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Abstract. We obtain existence of solution for the equation

−∆u+
1

2
(x · ∇u) = a(x)f(u), x ∈ R2,

where a is a continuous sign-changing potential and the superlinear function
f has an exponential critical growth.

1. Introduction and main results

We are concerned with the equation

(P ) −∆u+
1

2
(x · ∇u) = a(x)f(u), x ∈ R2,

where a is a sign-changing potential and the nonlinerity f has an exponential critical
growth at infinity. The operator in (P ) naturally appears when we look for self-
similar solutions for homogeneous heat equations, namely solutions of the form
ω(t, x) = t−1/(p−2)u(t−1/2x) for the evolution equation

ωt −∆ω = |ω|p−2ω, in (0,+∞)× RN .

More specifically, ω is a solution for the above equation if, and only if, the profile
u is a solution for the elliptic equation

−∆u− 1

2
(x · ∇u) = λu+ |u|p−2u, x ∈ RN .

There is a vast literature concerning the above problem with several types of
nonlinearities for bounded domains, the whole space RN and even the upper half-
space RN

+ . Without intention to present a complete list of references, we could cite
[13, 3, 5, 16, 15, 6, 8, 10, 17] and references therein. In these works the authors
find results about existence, nonexistence, multiplicity, decay rate, among other
properties of solutions via ODE techniques or variational methods. As far as we
know, Escobedo and Kavian [8] were the first to treat this operator in a variational
way and particularly inspired works as [12, 9], that considered problem (P ) with
sign-changing nonlinearity having a concave-convex prototype.

In this paper, we deal with an indefinite potential a. More specifically, we follow
[1] and assume that

(a1) a : R2 → R is a bounded sign-changing continuous function;
(a2) if Ω+ := {x ∈ R2; a(x) > 0} and Ω− := {x ∈ R2; a(x) < 0}, then

dist(Ω+,Ω−) > 0;
(a3) there exists R > 0 such that a(x) < 0 for |x| ≥ R.
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We are interested in the case that f is superlinear both at the origin and at
infinity, namely

(f0) f ∈ C(R,R) and there exists α0 > 0 such that

lim
s→+∞

f(s)

eαs2
=

{
0 if α > α0,

+∞ if α < α0;

(f1) lim
s→0

f(s)/s = 0.

In order to present the other conditions on f we need to say some words about our
functional space. So, we set K(x) := exp(|x|2/4) and notice that div(K(x)∇u) =
K(x) [∆u+ (1/2)(x · ∇u)] , in such way that we can use a variational approach and
look for solutions in the space X defined as the closure of C∞

0 (R2) with respect to
the norm

∥u∥ :=

(∫
R2

K(x)|∇u|2 dx
)1/2

.

Given s ≥ 2, it is proved in [11] that X is compactly embedded into the weighted
Lebesgue space Ls

K := Ls(R2,K(x)). Hence, we can define the constant

S2 := inf

{∫
R2

K(x)|∇u|2dx :

∫
R2

K(x)|u|2 dx = 1

}
.

Since Ω+ is far from Ω−, we can find ζ ∈ C∞(R2, [0, 1]) such that

ζ ≡ 1, in Ω+, ζ ≡ 0, in Ω−, M := sup
R2

|∇ζ| < ∞.

Our technical assumptions on f can be stated as follows:

(f2) there exist ν > 2 and 0 < θ < ν
[
2(1 +MS

−1/2
2 )

]−1

such that, for

F (s) :=
∫ s

0
f(τ) dτ , there holds

0 <
ν

θ
F (s) ≤ f(s)s, ∀ |s| > 0;

(f3) there exist K0, R0 > 0 such that

0 < F (s) ≤ K0|f(s)|, ∀ |s| ≥ R0;

(f4) if x0 ∈ Ω+ and r > 0 are such that a(x0) = maxΩ+ a and a(x) ≥
(maxΩ+ a)/2 in Br(x0), then

lim
s→+∞

sf(s)e−α0s
2

≥ β0 >
8

α0r2 ·maxΩ+ a
exp

(
r2

8
+

r4

512

)
.

In this paper, we prove the following existence result:

Theorem 1.1. Suppose that (a1) − (a3) and (f0) − (f4) hold. Then problem (P )
admits at least a weak nontrivial solution.

