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Abstract. We obtain multiple solutions for the nonlinear boundary value

problem

−∆u−
1

2
(x · ∇u) = f(u), in RN

+ ,
∂u

∂η
= β|u|2/(N−2)u, on ∂RN

+ ,

where RN
+ = {(x′, xN ) ∈ RN

+ : x′ ∈ RN−1, xN > 0}, ∂u
∂η

is the partial outward

normal derivative, β > 0 is a parameter and f is a superlinear function with

subcritical growth.

1. Introduction and main results

Let RN
+ =

{
(x′, xN ) : x′ ∈ RN−1, xN > 0

}
be the upper half-space and consider

the nonlinear boundary value problem

(1.1) −∆v = g(x, v), in RN
+ ,

∂v

∂η
= h(x′, v), on RN−1,

where ∂u
∂η denotes the outward unit normal derivative and we have identified

∂RN
+ ≃ RN−1. It appears in several mathematical contexts, such as in the

study of scalar curvature problems and conformal deformation of Riemannian
manifolds [11,18,19], problems of sharp constant in Sobolev trace inequalities [17],
nonlinear elasticity [14], glaciology [32], population genetics [3], non-Newtonian
fluid mechanics [15], chemical reactions [2], among others.

There is a vast literature concerning on the solvability of problems like (1.1).
Without intention of presenting a complete list of references, we quote Chipot et
al. [13], that have used the moving plane method to obtain positive solutions when
g(v) = avp, a > 0, and h(v) = vq with 1 < p ≤ (N+2)/(N−2), 1 < q ≤ N/(N−2)
and one the inequalities being strict (see also [27] to the case a = 0). When
g ≡ 0 and h(v) = (N − 2)vN/(N−2), existence of positive solution decaying as
|x|2−N at infinity was obtained by Escobar [17] using the conformal equivalence
between the unit ball in RN and the half-space (see also [33]). In the same paper,
it was considered the case g(v) = N(N − 2)v(N+2)/(N−2) and h(v) = bvN/(N−2)

(see [12] and [29]). Still in the case g ≡ 0, necessary and sufficient conditions on h
for the existence of layer solutions (bounded solutions satisfying some monotonicity
properties) and their relation with local minimizers and stable solutions for problem
(1.1) in the planar case was presented by Cabré and Morales [9]. The authors also

2020 Mathematics Subject Classification. Primary 35J60; Secondary 35B33.
Key words and phrases. Nonlinear boundary conditions; critical trace problems; half-space;

self-similar solutions; symmetric functionals.
The first author was partially supported by FAP-DF/Brazil and CNPq/Brazil. The second

author was supported by CAPES/Brazil.

1



2 M.F. FURTADO AND K.C.V. DE SOUSA

showed that the upper half-space naturally appears when dealing with transition
profiles near to discontinuities for the same problem in bounded smooth domains
through blow-up techniques. We finish quoting Wu [35], who obtained existence and
multiplicity results in the double subcritical case by using Ljusternik–Schnirelmann
theory.

In this paper, we consider the critical problem

(P )


−∆u− 1

2
(x · ∇u) = f(u), in RN

+ ,

∂u

∂η
= β|u|2∗−2u, on RN−1,

where 2∗ := 2(N − 1)/(N − 2), β > 0 is a parameter and the conditions on f will
be stated later. Setting K(x) = exp(|x|2/4), a direct computation shows that, if u
is a solution of (P ), then the function v = K1/2u verifies (1.1) for

g(x, v) = −a(x)v +K(x)1/2f(K(x)−1/2v), h(x′, v) = βb(x′)|v|2∗−2v,

where a(x) =
(

N
4 + |x|2

16

)
and b(x′) = exp

(
− |x′|2

4(N−2)

)
. Since g is unbounded in the

spatial variable and we are dealing with an inhomogeneous problem, the techniques
used in the aforementioned works do not apply and therefore we need to perform
a different approach.

There is a deep connection between (P ) and the equation

−∆u = g(u) + β|u|2
∗−2u, in Ω, u ∈ H1

0 (Ω),

where Ω ⊂ RN is a bounded domain and 2∗ = 2N/(N − 2). In their celebrated
paper, Brezis and Nirenberg [8] have shown that the presence of the subcritical
perturbation g recover compactness and the problem becomes solvable. After this,
critical growth problems have been studied extensively (see [5, 16] and references
therein). We highlight here the work of Silva and Xavier [34], which strongly
motivate our first main result. In order to state it, we present in what follows the
main assumptions on the nonlinearity f .

(f0) f : R → R is continuous;
(f1) there exist a1, a2 > 0 and 2 < p < 2∗ := 2N/(N − 2) such that

|f(s)| ≤ a1 + a2|s|p−1, ∀ s ∈ R;

(f2) there holds

lim
s→0

f(s)

s
= 0;

(f3) there exists 2 < θ < 2∗ such that

0 < θF (s) ≤ f(s)s, ∀ s ∈ R \ {0},

where F (s) :=
∫ s

0
f(τ) dτ.

