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Abstract. We consider the critical problem

−∆u− 1

2
(x · ∇u) = 0 in RN

+ ,
∂u

∂ν
= λ|u|p−2u+ |u|2∗−2u on ∂RN

+ ,

where RN
+ =

{
(x′, xN ) : x′ ∈ RN−1, xN > 0

}
is the upper half-space, N ≥ 4, ν is the

outward normal vector at the boundary and 2 ≤ p < 2∗ := 2(N −1)/(N −2). Using a
variational approach, we obtain nonnegative nonzero solutions according to the value
of the parameter λ > 0.

1. Introduction

Consider the model problem

−∆v = f(x, v,∇v), in RN
+ ,

∂v

∂ν
= g(x′, v), on ∂RN

+ ,

where RN
+ :=

{
(x′, xN) : x′ ∈ RN−1, xN > 0

}
is the upper half-space and ν is the

outward normal vector at the boundary ∂RN
+ . Its mathematical importance arises, for

instance, in the study of conformal deformation of Riemannian manifolds [12, 13, 17],
problems of sharp constant in Sobolev trace inequalities [9,11] and blow-up properties of
the solutions of related parabolic equations [15,18]. This kind of equations also appears
in several applied contexts like glaciology [21], population genetics [2], non-Newtonian
fluid mechanics [10], nonlinear elasticity [8], among others.

There are several works when the function f does not depend on the gradient
(see [5–7,19,20,22] and references therein). The problem turns to be more complicated
if the function f also depends on ∇v. In [15], the authors considered

f(x, v,∇v) = λv +
1

2
(x · ∇v), g(v) = |v|p−2v,

with 2 < p < 2∗ and 2∗ := 2(N − 1)/(N − 2) being the critical exponent of the Sobolev
trace embedding D1,2(RN

+ ) ↪→ L2∗(RN−1). They obtained existence and nonexistence
of solutions according to the value of the parameter λ > 0. In the same paper, they
present the relationship between the problem and the existence of self-similar solution
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of the nonlinear heat equation (see also [14])

wt −∆w = 0, in RN
+ × (0,+∞),

∂w

∂ν
= |w|p−2w, on RN−1 × (0,+∞).

The critical version of this problem (including the critical Sobolev trace embedding)
was recently considered in [16], with

f(x, v,∇v) = λv + θ|v|2∗−2v +
1

2
(x · ∇v), g(x′, v) = |v|2∗−2v,

for 2∗ := 2N/(N − 2), λ > 0 and θ ∈ {0, 1}.
Motivated by the aforementioned works, we deal here with the problem

(Pλ)


−∆u− 1

2
(x · ∇u) = 0, in RN

+ ,

∂u

∂ν
= λ|u|p−2u+ |u|2∗−2u, on ∈ ∂RN

+ ∼ RN−1,

where N ≥ 4, λ > 0 is a parameter and 2 ≤ p < 2∗. In order to present our main
result, we need to introduce some notation. Setting K(x) = exp(|x|2/4) and noticing
that 2∇K = xK, the first equation in (Pλ) can be rewritten in the divergence form
div(K(x)∇u) = 0. Hence, it is natural look for solutions in the Sobolev space D1,2

K (RN
+ )

defined as the closure of C∞c (RN
+ ) with respect to the norm

‖u‖ =

(∫
RN+
K(x)|∇u|2dx

)1/2

.

This kind of space was first introduced by Escobedo and Kavian [14], who considered
a problem in the whole space RN . In [16], it is proved that D1,2

K (RN
+ ) is continuously

embedded into the weighted Lebesgue space

LsK(RN−1) :=

{
u ∈ Ls(RN−1) : u s :=

(∫
RN−1

K(x′, 0)|u|sdx′
)1/s

<∞

}
,

for any s ∈ [2, 2∗]. Moreover, the embedding is compact if s = 2, in such way that we
can define the first positive eigenvalue of the linear problem

(LP ) −∆u− 1

2
(x · ∇u) = 0, in RN

+ ,
∂u

∂ν
= λu, on RN−1,

namely

λ1 := inf

{∫
RN+
K(x)|∇u|2dx : u ∈ D1,2

K (RN
+ ),

∫
RN−1

K(x′, 0)|u|2dx′ = 1

}
> 0.

