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Abstract. We prove a weighted Sobolev trace embedding in the upper half-
space and give its best constant. This embedding can be employed to study a

number of critical boundary problems. In this direction, we obtain existence

and nonexistence results for a class of semilinear elliptic equations with nonlin-
ear boundary conditions involving critical growth. These equations are closely

related to the study of self-similar solutions for nonlinear reaction-diffusion

equations.

1. Introduction and main results

In this paper, we show a weighted Sobolev trace embedding and also present its
best constant. As a consequence, we obtain existence and nonexistence results for
semilinear elliptic equations in the upper half-space with nonlinear critical boundary
conditions.

Before stating the embedding, let us set some notation. Consider N ≥ 3 and

RN+ := {x = (x1, x2, . . . , xN ) ∈ RN : xN > 0}. If we denote by C∞c (RN+ ) the space

of infinitely differentiable functions with compact support in RN+ , we can define

D1,2
K (RN+ ) as being the closure of C∞c (RN+ ) with respect to the norm

(1.1) ‖u‖ :=

(∫
RN

+

K(x)|∇u|2dx

)1/2

,

where K(x) := exp(|x|2/4). For simplicity, we denote this space by X and define,
for any 2 ≤ s ≤ 2∗ := 2N/(N − 2), the weighted Lebesgue space

LsK(RN+ ) :=

{
u ∈ Ls(RN+ ) : ‖u‖ss :=

∫
RN

+

K(x)|u|sdx <∞

}
.

In [12, Lemma 2.2] it was proved that the embedding D1,2
K (RN+ ) ↪→ LsK(RN+ ) is

continuous for s ∈ [2, 2∗] and compact for s ∈ [2, 2∗).
Concerning the trace embedding, we recall that 2∗ := 2(N − 1)/(N − 2) is the

critical exponent of the trace Sobolev embedding D1,2(RN+ ) ↪→ L2∗(RN−1). As
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proved by P.L. Lions [22], its best constant S0 is achieved and

(1.2) S0 := inf
ϕ∈D1,2(RN

+ )\{0}

∫
RN

+

|∇ϕ|2dx(∫
RN−1

|ϕ|2∗dx′
)2/2∗

=
N − 2

2
σ

1/(N−1)
N−1 ,

where σN−1 is the volume of the (N − 1) dimensional sphere. The extremal func-
tions, found independently by Escobar [10] and Beckner [5], are given by

Uε(x
′, xN ) :=

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2
,

for any ε > 0 and x′ := (x1, x2, . . . , xN−1) ∈ RN−1, where we identify the boundary
of the upper half-space ∂RN+ with RN−1.

A natural question is whether we have trace embeddings from X into the space
LsK(RN−1). By performing an interpolation approach in fractional Sobolev space,
a partial answer was presented in [12, Lemma 2.4], where it was proved that this
embedding holds for any 2 < s < 2∗. In the first result of this paper we prove the
following:

Theorem 1.1. The Sobolev trace embedding D1,2
K (RN+ ) ↪→ LsK(RN−1) is continuous

for s ∈ [2, 2∗] and compact for s ∈ [2, 2∗). Moreover, if s = 2∗, the best constant of
this embedding is given by

SK := inf
ϕ∈D1,2

K (RN
+ )\{0}

∫
RN

+

K(x)|∇ϕ|2dx(∫
RN−1

K(x′, 0)|ϕ|2∗dx′
)2/2∗

= S0.

The above result extends that of [12], since we now cover the natural range for
the trace embedding by considering also the critical case s = 2∗. Moreover, the
proof presented here is different (and simpler) from the original one. Theorem
1.1 also complements previous weighted embedding results which can be found,
for instance, in [1, 13, 14, 21, 23, 4, 17] and references therein. For example, the
growth of our weight K is not of log or polynomial type neither belongs to the
Muckenhoupt class Ar.

The critical trace embedding in Theorem 1.1 can be employed to study a number
of semilinear equations with nonlinear boundary conditions with critical growth. In
this direction, we show existence and nonexistence of solutions for the problem

(P )

{
−∆u− 1

2 (x · ∇u) = λu+ |u|2∗−2u, in RN+ ,
∂u
∂ν = |u|2∗−2u, on RN−1,

where ν is the unit outer normal on the boundary of the upper half-space.
Before presenting our results we connect the above problem with the functional

space X. As observed by Escobedo and Kavian in [11], since the exponential-type
weight K(x) = exp(|x|2/4) verifies ∇K(x) = 1

2xK(x), the first equation in (P ) can
be written as

−div(K(x)∇u) = λK(x)u+K(x)|u|2
∗−2u in RN+ .
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Thus, X is the natural space to treat problem (P ). The embedding result of
Theorem 1.1 shows that the energy functional

u 7→ 1

2
‖u‖2 − λ

2
‖u‖22 −

1

2∗
‖u‖2

∗

2∗ −
1

2∗

∫
RN−1

K(x′, 0)|u|2∗dx′

belongs to C1(X,R) and its critical points are weak solutions of (P ).
The starting point of our variational approach is to establish the natural range for

the parameter λ in order to obtain a solution. By adapting some known arguments
we are able to get a Pohozaev identity and a Hardy-type inequality for the problem
(P ) and, by combining these two results, we have the following:

Theorem 1.2. If u ∈ C2(RN+ ) ∩X is a nonzero solution of (P ), then λ ≥ (N/4).
Moreover, if u ∈ X is a positive solution of (P ), then λ < (N/2).

Closely related to problem (P ) is the study of self-similar solutions for the
reaction-diffusion problem

(1.3)

{
vt −∆v = |v|2∗−2v, in RN+ × (0,+∞),

∂v
∂ν = |v|2∗−2v, on RN−1 × (0,+∞).

More precisely, it is well-known that the problem (1.3) satisfies a scale invariance
property and if we look for self-similar solutions of problem (1.3), namely solutions
with the special form

v(x, t) = t−λ̄u(t−1/2x), x ∈ RN+ , t > 0,

then the profile u satisfies the problem (P ) with λ̄ = (N − 2)/4. For further details
and results about nonlinear boundary parabolic problems and self-similarity, we
refer the reader to [15, 16, 25, 19, 2]. Since λ̄ < (N/4), as a direct consequence of
Theorem 1.2 we obtain a nonexistence result of self-similar solutions for (1.3):

Corollary 1.3. The problem (1.3) does not have self-similar solutions with profile
belonging to X.

At this point it is important to emphasize the difference between the above
result and its subcritical counterpart, namely problem (1.3) with the terms |v|2∗−2v
and |v|2∗−2v replaced by |v|q−2v and |v|p−2v, respectively, where 2 < q < 2∗ and
2 < p < 2∗. In this case, it was proved in [12] that the problem has infinitely many
self-similar solutions whenever the parameter λ belongs to R \ Σ, where Σ is an
enumerable set which is connected with the eigenvalues of the linearized problem
and can be viewed as a nonresonant set for the subcritical problem. Also in the
subcritical case, the authors in [12] proved that the stationary problem (P ) has
a positive solution for λ < (N/2). Again, the critical case is more delicate, since
we do not have compact embeddings. However, we are able to obtain an existence
result if λ is near the first eigenvalue of the linearized problem. More specifically,
we shall prove the following:

Theorem 1.4. If N ≥ 3, then there exists δ > 0 such that problem (P ) has a
positive solution if (N/2)− δ < λ < (N/2).