By taking advantage of the symmetry properties of the problem, we prove the
following:

Theorem 1.1. Suppose that f is odd and satisfies (f0)− (f3). Then, for any given
k ∈ N, there exists β∗ = β∗(k) > 0 such that problem (P ) has at least k pairs of
solutions, provided β ∈ (0, β∗).
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For the proof, we apply a version of the Symmetric Mountain Pass Theorem. The
main difficult is the management of Palais-Smale sequences and we initially follow
the ideas presented in [34]. However, since we are dealing with unbounded domains,
the former argument does not directly apply and we need to perform a trick
adaptation of Bianchi, Chabrowski and Szulkin’s ideas [6,10] and the concentration
compactness principle due to Lions [30].

In our second result, we do not require symmetry for f and obtained the existence
of nonnegative solution. In this case, the parameter β does not play any role and
we prove the following:

Theorem 1.2. Suppose that N ≥ 7 and f satisfies (f0)− (f3). Then problem (P )
has a nonnegative nonzero solution provided

(1.2) lim
ε→0+

εN−2

∫ 1/ε

0

F

(
ε−(N−2)/2

[s2 + 1](N−2)/2

)
sN−1 ds = +∞.

In the proof, we follow [8]. After obtaining a local compactness condition for
the associated functional, we need to prove that its Mountain Pass level belongs to
the correct range. At this point, we perform some fine estimates and use technical
condition (1.2). It was inspired by a similar one which have appeared in [8, Lemma
2.1] and it holds if, for instance, F (s) ≥ γ|s|p, for some γ > 0. In order to check
that, it is enough to notice that g(s) = sN−1/(1 + s2)p(N−2)/2 is increasing in the
interval [0, s0], where s0 = [−(N − 1)/(N − 1 − pN + 2p)]1/2. Hence, for ε > 0
enough small,∫ 1/ε

0

sN−1

(1 + s2)p(N−2)/2
ds ≥

∫ s0

0

sN−1

(1 + s2)p(N−2)/2
ds > 0,

and therefore

lim
ε→0+

εN−2−p(N−2)/2

∫ 1/ε

0

sN−1

(s2 + 1)p(N−2)/2
ds = +∞.

The restriction on the dimension is used only in equality (4.2), which really comes
from [23]. If one could prove an analogous estimate for lower dimensions or use a
different approach, maybe it would be possible to obtain the existence of a solution
when N ∈ {3, 4, 5, 6}. This might be an interesting open question.

It is worth noticing that the operator on the left-hand side of (P ) naturally
appears when we look for self-similar solutions for the following nonlinear heat
equation

(1.3) vt −∆v = 0, in RN
+ × (0,+∞),

∂v

∂η
= |v|p−2v, on ∂RN

+ × (0,+∞),

where x ∈ RN
+ is the spatial variable and t > 0 is time. This kind of solution has the

special form v(x, t) = tµu(t−1/2x) and, among others advantages, it preserves the
PDE scaling, providing qualitative properties and giving information about large

and small scale behaviors. A direct computation shows that the profile u : RN
+ → R

verifies

−∆u− 1

2
(x · ∇u) = g(u), in RN

+ ,
∂u

∂η
= |u|p−2u, on RN−1,

for g(u) = u/(2(p− 2)).
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Problem (1.3) and their variations have been studied in bounded domain,
the half-space RN

+ and even in the whole space in the last decades; see, e.g.,
[4, 24–26, 28, 31] and references therein. Different types of results can be found
in these works, such as existence, uniqueness of solutions, blow-up or asymptotic
behavior results. To the best of our knowledge, Escobedo and Kavian [20] were
the first authors to propose a variational approach to nonlinear heat problems.
In their paper, they consider the whole space case and introduce the abstract
Sobolev spaces appropriated to find solution with rapid decay at infinity. This
abstract setting was extended to the half-space in [22], including the necessary
trace embeddings. Some extensions for the critical case were recently proved in [23].
The main theorems proved here complement this last paper, since we deal with a
superlinear nonlinearity in RN

+ and, beyond the nonnegative solution, we also obtain
multiplicity results.

The rest of this paper is organized as follows. In the next section, we present the
variational framework to deal with (P ) and prove a compactness result. In Section
3 we prove Theorem 1.1 and, in the final section, we prove Theorem 1.2.

2. Variational framework and the Palais-Smale condition

If we define K(x) := exp(|x|2/4), a straightforward computation shows that the
first equation in (P ) becomes

−div(K(x)∇u) = K(x)f(u), x ∈ RN
+ .