We state in what follows the main result of this paper:

Theorem 1.1. Problem (Pλ) has a nonnegative nontrivial solution in each of the
following cases:

(1) p = 2 and λ ∈ (0, λ1);
(2) p ∈ (2, 2∗) and λ > 0.
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The proof consists in applying variational methods together with some fine estimates
of the minimax level of the energy functional associated to (Pλ). The approach is
borrowed from the seminal paper of Brezis and Nirenberg [4], where the authors consider

−∆u = λ|u|p−2u+ |u|2∗−2u, u ∈ H1
0 (Ω),

where Ω ⊂ RN is bounded smooth domain and 2 ≤ p < 2∗. Actually, the result proved
here is a version for problem (Pλ) of that presented in [4] for N ≥ 4. It is worth recall
that, if N = 3 and p = 2, Brezis and Nirenberg obtained solutions if λ is lower and close
to the first positive eigenvalue of the linear problem associated to the above equation.
The same existence result can be obtained here (see Remark 2.3).

We finally mention that, in the case p = 2, our result is different from that obtained
in [14] for the problem

−∆u− 1

2
(x · ∇u) = λu+ |u|2∗−2u in RN .

Indeed, the range of existence of solution for the above problem is (N/4, N/2). Even
if we consider the half-space case, but with the linear perturbation inside the domain
RN

+ , the same kind of effect occurs. Actualy, as proved in [16, Theorem 1.5], the range
of existence in this case is (N/4 + (N − 4)/8, N/2). Due to the L2-integrability order of
a cutoff of the instanton (see (2.1)) in RN−1, we are able to cover here the entire range
λ ∈ (0, λ1). This shows that, although there is a close connection between [14, 16] and
our paper, the problem studied here presents some new (and interesting) features.

We devote the next section to the proof of our main theorem. The key point is
obtaining some fine estimates whose proofs are presented in Section 3.

2. Proof of Theorem 1.1

We start this section defining the energy functional associated to (Pλ), namely

Iλ(u) :=
1

2
‖u‖2 − λ

p

∫
RN−1

K(x′, 0)(u+)pdx′ − 1

2∗

∫
RN−1

K(x′, 0)(u+)2∗dx′,

where u+(x) := max{u(x), 0} and and x′ := (x1, x2, . . . , xN−1) ∈ RN−1. It is standard
to check that Iλ ∈ C1(D1,2

K (RN
+ ),R) and that its critical points are nonnegative solution

of (Pλ).
Given ε > 0, set

(2.1) Uε(x
′, xN) :=

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2
, (x′, xN) ∈ RN

+ .

They are the so-called instantons which achieves the best constant of the Sobolev trace
embedding D1,2(RN

+ ) ↪→ L2∗(RN−1) (see Escobar [11] and Beckner [3]) given by

S := inf

{∫
RN+
|∇ϕ|2dx : u ∈ D1,2(RN

+ ),

∫
RN−1

|ϕ|2∗dx′ = 1

}
.

The relation between this embedding and that used in this paper is curious. Actually,
it is proved in [16] that the best constant of the Sobolev trace embedding D1,2

K (RN
+ ) ↪→
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L2∗
K (RN−1) given by

SK := inf

{∫
RN+
K(x)|∇ϕ|2dx : u ∈ D1,2

K (RN
+ ),

∫
RN−1

K(x′, 0)|ϕ|2∗dx′ = 1

}
is also achieved and SK = S.

Let φ ∈ C∞(RN
+ , [0, 1]) be a cut-off function such that φ ≡ 1 in B1(0)∩RN

+ and φ ≡ 0

in RN
+ \ B2(0). We follow an idea of Brezis and Nirenberg [4] and define ψε : RN

+ → R
as

ψε(x) := K(x)−1/2φ(x)Uε(x), x ∈ RN
+ .

We prove in the sequel that Iλ verifies the geometric conditions of the Moutain Pass
Theorem.

Lemma 2.1. Under the hypotheses of Theorem 1.1, there exist αλ, ρλ > 0 and
eλ ∈ D1,2

K (RN
+ ) such that

(i) Iλ(u) ≥ αλ > 0, for any u ∈ D1,2
K (RN

+ ) with ‖u‖ = ρλ;

(ii) Iλ(eλ) < 0 and ‖eλ‖ > ρλ.

