RN-1

Moreover, since |ue, |2, = le\,/Q +o(1),
/ 1o, 2 / en 2| ’
K(2',0)|z' |7z da’ < 01"—/ T dx
/ | e L 12 Sy oms— T2 + 271

= o [
Bs(0)NRY

as n — +o00. Since 0 > N — 1, the last integral above is finite and therefore
(3.7) K(2',0)|2/ |72 da’ = O(el 7'), asn — 4oo.
RN—-1
Thus, it follows from (3.6) that |b] oo = 0, which does not make sense. This proves

that (t.) is bounded.
Using I3 (uo)®e = 0, we obtain

(38) e = 1(uo) + ) - 21y - L1
. e — 0 2 5 q l,e 2* 2,6
where
.= . K (2)a(z)[(uo + tetoe)? — ul — qtoul e, da
R+
and

Iy = / K(2',0)b(2")[(uo + tetpe)? —uds — 2. teug "] da’
RN-1
It follows from the Mean Value Theorem that there exists 6(z) € [0, 1] such that
(uo(x) + tetpe (2))? —uo(x)? = qluo(x) + O(x)t-tpe (@) Hetpe ()
> qteug(z) e (),

for a.e. x € Rf. Since a > 0 in the support of 1. we conclude that I'; . > 0. For
estimating I'; . we notice that, given r, s > 0 and 1 < pu < 2, — 1, there holds (see

[14])

(r+ 5)2* > 4 g% 42,02 s 2,rs? T - A#T2*7'U‘S‘u,

for some constant A, > 0. Picking r = up(z) and s = t.9.(x), we get
Iy > /N ) K(2',0)b(x) [t?*z/;?* + 2,42 tygep? Tt — A#tgug*fﬁ/)g} da’.
Since I'; ¢ Zﬂz and |1 |2, = 1, we can use the above inequality and (3.8) to obtain
e < o)+ [ 101 =S40 + Do~ Lo + T

with

Do = /N K 0) Il — bl dr,
* RN —

Pocaim 70 [ K0 yuog
RN—I
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and
e

F27573 = 0#2—
* JRN-1

K(z',0)b(x" yug™ Hptda’.

As in (3.7), the integral in 'y . 1 has order eV =1 as ¢ — 07. So, we infer from

the boundedness of (t.) that 'y .1 = O(eV~1). Moreover,

£t T A
313?{2'%' 2 1l } 2(N—1) ]2

and therefore we infer from (3.3) and the above estimate for m, that

(39) me S c+ 0(52) - F27512 + F2,5,3-

loc loc (]RN_ 1)

for any v > 1. So, if we denote Qy := Bs(0) NRY~1 we can choose 7; > 1 such
that

In order to estimate the last two terms, we recall that ug € LY, (RY)NLY,

2N — 1) 2N 1)
N1d TN

and use Holder’s inequality to get

, 1/7]
K(z, O)ué%l:v’) I 1%t

K(2',0)b(x")ugp2* ~tda’ <] o ( (2—1)m1 "

RN -1 Qo

Since (N —1)/(N —2) < (2, — 1)11 < 2. and () is bounded, we infer from (3.3)
and the choice of m; that
(3.10) Doeg = O(eW-D/m-(N/2)),

We now set p:= (N —1)/(N —2), pick 1 < 7 < 2 and apply Holder’s inequality
again to obtain

1/

/ K(x’,())b(x’)ug*“¢gdx'g|b|oo( K(x',O)ugz*‘**)Tédx/) O
RN-1

Qo

from which we conclude that

(311) F2,a,3 _ O(E(Nfl)/‘mf(Nfl)/Z)'
Since
. N-1 N N -1 . N—-1 N-1
lim ——]=0< —— = lim -,
7—2(N-1)/N T 2 2 71 T 2
we can choose the numbers 71, 72 above in such way that
N-1 N N-1 N-1
V] = - — < 2, Vo 1= — > .
T1 2 T2 2

Replacing (3.10) and (3.11) in (3.9) and using the above inequalities, we obtain
m. <+ 0(%) — O(e") + O(e"?) =T+ e [0(52_”1) - 0(1)+0@E"="")],

as € — 07. We conclude that (3.5) holds, for any ¢ > 0 small. The theorem is
proved. (I
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4. PROOF OF THEOREMS 1.3 AND 1.4

We start this section presenting some definitions and abstract results which will
be used to obtain infinitely many solutions for (Py). Let E =V @ W be an infinite
dimensional Hilbert space, with V = span{p}, 0¥, ...}, W = span{p}V, o} ...}
and the the basis being orthonormal. For each n € N, define the subspaces

V= span{goY, 902V, . gor‘f}, Vi := span{pY, cp,‘{H, S
Using the set {cpfv}l ey We define W™ and W,, in a similar way.
Given ® € CY(E,R) and ¢ € R, we say that ® satisfies the (PS)*-condition
(with respect to V™ @ W™) if any sequence (u,) C V™ @ W™ such that
lim ®(u,) = c, lim ]

n—+oo n—-+oo \V"@Wﬂ (

has a subsequence converging to a critical point of ®. Any such sequence will be
called (PS)Z-sequence.