Hence, it is natural looking for solutions in the space X defined as the closure of

C∞
0 (RN

+ ) with respect to the norm

∥u∥ :=

(∫
RN

+

K(x)|∇u|2 dx

)1/2

,

which is induced by the inner product

(u, v) :=

∫
RN

+

K(x)(∇u · ∇v) dx

From now on we identify ∂RN
+ ∼ RN−1. Given 2 ≤ r ≤ 2∗ and 2 ≤ s ≤ 2∗ we

consider the weighted Lebesgue spaces

Lr
K(RN

+ ) :=

u ∈ Lr(RN
+ ) : ∥u∥r :=

(∫
RN

+

K(x)|u|rdx

)1/r

<∞

 ,

Ls
K(RN−1) :=

{
u ∈ Ls(RN−1) : u s :=

(∫
RN−1

K(x′, 0)|u|sdx′
)1/s

<∞

}
.

and collect in the next proposition the abstract results proved in [22,23].

Proposition 2.1. For any r ∈ [2, 2∗) and s ∈ [2, 2∗), the embeddings X ↪→
Lr
K(RN

+ ) and X ↪→ Ls
K(RN−1) are compact. Moreover, continuous embeddings

hold in the critical cases r = 2∗ and s = 2∗.

In view of this result we can define, for r ∈ [2, 2∗] and s ∈ [2, 2∗], the following
constants:
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Sr := inf
u∈X/{0}

∫
RN

+
K(x)|∇u|2dx(∫

RN
+
K(x)|u|rdx

)2/r ,
and

Ss,∂ := inf
u∈X/{0}

∫
RN

+
K(x)|∇u|2dx(∫

RN−1 K(x′, 0)|u|sdx′
)2/s .

Setting F (s) :=
∫ s

0
f(τ) dτ , it follows from (f0) − (f2), Proposition 2.1 and

standard arguments that the functional Iβ : X → R defined as

Iβ(u) :=
1

2
∥u∥2 −

∫
RN

+

K(x)F (u) dx− β

2∗
u 2∗

2∗
,

is well defined. Actually, Iβ ∈ C1(X,R) and its critical points are precisely the
weak solutions of (P ).

Recall that, if E is a Banach space, I ∈ C1(E,R) and c ∈ R, the functional I is
said to satisfy the (PS)c condition if any sequence (un) ⊂ E such that

lim
n→+∞

I(un) = c, lim
n→+∞

I ′(un) = 0,

has a convergent subsequence. From now on, any such sequence will be called
(PS)c-sequence.

The main result of this section can be stated as follows:

Proposition 2.2. Suppose that f satisfies (f0)-(f3). For any given M > 0, the
functional Iβ satisfies the (PS)c-condition for any 0 < c ≤ M , provided β > 0
satisfies

(2.1) β < β∗ :=

(
SN−1
2∗,∂

2(N − 1)M

)1/(N−2)

.

Proof. Let M > 0 and (un) ⊂ X be a (PS)c-sequence for Iβ , with 0 < c ≤ M .
Using (f3) and a standard argument we can prove that (un) is bounded. Hence, we
may assume that

(2.2)


un ⇀ u, weakly in X,

un → u, strongly in Lr
K(RN

+ ) and Ls
K(RN−1),

un(x) → u(x), for a.e. x ∈ RN
+ ,

for any r ∈ [2, 2∗) and s ∈ [2, 2∗). Moreover, we can easily check that I ′β(u) = 0.
We claim that, if β < β∗, then

(2.3) lim
n→+∞

∫
RN−1

K(x′, 0)|un|2∗ dx′ =
∫
RN−1

K(x′, 0)|u|2∗ dx′.
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Since the proof of this convergence is rather long, we postpone it for the end of the
section. So, assuming the claim, we can use (2.2) and Lebesgue’s theorem to get

o(1) = I ′β(un)un = ∥un∥2 −
∫
RN

+

K(x)f(un)un dx− β un
2∗
2∗

= ∥un∥2 −
∫
RN

+

K(x)f(u)u dx− β u 2∗
2∗

+ o(1)

= ∥un∥2 − ∥u∥2 + I ′β(u)u+ o(1),

as n → +∞. The above expression, I ′β(u)u = 0 and the weak convergence in (2.2)
imply that un → u in X. □

We devote the rest of this section to the proof of (2.3). The first step is to apply
the Lions’ concentration-compactness principle (see [30, Lemma 1.2]) to obtain
an at most countable family J , positive numbers {µj}j∈J , {νj}j∈J , and points
{xj}j∈J ⊂ ∂RN

+ such that

(2.4)


K(x)|∇un|2dx ⇀ µ ≥ K(x)|∇u|2dx+

∑
j∈J µjδxj ,

K(x′, 0)|un|2∗dx′ ⇀ ν = K(x′, 0)|u|2∗dx′ +
∑

j∈J νjδxj
,

µj ≥ S2∗,∂(νj)
2/2∗ ,

where µ ∈ M(RN
+ ), ν ∈ M(∂RN

+ ) are Radon measures and the convergences hold
in the sense of the measures.

