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Abstract. In this work, we investigate the existence of solution for the quasi-

linear elliptic equation

−∆Nu−∆qu = f(u) in RN ,

where 1 < q < N and the nonlinearity f has exponential critical growth in the

Trudinger-Moser sense. In order to obtain the solution, we use a variational
approach based on a new Trudinger-Moser type inequality which is proved

here.
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1. Introduction and main results

In this paper, we aim to investigate the existence of solution for the nonlinear
elliptic equation of (N, q)-Laplacian type

(P) −∆Nu−∆qu = f(u) in RN ,

where ∆mu := div
(
|∇u|m−2∇u

)
stands for the usual m-Laplacian, 1 < q < N

and the nonlinearity f : R → R is a continuous function satisfying some growth
conditions that we will present later.

Before stating our first main result, we need to establish some notations. For
each 1 < r < N , we denote by D1,r(RN ) the closure of C∞

0 (RN ) with respect to
the norm

∥u∥D1,r(RN ) :=

(∫
RN

|∇u|rdx
)1/r

.

In order to consider the two operators in the left-hand side of (P), we shall look
for solutions in the space EN,q defined as the completion of C∞

0 (RN ) with respect
to the norm

∥u∥EN,q :=

(∫
RN

|∇u|Ndx+

(∫
RN

|∇u|qdx
)N/q

)1/N

,

where 1 < q < N .
By using the Gagliardo-Nirenberg inequality and interpolation, we will verify

that the embedding EN,q ↪→ Lr(RN ) is continuous, for any r ≥ q∗ := Nq/(N − q).
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This suggests that EN,q can be embedded into Orlicz spaces. To be more precise,
we define the Young function by

Φα,j0(s) := eα|s|
N/(N−1)

−
j0−1∑
j=0

αj

j!
|s|Nj/(N−1), s ∈ R,

where α > 0 and

j0 :=
⌊q∗(N − 1)

N

⌋
= inf

{
j ∈ N : j ≥ q∗(N − 1)

N

}
.

In our first main result, we prove the following Trudinger-Moser type result:

Theorem 1.1. Suppose that 1 < q < N . Then, for each α > 0 and u ∈ EN,q, the
function Φα,j0(u) belongs to L1(RN ). Moreover, if ωN−1 stands for the measure of
the unit sphere in RN , then

L(α,N, q) := sup
u∈EN,q, ∥u∥

EN,q≤1

∫
RN

Φα,j0(u)dx < +∞.

for any 0 < α < αN := Nω
1/(N−1)
N−1 . Finally, if α > αN , then L(α,N, q) = +∞.

The first results concerning Trudinger-Moser type inequalities have appeared in
the papers of Yudovich, Moser, Trudinger [29, 22, 28], for the bounded domain
case. Similar results for unbounded domains have been established by Cao [12]

and Ruf [25] in R2, and by do Ó [14], Adachi and Tanaka [1], Li and Ruf [20], in
higher dimensions. The proof presented here follows some ideas from the papers
[12, 14, 25]. We finnaly notice that, in the planar case N = 2, we are able to prove
that L(4π, 2, q) < +∞ (see Remark 2.2). For other related results, see for instance
[2, 11, 17, 21] and references therein.

With Theorem 1.1 in hands, we can consider nonlinearities f which behave like

eα|s|
N/(N−1)

at infinity. More specifically, we shall assume that

(f0) f : R → R is continuous and there exists α0 > 0 such that

lim
|s|→+∞

|f(s)|
eα|s|N/(N−1)

=

{
0 if α > α0,
+∞ if α < α0;

(f1) there exists γ ≥ max{N, q∗} such that f(s) = o(|s|γ−1), as s → 0;
(f2) there exists µ > γ such that

0 < µF (s) :=

∫ s

0

f(t)dt ≤ sf(s), for all s ∈ R;

(f3) there exist ξ > 0 and ν > γ such that

F (s) ≥ ξsν , for all s ∈ (0, 1].

Our existence result for equation (P) can be stated as follows:

Theorem 1.2. Assume that 1 < q < N and (f0) − (f2) hold. Then there exists
ξ0 > 0 sufficiently large such that, if (f3) is satisfied with ξ ≥ ξ0, then equation (P)
has a nonzero weak solution.

In order to put our result into perspective, we stress that a great amount of works
have been done on quasilinear equations involving the (p, q)-laplacian problems of
the form

(1.1) −∆pu−∆qu+ a(x)|u|p−2u+ b(x)|u|q−2u = f(u) in RN .
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They were motivated by a wide variety of problems that arises in several branches
of mathematics physics and geometry. We refer to [3, 5, 7, 15, 16, 18] for recent
results and more references.