For the proof we first obtain a local compactness result for the energy functional.
Afterwards, in the main step, we use the first eigenfunction of the linearized problem
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to show that the Mountain Pass level of the functional belongs to the compactness
range. At this point we use the fact that λ is near (N/2).

In our last result we analyze the effect of the absence of the power-type reaction
term inside the domain. Actually, we remove this term and consider the following
critical problem

(P̃ )

{
−∆u− 1

2 (x · ∇u) = λu, in RN+ ,
∂u
∂ν = |u|2∗−2u, on RN−1.

The subcritical version of the above problem was considered in [12], where the
authors obtained a positive solution for λ < (N/2) and N ≥ 3. Here, due to

the criticality of (P̃ ), we obtain a result in higher dimensions and with stronger
restrictions on the parameter λ. More specifically, we prove the following:

Theorem 1.5. If N ≥ 7, then problem (P̃ ) has a positive solution if

λ∗N :=
N

4
+

(N − 4)

8
< λ <

N

2
.

In the proof, we follow the ideas introduced by Brezis and Nirenberg in [7].
As before, the main point is to show that the Mountain Pass level of the energy
functional belongs to the range where the Palais-Smale condition holds. This is done
by performing some carefull estimates on the asymptotic behavior of a suitable cut
of the function Uε. The restrictions on dimension and the lower bound for λ are of
technical nature. Unfortunately, we do not know what happens if 3 ≤ N ≤ 6 or
even if N ≥ 7 and (N/4) < λ ≤ λ∗N .

In what follows we quote some papers which deal with critical nonlinear boundary
conditions. The results are not comparable with ours but present some similar
features. Consider the existence of solution for

−∆u = f(x, u), in Ω,
∂u

∂ν
= g(x, u), on ∂Ω, u > 0, in Ω,

where Ω ⊂ RN is a bounded domain. In the case that Ω is a ball, the authors in [24]
obtained one solution for f(x, u) = u2∗−1, g(x, u) = −δu2∗−1 − h(x, u), with δ ≥ 0
and the subcritical function h verifying some technical conditions on h′(x, 0) (see
also [9] for some results in the case that g(x, u) ≤ 0). In [8], the author supposed
that f(x, u) = α(x)u2∗−1, g(x, u) = β(x)u2∗−1 and obtained solution in the case
that the points of maximum of the potentials are related with the set where the
median curvature of the boundary is positive. He also proved that the problem
has no solution if α, β > 0. In [27], the authors consider f(x, u) = u(u2∗−2 − 1),
g(x, u) = µu2∗−1 and use the fibering method to obtain two solutions for small
µ > 0. For unbounded domains, we can cite [18], where it is assumed that Ω is
the complementary of a set with compact boundary, f(x, u) = u2∗−1 and g(x, u) =
−α(x)u − β(x)u2∗−1 + µρ(x)ur, with 0 < r < 1 and β ≥ 0. The author obtained
the existence of one solution for small µ > 0.

The paper is structured as follows: in the next section we prove Theorem 1.1.
The third section is devoted to the nonexistence results. Theorems 1.4 and 1.5 are
proved in Sections 4 and 5, respectively.

2. The trace embedding

In this section we present the proof of Theorem 1.1. For this purpose, we need
some notation which will be used throughout the paper. We recall that X denotes
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the closure of C∞c (RN+ ) with respect to the norm

‖u‖ :=

(∫
RN

+

K(x)|∇u|2dx

)1/2

and

LsK(RN+ ) :=

{
u ∈ Ls(RN+ ) :

∫
RN

+

K(x)|u|sdx <∞

}
,

for any s ∈ [2, 2∗]. We also use the following notation

|u|s :=

(∫
RN

+

|u|sdx

)1/s

, ‖u‖s :=

(∫
RN

+

K(x)|u|sdx

)1/s

and

u 2∗ :=

(∫
RN−1

K(x′, 0)|u(x′, 0)|2∗dx′
)1/2∗

.

In order to be more concise, we write only
∫
f to denote

∫
RN

+
f(x)dx. The points

x ∈ RN will be written as x = (x′, xN ), with x′ = (x1, . . . , xN−1) ∈ RN−1 and
xN ∈ R.

Proof of Theorem 1.1. Let ρ > 0 and φρ ∈ C∞(RN+ , [0, 1]) be such that φρ ≡ 1 in

Bρ/2(0) ∩ RN+ and φρ ≡ 0 in RN+ \ Bρ(0). For any ε > 0, we set ϕε := φρUε and
notice that, since Uε is a minimizer of S0, then∫

|∇ϕε|2(∫
RN−1

|ϕε|2∗dx′
)2/2∗

= S0 + o(ε),

as ε→ 0+. Thus, if Kρ := K(ρ, 0, · · · , 0), we can use K(x) ≥ 1 and K(x) ≤ Kρ in
the support of ϕε to get

SK ≤
‖ϕε‖2

ϕε 2
2∗

≤ Kρ

∫
RN

+

|∇ϕε|2dx(∫
RN−1

|ϕε|2∗dx′
)2/2∗

= KρS0 + o(ε).

Taking the limit as ρ→ 0+ and ε→ 0+, we obtain SK ≤ S0.

Given u ∈ C∞c (RN+ ), let b,> 0 be such that u(x′, xN ) = 0 whenever 2|x′| > b

or 2xN > b. If we set Ω := {x′ ∈ RN−1 : |x′| < b}, we conclude that the support

of u is contained in Ω × [0, b]. Moreover K1/2u ∈ C∞c (RN+ ) and a straightforward
computation provides

(2.1)

∫
|∇(K(x)1/2u)|2 =

∫
K(x)|∇u|2 +B,

with

B :=

∫ b

0

∫
Ω

∇
(
K(x)1/2u2

)
· ∇
(
K(x)1/2

)
dx′dxN .
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We claim that B ≤ 0 for all u ∈ C∞c (RN+ ). If this is true, we can (2.1), Fatou’s
lemma and a density argument to conclude that

(2.2)

∫
|∇(K(x)1/2u)|2 ≤

∫
K(x)|∇u|2, ∀u ∈ D1,2

K (RN+ ),

and therefore K1/2u ∈ D1,2(RN+ ) for any u ∈ D1,2
K (RN+ ). Since K(x) ≥ 1, it follows

from the definition of S0 that∫
|∇(K(x)1/2u)|2 ≥ S0

(∫
RN−1

(K(x′, 0)1/2|u|)2∗dx′
)2/2∗

≥ S0

(∫
RN−1

K(x′, 0)|u|2∗dx′
)2/2∗

.