Lemma 2.3. If (2.1) holds, then J is empty.

Proof. Suppose, by contradiction, that β < β∗ and there exists some j ∈ J . We
first claim that

(2.5) νj ≥
(
S2∗,∂

β

)N−1

.

Assuming the claim, we can prove the lemma in the following way. Pick
ψ ∈ C∞

0 (B2(xj)) such that 0 ≤ ψ ≤ 1 and ψ ≡ 1 in B1(xj). Computing
Iβ(un)− (1/2)I ′β(un)un and using (f3), we obtain

c+ o(1) ≥ β

2(N − 1)

∫
RN−1

K(x′, 0)|un|2∗ dx′

≥ β

2(N − 1)

∫
RN−1

K(x′, 0)|un|2∗ψ(x′, 0) dx′,

where o(1) denotes a quantity approaching zero as n→ +∞. Passing to the limit,
using (2.4) and (2.5), we obtain

M ≥ c ≥ β

2(N − 1)

∫
B1(xj)∩RN−1

ψ(x′, 0) dν ≥ β

2(N − 1)
νj ≥

β

2(N − 1)

(
S2∗,∂

β

)N−1

,

which is equivalent to β ≥ β∗, contrary to (2.1). Hence, J is empty.
It remains to prove (2.5). For that, we consider ϕ ∈ C∞

0 (B2(0)) such that
0 ≤ ϕ ≤ 1 and ϕ ≡ 1 in B1(0) and define

ϕεj(x) := ϕ

(
x− xj
ε

)
, x ∈ RN .
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Since I ′β(un)(unϕ
ε
j) = o(1), we obtain

(2.6)

[∫
ϕεj dµ− β

∫
ϕεj dν

]
+ o(1) =

∫
RN

+

K(x)f(un)unϕ
ε
j dx

−
∫
RN

+

K(x)(∇un · ∇ϕεj)un dx.

We shall estimate each term on the right side above. First notice that, by using
(f1)− (f2), (2.2) and Lebesgue’s theorem we obtain

lim
n→∞

∫
RN

+

K(x)f(un)unϕ
ε
j dx = lim

n→∞

∫
RN

+

K(x)f(u)uϕεj dx.

Moreover, since supp(ϕεj) ⊂ B2ε(xj), we can use Lebesgue’s theorem again to get

(2.7) lim
ε→0

lim
n→∞

∫
RN

+

K(x)f(un)unϕ
ε
j dx = 0.

By using Holder’s inequality and that (un) is bounded, we obtain∣∣∣∣∣
∫
RN

+

K(x)(∇un · ∇ϕεj)un dx

∣∣∣∣∣ ≤ ∥un∥
(∫

Ωj
ε

K(x)(un)
2|∇ϕεj |2 dx

)1/2

=
c1
ε

(∫
Ωj

ε

K(x)(un)
2

∣∣∣∣∇ϕ(x− xj
ε

)∣∣∣∣2 dx
)1/2

,

where Ωj
ε := B2ε(xj) ∩RN

+ and c1 > 0 is independent of n. If we call Σn,ε the left-
hand side of the above expression, we can use the change of variable y = (x−xj)/ε
and the strong convergence un → u in L2

K(RN
+ ) to get

Σn,ε ≤ c2ε
(N−2)/2

 ∫
B2ε(0)∩RN

+

K(εy + xj)u
2(εy + xj) dy + o(1)


1
2

,

where c2 = c1∥∇ϕ∥∞. It follows that

lim
ε→0

lim
n→+∞

∫
RN

+

K(x)(∇un · ∇ϕεj)un dx = 0.

Passing (2.6) to the limit, using the above expression, (2.7) and (2.4), we obtain

βνj = β lim
ε→0+

∫
ϕεj dν = lim

ε→0+

∫
ϕεj dµ ≥ µjϕ(0) = µj ≥ S2∗,∂ν

2/2∗
j ,

that is, ν
1−(2/2∗)
j ≥ S2∗,∂/β, which is equivalent to (2.5). The lemma is proved. □

In the next result we follow an argument due to Bianchi et al. [6].

Lemma 2.4. If

ν∞ := lim
R→+∞

lim sup
n→+∞

∫
{x′∈RN−1:|x′|≥R}

K(x′, 0)|un|2∗ dx′,

then ν∞ = 0 or ν∞ ≥
(

S2∗,∂

β

)N−1

.
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Proof. Set

µ∞ := lim
R→+∞

lim sup
n→+∞

∫
RN

+ \BR(0)

K(x)|∇un|2 dx

and consider, for each R > 1, a function ϕR ∈ C∞(RN ) such that ϕR ≡ 0
in BR(0) and ϕR ≡ 1 outside BR+1(0). Since (unϕR) ⊂ X, we have that
S2∗,∂ unϕR

2
2∗ ≤ ∥unϕR∥2 and we can use (2.2) to obtain

S2∗,∂ lim sup
n→+∞

(∫
RN−1

K(x′, 0)|ϕRun|2∗ dx′
) 2

2∗

≤ lim sup
n→+∞

∫
RN

+

K(x)|∇un|2ϕ2R dx

+

∫
RN

+

K(x)|∇ϕR|2u2 dx.