As mentioned in [13], problem (1.1) comes from a general reaction-diffusion equa-
tion

ut = div(D(u)∇u) + C(x, u), D(u) = |∇u|p−2 + |∇u|q−2

which has a wide spectrum of applications in physics and related sciences such
as biophysics, plasma physics, solid state physics, and chemical reaction design.
In such applications, u represents a concentration, div(D(u)∇u) is the diffusion
generated by the diffusion coefficient D(u) and the reaction term C(x, u) relates
to source and loss processes. Usually, in chemical and biological applications, the
reaction term C(x, u) is a polynomial of u with variable coefficients.

In the recent paper [24], motivated by a first approximation of the Born-Infeld
equation

−div

(
∇u√

1− b−2|∇u|2

)
= f(u) in RN ,

which appears in the study of electromagnetism (see [9, 10]), the authors have
considered problem (1.1) in the zero mass case, namely, a = b = 0 for 1 < q < p <
N . We also refer to [7] for some related results.

The main contribution of this paper is the study of the zero-mass version of (1.1)
in the borderline situation p = N . We are going to use classical Moutain Pass The-
orem to obtain the desired solution. Although this variational approach is by now
standard, the main difficulties here are the correct setting of the functional space
as well as the proof of appropriated Trudinger-Moser type inequalities. Actually,
the abstract results proved for the space EN,q can be used in a large spectrum of
variations of equation (P), depending on the shape of the right-hand side of the
equation.

The remainder of the paper is structured as follows: In Section 2, we present
and prove all the abstract setting to deal with the space EN,q. After that, we prove
Theorem 1.2 in Section 3.

2. A Trudinger-Moser type inequality

In this section, we prove a new Trudinger-Moser type inequality for the space
EN,q. For any R > 0, we denote by BR the open ball {x ∈ RN : |x| < R} and we
use C,C0, C1, . . . to denote (possibly different) positive constants. Finally ∥u∥Lr

stands for the norm of a function u ∈ Lr(RN ),
We state in the sequel a known embedding result from the space Ep,q into

Lebesgue space (see [24, Theorem 2.1]). For completeness, we provide a simpli-
fied proof.

Proposition 2.1. The Sobolev embedding Ep,q ↪→ Lr(RN ) is continuous for any

r ∈

{
[q∗, p∗], if 1 < q < p < N,

[q∗,∞), if 1 < q < p = N.
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Furthermore, the embedding Ep,q
rad := {u ∈ Ep,q : u is radial} ↪→ Lr(RN ) is compact

for any

r ∈

{
(q∗, p∗), if 1 < q < p < N,

(q∗,∞), if 1 < q < p = N.

Proof. If 1 < q < p < N , the first result easily follows from the Gagliardo-
Nirenberg-Sobolev inequality and interpolation. If 1 < q < p = N , we pick
r ∈ [q∗,∞) and choose q < s < N such that s∗ = Ns/(N − s) > r. Since
1/N < 1/s < 1/q, there exists θ ∈ (0, 1) such that

1

s
= (1− θ)

1

q
+ θ

1

N
.

By Hölder’s inequality∫
RN

|∇u|sdx =

∫
RN

|∇u|(1−θ)s|∇u|θsdx

≤
(∫

RN

|∇u|qdx
)s(1−θ)/q (∫

RN

|∇u|Ndx

)θs/N

≤ ∥u∥s(1−θ)

EN,q ∥u∥sθEN,q = ∥u∥sEN,q ,

and therefore the embedding EN,q ↪→ D1,s(RN ) ↪→ Ls∗(RN ) is continuous. Since
EN,q ↪→ D1,q(RN ) ↪→ Lq∗(RN ) and q∗ ≤ r < s∗, we conclude by interpolation that
the embedding EN,q ↪→ Lr(RN ) is continuous.

We deal now with the compactness of Ep,q
rad ↪→ Lr(RN ). Let (un) ⊂ Ep,q

rad be such
that un ⇀ 0 weakly in Ep,q

rad. For any R > 0, we see that (un) ⊂ W 1,q(BR) and
hence un → 0 in Lr(Br) by the compact embedding W 1,q(BR) ↪→ Lr(BR). On the
other hand, by the result proved in [27, Lemma 1], there exists C = C(N, q) > 0
such that,

|u(x)| ≤ C|x|−(N−q)/q∥∇u∥Lq , for a.e. x ̸= 0.

for any u ∈ D1,q
rad(RN ). Hence, by using that Ep,q

rad ⊂ D1,q
rad(RN ) and r > q∗, for

every given ε > 0 we obtain R > 0 large in such a way that∫
RN\BR

|un|rdx =

∫
RN\BR

|un|r−q∗ |un|q
∗
dx

≤ C1R
−(r−q∗)(N−q)/q∥∇un∥r−q∗

Lq

∫
RN\BR

|un|q
∗
dx

< C2ε∥∇un∥rLq ,

where we used the embedding D1,q
rad(RN ) ↪→ Lq∗(RN ). The result follows from the

boundedness of (un) in Ep,q. □

We are ready to prove our first main result.