Hence, we can use (2.2) to obtain∫
K(x)|∇u|2 ≥ S0

(∫
RN−1

K(x′, 0)|u|2∗dx′
)2/2∗

, ∀u ∈ D1,2
K (RN+ ).

This inequality proves the continuous trace embedding D1,2
K (RN+ ) ↪→ L2∗

K (RN−1)
and that SK ≥ S0. Since we already know that SK ≤ S0, we conclude that
SK = S0.

It remains to prove that B ≤ 0. For this purpose, for x′ ∈ RN−1 we set

A(x′) =

∫ b

0

(
K(x)1/2u2

)
xN

(
K(x)1/2

)
xN

dxN ,

where fxN
:= ∂f

∂xN
, for any f ∈ C∞(RN+ ). It follows from the Divergence Theorem

that

B =

∫ b

0

∫
Ω

∇x′
(
K(x)1/2u2

)
· ∇x′

(
K(x)1/2

)
dx′dxN +

∫
Ω

A(x′)dx′

= −
∫ b

0

∫
Ω

K(x)1/2u2∆x′

(
K(x)1/2

)
dx′dxN +

∫
Ω

A(x′)dx′.

Since

∆x′

(
K(x)1/2

)
=

(
N − 1

4
+
|x′|2

16

)
K(x) ≥ 0,

it is sufficient to check that A(x′) ≤ 0, for any x′ ∈ RN−1. By integrating the
equality

(K(x)1/2u2)xN
(K(x)1/2)xN

+

(
1

4
+
x2
N

16

)
K(x)u2 =

1

4

(
xNu

2K(x)
)
xN

over the interval [0, b], and recalling that u(x′, b) = 0, we obtain

A(x′) +

∫ b

0

(
1

4
+
x2
N

16

)
K(x)u2dxN =

1

4

∫ b

0

(
xNu

2K(x)
)
xN

dxN = 0,

and therefore A(x′) ≤ 0. This finishes the proof of the claim.
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We now prove the continuity of the trace embedding for s = 2. Given u ∈
C∞c (RN+ ), we can use the Fubini Theorem to get∫

(K(x)u(x)2)xN
=

∫
RN−1

∫ ∞
0

(K(x)u2)xN
dxNdx

′

= −
∫
RN−1

K(x′, 0)u(x′, 0)2dx′.

Hence, recalling that xN > 0 in RN+ and −2ab ≤ a2 + b2, we obtain∫
RN−1

K(x′, 0)|u|2dx′ = −
∫
xN
2
K(x)u2 −

∫
2K(x)uuxN

≤
∫
K(x)u2 +

∫
K(x)u2

xN

≤ c1

∫
K(x)|∇u|2 +

∫
K(x)|∇u|2,

where c1 > 0 comes from the embedding D1,2
K (RN+ ) ↪→ L2

K(RN+ ). It follows that∫
RN−1

K(x′, 0)|u|2dx′ ≤ (c1 + 1)

∫
K(x)|∇u|2, ∀u ∈ C∞c (RN+ ).

The same inequality holds in D1,2
K (RN+ ) by density, and therefore we have proved

the continuous embedding D1,2
K (RN+ ) ↪→ L2

K(RN−1). The embedding for s ∈ (2, 2∗)
easily follows by interpolation. The compactness can be proved as in [12, Lemma
2.4] and we will omit the details here. 2

3. The nonexistence result

In this section we prove our nonexistence result for problem (P ). We first recall
a basic result about the linear problem associated to (P ) (see [12]). The first
eigenfunction ϕ1 of the linear problem

(3.1) −∆u− 1

2
(x · ∇u) = λu, x ∈ RN+ ,

∂u

∂ν
= 0, x ∈ ∂RN+ ,

can be chosen positive and the first eigenvalue λ1 is characterized by

(3.2) λ1 :=
N

2
= inf
u∈X\{0}

∫
K(x)|∇u|2∫
K(x)u2

.

In the sequel we use a truncation argument (see [20]) in order to obtain a Po-
hozaev type result for problem (P ).

Proposition 3.1 (Pohozaev Identity). If u ∈ C2(RN+ )∩X is a solution of problem
(P ), then

(3.3) |∇u|22 − |u|2
∗

2∗ −
∫
RN−1

|u(x′, 0)|2∗dx′ =

(
λ− N

4

)
|u|22

and
(3.4)

N − 2

2

(
|∇u|22 − |u|2

∗

2∗ −
∫
RN−1

|u(x′, 0)|2∗dx′
)

=
1

2

(
λN |u|22 −

∫
(x · ∇u)2

)
.
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Proof. Let φ ∈ C∞(R, [0, 1]) be such that φ ≡ 1 in (−∞, 1], φ ≡ 0 in [4,+∞) and
|φ′|∞ ≤M . If we set φk(x) := φ(|x|2/k2), it follows from the Divergence Theorem
that

−
∫

(φku)∆u =

∫
u(∇φk · ∇u) +

∫
φk|∇u|2 −

∫
RN−1

φku
∂u

∂ν
dx′

=
2

k2

∫
φ′
(
|x|2

k2

)
(x · ∇u)u+

∫
φk|∇u|2 −

∫
RN−1

φku
∂u

∂ν
dx′.

By using the boundary condition and the boundedness of φ′ we get

(3.5) −
∫

(φku)∆u =

∫
φk|∇u|2 −

∫
RN−1

φk|u|2∗dx′ +O(k−2),

as k → +∞.
For any s ∈ [2, 2∗], it follows from the Fubini Theorem together with the Diver-

gence Theorem and the Fundamental Theorem of Calculus that∫
div(φk|u|sx) =

∫ ∞
0

∫
RN−1

divx′(φk|u|sx′)dx′dxN

+

∫
RN−1

∫ ∞
0

(φk|u|sxN
)xN

dx
N
dx′ = 0.

Since div(φk|u|sx) = Nφk|u|s+ |u|s(x ·∇φk)+sφk|u|s−2u(x ·∇u), we conclude that

(3.6)

∫
φk|u|s−2u(x · ∇u) = −N

s

∫
φk|u|s + o(1),

as k → +∞. For proving (3.3) it is sufficient to multiply the first equation in (P )
by φku, integrate both sides over RN+ , use (3.5) and (3.6), take k → +∞ and apply
the Lebesgue Theorem.

We now proceed with the proof of the second statement. A direct computation
yields

φk(x · ∇u)∆u = φkdiv (F1 − F2) +
N − 2

2
φk|∇u|2,

with F1 := (x · ∇u)∇u and F2 := x|∇u|2/2. Notice that∫
div(φkF1) =

∫ ∞
0

∫
RN−1

divx′(φk(x · ∇u)∇x′u)dx′dxN

+

∫ ∞
0

∫
RN−1

(φk(x · ∇u)uxN
)xN

dx′dxN

= −
∫
RN−1

φk(x′ · ∇x′u)uxN
dx′

=

∫
RN−1

φk(x′ · ∇x′u)|u|2∗−2u dx′.