Passing to the limit as R → +∞, using the definition of ϕR and the Lebesgue’s
theorem, we conclude that

(2.8) S2∗,∂ν
2/2∗
∞ ≤ µ∞.

Using that I ′β(un)(unϕR) = o(1), together with (2.2) and Lebesgue’s theorem,
we get

(2.9) lim sup
n→+∞

Bn ≤
∫
RN

+

K(x)f(u)uϕR dx+ β lim sup
n→+∞

Cn + lim sup
n→+∞

−An,

where

An :=

∫
RN

+

K(x)(∇un · ∇ϕR)un dx, Bn :=

∫
RN

+

K(x)|∇un|2ϕR dx,

and

Cn :=

∫
RN−1

K(x′, 0)|un|2∗ϕR dx′.

From Holder’s inequality, we obtain

−An ≤ ∥un∥2
(∫

BR+1(0)\BR(0)

K(x)|∇ϕR|2u2n dx

)1/2

.

The above inequality, Proposition 2.1, the definition of ϕR and Lebesgue’s theorem
imply that

(2.10) lim
R→+∞

lim sup
n→+∞

−An ≤ 0.

Moreover, as before, it follows from the definition of ϕR that

lim
R→+∞

lim sup
n→+∞

Bn = µ∞, lim
R→+∞

lim sup
n→+∞

Cn = ν∞.

Passing (2.9) to the limit as R → +∞, using (2.8), (2.10), the above equalities

and Lebesgue’s theorem, we get S2∗,∂ν
2/2∗
∞ ≤ µ∞ ≤ βν∞, from which the result

follows. □

We are ready to prove that (2.3) holds. First notice that, in view of the pointwise
convergence in (2.2) and Fatou’s lemma, it is sufficient to check that

lim sup
n→+∞

∫
RN−1

K(x′, 0)|un|2∗ dx′ ≤
∫
RN−1

K(x′, 0)|u|2∗ dx′.
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Since β < β∗, the set J is empty. Hence, the weak convergence in the sense of
measure (2.4) imply that (see [21, Theorem 1, Section 1.9]), for each R > 0, there
holds

lim sup
n→+∞

∫
RN−1

K(x′, 0)|un|2∗ dx′ = lim sup
n→+∞

∫
{x′∈RN−1:|x′|>R}

K(x′, 0)|un|2∗ dx′

+

∫
{x′∈RN−1:|x′|≤R}

K(x′, 0)|u|2∗ dx′.

Passing to the limit as R→ +∞, we obtain

lim sup
n→+∞

∫
RN−1

K(x′, 0)|un|2∗ dx′ = ν∞ +

∫
RN−1

K(x′, 0)|u|2∗ dx′,

where ν∞ was defined in Lemma 2.4.
It remains to check that ν∞ = 0. In order to do this, notice that the same

argument of the proof of Lemma 2.3 provides

c+ o(1) ≥ β

2(N − 1)

∫
{x′∈RN−1:|x′|≥R}

K(x′, 0)|un|2∗ dx′,

for any R > 0. Recalling that c ≤M , we obtain

M ≥ lim
R→+∞

lim sup
n→+∞

β

2(N − 1)

∫
{x′∈RN−1:|x′|≥R}

K(x′, 0)|un|2∗ dx′ =
β

2(N − 1)
ν∞.

If ν∞ ̸= 0, we can use the above inequality and Lemma 2.4 to obtain β ≥ β∗, which
contradicts (2.1). Hence, ν∞ = 0 and we conclude that (2.3) is verified.

3. Proof of Theorem 1.1

Our first main result will be proved as an application of the following version of
the Symmetric Moutain Pass Theorem (see [1]).

Theorem 3.1. Let E = V ⊕W , where E is a real Banach space and V is finite
dimensional. Suppose I ∈ C1(E,R) is an even functional satisfying I(0) = 0 and

(I1) there exist constants ρ, α > 0 such that I |Bρ(0)∩W≥ α;

(I2) there exists a subspace Ṽ of E such that dimV < dim Ṽ < ∞ and
max
u∈Ṽ

I(u) ≤M , for some constant M > 0;

(I3) I satisfies (PS)c, for any 0 < c < M .

Then I has at least dim Ṽ − dimV pairs of nonzero critical points.