Proof of Theorem 1.1. Let α ∈ (0, αN ), u ∈ EN,q and denotes by u∗ the Schwarz
symmetrization u. We know that u∗ is radial and non-increasing. Moreover (see
[19]), ∫

RN

|∇u∗|Ndx ≤
∫
RN

|∇u|Ndx,

∫
RN

|∇u∗|qdx ≤
∫
RN

|∇u|qdx,
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and ∫
RN

Φα,j0(u
∗)dx =

∫
RN

Φα,j0(u)dx.

Hence, we can assume that u is radial and non-increasing. By Proposition 2.1 and
interpolation, we can also guarantee that u ∈ W 1,N (BR). Thus, by using that u
is radial and the classical Sobolev embedding theorem, we may assume that u is
continuous, in such away that

v := u− u(R) ∈ W 1,N
0 (BR).

We can use the limit

lim
t→+∞

(1 + t)N/(N−1)

tN/(N−1)
= 1,

to obtain t0 = t0(ε) > 0 such that

(1 + t)N/(N−1) ≤ (1 + ε)tN/(N−1), ∀ t ≥ t0,

where ε > 0 satisfies

(2.1) α(1 + ε) < αN .

By continuity,

(1 + t)N/(N−1) ≤ (1 + ε)tN/(N−1) + C(ε), ∀ t ≥ 0,

for some C(ε) > 0. By using this inequality, we deduce that

(2.2)
|u(x)|N/(N−1) ≤ (|v(x)|+ |u(R)|)N/(N−1)

≤ (1 + ε)|v(x)|N/(N−1) + C(ε)|u(R)|N/(N−1).

Thus, for each α > 0, it follows from the classical Trudinger-Moser inequality (see
[22, 28]) that∫

BR

Φα,j0(u)dx ≤
∫
BR

eα|u|
N/(N−1)

dx

≤ eαC(ε)|u(R)|N/(N−1)

∫
BR

eα(1+ε)|v|N/(N−1)

dx < +∞.

If ∥u∥EN,q ≤ 1, one deduce that∫
BR

|∇v|Ndx =

∫
BR

|∇u|Ndx ≤ ∥u∥NEN,q ≤ 1.

Hence, we can use (2.2) again, (2.1) and the classical Trudinger-Moser inequality
to obtain C1 = C1(R) > 0 such that∫

BR

Φα,j0(u)dx ≤
∫
BR

eα|u|
N/(N−1)

dx

≤ eαC(ε)|u(R)|N/(N−1)

∫
BR

e(1+ε)α|v|N/(N−1)

dx ≤ C1,

which implies that

(2.3) sup
u∈EN,q, ∥u∥

EN,q≤1

∫
BR

Φα,j0(u)dx ≤ C1.
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On the other hand,

(2.4)

∫
RN\BR

Φα,j0(u)dx =

∞∑
j=j0

αj

j!

∫
RN\BR

|u|Nj/(N−1)dx.

Recalling that u ∈ Lq∗(RN ), we can use the result proved in [8, Lemma A.IV] to
obtain CN,q > 0 such that

(2.5) |u(x)| ≤ CN,q|x|−N/q∗∥u∥Lq∗ , for any x ̸= 0.

We have that

Dj :=

∞∑
j=j0

αj

j!

∫
RN\BR

|u|Nj/(N−1)dx =

∞∑
j=j0

αj

j!

∫
RN\BR

|u|−q∗+Nj/(N−1)|u|q
∗
dx.

Consequently, since Nj/(N − 1) ≥ q∗ for any j ≥ j0,

Dj ≤
C−q∗

2

∥u∥q∗
Lq∗

∞∑
j=j0

αj

j!
(C2∥u∥Lq∗ )

Nj/(N−1)
∫
RN\BR

|u|q
∗
dx

≤ C−q∗

2

∞∑
j=j0

[
α (C2∥u∥Lq∗ )

N/(N−1)
]j

j!
,

where C2 := R−N/q∗CN,q. Thus, by using (2.4) and Proposition 2.1, we get∫
RN\BR

Φα,j0(u)dx ≤ C−q∗

2 eα(C2∥u∥Lq∗ )
N/(N−1)

≤ C3e
α(C3∥u∥EN.q )

N/(N−1)

,

with C3 = C3(N, q,R) > 0. This expression and (2.3) imply that

L(α,N, q) ≤ C1 + C3e
αC

N/(N−1)
3 < +∞.