In the proof we apply the Mountain Pass Theorem. Since the potential a
changes it sign, it is not so easy to prove that Palais-Smale sequences are bounded.
Conditions (a2) and (f2) are important in this issue. Condition (f3) has first
appeared in [7] and provides a compactness property for the Palais-Smale sequence.
With the aim of overcome the difficulties imposed by the lack of compactness, since
we are dealing with the whole space R2, we invoke a version of the Trudinger-
Moser inequality together with assumption (f4) and the Moser’s functions to find
the correct localization of the mountain pass level. We notice that (f4) is weaker
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than lims→+∞ f(s)se−α0s
2

= +∞, which have been used in some former papers
(see (g5) in [1] for instance). It is not difficult to see that, if we pick q > ν/θ, then
the function

f(s) = (q|s|q−2s+ 2α0|s|qs)eα0|s|q

satisfies all the conditions (f0)− (f4) above.
We finish this introduction quoting the paper [4], where the authors considered

−∆u+ u = a(x)f(u), in Ω Bu = 0, on ∂Ω,

in a bounded domain, Bu = ∂u/∂ν or Bu = u, a ∈ C(Ω,R) is a sign-changing
potential and f is a power type subcritical nonlinearity. The N -laplacian case is
considered in [1] for an exterior domain Ω, Dirichlet boundary conditions and f
having exponential critical growth. Theorem 1.1 is a complement of these papers
since we deal with the whole space case and a different operator.

The paper contains two more sections. In the first one, we present the variational
framework to deal with (P ) and some auxiliary results. Theorem 1.1 is proved in
Section 3.

2. Variational framework and technical results

We start by quoting a Trudinger-Moser type inequality proved in [11].

Theorem 2.1 (Trudinger-Moser). If u ∈ X, β > 0 and p ≥ 0 then

K(x)|u|2+p(eβu
2 − 1) ∈ L1(R2). Moreover, if ∥u∥ ≤ M , with βM2 < 4π, then

there exists a constant C = C(β,M, p) > 0 such that∫
R2

K(x)|u|2+p(eβu
2

− 1) dx ≤ C∥u∥2+p.

Let α > α0 and q ≥ 1. It follows from (f0) that

lim
|s|→+∞

f(s)

|s|1−q(eαs2 − 1)
= 0.

Hence, we can use (f1) to obtain, for any given ε > 0, a constant Cε > 0 such that

(2.1) max{|f(s)s|, |F (s)|} ≤ εs2 + Cε|s|q(eαs
2

− 1),

for any s ∈ R. Since a ∈ L∞(R2), we can use the above estimates and Theorem 2.1
to show that the functional I : X → R given by

I(u) :=
1

2
∥u∥2 −

∫
R2

K(x)a(x)F (u) dx

is well-defined, it belongs to C1(R2,R) and its critical points are weak solutions for
problem (P ).

Let x0 ∈ Ω+ and r > 0 be given by condition (f4). We define a slight adaptation
of the Green’s function considered by Moser in [14], namely

M̃n(x) :=
1√
2π

·


K(r/n)−1/2(log n)1/2, if |x− x0| ≤ r/n,

K(x)−1/2 log (r/|x− x0|)
(log n)1/2

, if r/n ≤ |x− x0| < r,

0, if |x− x0| ≥ r.

As we shall see, the location of x0 ∈ R2 does not play any role in our next
calculations. So, we assume with no loss of generality that x0 = 0. We have
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that M̃n ∈ H1(R2) and supp(M̃n) = Br(0). Moreover, it is proved in [11, Lemma
4.6] that there exists a sequence (dn) ⊂ R such that

(2.2) ∥M̃n∥2 = 1 +
1

log n

(
r2

8
+

r4

512

)
− dn, lim

n→+∞
dn log n = 0.

In particular, ∥M̃n∥2 → 1, as n → +∞.

Lemma 2.2. Suppose that (a1) − (a3), (f2) and (f4) hold. If Mn := M̃n/∥M̃n∥,
then there exists n ∈ N such that

max
s≥0

I(sMn) = max

{
s2

2
−
∫
R2

K(x)a(x)F (sMn) dx

}
<

2π

α0
.

Proof. For each n ∈ N, consider the function gn(s) := I(sMn), for s ≥ 0. From
(f2), we obtain C1, C2 > 0 such that F (s) ≥ C1|s|ν/θ − C2, for any s ∈ R. Thus,
since supp(Mn) ⊂ Ω+, we have that

gn(s) ≤
s2

2
− C1s

ν/θ

∫
Ω+

K(x)a(x)Mν/θ
n dx+ C2

∫
Ω+

K(x)a(x) dx.