Proof. If p = 2, we can use λ ∈ (0, λ1) to conclude that

Iλ(u) ≥ 1

2

(
λ− λ1

λ1

)
‖u‖2 − 1

2∗
S−2∗/2‖u‖2∗ ,

for any u ∈ D1,2
K (RN

+ ). Hence, we can use p < 2∗ to conclude that, for some constants
αλ, ρλ > 0, there holds

Iλ(u) ≥ αλ > 0, ∀u ∈ Bρλ(0) ∩ D1,2
K (RN

+ ).

If p ∈ (2, 2∗), we can use the trace embedding to obtain C1, C2 > 0 such that

Iλ(u) ≥ 1

2
‖u‖2

(
1− λC1‖u‖p−2 − C2‖u‖2∗−2

)
,

and item (i) easily follows from 2 < p < 2∗.
For the second item we notice that, since the nonnegative function ψε is positive in

B1(0) ∩ RN−1, then Iλ(tψε) → −∞, as t → +∞. So, there exists t∗,λ > 0 such that
eλ := t∗,λψε is such that Iλ(eλ) < 0 and ‖eλ‖ > ρ. The lemma is proved. �

The next lemma is an important technical result. Its proof will be postponed to the
next section, since it is rather long and require some fine estimates.

Lemma 2.2. Suppose that N ≥ 4, p ∈ [2, 2∗) and set

AN :=

∫
RN+
|∇Uε|2dx, BN :=

(∫
RN−1

U2∗
ε dx

′
)2/2∗

,

DN,p :=

∫
RN−1

1

[|x′|2 + 1]p(N−2)/2
dx′ > 0, γN := (N + 1)− p

2
(N − 2) ≤ 1.
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Then AN/BN = S and, as ε→ 0+, we have that

‖ψε‖2 = AN +

{
O(ε2| ln ε|), if N = 4,

O(ε2), if N ≥ 5,

ψε
2∗
2∗ = B

2∗/2
N +O(ε2), ψε

p
p = DN,pε

γN +O(ε2).

We are ready to prove the main result of this paper.

Proof of Theorem 1.1. Using Lemma 2.1 and invoking the Moutain Pass Theorem [1],
we obtain a sequence (un) ⊂ D1,2

K (RN
+ ) such that

lim
n→+∞

Iλ(un) = cλ, lim
n→+∞

I ′λ(un) = 0,

where
cλ := inf

u∈Σλ
max
t∈[0,1]

Iλ(σ(t)),

and Σλ := {σ ∈ C([0, 1],D1,2
K (RN

+ )) : σ(0) = 0, σ(1) = eλ}.
We claim that

(2.2) cλ <
1

2(N − 1)
SN−1.

In order to prove this, we first set

vε(x) :=
ψε(x)

ψε 2∗

, x ∈ RN
+ ,

and notice that, in view of the definition of cλ and eλ (see Lemma 2.1), it is sufficient
to check that

(2.3) max
t≥0

Iλ(tvε) <
1

2(N − 1)
SN−1.

For N ≥ 5, we can use Lemma 2.2, the mean value theorem and a straightforward
computation to get

‖vε‖2 =
AN +O(ε2)[

B
2∗/2
N +O(ε2)

]2/2∗
=
AN +O(ε2)

BN +O(ε2)
=
AN
BN

+O(ε2) = S +O(ε2).

If N = 4, we can use the same argument and conclude that

(2.4) ‖vε‖2 = S +

{
O(ε2| ln ε|), if N = 4,

O(ε2), if N ≥ 5.

Moreover, for any p ∈ [2, 2∗), there holds

(2.5) vε
p
p =

DN,pε
γN +O(ε2)[

B
2∗/2
N +O(ε2)

]p/2∗ = DN,pB
−p/2
N εγN +O(ε2).

We now define the function

fε(t) := Iλ(tvε), t > 0,
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and call tε > 0 the point where it attains its maximum value. Then

Iλ(tεvε) ≤ max
t≥0

{
t2

2
‖vε‖2 − t2∗

2∗

}
− λt

p
ε

p
vε

p
p =

1

2(N − 1)
‖vε‖2(N−1) − λt

p
ε

p
vε

p
p.