It remains to be proved that L(α,N, q) = +∞ if α > αN . In order to do that,
we are going to use the so-called Moser’s sequence (see e.g., [22]), given by

Mn(x) :=
1

ω
1/N
N−1


(log n)(N−1)/N if |x| ≤ 1/n,

log(1/|x|)
(log n)1/N

if 1/n ≤ |x| ≤ 1,

0 if |x| ≥ 1,

for each n ∈ N. One can easily check that Mn ∈ C∞
0 (BR) ⊂ EN,q and a straight-

forward computation shows that∫
RN

|∇Mn|Ndx =
1

log n

∫ 1

1/n

1

sN
sN−1ds =

1

log n
(log s)

∣∣∣1
1/n

= 1,

and∫
RN

|∇Mn|qdx =
ωN−1

ω
q/N
N−1(log n)

q/N

∫ 1

1/n

1

sq
sN−1ds =

ω
1−q/N
N−1

(log n)q/N (N − q)
sN−q

∣∣∣1
1/n

=
ω
1−q/N
N−1

(log n)q/N (N − q)

(
1− 1

nN−q

)
=: Dn.
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Hence

∥Mn∥N/(N−1)

EN,q =

(∫
RN

|∇Mn|Ndx+

(∫
RN

|∇Mn|qdx
)N/q

)1/(N−1)

=
(
1 +DN/q

n

)1/(N−1)

=: Fn.

Setting M̃n := Mn/∥Mn∥EN,q , we see that M̃n ∈ EN,q and ∥M̃n∥EN,q = 1. Since

|M̃n(x)|N/(N−1) =
|Mn(x)|N/(N−1)

∥Mn∥N/(N−1)

EN,q

=
log n

ω
1/(N−1)
N−1 Fn

, for x ∈ B1/n,

we have that

(2.6)

∫
B1

eα|M̃n|N/(N−1)

dx ≥
∫
B1/n

eα|M̃n|N/(N−1)

dx ≥ nF−1
n α/ω

1/(N−1)
N−1

∫
B1/n

dx

=
ωN−1

N
nF−1

n α/ω
1/(N−1)
N−1 −N .

But α > αN implies that α/ω
1/(N−1)
N−1 = N + δ, for some δ > 0. Hence,

F−1
n

α

ω
1/(N−1)
N−1

−N = N

1−
(
1 +D

N/q
n

)1/(N−1)

(
1 +D

N/q
n

)1/(N−1)

+
δ(

1 +D
N/q
n

)1/(N−1)
.

Since 0 < q < N implies that Dn → 0, as n → +∞, we conclude that the
exponent on the last term of (2.6) is positive when n is large. Thus,

lim
n→+∞

∫
B1

eα|M̃n|N/(N−1)

dx = +∞.

On the other hand,∫
B1

Φα,j0(M̃n)dx+

j0−1∑
j=0

αj

j!

∫
B1

|M̃n|Nj/(N−1)dx =

∫
B1

eα|M̃n|N/(N−1)

dx.

Since the embedding W 1,N
0 (B1) ↪→ Lr(B1) is continuous for any r ≥ 1, it follows

that
j0−1∑
j=0

αj

j!

∫
B1

|M̃n|Nj/(N−1)dx ≤ C3,

and therefore

lim
n→+∞

∫
RN

Φα,j0(M̃n)dx ≥ lim
n→+∞

∫
B1

Φα,j0(M̃n)dx = +∞,

which concludes the proof. □

Remark 2.2. When N = 2, we car argue as in [25] to prove that

L(4π, 2, q) = sup
∥u∥E2,q≤1

∫
BR

Φ4π,j0(u)dx < +∞.

Indeed, let u ∈ E2,q and R > 0. As in the proof of Theorem 1.1, we can assume
that u is radial and nonincreasing. The function v(x) := u(x) − u(R) belongs to
v ∈ H1

0 (BR) and Young’s inequality provides

u2 = v2 + 2vu(R) + u2(R) ≤
[
1 + u2(R)

]
v2 + 1 + u2(R) = w2 + 1 + u2(R),
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in BR, where w :=
(
1 + u2(R)

)1/2
v ∈ H1

0 (BR). If ∥u∥E2,q ≤ 1, it follows from the

definition of the norm in E2,q, (2.5) and the embedding D1,q(R2) ↪→ Lq∗(R2), that∫
BR

|∇w|2dx =
(
1 + u2(R)

) ∫
BR

|∇u|2dx ≤
(
1 + u2(R)

) (
1− ∥∇u∥2Lq(R2)

)
≤ 1− ∥∇u∥2Lq(R2) + C2R−2/q∗∥u∥2Lq∗ (R2)

≤ 1− ∥∇u∥2Lq(R2) + C1R
−2/q∗∥∇u∥2Lq(R2),

for some C1 > 0. We now fix R > 0 such that C1R
−2/q∗ < 1 to conclude that

∥∇w∥L2(BR) ≤ 1. Hence, we can use the classical Trudinger-Moser inequality to
get ∫

BR

Φ4π,j0(u)dx ≤
∫
BR

e4πu
2

dx ≤ e4π(1+u2(R))

∫
BR

e4πw
2

dx ≤ C2,

from which we conclude that

sup
u∈E2,q, ∥u∥E2,q≤1

∫
BR

Φ4π,j0(u)dx ≤ C3.