We are intending to apply this abstract result with E = X and I = Iβ . For the
required decomposition of the space X we consider the linearized problem

(LP )

{
−div(K(x)∇u) = λK(x)u, in RN

+ ,

∂u
∂η = 0, on RN−1.

Thanks to the compact embedding X ↪→ L2
K(RN

+ ), we can use standard spectral
theory to obtain a sequence of eigenvalues (λj)j∈N such that

0 < λ1 < λ2 ≤ · · · ≤ λj ≤ · · ·
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with lim
j→∞

λj = +∞. Moreover, the first eigenvalue is given by

λ1 = inf

{∫
RN

+

K(x)|∇u|2 dx :

∫
RN

+

K(x)u2 dx = 1

}
.

From this, we obtain the following Poincaré inequality

(3.1) λ1

∫
RN

+

K(x)u2 dx ≤
∫
RN

+

K(x)|∇u|2 dx, ∀u ∈ X.

We are ready to prove our multiplicity result.

Proof of Theorem 1.1. In order to apply Theorem 3.1, we consider V = {0} and
W = X. Given ε > 0, we can use (f1) and (f2) to obtain c1 = c1(ε) > 0 such that

|F (s)| ≤ ε

2
s2 + c1|s|p, ∀ s ∈ R.

Picking ε > 0 such that ε < λ1, we can use (3.1) and Proposition 2.1 to get

Iβ(w) ≥ 1

2
∥w∥2 − 1

2
ε∥w∥22 − c1∥w∥pp −

β

2∗
w 2∗

≥ 1

2

[
λ1 − ε

λ1

]
∥w∥2 − c1S

−p/2
p ∥w∥p − S

−2∗/2
2∗,∂

∥w∥2∗ ,

for any w ∈W . Since 2 < p < 2∗, we conclude that

Iβ(w) ≥
∥w∥2

2

[
c2 + o(∥w∥2)

]
, as ∥w∥ → 0, w ∈W,

with c2 = (λ1 − ε)/(λ1) > 0. This proves that (I1) holds.

Given k ∈ N, we consider {ψi}ki=1 ⊂ C∞
0 (RN

+ ) smooth functions with disjoint
supports and denote

Ṽ := span{ψ1, . . . , ψk}.

Then, dim Ṽ = k and there exists a large ball BR(0) ⊂ RN
+ containing the support

of all the functions ψ1, . . . , ψk.
Notice that (f3) provides c3, c4 > 0 such that

(3.2) F (s) ≥ c3s
θ − c4, ∀s ∈ R,

with θ > 2. Hence, for any v ∈ Ṽ , the equivalence of norms in Ṽ implies that

Iβ(v) ≤
1

2
∥v∥ − c5∥v∥θ − c4meas(BR(0)) → −∞, as ∥v∥ → +∞.

Since Iβ maps bounded sets into bounded sets, it follows from the above expression
that maxv∈Ṽ Iβ(v) ≤M , for some constant M > 0. This proves (I2).

We now consider β∗ > 0 as in Proposition 2.2 and invoke Theorem 3.1 to obtain
k pairs of nonzero solution whenever β ∈ (0, β∗). The theorem is proved. □
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4. Nonnegative Solution

We prove in this section our second main result. Since we are looking for positive
solutions, we shall assume that f(s) = 0, for any s ≤ 0. Moreover, since the
parameter β > 0 does not play any rule in Theorem 1.2, we assume from now on
that β = 1 and consider the functional

I(u) :=
1

2
∥u∥2 −

∫
RN

+

K(x)F (u) dx− 1

2∗

∫
RN−1

K(x′, 0)(u+)2∗ dx′,

where u+(x) := max{u(x), 0}. It is clear that I ∈ C1(X,R). Moreover, if u is such
that I ′(u) = 0 and u− := u+ − u, then 0 = I ′(u)u− = −∥u−∥2. Hence, the critical
points of I are nonnegative solutions of our problem.

We start with a local compactness result.

Lemma 4.1. The functional I satisfies the (PS)c-condition for any

c < c∗ :=
SN−1
2∗,∂

2(N − 1)
.

Proof. Let (un) ⊂ X be such that I(un) → c and I ′(un) → 0. As before, (un) is
bounded and therefore there exists u ∈ X such that (2.2) holds. Moreover, from
(f1), (f2) and the Lebesgue’s Theorem, we conclude that I ′(u) = 0 and∫

RN
+

K(x)F (un) dx =

∫
RN

+

K(x)F (u) dx+ o(1)

and ∫
RN

+

K(x)f(un)un dx =

∫
RN

+

K(x)f(u)u dx+ o(1),

as n→ +∞.
If zn := (un −u), we can use the above expressions, I ′(un)un = o(1) and Brezis-

Lieb’s lemma [7] to get

o(1) = ∥un∥2 −
∫
RN

+

K(x)f(un)un dx−
∫
RN−1

K(x′, 0)(u+n )
2∗ dx′

= I ′(u)u+ ∥zn∥2 −
∫
RN−1

K(x′, 0)(z+n )
2∗ dx′ + o(1).