From f ′ε(tε)tε = 0 and (2.4), we obtain

S +O(ε2) = ‖vε‖2 = λtp−2
ε vε

p
p + t2∗−2

ε

and therefore there exists α1 > 0, independent of ε > 0, such that tε ≥ α1, for any
ε > 0 small.

If N ≥ 5, the above expressions, (2.5) and the mean value theorem provide

Iλ(tεvε) ≤
1

2(N − 1)

[
S +O(ε2)

]N−1 − λC
p
1

p
vε

p
p

≤ 1

2(N − 1)
SN−1 + ε2

[
O(1)− λC2ε

γN−2
]
,

with C2 = C2(N, p) > 0 independent of ε > 0. Since γN < 2, the term into brackets
above goes to −∞ as ε→ 0+. Hence,

max
t≥0

Iλ(tvε) = Iλ(tεvε) <
1

2(N − 1)
SN−1,

for any ε > 0 small. This establishes (2.3) for N ≥ 5.
If N = 4, we have that γN = (3− p) > 0 and we can argue as above toget

Iλ(tεvε) ≤
1

2(N − 1)
SN−1 +O(ε2| ln ε|)− λC3ε

3−p + C3O(ε2)

≤ 1

2(N − 1)
SN−1 + ε3−p [O(εp−1| ln ε|)− λC3 + C3O(εp−1)

]
,

and the result follows as before because p > 1.
After proving (2.3), we are going to show that(un) is bounded. Indeed, if p = 2 we

can compute

cλ + o(1) + o(1)‖un‖ = Iλ(un)− 1

2∗
I ′λ(un)un ≥

1

2(N − 1)

(
λ1 − λ
λ1

)
‖un‖2,

as n→ +∞. Since λ ∈ (0, λ1) we conclude that (un) ⊂ D1,2
K (RN

+ ) is bounded. The same
kind of argument can be used when p ∈ (2, 2∗), just computing Iλ(un)− (1/p)I ′λ(un)un.
In this case, there is no restriction on λ > 0.

From the boundedness, we may assume that, up to a subsequence,{
un ⇀ u, weakly in D1,2

K (RN
+ ),

un → u, strongly in LpK(RN−1),

for some u ∈ D1,2
K (RN

+ ). Given ϕ ∈ C∞0 (RN
+ ), we can use the above convergences and

standard computations to show that

0 = lim
n→+∞

I ′λ(un)ϕ = I ′λ(u)ϕ,
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and therefore u is a critical point of Iλ. We devote the rest of this proof to check that
u 6= 0. If this is true, then it is the desired solution.

Suppose, by contradiction, that u = 0. Since un → 0 strongly in LpK(RN−1) and
Iλ(un)→ cλ, as n→ +∞, we have that

(2.6) lim
n→+∞

(
1

2
‖un‖2 − 1

2∗

∫
RN−1

K(x′, 0)(u+
n )2∗dx′

)
= cλ.

Moreover, since I ′λ(un)un → 0, then

lim
n→+∞

‖un‖2 = b = lim
n→+∞

∫
RN−1

K(x′, 0)(u+
n )2∗dx′,

for some b ≥ 0. Actually, since cλ > 0, we may have b > 0.
Passing (2.6) to the limit we get

(2.7) cλ =

(
1

2
− 1

2∗

)
b =

1

2(N − 1)
b.

On the other hand, taking the limit in the expression

S

(∫
RN−1

K(x′, 0)(u+
n )2∗dx′

)2/2∗

≤ ‖un‖2,

we obtain Sb2/2∗ ≤ b. Combining this inequality with (2.7) and using b > 0, we conclude
that

cλ ≥
1

2(N − 1)
SN−1,

which contradicts (2.2). So, the weak limit u is nonzero and the theorem is proved. �

Remark 2.3. Suppose that N = 3, p = 2 and let ϕ1 ∈ X be an eigenfunction associated
to the first eigenvalue λ1. If we set

t2∗−2
λ :=

‖ϕ1‖2 − λ ϕ1
2
2

ϕ1
2∗
2∗

,

a simple computation shows that

cλ ≤ max
t≥0

Iλ(tϕ1) = Iλ(tλϕ1) =
t2λ
2

(λ1 − λ) ϕ1
2
2 −

t2∗λ
2∗

ϕ1
2∗
2∗ .