Arguing as in the proof of Theorem 1.1, we can prove that the integral on the
complement of the ball BR is uniformly bounded and the result follows.

3. Proof of Theorem 1.2

In this section, we obtain a weak solution for the equation (P). The idea is
consider the associated energy functional I : EN,q → R given by

I(u) =
1

N

∫
RN

|∇u|Ndx+
1

q

∫
RN

|∇u|qdx−
∫
RN

F (u)dx.

In order to see that I is well-defined, we pick ε > 0, α > α0 and r ≥ 1, and use
(f0)− (f1) to obtain C > 0 such that, for any s ∈ R,

(3.1)

{
|f(s)| ≤ ε|s|γ−1 + C|s|r−1Φα,j0(s),

|F (s)| ≤ ε|s|γ + C|s|rΦα,j0(s).

For any t ≥ 1, the following inequality holds (see [30, Lemma 2.1]):

(3.2) (Φα,j0(s))
t ≤ Φtα,j0(s), for all s ∈ R.

Hence, for any given u ∈ EN,q, by Hölder’s inequality, Proposition 2.1 and Theorem
1.1, we infer that∫

RN

|F (u)|dx ≤ ε∥u∥γLγ + C∥u∥rLr1r

(∫
RN

Φr2α,j0(u)dx

)1/r2

< +∞,

whenever r1, r2 > 1 satisfies 1/r1+1/r2 = 1 and r1r ≥ q∗. This inequality, together
with standard arguments, shows that I ∈ C1(EN,q,R) and

I ′(u)φ =

∫
RN

[
|∇u|N−2 + |∇u|q−2

]
(∇u · ∇φ)dx−

∫
RN

f(u)φdx,

for any u, φ ∈ EN,q. Hence, the critical points of I are the weak solutions of (P).
Inspired by [6, Lemma 5.1 ], we have the following version of the Principle of

Symmetric Criticality due to Palais [23].
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Proposition 3.1. Suppose that 1 < q < N and (f0)− (f1) hold. If u ∈ EN,q
rad is a

critical point of I restricted to EN,q
rad , then u is a weak solution of equation (P).

Proof. For any u ∈ EN,q
rad fixed, we consider the linear functional Tu : EN,q → R

defined by

Tu(w) :=

∫
RN

|∇u|N−2∇u∇wdx+

∫
RN

|∇u|q−2∇u∇wdx−
∫
RN

f(u)wdx.

We claim that Tu is continuous on EN,q. In fact, by Holder’s inequality, we get∣∣∣∣∫
RN

|∇u|N−2∇u∇wdx

∣∣∣∣ ≤ ∥∇u∥N−1
LN ∥∇w∥NLN ≤ C1∥w∥EN,q

and∣∣∣∣∫
RN

|∇u|q−2∇u∇wdx

∣∣∣∣ ≤ ∥∇u∥q−1
Lq ∥∇w∥qLq ≤ C2

(
∥w∥NEN,q

)1/N
= C2∥w∥EN,q ,

where C1 = C1(u), C2 = C2(u) > 0. If r > max{3, q∗}, then (r − 1)r/2 > q∗.
Hence, we can use Hölder’s inequality, (3.1) and (3.2), to get∣∣∣∣∫

RN

f(u)wdx

∣∣∣∣ ≤ ε

∫
RN

|u|γ−1|w|dx+ C

∫
RN

|u|r−1Φα,j0(u)|w|dx

≤ ε∥u∥γ−1
Lγ ∥w∥γLγ

+ C∥u∥r−1
L(r−1)r/2

(∫
RN

Φrα/(r−3),j0(u)dx

)(r−3)/r

∥w∥rLr ,

where we have used 2/r+(r− 3)/r+1/r = 1. Recalling that γ ≥ q∗, we can apply
Proposition 2.1 and Theorem 1.1, to obtain C3 > 0 such that∣∣∣∣∫

RN

f(u)w dx

∣∣∣∣ ≤ C3∥w∥EN,q .

All together, the above estimates show that Tu is continuous on EN,q.
By uniform convexity, there exists an unique u ∈ EN,q such that Tu(u) =

∥Tu∥(EN,q)′ , where (EN,q)′ denotes the dual space of EN,q. Now, suppose that

u ∈ EN,q
rad verifies Tu(w) = 0, for any w ∈ EN,q

rad , and denote by O(N) the group of
orthogonal transformations in RN . Since u is radial, we have that

Tu(gw) = Tu(w) and ∥gw∥EN,q = ∥w∥EN,q , for each g ∈ O(N).