Passing to the limit and using I ′(u) = 0, we obtain b ≥ 0 such that

lim
n→+∞

∥zn∥2 = b = lim
n→+∞

∫
RN−1

K(x′, 0)(z+n )
2∗ dx′.

We claim that b = 0. In order to prove this, we first pass to the limit the
inequality ∫

RN−1

K(x′, 0)(z+n )
2∗dx′ ≤ S

−2∗/2
2∗,∂

(∫
RN

+

K(x)|∇zn|2dx

)2∗/2

,

to obtain b ≤ S
−2∗/2
2∗,∂

b2∗/2. Hence, if b > 0, we get

(4.1) b ≥ SN−1
2∗,∂

.

On the other hand, using Brezis-Lieb again, we obtain

c+ o(1) = I(un) = I(u) +
1

2
∥zn∥2 −

1

2∗

∫
RN−1

K(x′, 0)(z+n )
2∗ dx′ + o(1).
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Taking the limit and using (4.1), we get that

c = I(u) +
λ

2(N − 1)
≥ I(u) +

SN−1
2∗,∂

2(N − 1)
= I(u) + c∗.

Using (f3) we obtain I(u) = I(u) − (1/θ)I ′(u)u ≥ 0, and therefore the above
expression implies that c ≥ c∗, which does not make sense. □

Let us take ϕ ∈ C∞(RN
+ , [0, 1]) such that ϕ ≡ 1 in RN

+ ∩ B1(0) and ϕ ≡ 0 in

RN
+\B2(0). Set, for each ε > 0,

uε(x) := K(x)−1/2ϕ(x)Uε(x), x ∈ RN
+ ,

where

Uε(x
′, xN ) :=

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2
.

When N ≥ 7, it is proved in [23] that, as ε→ 0+,

(4.2) ∥uε∥2 = AN +O(ε2), uε
2∗
2∗

= B
2∗/2
N +O(ε2),

with the constants above being such that AN/BN = S2∗,∂ . We shall need the
following estimates:

Lemma 4.2. If ψε := uε/ uε 2∗ and N/(N − 2) < q < 2N/(N − 2), then

(4.3) ∥ψε∥2(N−1) = SN−1
2∗,∂

+O(ε2), ∥ψε∥qq = O(εN−q(N−2)/2),

as ε→ 0+.

Proof. Using the Mean Value theorem for g(r) = rs and a simple computation, we
can check that [

A+O(εt)
]s

= As +O(εt),

for any A, s, t > 0. Hence, we infer from (4.2) and the defintion of 2∗ that

∥ψε∥2(N−1) =

[
AN +O(ε2)

]N−1[
B

2∗/2
N +O(ε2)

]N−2
=

AN−1
N +O(ε2)

B
2∗(N−2)/2
N +O(ε2)

=

(
AN

BN

)N−1

+O(ε2).

The first statement in (4.3) follows from the above inequality and AN/BN = S2∗,∂ .
For the second one, we first notice that

∥uε∥qq = ε−q(N−2)/2

∫
RN

+

K(x)−q/2ϕ(x)q

[|x′/ε|2 + (xN/ε+ 1)2]q(N−2)/2
dx

≤ C1ε
−q(N−2)/2

∫
B2(0)∩RN

+

1

[|x/ε|2 + 1]q(N−2)/2
dx

≤ C1ε
−q(N−2)/2+N

∫
RN

+

1

[|y|2 + 1]q(N−2)/2
dy,

where we have used the definition of uε, 0 ≤ ϕ ≤ 1 and the change of variable
y = x/ε. But∫

RN
+

1

[|y|2 + 1]q(N−2)/2
dy ≤ C2 +

∫
RN

+ \B1(0)

1

|y|q(N−2)
dy

= C2 + C3

∫ +∞

1

s−q(N−2)+(N−1) ds < +∞,
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whenever q > N/(N − 2). Since uε
q
2∗

= B
q/2
N + o(1), as ε→ 0+, the result follows

from the above inequalities. □

We are ready to prove our second main result.

Proof of Theorem 1.2. Arguing as in the proof of Theorem 1.1 we obtain ρ, α > 0
such that I(u) ≥ α, whenever ∥u∥ ≥ ρ. Moreover, it follows from (3.2) that

I(tψε)

t2∗
≤ 1

2t2∗−2
∥ψε∥2 −

c3
t2∗−θ

∥ψε∥θθ +
c4
t2∗

meas(suppψε)−
1

2∗
ψε

2∗
2∗
,

for t > 0. Thus, there exists t > 0 such that e = tψε satisfies I(e) < 0 and ∥e∥ > ρ.
If we set

cε := inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) ≥ α,

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}, we obtain from the Mountain
Pass Theorem [1] a sequence (un) ⊂ X such that I(un) → cε and I ′(un) → 0.
If cε < c∗, it follows from Lemma 4.1 that, along a subsequence, (un) strongly
converges to a critical point u ∈ X such that I(u) = cε ≥ α > 0. Thus, u ≥ 0 is a
nonzero solution of the problem.