The same argument used in (3.6) gives∫
div(φkF1) = −N − 1

2∗

∫
RN−1

φk|u|2∗dx′ + o(1),

as k → +∞. Moreover, since
∫

div(φkF2) = 0, we conclude that∫
div (φk(F1 − F2)) =

∫
RN−1

φk(x′ · ∇x′u)|u|2∗−2u dx′ + o(1).
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Recalling that φkdiv(Fi) = div(φkFi)−∇φk · Fi, we can use the above expression,
the definition of φk, the boundedness of |φ′|∞ and the Lebesgue Theorem to obtain∫

φkdiv (F1 − F2) = −N − 1

2∗

∫
RN−1

φk|u|2∗dx′ + o(1),

as k → +∞. For proving (3.4) it is sufficient to multiply the first equation in (P ) by
φk(x ·∇u), integrate both sides over RN+ , use (3.6), the above equality, let k → +∞
and apply the Lebesgue Theorem. �

Remark 3.2. If u is a solution of problem (P ), we can use (3.3) and (3.4) to get∫
(x · ∇u)2 = 2

(
λ+

N(N − 2)

8

)
|u|22.

In particular, problem (P ) does not have solution for any λ ≤ λ̄ := (N/4)−(N2/8).

We now establish a Hardy-type inequality which will play an important role in
the proof of Theorem 1.2.

Proposition 3.3 (Hardy Inequality). If N ≥ 3 then, for any u ∈ X, there holds

(3.7)
N2

4

∫
u2 ≤

∫
(x · ∇u)2.

Proof. Suppose first that u ∈ C∞c (RN+ ). Since div(u2x) = 2u(x · ∇u) + Nu2, we
can use the Fubini and Divergence Theorem to get

0 =
1

2

∫
div(u2x) =

∫
u(x · ∇u) +

N

2

∫
u2.

Hence

N

2

∫
u2 ≤

∫
|u|| (x · ∇u) | ≤

(∫
u2

)1/2(∫
(x · ∇u)2

)1/2

,

and the inequality follows.
For the general case we consider (un) ⊂ X such that ‖un − u‖ → 0. Since

K(x)|∇un|2 → K(x)|∇u|2 in L1(RN+ ), there exists g ∈ L1(RN+ ) such that, up

to a subsequence, K(x)|∇un(x)| ≤ g(x) a.e. in RN+ . Thus, |x · ∇un(x)|2 ≤
|x|2g(x)K(x)−1 a.e. in RN+ . This last function is integrable and therefore we can
use the Lebesgue Theorem to obtain the desired inequality by approximation. �

We finish this section proving our nonexistence result.

Proof of Theorem 1.2. If we multiply (3.3) by (N − 2)/2 and add it to (3.4) we
obtain ∫

(x · ∇u)2 = 2

(
λ+

N(N − 2)

8

)
|u|22.

This, together with the Hardy inequality (3.7), gives

N2

4
|u|22 ≤ 2

(
λ+

N(N − 2)

8

)
|u|22.

Hence, if u 6≡ 0, we have that λ ≥ (N/4) and this proves the first statement of
Theorem 1.2.
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For the second one, we first notice that the first equation in (3.1) can be written
as −div(K(x)∇u) = λK(x)u. Thus, if ϕ1 > 0 is a λ1-eigenfunction of this linear
problem, then it is a critical point of the functional

J(v) =
1

2
‖v‖2 − λ1

2
‖v‖22, v ∈ X.

For the same reason, the solution u of the problem (P ) is a critical point of

Iλ(v) =
1

2
‖v‖2 − λ

2
‖v‖22 −

1

2∗
‖v‖2

∗

2∗ −
1

2∗
v 2∗

2∗
, v ∈ X.

The equality 0 = J ′(ϕ1)u = I ′λ(u)ϕ1 can be rewritten as

(λ1 − λ)

∫
K(x)uϕ1 =

∫
K(x)u2∗−1ϕ1 +

∫
RN−1

K(x′, 0)u2∗−1ϕ1dx
′.

Since ϕ1 > 0 we conclude that, if u ≥ 0 is nonzero, then λ < λ1 = N/2. 2

4. Proof of Theorem 1.4

In this section we prove Theorem 1.4. Besides the Sobolev constant S0 defined
in (1.2), we also consider

S := inf
ϕ∈X\{0}

∫
K(x)|∇ϕ|2(∫
K(x)|ϕ|2

∗
)2/2∗

> 0,

which is positive due to the embedding X ↪→ L2∗

K (RN+ ). For obtaining a nonzero
solution for the problem (P ) we consider the energy functional Iλ : X → R given
by

Iλ(u) :=
1

2
‖u‖2 − λ

2
‖u‖22 −

1

2∗
‖u+‖2

∗

2∗ −
1

2∗
u+ 2∗

2∗
,

where u+(x) := max{u(x), 0}. Set

Σ :=
{

(α, β) ∈ [0,+∞)2 : α+ β > 0, α+ β ≥ max{Sα2/2∗ , S0β
2/2∗}

}
and the minimax level

c∗ := min

{
Ψ(α, β) :=

(
1

2
− 1

2∗

)
α+

(
1

2
− 1

2∗

)
β : (α, β) ∈ Σ

}
> 0.

In order to verify that c∗ > 0 we take (α, β) ∈ Σ arbitrary. If β ≤ α, then
Sα2/2∗ ≤ α+ β ≤ 2α and therefore α ≥ (S/2)N/2. Thus

Ψ(α, β) ≥ 1

2N
(α+ β) ≥ α

2N
≥ 1

2N

(
S

2

)N/2
.

If α < β, an analogous computation yelds β ≥ (S0/2)N−1, and therefore

Ψ(α, β) ≥ β

2N
≥ 1

2N

(
S0

2

)N−1

.

It follows that c∗ > 0.
The next result is a version of a convergence result due to Brezis and Lieb.

Although we believe it is not essentially new, we were not able to locate a precise
reference and therefore we present a proof for completeness (borrowed from [6]).
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Lemma 4.1. If (un) ⊂ X is such that un ⇀ u weakly in X then, up to a subse-
quence,

‖u+
n ‖2

∗

2∗ = ‖(un − u)+‖2
∗

2∗ + ‖u+‖2
∗

2∗ + o(1)

and
u+
n

2∗
2∗

= (un − u)+ 2∗
2∗

+ u+ 2∗
2∗

+ o(1).

Proof. From the weak convergence and the compact embeddings we conclude that
(un) is bounded in X and, up to a subsequence, un(x) → u(x) for a.e. x ∈ RN+ .

Setting F (s) := (s+)2∗ and using the Mean Value Theorem, we get

|F (s+ t)− F (s)| = |F ′(s+ θt)t| ≤ 2∗|s+ θt|2
∗−1|t| ≤ c1|s|2

∗−1|t|+ c2|t|2
∗
,

for all s, t ∈ R, where θ ∈ [0, 1] and c1, c2 > 0. Given ε > 0, we can use Young’s
inequality to obtain Aε > 0 such that

(4.1) |F (s+ t)− F (s)| ≤ ε|s|2
∗

+Aε|t|2
∗
, ∀ s, t ∈ R.