By picking w = u, we infer from uniqueness that gu = u, for all g ∈ O(N), which

means that u ∈ EN,q
rad . Consequently, ∥Tu∥(EN,q)′ = Tu(ū) = 0 and the proposition

is proved. □

The next result shows that I has the mountain pass geometry.

Lemma 3.2. Suppose that 1 < q < N and (f0)−(f2) hold. There exist τ, ρ > 0 such
that I(u) ≥ τ , if ∥u∥EN,q = ρ. Moreover, there exists e ∈ EN,q, with ∥e∥EN,q > ρ,
such that I(e) < 0.

Proof. Let r > max{N, q∗} and r1, r2 > 1 be such that 1/r1 + 1/r2 = 1. By using
Hölder’s inequality, (3.2) and

(3.3) Φα(ts) = ϕαtN/(N−1)(s), s ∈ R, t > 0,
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we get∫
RN

|u|rΦα,j0(u)dx ≤ ∥u∥rLr1r

(∫
RN

Φ
r2α∥u∥N/(N−1)

EN,q

(
u

∥u∥EN,q

)
dx

)1/r2

.

If ρ0 > 0 is such that r2αρ
N/(N−1)
0 < αN , we can apply Theorem 1.1 and use the

second inequality in (3.1) to obtain C1 > 0 such that∫
RN

F (u)dx ≤ εC1∥u∥γEN,q + C1∥u∥rEN,q ,

for any ε > 0 and ∥u∥EN,q ≤ ρ0. Hence,

I(u) ≥ 1

N

∫
RN

|∇u|Ndx+
1

q

∫
RN

|∇u|qdx− εC1∥u∥γEN,q − C1∥u∥rEN,q .

If ∥u∥EN,q = ρ := min{1, ρ0}, we have that ∥∇u∥Lq ≤ 1. Hence, we infer from
q < N that ∥∇u∥NLq ≤ ∥∇u∥qLq , and therefore

I(u) ≥ 1

N

∫
RN

|∇u|Ndx+
1

N

(∫
RN

|∇u|qdx
)N/q

− εC1∥u∥γEN,q − C1∥u∥rEN,q

= ∥u∥NEN,q

(
1

N
− εC1∥u∥γ−N

EN,q − C1∥u∥r−N
EN,q

)
.

Since γ ≥ N and r > N , we can pick 0 < ε < 1/(NC1) in the above expression to
conclude that the first statement of the lemma holds if ρ > 0 is small enough.

For the second one, we pick a nonzero function φ ∈ C∞
0 (RN ) with support

contained in the ball BR. From (f2), there exist C2, C3 > 0 such that F (s) ≥
C2|s|µ − C3, for any s ∈ R. Therefore,

I(tφ) ≤ C4
tN

N
+ C5

tq

q
− C2t

µ

∫
BR

|φ|µdx+ C3

∫
BR

dx.

Since µ > γ ≥ N , it is sufficient to take e = tφ with t > 0 sufficiently large. □

In view of Lemma 3.2, the minimax level

c∗ := inf
g∈Γ

max
t∈[0,1]

I(g(t)),

where Γ :=
{
g ∈ C([0, 1], EN,q) : g(0) = 0 and I(g(1)) < 0

}
is well-defined and pos-

itive. Moreover, the following estimate holds:

Lemma 3.3. There exists ξ0 > 0 sufficiently large such that, if (f3) is satisfied
with ξ ≥ ξ0, then the Mountain Pass level verifies
(3.4)

c∗ < c0 := min

{
1

2N

(
αN

α0

)N−1(
µ−N

Nµ

)N/q

,
1

2q

(
αN

α0

)q(N−1)/N (
µ−N

Nµ

)}
.

Proof. Let φ ∈ C∞
0 (RN ) be such that φ ≡ 1 in B1/2, φ ≡ 0 in RN \B1, 0 ≤ φ ≤ 1

and |∇φ(x)| ≤ 2, for any x ∈ RN . A simple calculation shows that

1

N

∫
B1

|∇φ|Ndx+
1

q

∫
B1

|∇φ|qdx ≤
(
2N

N
+

2q

q

)
ωN−1

N
.
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This inequality and (f3) imply that

I(tφ) ≤ tN

N

∫
B1

|∇φ|Ndx+
tq

q

∫
B1

|∇φ|qdx−
∫
B1/2

F (tφ)dx

≤ tq
(
2N

N
+

2q

q

)
ωN−1

N
− tνξ

ωN−1

2NN
,

for any t ∈ [0, 1]. We first assume that ξ > ξ1, where ξ1 > 0 is such that

I(φ) ≤
(
2N

N
+

2q

q

)
ωN−1

N
− ξ1

ωN−1

2NN
< 0,

in such a way that path g(t) = tφ belongs to Γ. From the definition of c∗, we obtain

c∗ ≤ max
t∈[0,1]

I(tφ) ≤ ωN−1

N
max
t≥0

[
tq
(
2N

N
+

2q

q

)
− tν

ξ

2N

]
=

ωN−1

N

(
2N

N
+

2q

q

)ν/(ν−q)(
2N

ξ

)q/(ν−q) [( q
ν

)q/(ν−q)

−
( q
ν

)ν/(ν−q)
]
.