Recalling that ν/θ > 2, we obtain gn(s) → −∞, as s → +∞. Hence, gn attains its
global maximum at sn > 0 which satisfies 0 = g′n(sn) or, equivalently,

(2.3) s2n =

∫
Br(0)

K(x)a(x)f(snMn)snMn dx.

Suppose, by contradiction, that the result of the lemma is false. Then gn(sn) ≥
(2π)/α0 and we can use the definition of gn, supp(Mn) ⊂ Ω+ and F ≥ 0, to get

(2.4) s2n ≥ 4π

α0
.

Let β0 > 0 be given by (f4). If 0 < ε < β0, there exists Rε > 0 such that

(2.5) sf(s) ≥ (β0 − ε)eα0s
2

, ∀ |s| ≥ Rε.

Using the definition of Mn, (2.4) and ∥M̃n∥ → 1, as n → +∞, we conclude that

snMn(x) = sn
M̃n

∥M̃n∥
≥ e−r2/(8n2)

∥M̃n∥

√
4π log n

α0
≥ Rε,

for any |x| < r/n and n large. Hence, it follows from (2.3), (2.5), K ≥ 1, the choice
of r > 0 in (f4), the previous inequality and the definition of Mn that

s2n ≥
∫
Br/n(0)

K(x)a(x)f(snMn)snMn dx

≥ c0(β0 − ε)

∫
Br/n(0)

exp(α0(snMn)
2) dx

= c0(β0 − ε)

∫
Br/n(0)

exp

(
α0s

2
n

e−r2/(4n2) log n

2π∥M̃n∥2

)
dx

= c0(β0 − ε)
πr2

n2
exp

(
α0s

2
n

e−r2/(4n2) log n

2π∥M̃n∥2

)
,
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where c0 := (maxΩ+ a)/2. Using that 1/n2 = exp(−2 log n), we obtain

(2.6) s2n ≥ c0(β0 − ε)πr2 exp

(
2

[
e−r2/(4n2)

∥M̃n∥2
α0

4π
s2n − 1

]
log n

)
,

and hence, recalling that exp(s) ≥ s, we get that

(2.7) s2n ≥ 2c0(β0 − ε)πr2

[
e−r2/(4n2)

∥M̃n∥2
α0

4π
s2n − 1

]
log n.

Since e−r2/(4n2)∥M̃n∥−2 → 1, we conclude from the above inequality that (sn) is
bounded. Hence, up to a subsequence, s2n → γ ≥ 4π/α0. If γ > 4π/α0, we obtain
a contradiction after passing (2.7) to the limit. Thus, γ = 4π/α0. Combining
inequalities (2.4), (2.6) and Lemma 2.2, we obtain

s2n ≥ c0(β0 − ε)πr2 exp

{
−2

∥M̃n∥2
(∥M̃n∥2 − e−r2/(4n2)) log n

}
.

Passing to the limit in n, using (2.2) and a straightforward computation, we obtain

4π

α0
≥ c0(β0 − ε)πr2 exp

(
−2

(
r2

8
+

r4

512

))
.

Letting ε → 0 and recalling that c0 = (maxΩ+ a)/2, we finally conclude that

β0 ≤ 8

α0r2 ·maxΩ+ a
exp

(
r2

4
+

r4

256

)
,

which contradicts assumption (f4). The result is proved. �

We prove in the sequel that I has the Mountain Pass geometry.

Lemma 2.3. Suppose that (a1) − (a3) and (f0) − (f2) hold. If n ∈ N is given by
Lemma 2.2, we have that

(i) there exist ξ, ρ > 0 such that I(u) ≥ ξ, for any u ∈ X, ∥u∥ = ρ.
(ii) there exists s0 > 0 such that ∥s0Mn∥ > ρ and I(s0Mn) < 0.

Proof. Given α > α0 and ε > 0, it follows from (2.1) (with q = 3) that∫
R2

K(x)a(x)F (u) dx ≤
∫
Ω+

K(x)a(x)F (u) dx ≤ ε∥a∥L∞(Ω+)∥u∥22

+ ∥a∥L∞(Ω+)Cε

∫
RN

K(x)|u|3(eαu
2

− 1) dx.