We now consider the functions φn, ψn,ε defined by

φn(x) := |F (un)− F (un − u)− F (u)|, ψn,ε(x) :=
(
φn − ε|un − u|2

∗
)+

.

Using (4.1) with s = un − u and t = u, we obtain

φn(x) ≤ |F (u)|+ ε|un − u|2
∗

+Aε|u|2
∗

from which it follows that

ψn,ε(x) ≤ (1 +Aε)|u|2
∗
.

Since ψn,ε(x) → 0 for a.e. x ∈ RN+ , we can use Leguesgue Theorem to conclude
that

∫
K(x)ψn,ε → 0, as n→ +∞. Thus,

lim sup
n→+∞

∫
K(x)φn ≤ lim sup

n→+∞

∫
K(x)

(
ψn,ε + ε|un − u|2

∗
)
≤ εc3.

Since ε > 0 is arbitrary the first statement of the lemma is proved. The argument
for the second one is analogous, since we also have suitable trace embeddings and
the required compactness properties. �

In the next result we present the relation between c∗ and the range of compact-
ness for the energy functional Iλ.

Proposition 4.2. Suppose that 0 < λ < (N/2). If (un) ⊂ X is such that I ′λ(un)→
0 and Iλ(un)→ c < c∗, then (un) has a convergent subsequence in X.

Proof. Since

c+ o(1) + o(1)‖un‖ = Iλ(un)− 1

2∗
I ′λ(un)un ≥

(
1

2
− 1

2∗

)(
1− λ

λ1

)
‖un‖2,

as n→ +∞, we conclude that (un) is bounded in X. Hence, up to a subsequence,
un ⇀ u weakly in X and un(x)→ u(x) for a.e. x ∈ RN+ . Let s := 2∗/(2∗ − 1) and

s′ = 2∗ its conjugated exponent. Since the sequence gn(x) := K(x)1/s(u+
n )2∗−1 is

bounded in Ls(RN+ ), it follows from the pointwise convergence of (un) that gn ⇀

K1/s(u+)2∗−1 weakly in Ls(RN+ ). Since K1/s′ϕ ∈ Ls′(RN+ ), for any ϕ ∈ C∞c (RN+ ),
we get

lim
n→+∞

∫
K(x)(u+

n )2∗−1ϕ =

∫
K(x)(u+)2∗−1ϕ, ∀ϕ ∈ C∞c (RN+ ).
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An analogous sargument gives

lim
n→+∞

∫
RN−1

K(x′, 0)(u+
n )2∗−1ϕdx′ =

∫
RN−1

K(x′, 0)(u+)2∗−1ϕdx′.

The above equalities and I ′λ(un)→ 0 imply that o(1) = I ′λ(un)ϕ→ I ′λ(u)ϕ = 0, for

all ϕ ∈ C∞c (RN+ ), and therefore I ′λ(u) = 0. In particular, I ′λ(u)u = 0 and we have
that

Iλ(u) = Iλ(u)− 1

2
I ′λ(u)u =

(
1

2
− 1

2∗

)
‖u+‖2

∗

2∗ +

(
1

2
− 1

2∗

)
u+ 2∗

2∗
≥ 0.

We now set vn := (un − u) and notice that, by going consecutively to subse-
quences, we may assume that are well defined

α := lim
n→+∞

‖vn‖2, γ := lim
n→+∞

‖v+
n ‖2

∗

2∗ , β := lim
n→+∞

v+
n

2∗
2∗
,

and that vn → 0 strongly in L2
K(RN+ ). We shall prove that α = 0.

First notice that the weak convergence in the Hilbert space X implies that

‖un − u‖2 = ‖un‖2 − 2〈un, u〉X + ‖u‖2 = ‖un‖2 − ‖u‖2 + o(1),

where 〈·, ·〉X stands for the inner product in X. Moreover, from the classical Brezis-
Lieb Lemma (see [26, Lemma 1.32]), we also have that

‖un − u‖22 = ‖un‖22 − ‖u‖22 + o(1).

Hence, we can use the above equalities, Lemma 4.1 and Iλ(u) ≥ 0 to obtain

c+ o(1) =
1

2
‖un‖2 −

λ

2
‖un‖22 −

(
1

2∗
‖u+

n ‖2
∗

+
1

2∗
u+
n

2∗
2∗

)
= Iλ(vn) + Iλ(u) + o(1)

≥ 1

2
‖vn‖2 −

λ

2
‖vn‖22 +

(
1

2∗
‖v+
n ‖2

∗

2∗ +
1

2∗
v+
n

2∗
2∗

)
+ o(1),

as n→ +∞. It follows that

(4.2) c ≥ 1

2
α−

(
1

2∗
γ +

1

2∗
β

)
.

Arguing as above, we can prove that

‖vn‖2 − λ‖vn‖22 − ‖v+
n ‖2

∗

2∗ − v+
n

2∗
2∗

= I ′λ(vn)vn = I ′λ(un)un − I ′λ(u)u+ o(1) = o(1),

and therefore, taking the limit and recalling that ‖vn‖2 → 0, we obtain

(4.3) α = (γ + β).

Suppose, by contradiction, that α > 0. Since by definition α ≥ Sγ2/2∗ and
α ≥ S0β

2/2∗ , we can use the above inequality to conclude that (γ, β) ∈ Σ. Thus,
(4.2) and (4.3) imply that

c∗ ≤ Ψ(γ, β) =

(
1

2
− 1

2∗

)
γ +

(
1

2
− 1

2∗

)
β ≤ c,

which contradicts c < c∗. Hence, α = 0 and the proof is finished. �
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Proof of Theorem 1.4. Suppose that λ < (N/2). By (3.2) and the embeddings of
the space X we can obtain c1, c2 > 0 such that

Iλ(u) ≥
[1

2

(
1− λ

λ1

)
− c1‖u‖2

∗−2 − c2‖u‖2∗−2
]
‖u‖2, ∀u ∈ X.

Hence, there exist η, ρ > 0 such that Iλ(u) ≥ η, whenever ‖u‖ = ρ. A direct
computation shows that Iλ(tu) → −∞, as t → +∞, for any positive function
u ∈ X. So, we obtain from the Mountain Pass Theorem [3] (see also the last part
of the proof of [26, Theorem 4.2]) a sequence (un) ⊂ X such that I ′λ(un)→ 0 and

Iλ(un)→ c̃λ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)),

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, Iλ(γ(1)) < 0}.
Notice that, if u+ 6= 0, then Iλ(tu)→ −∞, as t→ +∞ and therefore Iλ(t0u) < 0

for t0 > 0 large. Using the path γu(t) := tt0u, we obtain

c̃λ ≤ max
t∈[0,1]

Iλ(γu(t)) ≤ max
t≥0

Iλ(tu)

and therefore

c̃λ ≤ cλ := inf
u∈X,u+ 6=0

max
t≥0

Iλ(tu).