We are going to obtain infinitely many solutions for (Py) as applications of the
following abstract theorems due to Tonkens [30] (see also [2, 6]):

Theorem 4.1. Let ® € C*(E,R) be an even functional. Suppose that, for every
n > ng, there exist R,, > r, > 0 such that

(A1) inf{®(u) : ueV,&W, ||lullg =Rn} >0;

(A2) by :=inf{P(u) : vV, d@W, |lu|lg < R,} =0, as n — +o0;

(A3) dp :=sup{®(u) : ue V", ||lullg =rn} <0;

(Aq) @ satisfies (PS)%-condition for all ¢ € [by,,0).

Then ® has a sequence of critical values ¢, € [by, dy] such that ¢, — 0, as n — +00.

Theorem 4.2. Let ® € C*(E,R) be a even functional. Suppose that, for every
n € N, there exist R, > r, > 0 such that

(Ag) by :=inf{®(u) : u eV, ®W, |[ul| = r,} — 00, as n — oo;

(A3) @y := max{®(u) : u € V", |jul| = R,} < 0;

(1?4) O satisfies (PS)c-condition for all ¢ > 0.
Then ® has a sequence of critical values ¢, € (0,+00) such that ¢, — 400, as
n — +o00.

Since we are not interested in the sign of the solutions, we redefine the energy
function setting

Iy (u) = %HuHQ - 2/]@ K (2)a(z)|ul? dz — % /RJH K (&, 0)b(z')|ul? dz.
+

We are intending to apply Theorem 4.1 with ® = I, and £ = X. In order
to define the space decomposition, we recall that Qf = {:v eRY : a(z) > O} and
define

W:={ue X :u(z) =0 for a.e. z €int(Q})}.
We call V' the orthogonal complement of the closed subspace W, in such way that
X=VaeWw.
We start with the required compactness properties.

Proposition 4.3. If 2 < p < 2., then I satisfies the (PS)% condition at any level
c € R. The same holds if p =2, and b < 0.
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Proof. Let (un) C V™ @ W™ be a (PS):-sequence. Computing I} (un) —
(1/p) I} (un)un, using (ag) and Holder’s inequality, we can check that (u,) is
bounded. Then, up to a subsequence, we have that u,, — u weakly in X. Pick
¢ e C§° (Rf) and denote by ¢" its projection over the subspace V'* @ W". Since

(I5(un)) C X* is bounded, we have that
I3 (un) (¢ = &™) < [ I (un)llx-ll¢ = ¢" ]| = o(1),
as n — +o0o. Thus, recalling that I} (u,)¢"™ = o(1), we obtain
I (un)p = 1§ (un) (¢ — ") 4 I3 (un) @™ = o(1).
Arguing as in the proof of Proposition 2.3, we conclude that I3 (u)¢ = 0, for any

¢ € C§(RY). Tt follows from a density argument that I (u) = 0.
Using Lebesgue Theorem as in the proof of Proposition 2.3, we get

(4.1) lim K(z)a(x)|u,|'dx = K(z)a(x)|ul?d.

n—oo Rﬁ Rf
Moreover, in the subcritical case 2 < p < 2,, the same kind of convergence holds for
the term [,5_, K (2',0)b(2")|un|Pdz’, since the trace embedding is compact. These
two convergences and I} (u)u = 0 provide

o(1) = I (un)upn — Iy (wyu = [[ug || = [ul|* + o(1),

and we infer from the weak convergence that u, — u strongly in X.

For the critical case p = 2,, we first use assumption b < 0 to guarantee that
@ — [anoy K(2,0)b(2")|@lP d’ is a seminorm in X. Hence, from the weak lower
semicontinuity of a seminorm, we get

limsup/ K(2',0)b(a) |wn|* da’ §/ K(2',0)b(2)|u)?* d’.
RN-1 RN-1

n—-+oo
This, (4.1) and I} (un)u, = o(1) imply that

limsup [|un||? < [|ul]?.
n—-+oo

On the other hand, the weak convergence provides ||ul|? < limJirnf |lun||?, and
n—-+00

therefore the result follows as in the former case. O
If p = 2, and b changes it sign, we need the following local compactness result.