If 0 < M < 1 is such that αM2 < 4π, we can use Theorem 2.1 to obtain
C1 = C1(M,α) > 0 such that∫

R2

K(x)a(x)F (u) dx ≤ ε∥a∥L∞(Ω+)S
−1
2 ∥u∥2 + C1∥u∥3,

whenever ∥u∥ ≤ M . Hence, picking ε > 0 in such a way that (1 −
2ε∥a∥L∞(Ω+)S

−1
2 ) = C2 > 0, we get that

I(u) ≥ 1

2
(1− 2ε∥a∥L∞(Ω+)S

−1
2 )∥u∥2 − C1∥u∥3 = ∥u∥2

(
C2

2
− C1∥u∥

)
,
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and item (i) clearly holds for ρ := C2/(4C1) and ξ := ρ2C2/4. The second
statement is a direct consequence of the proof of the last lemma, where we have
that I(sMn) → −∞, as s → +∞. �

The above result ensures the existence of a Palais-Smale sequence at the
mountain pass level [2] (see also [18, Theorem 1.15]), that is, a sequence (un) ⊂ X
such that

lim
n→+∞

I ′(un) = 0, lim
n→+∞

I(un) = cMP

where

cMP := inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) ∈
(
0,

2π

α0

)
,

and Γ := {γ ∈ C([0, 1], X); γ(0) = 0, γ(1) = e}, with e := s0Mn ∈ X given by
Lemma 2.3. Notice that the path γ(s) := ss0Mn belongs to Γ and therefore we
really have that cM < 2π/α0.

Lemma 2.4. There exists u0 ∈ X such that, up to a subsequence, un ⇀ u0 weakly
in X.

Proof. It is sufficient to prove that (un) is bounded in X. Computing I(un) −
(θ/ν)I ′(un)(ζun) and using the properties of the function ζ we get that

c+ on(1) + on(1)∥un∥ =
1

2
∥un∥2 −

∫
R2

K(x)a(x)F (un) dx

− θ

ν

∫
R2

K(x) [∇un∇(ζun)− a(x)f(un)ζun] dx

≥
(
1

2
− θ

ν

)
∥un∥2 −

θM
ν

∫
R2

K(x)|∇un||un| dx

+

∫
Ω+

K(x)a(x)

[
θ

ν
f(un)un − F (un)

]
dx

and therefore we can use (f2) to obtain

(2.8) c+ on(1) + on(1)∥un∥ ≥
(
1

2
− θ

ν

)
∥un∥2 −

θM
ν

∫
R2

K(x)|∇un||un| dx.

It follows from Hölder’s inequality and the continuous embedding that

θM
ν

∫
R2

K(x)|∇un||un| dx ≤ θMS
−1/2
2

ν
∥un∥2,

which together with (2.8) lead to

c+ on(1) + on(1)∥un∥ ≥

(
1

2
− θ

ν
− θMS

−1/2
2

ν

)
∥un∥2.

By (f2), the term into parenthesis above is positive, which implies that (un) is
bounded in X.

�
Since X is compactly embedded in Ls

K(R2), it follows from the above lemma
that

(2.9)

 un → u0 strongly in Ls(R2),
un(x) → u0(x) a.e. in R2,

|un(x)| ≤ hs(x) a.e. in R2,
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for any s ≥ 2 and some hs ∈ Ls
K(R2).

Lemma 2.5. Suppose that (a1) − (a3) and (f0) − (f4) hold. If a±(x) :=
max{±a(x), 0} and u0 ∈ X is given by Lemma 2.4, then K(x)a±(x)f(un) →
K(x)a±(x)f(u0) in L1

loc(R2).

Proof. Fixed σ > 0, we can compute I(un) − (σ/ν)I ′(un)(ζun) and argue as in
Lemma 2.4 to obtain

c+ on(1) + on(1)∥un∥ ≥

(
1

2
− σ

ν
− σMS

−1/2
2

ν

)
∥un∥2

+

(
σ

ν
− θ

ν

)∫
Ω+

K(x)a(x)f(un)un dx.

Choosing σ > ν
[
2(1 +MS

−1/2
2 )

]−1

> θ and recalling that (un) is bounded, we

obtain ∫
Ω+

K(x)a(x)f(un)un dx ≤ C1.

Moreover, since I ′(un)un = 0, we have that∫
Ω−

K(x)a(x)f(un)un dx ≤
∫
RN

K(x)a(x)f(un)un dx = ∥un∥+ on(1) ≤ C2.

Let Ω ⊂ R2 be a bounded set. Given ε > 0, is is clear that

|f(s)| ≤ εf(s)s, ∀ |s| ≥ Rε := 1/ε.

Consequently,
(2.10)∫

[|un|≥Rε]∩Ω

K(x)a±(x)|f(un)| dx ≤ ε

∫
[|un|≥Rε]∩Ω

K(x)a±(x)f(un)un dx ≤ εC3,

with C3 := (C1 + C2). Thus, from the pointwise convergence and Fatou’s lemma,
we obtain

(2.11)

∫
[|u0|≥Rε]∩Ω

K(x)a±(x)|f(u0)| dx ≤ εC3.