Since ‖ϕ1‖2 = λ1 ϕ1
2
2, we have that tλ → 0, as λ → λ+

1 . Hence, we conclude from
the above inequality that (2.2) always holds if λ < λ1 is close to λ1. This shows that, if
p = 2 and λ belongs to this range, our existence result also holds in the 3-dimensional
case.

3. Proof of Lemma 2.2

We devote all this section to check that Lemma 2.2 really holds. Recall that

ψε(x) := K(x)−1/2φ(x)Uε(x), x ∈ RN
+ ,
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where the cut-off function φ ∈ C∞(RN
+ , [0, 1]) verifies φ ≡ 1 in B1(0) ∩ RN

+ , φ ≡ 0 in

RN
+ \B2(0) and the function Uε is given by

Uε(x
′, xN) :=

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2
,

for any ε > 0 and (x′, xN) ∈ RN
+ . For convenience, we state the lemma again:

Lemma 2.2. Suppose that N ≥ 4, p ∈ [2, 2∗) and set

AN :=

∫
RN+
|∇Uε|2dx, BN :=

(∫
RN−1

U2∗
ε dx

′
)2/2∗

,

DN,p :=

∫
RN−1

1

[|x′|2 + 1]p(N−2)/2
dx′ > 0, γN := (N + 1)− p

2
(N − 2) ≤ 1.

Then AN/BN = S and, as ε→ 0+, we have that

‖ψε‖2 = AN +

{
O(ε2| ln ε|), if N = 4,

O(ε2), if N ≥ 5,

ψε
2∗
2∗ = B

2∗/2
N +O(ε2), ψε

p
p = DN,pε

γN +O(ε2).

Proof. The equality AN/BN = S is not new and its proof can be found in [11]. For the
second statement, we first notice that∫

RN+
K(x)|∇ψε|2 =

∫
RN+

[
|∇φ|2U2

ε + 2φUε(∇φ · ∇Uε)−
1

2
φU2

ε (x · ∇φ)

]
dx

+

∫
RN+
φ2|∇Uε|2 dx−

1

2

∫
RN+
φ2Uε(x · ∇Uε) dx+

1

16

∫
RN+
φ2|x|2U2

ε dx.

We have that∫
RN+
|∇φ|2U2

ε dx = εN−2

∫
B+

2 \B
+
1

|∇φ|2

[|x′|2 + (xN + ε)2]N−2
dx = O(εN−2),

as ε→ 0+. Similiar arguments for the other terms into the brackets above provide

(3.1)

‖ψε‖2 = O(εN−2) +

∫
RN+
φ2|∇Uε|2 dx−

1

2

∫
RN+
φ2Uε(x · ∇Uε) dx

+
1

16

∫
RN+
φ2|x|2U2

ε dx.

In order to estimate each of the integrals on the right-hand side above, we first
compute

∇Uε = − (N − 2)ε(N−2)/2

[|x′|2 + (xN + ε)2]N/2
(x1, . . . , xN−1, xN + ε) .
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For any r > 0, we set B+
r := RN

+ ∩ Br(0). Since φ2|∇Uε|2 = |∇Uε|2 + (φ2 − 1)|∇Uε|2,
we obtain∫

RN+
φ2|∇Uε|2dx = AN + (N − 2)2εN−2

∫
RN+ \B

+
1

(φ2 − 1)

[|x′|2 + (xN + ε2)]N−1
dx,

and therefore

(3.2)

∫
RN+
φ2|∇Uε|2 = AN +O(εN−2).

Using the same argument and the definition of φ, we obtain∫
RN+
φ2Uε(x · ∇Uε) dx = O(εN−2) +

∫
B+

2

Uε(x · ∇Uε) dx

= O(εN−2)− (N − 2)εN−2

∫
B+

2

|x′|2 + xN(xN + ε)

[|x′|2 + (xN + ε)2]N−1
dx.