Proposition 4.4. If p = 2., then there exists Co = Co(q, N, ||alls,) > 0 such that
the functional I satisfies the (PS)% condition at any level

1 1 SNfl
2(N _ 1) |b|5072 2,,0
Proof. Let (un) C V™ @ W™ be a (PS)! sequence. As in the proof of Proposition

4.3, we may assume that u, — w weakly in X, with I{(u) = 0. Since I (u) =
In(u) — (1/2,)I5 (u)u, we obtain

4 = gyt 2 (%) [ KEras

c< — CpN¥/(2=9)

We now set z, := (un, — u) and argue as in Proposition 3.2 to get

2 da.

li W22 =7 = 1 K(z',0)b(x")|2n
Jin fleall* = = lm | K@ 0]
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for some v > 0. If v > 0, then

1 N_1
(4.3) v > IbIN7252 0
On the other, we infer from Brezis-Lieb’s lemma that

e+ o(1) = Iy(un) = ||zn||2——/ K (', 0)b(2/)|2n |2 d2’ + In(u) + o(1).

Passing to the limit, using (4.2), Holder’s inequality and (4.3), we conclude that

1 1 _
(4.4) =y oo ol
where
e ts0
t) = — Ayqt
g( ) 2(N _ 1) 'Yq ) > 9

and 4 := lalls, S, Q/2(2* —q)/(24q). Setting

o= (51 G 0V = el

a straightforward computation shows that g(t) > —CoA?/(=9) for any t > 0.
Hence, we infer from (4.4) that

N—1
2.,0 A2/(2=0),

> e
(N -1
which does not make sense. This contradiction proves that v = 0 or, equivalently,
Uy — u strongly in X. O

We finish this section with an important tool for the proof of Theorem 1.3.

Lemma 4.5. Suppose that a > 0 and set
UL sup K(x)a(z)|ul! dz.
{ueV, ®W : ||u|| <1} JRY
Then p, — 0, as n — oco.

Proof. Since (un) C [0,+00) is nonincreasing, we have that p, — o > 0, as
n — oo. Let (u,) C Vi, @ W be such that ||u,| =1 and

(4.5) Ho o Pn o | K(2)a()|un|? da.
2 2 Rf

We may assume that v, = u = v+ w weakly in X, with v € V and w € W. The
orthogonal decomposition and the definition of V;, imply that (u,, ¢} ) = 0, for any
fixed k € N and n > k. So,

0= limoo<un7(pkv> = <u7(pkv> = <U7 SDkV>7

n—-+

and therefore v = 0 or, equivalently, © = w. Using Lebesgue Theorem as in the
proof of Proposition 2.3, we conclude that

lim K( a(z)|u,|Tdx —/ K(x)a(z)|w|?dz =0,

n—r oo

since w € W. The above expression and (4.5) imply that pg = 0. O
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We are ready to prove Theorem 1.3.

Proof of Theorem 1.3. It follows from Lemma 4.5 and Proposition 2.1 that, for any
u €V, ® W, there holds

1 A 1 /2
Li(u) > =llull? = Zpnlfull? = =16] oS, 52 lull?.
A(w) 2 S ul " [l pl IS0 llul
Hence,
1 9 A q R
(4.6) I(u) = Zlull” - 5unIIUII , Vue B, (0)N(Vad W),

1/(p—2)
where p; := [psgfg/(4|b|oo)} . Since p, — 0, there exists n; € N such that

A\ " 1/(2—q)
R, ::< H ) < p1, Vn>n.
q

Using (4.6) we can check that I(u) > 0, for any u € V,, @ W such that |[ul| = R,.
This proves that (A;) holds.
In order to verify (As) we notice that, for n > nq,

A
I(u) > —=u, R Vu € Bg, (0)N(V, ®W).
q

Thus,
- A
0> by, = inf {I)\(u) ueBr(0)N (V& W)} >~
Since the right-hand side above goes to 0, as n — +00, we conclude that (Az) holds.
Given u € V", we have that [,n K(z)a(z)u|?dz = 0 if, and only if, u = 0.
+
Hence, this integral defines a norm in the finite dimensional subspace V™. The
equivalence of norms provides 0 < /3, < (8u,)/q, such that
Bollull g/ K(@)a(@)|ul?de, Yue V™
Y

Hence, we can argue as above to get

A
(4.7) In(u) < [|ull® - EﬁnHUHQa Vu e Bp,(0)nV",

1/(p-2) i
] . Since 3, — 0, there exists no € N such that

where pg := [psgfaz/(leloo)
)\ - 1/(2_q)
Tn 1= (%) < p2, Vn 2 ny.