We claim that cλ < c∗ for any λ < λ1 close to λ1. If this is true, it follows from
Proposition 4.2 that, along a subsequence, un → u strongly in X. Since Iλ is of
class C1 we have that Iλ(u) = cλ > 0 and I ′λ(u) = 0, that is, u is a nonzero solution
of (P ). By using the definition of λ1 in (3.2) and setting u− := u+ − u, we can
compute

0 = I ′λ(u)u− = −‖u−‖2 + λ‖u−‖22 ≤
(
λ− λ1

λ1

)
‖u−‖2.

Since λ < (N/2) = λ1, we conclude that u− ≡ 0, that is, u ≥ 0 a.e. in RN+ . We can

now use the Maximum Principle to conclude that u > 0 a.e. in RN+ .
In order to prove the claim, let ϕ1 > 0 be a positive λ1-eigenfunction of the

linear problem (3.1) and notice that, for some tλ > 0, there holds

(4.4) cλ ≤ Iλ(tλϕ1) = max
t≥0

Iλ(tϕ1).

A direct computation gives

(4.5) Dλt
2
λ = t

2N/(N−2)
λ A+ t

2(N−1)/(N−2)
λ B,

with

Dλ := ‖ϕ1‖2 − λ‖ϕ1‖22, A := ‖ϕ1‖2
∗

2∗ , B := ϕ1
2∗
2∗
.

Setting sλ := t
2/(N−2)
λ we can rewrite (4.5) as As2

λ+Bsλ−Dλ = 0, and consequently

t
2/(N−2)
λ =

−B +
√
B2 + 4ADλ

2A
.

Since ‖ϕ1‖2 = λ1‖ϕ1‖22, we have that limλ→λ−1
Dλ = 0, from which it follows that

limλ→λ−1
tλ = 0. Hence, recalling that c∗ > 0 and

Iλ(tλϕ1) = Iλ(tλϕ1)− 1

2
I ′λ(tλϕ1)(tλϕ1)

=
1

N
t2
∗

λ A+
1

2(N − 1)
t2∗λ B,



14 L.C.F. FERREIRA, M.F. FURTADO, E.S. MEDEIROS, AND J.P.P. DA SILVA

we infer from (4.4) that cλ < c∗, for any λ sufficiently close to λ1. This finishes the
proof. 2

5. Proof of Theorem 1.5

This section is devoted to the proof of Theorem 1.5. Notice that the energy

functional associated to problem (P̃ ) is

Iλ(u) :=
1

2
‖u‖2 − λ

2
‖u‖22 −

1

2∗
u+ 2∗

2∗
, ∀u ∈ X.

As in the last section, we first prove a local compactness result for the functional Iλ.
The critical level is now related with the best constant S0 of the trace embedding
defined in (1.2), as we can see by the result below:

Proposition 5.1. Suppose that 0 < λ < (N/2). If (un) ⊂ X is such that I ′λ(un)→
0 and Iλ(un)→ c with

c < c0 :=
1

2(N − 1)
SN−1

0 ,

then (un) has a convergent subsequence in X.

Proof. Arguing as in the proof of Proposition 4.2 we can prove that (un) ⊂ X is
bounded. Also, by passing to a subquence, we may assume that un ⇀ u weakly in
X, I ′λ(u) = 0 and Iλ(u) ≥ 0. Moreover, if we set vn := un − u, we can define

α := lim
n→+∞

‖vn‖2, β := lim
n→+∞

v+
n

2∗
2∗
,

and we shall prove that α = 0. As in the proof of Proposition 4.2, we have that

Iλ(un − u) =
1

2
‖vn‖2 −

λ

2
‖vn‖22 −

1

2∗
v+
n

2∗
2∗

= Iλ(un)− Iλ(u) + o(1),

as n→ +∞. Since Iλ(u) ≥ 0, we can take the limit to conclude that

α

2
− β

2∗
≤ c.

Moreover, taking the limit in

‖vn‖2 − λ‖vn‖22 − v+
n

2∗
2∗

= I ′λ(vn)vn = I ′λ(un)un − I ′λ(u)u+ o(1) = o(1),

we obtain that α = β, and therefore

(5.1)
1

2(N − 1)
α =

(
1

2
− 1

2∗

)
α ≤ c.

On the other hand, letting n→ +∞ in the inequality S0 v
+
n

2
2∗ ≤ ‖vn‖

2, we obtain

S0α
2/2∗ ≤ α.

Suppose, by contradiction, that α > 0. Then the above expression implies that
α ≥ SN−1

0 and we can use (5.1) to conclude that

1

2(N − 1)
SN−1

0 ≤ 1

2(N − 1)
α ≤ c,

which is a contradiction. Hence, α = 0 and the proof is complete. �
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We are ready to present the proof of Theorem 1.5.

Proof of Theorem 1.5. If 0 < λ < (N/2), we can argue as in the proof of Theorem
1.4 to obtain a sequence (un) ⊂ X such that I ′λ(un) → 0 and Iλ(un) → c̃λ, where
this last number is the Mountain Pass level which, as before, satisfies

c̃λ ≤ cλ := inf
u∈X,u+ 6=0

max
t≥0

Iλ(tu).

Let c0, λ
∗
N > 0 as in the statement of Proposition 5.1 and Theorem 1.5, respectively.

We claim that

(5.2) cλ < c0, whenever λ∗N < λ < (N/2).

Since the proof of this fact is rather long, we will postpone it for the end of the
paper. Assuming the claim, we can argue as in the proof of Theorem 1.4 to obtain
the desired solution. 2

We devote the rest of the paper to prove that (5.2) holds. Let φ ∈ C∞(RN+ , [0, 1])

be such that φ ≡ 1 in B1(0) ∩ RN+ and φ ≡ 0 in RN+ \B2(0). Define the function

uε(x) := K(x)−1/2φ(x)Uε(x),

with

Uε(x
′, xN ) =

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2
.

The definition of cλ and a straightforward computation show that

cλ ≤ max
t>0

Iλ(tuε) =
1

2(N − 1)

(
‖uε‖2 − λ‖uε‖22

uε 2
2∗

)N−1

.

Hence, the statement (5.2) is a direct consequence of the above inequality and the
following result:

Proposition 5.2. If N ≥ 7 and λ∗N < λ < (N/2), then

‖uε‖2 − λ‖uε‖22
uε 2

2∗

< S0,

for any ε > 0 sufficiently small.

For the proof we need some preliminary results. We first set

AN :=

∫
|∇Uε|2, BN :=

(∫
RN−1

|Uε|2∗dx′
)2/2∗

and recall that, for any a, b > 0, the Beta function is defined as

(5.3) B(a, b) :=

∫ ∞
0

ra−1

(r + 1)a+b
dr.