So, we infer from the change of variables y = x/ε that

(3.3)

∫
RN+
φ2Uε(x · ∇Uε) dx = O(εN−2)− (N − 2)ε2 (Γ1,N,ε + Γ2,N,ε)

where

Γ1,N,ε :=

∫
B+

2/ε

|y′|2

[|y′|2 + (yN + 1)2]N−1
dy

and

Γ2,N,ε :=

∫
B+

2/ε

yN(yN + 1)

[|y′|2 + (yN + 1)2]N−1
dy.

If N ≥ 5, we have that

Γ1,N,ε ≤
∫
RN+

|y′|2

[|y′|2 + (yN + 1)2]N−1
dy

=

∫
B+

1

|y′|2

[|y′|2 + (yN + 1)2]N−1
dy +

∫
RN+ \B

+
1

|y|2−2(N−1)dy < +∞.

Since a similar estimate holds for Γ2,N,ε, we conclude from (3.3) that

(3.4)

∫
RN+
φ2Uε(x · ∇Uε) = O(ε2), if N ≥ 5.

The case N = 4 is more involved, since the function |y|2−2(N−1) is not integrable at
infinity. We first observe that

Γ1,4,ε ≤
∫

R3×[0,2]

|y′|2

[|y′|2 + (y4 + 1)2]3
dy +

∫
R3×[2,2/ε]

|y′|2

[|y′|2 + (y4 + 1)2]3
dy.
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If we call Σ1 and Σ1,ε the two last terms above, respectively, we can use Fubini’s
Theorem and the change of variable x′ = y′/(y4 + 1), to get

Σ1 =

∫ 2

0

∫
R3

|y′|2

[|y′|2 + (y4 + 1)2]3
dy′dy4

=

(∫ 2

0

1

y4 + 1
dy4

)(∫
R3

|x′|2

[|x′|2 + 1]3
dx′
)

= O(1).

Analagoulsy,

Σ1,ε ≤

(∫ 2/ε

2

1

y4

dy4

)(∫
R3

|x′|2

[|x′|2 + 1]3
dx′
)

= O(| ln ε|)

and therefore we conclude that

(3.5) Γ1,4,ε = O(| ln ε|).

Using the same ideas for Γ2,4,ε we obtain

Γ2,4,ε ≤ O(1) +

(∫ 2/ε

2

y4

(y4 + 1)2
dy4

)(∫
R3

1

[|x′|2 + 1]N−1
dx′
)

≤ O(1) +

(∫ 2/ε

2

1

y4

dy4

)(∫
R3

|x′|2

[|x′|2 + 1]N−1
dx′
)

= O(| ln ε|).

This inequality, (3.5), (3.4) and (3.3) imply that

(3.6)

∫
RN+
φ2Uε(x · ∇Uε) dx =

{
O(ε2), if N ≥ 5,

O(ε2| ln ε|), if N = 4.

It remains to estimate the last term in (3.1). If N ≥ 7, we can write φ2 = (φ2−1)+1
and use the change of variables y = x/ε to compute∫

RN+
φ2|x|2U2

ε dx = O(εN−2) + ε4

∫
RN+

|y|2

[|y′|2 + (yN + 1)2]N−2
dy.

Since the last integral above is finite for N ≥ 7, we conclude that

(3.7)

∫
RN+
φ2|x|2U2

ε dx = O(ε4), if N ≥ 7.

For the other cases, we notice that∫
RN+
φ2|x|2U2

ε dx = ε4

∫
B+

2/ε

|y|2

[|y′|2 + (yN + 1)2]N−2
dy

= O(ε4) + ε4

∫
B+

2/ε
\B+

2

|y|2

[|y′|2 + (yN + 1)2]N−2
dy.
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But ∫
B+

2/ε
\B+

2

|y|2

[|y′|2 + (yN + 1)2]N−2
dy ≤

∫
B+

2/ε
\B+

2

|y|6−2Ndy

= C1

∫ 2/ε

2

r5−Ndr,

for some C1 = C1(N) > 0. Hence,∫
B+

2/ε
\B+

2

|y|2

[|y′|2 + (yN + 1)2]N−2
dy ≤ C2

{
εN−6 − 1, if N ∈ {4, 5},
− ln ε, if N = 6,

with C2 = C2(N) > 0. All together, the above inequalities and (3.7) imply that∫
RN+
φ2|x|2U2

ε dx =


O(εN−2), if N ∈ {4, 5},
O(ε4| ln ε|), if N = 6,

O(ε4), if N ≥ 7.