It remains to check that, for some ε > 0 small, there holds cε < c∗. In order to
do that, we set

mε := max
t≥0

I(tψε)

and notice that it is sufficient to prove that mε < c∗. Let tε > 0 be such that
mε = I(tεψε). Since I

′(tεψε)ψε = 0 and ψε 2∗ = 1, we get

(4.4) t2∗−1
ε = tε∥ψε∥2 −

∫
RN

+

K(x)f(tεψε)ψε dx,

The above identity and (f3) imply that

tε ≤ ∥ψε∥2/(2∗−2).

Since the function g : [0,+∞) → R defined by g(t) := (t2/2)∥ψε∥2 − t2∗/2∗ is
increasing in the interval [0, ∥ψε∥2/(2∗−2)], we can use the above inequality and
(4.3) to get

mε = g(tε)−
∫
Rn

+

K(x)F (tεψε) dx

≤ ∥ψε∥2(N−1)

2(N − 1)
−
∫
Rn

+

K(x)F (tεψε) dx

=
SN−1
2∗,∂

2(N − 1)
+O(ε2)−

∫
Rn

+

K(x)F (tεψε) dx.

So, it is sufficient to prove that

(4.5) lim
ε→0+

1

ε2

∫
Rn

+

K(x)F (tεψε) dx = +∞.

First notice that, by (f1), (f2), (4.3) and p < 2∗, it follows that∣∣∣∣∣
∫
RN

+

K(x)f(tεψε)ψε dx

∣∣∣∣∣ ≤ O(ε2) +O(εN−p(N−2)/2) = o(1),
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as ε→ 0+. This, together with (4.3) and (4.4), implies that tε → S
(N−2)/2
2∗,∂

> 0, as

ε→ 0+. Thus, since (f3) implies that F is increasing in [0,+∞), we can use (4.2),
K ≥ 1 and the definition of ϕ to obtain C1 > 0 such that

(4.6)

∫
RN

+

K(x)F (tεψε) dx ≥
∫
B1(0)∩RN

+

F

(
C1

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2

)
dx,

for any ε > 0 small. If we call Γε the right-hand side above, the change of variables
y = x/ε gives

Γε = εN
∫ 1/ε

0

∫
∂Bs(0)∩RN

+

F

(
C1

ε−(N−2)/2

[|y′|2 + (yN + 1)2](N−2)/2

)
dσy ds.

Now, using the change of variable y = sx, with x ∈ ∂B1(0), the monotonicity of F
and the inequality s2|x′|2 + (sxN + 1)2 ≤ 4(s2 + 1), for x ∈ ∂B1(0), we obtain

Γε ≥ εN
∫ 1/ε

0

∫
∂B1(0)∩RN

+

F

(
C2

ε−(N−2)/2

[s2 + 1](N−2)/2

)
sN−1 dσx ds

= C3ε
N

∫ 1/ε

0

F

(
C2

ε−(N−2)/2

[s2 + 1](N−2)/2

)
sN−1 ds

with C2 = 4−(N−2)/2C1 > 0 and C3 = C3(N). After rescaling, we obtain

1

ε2
Γε ≥ C4ε

N−2

∫ C
−2/(N−2)
2 /ε

0

F

(
ε−(N−2)/2

[s2 + 1](N−2)/2

)
sN−1 ds.

with C4 := C3C
2N/(N−2)
2 . It is easy to see that (4.5) is a consequence of the above

expression, (4.6) and hypothesis (1.2). The theorem is proved. □

5. Data availability statement
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[11] P. Cherrier, Problèmes de Neumann non linéaires sur les variétés Riemanniennes, J. Funct.

Anal. 57 (1984), 154-–206. 1

[12] M. Chipot, M. Fila and I. Shafrir, On the solutions to some elliptic equations with nonlinear
Neumann boundary conditions, Adv. Differential Equations 1 (1996), 91–110. 1

[13] M. Chipot, M. Chleb́ık, M. Fila and I. Shafrir, Existence of positive solutions of a semilinear

elliptic equation in Rn
+ with a nonlinear boundary condition, J. Math. Anal. Appl. 223 (1998),

429–471. 1

[14] P.G. Ciarlet, Mathematical Elasticity, vol. I. Three-Dimensional Elasticity, North-Holland,

Amsterdam, 1988. 1
[15] J.I. Diaz, Nonlinear Partial Differential Equations and Free Boundaries, vol. I. Elliptic

Equations, Res. Notes Math., vol. 106,Pitman, Boston, MA, 1985. 1
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