Lemma 5.3. Suppose that N ≥ 7. As ε→ 0+, we have that

‖uε‖2 = AN +O(ε4) + ε2γN ,

where

γN :=
σN−2(N − 2)

4(N − 4)

[
B

(
N + 1

2
,
N − 3

2

)
+

1

(N − 3)
B

(
N − 1

2
,
N − 1

2

)]
.
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Proof. By using the definition of φ and Uε, we can easily compute∫
K(x)|∇uε|2 =

∫ [
|∇φ|2U2

ε + 2φUε(∇φ · ∇Uε)−
1

2
φU2

ε (x · ∇φ)

]
+

∫
φ2|∇Uε|2 −

1

2

∫
φ2Uε(x · ∇Uε) +

1

16

∫
φ2|x|2U2

ε .

Moreover∫
|∇φ|2U2

ε = εN−2

∫
{1≤|x|≤2}

|∇φ|2

[|x′|2 + (xN + ε)2]N−2
= O(εN−2),

as ε → 0+. Since similar computations hold for the other terms into the brackets
above, we conclude that

(5.4) ‖uε‖2 = O(εN−2) +

∫
φ2|∇Uε|2 −

1

2

∫
φ2Uε(x · ∇Uε) +

1

16

∫
φ2|x|2U2

ε .

We shall estimate each of the integrals on the right-hand side above. For the
first one, we notice that

∂Uε
∂xi

= −(N − 2)ε(N−2)/2 xi
[|x′|2 + (xN + ε)2]N/2

, i = 1, 2, . . . , (N − 1),

and
∂Uε
∂xN

= −(N − 2)ε(N−2)/2 (xN + ε)

[|x′|2 + (xN + ε)2]N/2
.

Thus, using that φ2|∇Uε|2 = (φ2 − 1)|∇Uε|2 + |∇Uε|2, we obtain∫
φ2|∇Uε|2 = (N − 2)2εN−2

∫
{|x|≥1}

(φ2 − 1)

[|x′|2 + (xN + ε2)]N−1
dx+

∫
|∇Uε|2

and therefore

(5.5)

∫
φ2|∇Uε|2 = O(εN−2) +

∫
|∇Uε|2.

By using the same trick calculation, we get∫
φ2Uε(x · ∇Uε) = O(εN−2) +

∫
Uε(x · ∇Uε)

= O(εN−2)− (N − 2)εN−2

∫
(x′, xN ) · (x′, xN + ε)

[|x′|2 + (xN + ε)2]N−1

= O(εN−2)− (N − 2)εN−2

∫
|x′|2 + x2

N + εxN
[|x′|2 + (xN + ε)2]N−1

= O(εN−2)− (N − 2)εN−2

∫
ε2
(
|x′/ε|2 + (xN/ε)

2 + (xN/ε)
)

ε2(N−1) [|x′/ε|2 + (xN/ε+ 1)2]
N−1

.

The change of variables x 7→ (x/ε) gives∫
φ2Uε(x · ∇Uε) = O(εN−2)− (N − 2)ε2

∫
|x′|2 + x2

N + xN
[|x′|2 + (xN + 1)2]N−1

,

and therefore

(5.6) −1

2

∫
φ2Uε(x · ∇Uε) = O(εN−2) + ε2 (N − 2)

2

∫
|x′|2 + x2

N + xN
[|x′|2 + (xN + 1)2]N−1

.
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Arguing as above, we can compute the last term as follows∫
φ2|x|2U2

ε = εN−2

∫
{|x|≥1}

(
φ2 − 1

)
|x|2

[|x′|2 + (xN + ε)2]N−2
dx+

∫
|x|2U2

ε

Since N ≥ 7, the first integral on the righ-hand side above is O(1) as ε → 0+.
Thus, ∫

φ2|x|2U2
ε = O(εN−2) + εN−2

∫
|x|2

[|x′|2 + (xN + ε)2]N−2

= O(εN−2) + ε4

∫
|x|2

[|x′|2 + (xN + 1)2]N−2
,

and we infer that
1

16

∫
φ2|x|2U2

ε = O(ε4).

By replacing the above expression, (5.6) and (5.5) in (5.4) and using the definition
of AN , we obtain

(5.7) ‖uε‖2 = AN +O(ε4) + ε2 (N − 2)

2
[C1,N + C2,N ] ,

with

C1,N :=

∫
|x′|2

[|x′|2 + (xN + 1)2]N−1
, C2,N :=

∫
xN (xN + 1)

[|x′|2 + (xN + 1)2]N−1
.

We now proceed with the computation of the two integrals above. For the first

one, we use the Fubini Theorem, the change of variables x′ 7→ x′

xN+1 and polar
coordinates to get

C1,N =

∫ ∞
0

∫
RN−1

|x′|2

[|x′|2 + (xN + 1)2]N−1
dx′dxN

=

[∫ ∞
0

(xN + 1)2−2(N−1)+(N−1)dxN

] [∫
RN−1

|x′|2

[|x′|2 + 1]N−1
dx′
]

=
σN−2

(N − 4)

∫ ∞
0

r2rN−2

(r2 + 1)N−1
dr =

σN−2

(N − 4)

∫ ∞
0

rN

(r2 + 1)N−1
dr.

The change of variables r2 7→ r in the last integral above gives

C1,N =
σN−2

2(N − 4)

∫ ∞
0

r(N−1)/2

(r + 1)N−1
dr =

σN−2

2(N − 4)
B

(
N + 1

2
,
N − 3

2

)
,

according to the definition of the function B in (5.3).
The computation of C2,N follows the same lines:

C2,N =

∫ ∞
0

∫
RN−1

xN (xN + 1)

[|x′|2 + (xN + 1)2]N−1
dx′dxN

=

[∫ ∞
0

xN (xN + 1)1−2(N−1)+(N−1)dxN

] [∫
RN−1

1

[|x′|2 + 1]N−1
dx′
]

=

[∫ ∞
0

xN (xN + 1)−N+2dxN

]
σN−2

∫ ∞
0

rN−2

(r2 + 1)N−1
dr.
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By making the changes of variables (xN + 1) 7→ xN and r2 7→ r in the first and
second integral above, respectively, we get

C2,N =
σN−2

2(N − 4)(N − 3)

∫ ∞
0

r(N−3)/2

(r + 1)N−1
dr

=
σN−2

2(N − 4)(N − 3)
B

(
N − 1

2
,
N − 1

2

)
,

where we have used (5.3) again. The statement of the lemma is a consequence of
(5.7) and the values of C1,N and C2,N just calculated. �

Lemma 5.4. Suppose that N ≥ 7. As ε→ 0+, we have that

‖uε‖22 = O(εN−2) + ε2αN , uε
2∗
2∗

= B
2∗/2
N − ε2DN + o(ε2),

where

αN :=
σN−2

2(N − 4)
B

(
N − 1

2
,
N − 3

2

)
, DN :=

σN−2

8(N − 2)
B

(
N + 1

2
,
N − 3

2

)
.

Proof. For the proof we argue as in the former lemma. Notice that∫
K(x)|uε|2 =

∫
φ2U2

ε = O(εN−2) + εN−2

∫
1

[|x′|2 + (xN + ε)2]N−2
,

and therefore

‖uε‖22 = O(εN−2) + ε2

∫
1

[|x′|2 + (xN + 1)2]N−2
.