The equality for ‖ψε‖2 in the lemma follows from the above inequality, (3.6), (3.2) and
(3.1).

We perform now the calculations on the boundary. For saving notation, we write only
K to denote K(x′, 0), for any x′ ∈ RN−1. We also set B∂

r := {x′ ∈ RN−1 : |x′| < r},
for any r > 0. Since φ ≡ 1 in B∂

1 and φ ≡ 0 outside B∂
2 , we have that

(3.8)
ψε

2∗
2∗ = εN−1

∫
B∂1

K−1/(N−2)

[|x′|2 + ε2]N−1
dx′ +O(εN−1)

= εN−1Γ1,ε + εN−1Γ2,ε +O(εN−1),

with

Γ1,ε :=

∫
B∂1

1

[|x′|2 + ε2]N−1
dx′, Γ2,ε :=

∫
B∂1

K−1/(N−2) − 1

[|x′|2 + ε2]N−1
dx′.

The first term can be computed as follows:

Γ1,ε =

∫
RN−1

1

[|x′|2 + ε2]N−1
dx′ −

∫
RN−1\B∂1

1

[|x′|2 + ε2]N−1
dx′.

Since |x′|−2(N−1) ∈ L1(RN−1 \B∂
1 ) for any N ≥ 2, the last integral above is bounded as

ε→ 0+, and we infer from (3.8) and the definition of Uε that

(3.9) ψε
2∗
2∗ = B

2∗/2
N + εN−1Γ2,ε +O(εN−1).

The change of variables y′ = x′/ε and the definition of K provide

εN−1Γ2,ε =

∫
B∂

1/ε

K(εy′, 0)−1/(N−2) − 1

[|y′|2 + 1]N−1
dy′ = −

∫
B∂

1/ε

1− exp(−α0ε
2|y′|2)

[|y′|2 + 1]N−1
dy′,

where α0 := [4(N − 2)]−1 > 0. Using (3.9), we see that the estimate for ψε
2∗
2∗ is

equivalent to show that

(3.10) lim
ε→0+

1

ε2

∫
RN−1

1− exp(−γε2|y′|2)

[|y′|2 + 1]N−1
dy′ = α0

∫
RN−1

|y′|2

[|y′|2 + 1]N−1
dy′,
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since the last integral above is finite whenever N ≥ 4. In order to check the above
limit, we suppose that ε ∈ (0, 1) and set fε : RN−1 → R by

fε(y
′) :=

1− exp(−α0ε
2|y′|2)

ε2
, y′ ∈ RN−1.

By L’Hospital’s rule, we obtain

(3.11) lim
ε→0+

fε(y
′) = α0|y′|2, ∀ y′ ∈ RN−1.

Moreover, the inequality et ≥ 1 + t, for any t ∈ R, imply that

d

dε
fε(y

′) =
2

ε3

[
α0ε

2|y′|2 + 1

exp(α0ε2|y′|2)
− 1

]
≤ 0.

Hence, the sequence of nonnegative functions (fε)ε∈(0,1) is nonincreasing, and we can
use (3.11) together with the Monotone Convergence Theorem to conclude that (3.10)
holds. This proves the equality for ψε

2∗
2∗

For the norm involving the power p ∈ [2, 2∗), we argue as above to get

(3.12) ψε
p
p = εγN

∫
RN−1

1

[|x′|2 + 1]p(N−2)/2
dx′ − εγNΓ3,ε +O(εp(N−2)/2),

where γN = (N − 1)− p(N − 2)/2,

Γ3,ε :=

∫
B∂

1/ε

1− exp(−α1ε
2|y′|2)

[|y′|2 + 1]p(N−2)/2
dy′,

and α1 := (p− 2)/8 ≥ 0. As in the proof of (3.10), we can check that

1

ε2
Γ3,ε = α1

∫
RN−1

|y′|2

[|y′|2 + 1]p(N−2)/2
dy′ + o(1),

and therefore

εγNΓ3,ε = O(εγN+2) = O(ε2),

since the inequality p < 2∗ implies that γN > 0. Using N ≥ 4, we conclude that
p(N − 2)/2 ≥ 2 and therefore the last term in (3.12) also has order O(ε2). The lemma
is proved. �
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