A straightforward computation shows that the function g(t) := t? — (\/q)B,t4, for
t > 0, attains its minimum value at t = r,, and

/(2—q)
dy :g(rn):_(2_qq))\ﬁn (Aﬁm>q ' < 0.

2 2
Hence, we infer from (4.7) that I\ (u) < d,, for any v € B, (0) N V™ and n > no.
We now define ng := max{nj,n2}. According to the above considerations, I

verifies (A1) and (Az). Moreover, since (3, < (8n)/q, we have that r, < R, and
therefore (As) also holds. It remains to check (A4). If 2 < p < 2, or p = 2, and
b < 0, condition (A4) is a direct consequence of Proposition 4.3. If p = 2, but we



MULTIPLE SOLUTIONS IN THE UPPER HALF-SPACE 17

have no information about the sign of b, we have compactness at any negative level
provided A > 0 is small in such way that

1 1
CoX*/ =) < Sy
0 2(N — 1) || 27207
where Cy > 0 comes from Proposition 4.4. In any case, we may invoke Theorem
4.1 to obtain infinitely many critical points for I}. ]

Remark 4.6. Suppose that b < 0 and let (u,) C X be a sequence of solutions given
by Theorem 1.53. If we denote by ¢, = Ix(un) € [by,0] the energy of the solutions,
we can use I;\ (un)un =0 and an easy computation to get

Cn = A <l - 1) / K(x)a(z)|un|? dx + <l - 1) / K(z',0)b(2")|u,|? dx'.
2 q) Jry 2 p) gy
Hence,
0< A K(z)a(x)|u,|de < — 24 Cn,
R (2-9q)
and
2. < / K(2',0)b(z")|un|Pdz’ < 0.
(P—2) " " Jrr 7 B

Recalling that b, — 0, the above inequalities and I} (un)u, = 0 imply that ||u,| — 0.
In order to prove Theorem 1.4 we recall that Qf = {2/ € RN~ : b(2’) > 0} and
redefine the subspace W in the following way:
W:={ue€ X : u(@) =0 for a.e. 2’ € int(Q;)}.
As before, V is the orthogonal complement of W in X, in such way that X = VW,

Proof of Theorem 1.4. Setting
Up = sup K(2',0)b(z")|ulPdz’,
{u€V,®W: |u||<1} JRN-1

we can use 2 < p < 2, and the same argument of Lemma 4.5 to conclude that
o — 0, as n — 4-00.
If weV, ®W, then

1 A - I
> | = 28592 a_ Hngoe
In(u) 2 5lull s lallo, llul [[ul[?,
and therefore
1 n
(4.8) In(u) = S lull* - %Huﬂp, VueVa oW, |ull > p,
*(1/2 1/(27‘1) . .
where p1 := |4\|al|4,S, 4 /q] . Since p, — 0, there exists n; € N such that
D 1/(p—2)
Ty 1= (—> > p1, Vn>n.
8Lin

So, using (4.8) we conclude that
1
by =inf{I\(u): ueV,&W; |lul| =7} > gri

It follows from p,, — 0 and the definition of r,, that (Z;) holds.
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Arguing as in Theorem 1.3, we have that [pr_, K(a',0)b(z)|uPd2’ defines a
norm in the finite dimensional subspace V™. Then, there exists 0 < 3,, < 8u,, such
that

B lu||? < / K(a2',0)b(z")|ulPda’, VueV,.
RN-1

Hence,

B n

In(u) < [lull® - ?HUHP uwe V", ull = pa,
, 1/(2—a)

where py 1= (2)\5 q/2||a||gq/q> . Setting

qog
P 1/(p—2)
R, := max< 2ps, ([3—) ,

a straightforward computation shows that Ix(u) < 0, whenever v € V™ satisfies
||lu|| = Ry,. Since R, > 1y, we conclude that requirement (1?3) if fulfilled.

Since (PS)% implies (PS). condition, the proof of (1?4) is analogous to that of
Proposition 4.3. So, we may invoke Theorem 4.2 to obtain a sequence of solutions
(un) C X such that Iy(u,) = ¢, — +00, as n — +00. Since

1 A —q/2 1 —p/2
cn = In(un) < 5”“71”2 + EHaHUquaq{z/ llunl? + Elblwsp,g/ [Jun
we conclude that ||u,| — +00. The theorem is proved. O
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