Since ν > γ ≥ N > q, the last term above goes to 0, as ξ → +∞. Hence, it is clear
that there exists ξ0 > ξ1 sufficiently large such that c∗ < c0, whenever ξ > ξ0. □

We recall that I satisfies the Palais-Smale condition at level c ∈ R, if any sequence
(un) ⊂ EN,q such that

(3.5) lim
n→+∞

I(un) = c and lim
n→+∞

∥I ′(un)∥(EN,q)′ = 0

has a convergent subsequence.

Lemma 3.4. Suppose that 1 < q < N and (f0)− (f2) hold. If c0 > 0 is as in (3.4),

then the functional I restricted to EN,q
rad satisfies the Palais-Smale condition at any

level 0 < c < c0.

Proof. Let (un) ⊂ EN,q
rad be such that (3.5) holds. By using (f2) and 1 < q < N < µ,

we obtain C1, C2 > 0 such that

C1 + C2∥un∥EN,q ≥ I(un)−
1

µ
I ′(un)un

≥
(

1

N
− 1

µ

)(
∥∇un∥NLN + ∥∇un∥qLq

)
,

which implies that (un) is bounded in EN,q
rad . Thus, up to a consequence, we have

that un ⇀ u weakly in EN,q
rad .

We claim that

(3.6) lim
n→+∞

∥un∥N/(N−1)

EN,q <
αN

α0
.

If this is true, we can pick α > α0 and r1 > 1 such that r1α∥un∥N/(N−1)

EN,q < αN , for
large n ∈ N. From (3.1) with r ≥ q∗ + 1, Hölder’s inequality, (3.2) and (3.3), we
infer that ∣∣∣∣∫

RN

f(un)(un − u)dx

∣∣∣∣ ≤ ε∥un∥γ−1
Lγ ∥un − u∥Lγ

+C ∥un∥r−1
Lr2(r−1)

(∫
RN

Φ
r1α∥un∥N/(N−1)

EN,q ,j0

(
un

∥un∥EN,q

)
dx

)1/r1

∥un − u∥Lr3 ,
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where 1/r1+1/r2+1/r3 = 1 and r3 > q∗. It follows from the boundedness of (un),
Theorem 1.1 and the compactness in Proposition 2.1 that

(3.7) lim
n→+∞

∫
RN

f(un)(un − u)dx = 0.

We proceed now with the proof of (3.6). To this purpose, take into account that
(un) is bounded and using (f2) together with the fact 1 < N < q < µ, we get

c = lim
n→+∞

(
I(un)−

1

µ
I ′(un)un

)
≥ lim

n→+∞

(
1

N
− 1

µ

)(
∥∇un∥NLN + ∥∇un∥qLq

)
,

from which it follows that
lim

n→+∞
∥∇un∥NLN ≤ c

(
Nµ

µ−N

)
lim

n→+∞
∥∇un∥NLq ≤ cN/q

(
Nµ

µ−N

)N/q

.

Hence,

lim
n→+∞

∥un∥N/(N−1)

EN,q ≤ (2c)1/(N−1)

(
Nµ

µ−N

)1/(N−1)

+ (2cN/q)1/(N−1)

(
Nµ

µ−N

)N/[q(N−1)]

.

Since Nµ/(µ−N) > 1 and 1 < q < N , we get(
Nµ

µ−N

)1/(N−1)

<

(
Nµ

µ−N

)N/[q(N−1)]

.

Therefore,

lim
n→+∞

∥un∥N/(N−1)

EN,q ≤

[
2

(
Nµ

µ−N

)N/q
]1/(N−1) (

c1/(N−1) + cN/[q(N−1)]
)
.

If c < 1, then c1/(N−1) + cN/[q(N−1)] ≤ 2c1/(N−1) and therefore

lim
n→+∞

∥un∥N/(N−1)

EN,q ≤

(
2N
(

Nµ

µ−N

)N/q

c

)1/(N−1)

.

Otherwise, if c > 1, then c1/(N−1) + cN/[q(N−1)] ≤ 2cN/[q(N−1)] and in this case

lim
n→+∞

∥un∥N/(N−1)

EN,q ≤

(
2N
(

Nµ

µ−N

)N/q

cN/q

)1/(N−1)

.