If we call C3,N the integral above, we can use (5.3) to get

C3,N =

∫ ∞
0

∫
RN−1

1

[|x′|2 + (xN + 1)2]N−2
dx′dxN

=

[∫ ∞
0

(xN + 1)−N+3dxN

]
σN−2

∫ ∞
0

rN−2

(r2 + 1)N−2
dr

=
σN−2

2(N − 4)

∫ ∞
0

r(N−3)/2

(r + 1)N−2
dr

=
σN−2

2(N − 4)
B

(
N − 1

2
,
N − 3

2

)
,

which proves the first part of the lemma.
For the second statement, we notice that∫

RN−1

K(x′, 0)|uε|2∗dx′ = εN−1

∫
RN−1

K(x′, 0)1/(2−N)φ2∗

[|x′|2 + ε2]N−1
dx′

= O(εN−1) + εN−1

∫
RN−1

K(x′, 0)1/(2−N)

[|x′|2 + ε2]N−1
dx′

= O(εN−1) +

∫
RN−1

K(εx′, 0)1/(2−N)

[|x′|2 + 1]N−1
dx′.

Since K(x) = exp(|x|2/4), we get∫
RN−1

K(εx′, 0)1/(2−N)

[|x′|2 + 1]N−1
dx′ =

∫
RN−1

|Uε|2∗dx′ +
∫
RN−1

[
exp

(
−ε2 |x′|2

4(N−2)

)
− 1
]

[|x′|2 + 1]N−1
dx′
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and therefore we can use N ≥ 7, the definition of BN and Taylor’s formula to get

uε
2∗
2∗

= B
2∗/2
N − ε2 C4,N

4(N − 2)
+O(ε4),

where

C4,N :=

∫
RN−1

|x′|2

[|x′|2 + 1]N−1
dx′ = σN−2

∫ ∞
0

r2rN−2

(r2 + 1)N−1
dr

=
σN−2

2

∫
r(N−1)/2

(r + 1)N−1
dr =

σN−2

2
B

(
N + 1

2
,
N − 3

2

)
.

The result follows from the above expressions. �

Now we turn to prove Proposition 5.2.

Proof of Proposition 5.2. We start by using the second statement of Lemma 5.4
and the Mean Value Theorem to get

uε
2
2∗ =

(
B

2∗/2
N − ε2DN + o(ε2)

)2/2∗

= BN +
2

2∗

[
B

2∗/2
N +O(ε2)

]−1+(2/2∗) [
−ε2DN + o(ε2)

]
= BN − ε2 2

2∗
B

(2−2∗)/2
N DN + o(ε2),

as ε→ 0+, from which it follows that

1

uε 2
2∗

=
1

BN
+ ε2 2

2∗
B
−2+(2−2∗)/2
N DN + o(ε2).

Thus, if we set

βN :=
2

2∗
ANB

−2/2∗
N DN ,

we can use the expression of uε
−2
2∗

, Lemma 5.3 and some computations to get, for
N ≥ 7,

‖uε‖2 − λ‖uε‖22
uε 2

2∗

=
AN
BN

+ ε2

(
γN − λαN + βN

BN
+ o(1)

)
.

Since AN/BN = S0 (see for instance [10]), we conclude that the left-hand side
above is smaller than S0 if ε > 0 is sufficiently small and λ satisfies

λ > ΛN :=
γN
αN

+
βN
αN

.

In view of the definition of λ∗N in the statement of Theorem 1.5, it remains to
show that

(5.8) ΛN =
N

4
+

(N − 4)

8
.

In order to do this, we first recall that the Beta function can be written as

(5.9) B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
,
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where

Γ(a) :=

∫ +∞

0

ra−1e−rdr, a > 0,

is the Gamma function. For simplicity, we denote

Γ0 := Γ

(
N − 1

2

)
.

Since Γ(a) = (a− 1)Γ(a− 1), we have that

(5.10) Γ

(
N + 1

2

)
=

(N − 1)

2
Γ0, Γ

(
N − 3

2

)
=

2

(N − 3)
Γ0.

This, the definition of γN in Lemma 5.3 and (5.9), give

γN =
σN−2(N − 2)

4(N − 4)

[
Γ(N+1

2 )Γ(N−3
2 )

Γ(N − 1)
+

1

(N − 3)

Γ(N−1
2 )Γ(N−1

2 )

Γ(N − 1)

]
.

=
σN−2(N − 2)

4(N − 4)Γ(N − 1)

[
(N − 1)

2

2

(N − 3)
Γ2

0 +
1

(N − 3)
Γ2

0

]
and therefore

γN =
σN−2N(N − 2)

4(N − 3)(N − 4)

Γ2
0

Γ(N − 1)
.

On the other hand, from Lemma 5.4, (5.9), (5.10) and Γ(N−1) = (N−2)Γ(N−
2), we get

(5.11) αN =
σN−2

2(N − 4)

Γ(N−1
2 )Γ(N−3

2 )

Γ(N − 2)
=

σN−2(N − 2)

(N − 3)(N − 4)

Γ2
0

Γ(N − 1)
.

Thus,

(5.12)
γN
αN

=
N

4
.

We now compute the other term of ΛN , namely βN/αN . First notice that,
arguing as in Lemma 5.3, we get

AN =

∫
|∇Uε|2 = (N − 2)2

∫
1

[|x′|2 + (xN + 1)2]N−1

= (N − 2)2

[∫ +∞

0

(xN + 1)−N+1dxN

] [∫
RN−1

1

[|x′|2 + 1]N−1
dx′
]

=
σN−2(N − 2)

2

∫ ∞
0

r(N−3)/2

(r + 1)N−1
dr

and therefore

AN =
σN−2(N − 2)

2
B

(
N − 1

2
,
N − 1

2

)
.

The same argument gives

B
−2∗/2
N =

(∫
RN−1

|Uε|2∗dx′
)−1

=

(∫
RN−1

1

[|x′|2 + 1]N−1
dx′
)−1

=
2

σN−2

1

B
(
N−1

2 , N−1
2

) .
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Now, using the value of DN given in Lemma 5.4, (5.9) and (5.10), we obtain

DN =
σN−2

8(N − 2)
B

(
N + 1

2
,
N − 3

2

)
=

σN−2(N − 1)

8(N − 2)(N − 3)

Γ2
0

Γ(N − 1)
.

Hence,
2

2∗
ANB

−2∗/2
N DN =

σN−2(N − 2)

8(N − 3)

Γ2
0

Γ(N − 1)
,

and therefore we can recall the value of αN in (5.11) to get

βN
αN

=
σN−2(N − 2)

8(N − 3)

Γ2
0

Γ(N − 1)

(N − 3)(N − 4)

σN−2(N − 2)

Γ(N − 1)

Γ2
0

,

that is,
βN
αN

=
(N − 4)

8
.

The equation (5.8) is a consequence of the above equality and (5.12). The theorem
is proved. 2
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