All together, the above estimates show that (3.6) is a consequence of c < c0.
We now notice that, since limn→+∞ I ′(un)(un − u) = 0, we can use (3.7) to get

(3.8)

∫
RN

|∇un|N−2∇un∇(un − u)dx+

∫
RN

|∇un|q−2∇un∇(un − u)dx = on(1),

where on(1) stands for a quantity approaching zero as n → +∞. On the other

hand, from the weak convergence un ⇀ u in EN,q
rad , we obtain

(3.9)

∫
RN

|∇u|N−2∇u∇(un − u)dx+

∫
RN

|∇u|q−2∇u∇(un − u)dx = on(1).
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If we set, for r ≥ 1,

TN,r(y1, y2) :=
(
|y1|r−2y1 − |y2|r−2y2

)
, y1, y2 ∈ RN ,

we can use [26, equation (2.2)] to write

(3.10) TN,r(y1, y2) · (y1 − y2) ≥ C(N, r) ·


|y1 − y2|r, if r ≥ 2,

|y1 − y2|2

(|y1|+ |y2|)2−r
, if 1 < r < 2,

for any y1, y2 ∈ RN . It follows from (3.8)-(3.9) that

(3.11)

∫
RN

TN,r(∇un,∇u) · (∇un −∇u)dx = on(1), r ∈ {q,N}.

If 2 ≤ q < N , we infer from the above expression and (3.10) that

C(N,N)∥∇(un − u)∥NLN + C(N, q)∥∇(un − u)∥qLq ≤ on(1),

from which we conclude that un → u strongly in EN,q
rad . If 1 < q < 2 ≤ N , we

also have ∥∇(un −u)∥NLN = on(1). Moreover, if C3 := 2q−1C(N, q)−q/2, we can use
Hölder’s inequality with exponents 2/q and 2/(2−q), and the boundedness of (un),
to get

∥∇(un − u)∥qLq ≤ C3

∫
RN

[TN,q(∇un,∇u)∇(un − u)]
q/2

[|∇un|q + |∇u|q](2−q)/2
dx

≤ C3

(∫
RN

TN,q(∇un,∇u)∇(un − u)dx

)q/2

.

Thus, by using (3.11) with r = q, we obtain ∥∇(un − u)∥Lq = on(1). This finished
the proof. □

We are ready to prove second main result.

Proof of Theorem 1.2. Let ξ0 > 0 be given by the last lemma and suppose that (f3)

holds with ξ > ξ0. If we consider the functional I restrict to EN,q
rad , it follows from

all the above lemmas and the Mountain Pass Theorem [4] that I has a nonzero

critical point u ∈ EN,q
rad . By Proposition 3.1, this function is a weak solution for

equation (P). □
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[5] V. Ambrosio; V. Rădulescu.: Fractional double-phase patterns: concentration and multiplic-

ity of solutions. J. Math. Pures Appl. 142, 101–145 (2020).



14 J. L. CARVALHO, G. M. FIGUEIREDO, M. F. FURTADO, AND E. MEDEIROS

[6] M. Badiale; L. Pisani; S. Rolando.: Sum of weighted Lebesgue spaces and nonlinear elliptic

equations. Nonlinear Differential Equations Appl. 18, 369–405 (2011).

[7] L. Baldelli; Y. Brizi; R. Filippucci.: Multiplicity results for (p, q)-Laplacian equations with
critical exponent in RN and negative energy. Calc. Var. Partial Differential Equations 60,

(2021) Paper No. 8, 30 pp.

[8] H. Berestycki; P. L. Lions.: Nonlinear scalar field equations. I. Existence of a ground state.
Arch. Rational Mech. Anal. 82, 313–345 (1983).

[9] D. Bonheure; P. d’Avenia; A. Pomponio.: On the electrostatic Born-Infeld equation with

extended charges. Comm. Math. Phys. 346, 877–906 (2016).
[10] D. Bonheure; A. Iacopetti.: On the regularity of the minimizers ofr the electrostatic Born-

Infeld energy. Arch. Rational Mech. Anal. 232, 697–725 (2019).

[11] S. Deng; T. Hu; C.-L. Tang.: N−Laplacian problems with critical double exponential nonlin-
earities. Discrete Contin. Dyn. Syst. 41, 987–1003 (2021).

[12] D. M. Cao.: Nontrivial solution of semilinear elliptic equation with critical exponent in R2.
Comm. Partial Differential Equations 17, 407–435 (1992).

[13] L. Cherfils; Y. Il’yasov.: On the stationary solutions of generalized reaction diffusion equa-

tions with (p, q)-Laplacian. Comm. Pure Appl. Anal. 4, 9–22 (2005).
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