On the other hand,∫
Ω

K(x)a±(x)|f(un)− f(u0)| dx ≤
∫
[|un|≥Rε]∩Ω

K(x)a±(x)|f(u0)| dx

+

∫
[|un|≥Rε]∩Ω

K(x)a±(x)|f(un)| dx

+

∫
[|un|<Rε]∩Ω

K(x)a±(x)|f(un)− f(u0)| dx.

Thus, we infer from (2.10) and (2.11) that∫
Ω

K(x)a±(x)|f(un)− f(u0)| dx ≤ 2εC3 +

∫
Σn,ε∩Ω

K(x)a±(x)|f(u0)| dx

+

∫
[|un|<Rε]∩Ω

K(x)a±(x)|f(un)− f(u0)| dx,
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with Σn,ε := [|u0| < Rε] ∩ [|un| ≥ Rε]. Passing the above inequality to the limit
as n → +∞, using that Ω is bounded, Lebesgue’s theorem and the arbitrariness of
ε > 0, we obtain

lim
n→+∞

∫
Ω

K(x)a±(x)f(un) dx =

∫
Ω

K(x)a±(x)f(u0) dx,

and the lemma is proved. �

3. Proof of Theorem 1.1

We prove in this section our main theorem. The idea is proving that the weak
limit u0 given by Lemma 2.4 is a nonzero solution of (P ). First notice that,
since I ′(un) → 0, as n → +∞, we can use Lemmas 2.4 and 2.5 to conclude that
I ′(u0)φ = 0, for all φ ∈ C∞

0 (R2). A density argument shows that u0 is a critical
point of I.

Suppose, by contradiction, that u0 = 0. Using condition (f3), the continuity of
f and that Ω+ is bounded, we obtain C1 > 0 such that

K(x)a(x)F (un) ≤ C1 +K0K(x)a(x)|f(un)|, for a.e. x ∈ Ω+.

As a byproduct of the proof of Lemma 2.5, we see that the right hand side above
goes to zero. So, we can use the pointwise convergence and Lebesgue’s theorem to
conclude that

∫
Ω+ K(x)a(x)F (un) dx → 0. Hence,

cMP + on(1) = I(un) =
1

2
∥un∥2 −

∫
R2

K(x)a(x)F (un) dx

≥ 1

2
∥un∥2 −

∫
Ω+

K(x)a(x)F (un) dx =
1

2
∥un∥2 + on(1),

from which we conclude that lim sup
n→+∞

∥un∥2 ≤ 2cMP < 4π/α0. This provides

m, n0 > 0 be such that

∥un∥2 < m <
4π

α0
, ∀n ≥ n0.

We now claim that
∫
R2 K(x)a(x)f(un)un = on(1). If this is true, we can use

I ′(un)un = on(1) and (2.1) to get

∥un∥2 =

∫
R2

K(x)a(x)f(un)un dx+ on(1) = on(1),

which implies that I(un) → 0. But this is impossible because I(un) → cMP > 0.
Then, u0 ̸= 0 is the desired solution.

In order to prove the claim, we pick α > α0, q > 2 and s > 1 to be chosen later,
and apply (2.1) together with Hölder’s inequality to write∫

R2

K(x)a(x)f(un)un dx ≤ C2∥un∥2L2
K
+ C3

∫
R2

K(x)|un|2q(eαu
2
n − 1)dx

≤ C2∥un∥2L2
K

+ C3∥un∥q
Lqs′

K

[∫
R2

K(x)|un|qs
(
eαu

2
n − 1

)s]1/s
,

Using the inequality (1 + a)s ≥ 1 + as with a = et − 1, we get (et − 1)s ≤ ets − 1.
So, setting vn := un/∥un∥ and noticing that αsu2

n = αs∥un∥2|vn|2 ≤ αsm|vn|2, for
n ≥ n0, we obtain
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∫
R2

K(x)a(x)f(un)un dx ≤ C2∥un∥2L2
K

+ C4∥un∥q
Lqs′

K

[∫
R2

K(x)|vn|qs
(
eαsm|vn|2 − 1

)]1/s
.

Since αsm → α0m < 4π, as α → α0 and s → 1+, we can choose α, s, q close to
the numbers α0, 1, 2, respectively, and use Theorem 2.1 to guarantee that the term
into brackets above is uniformly bounded. It is sufficient now to recall that un → 0
strongly in the weighted Lebesgue spaces to obtain∫

R2

K(x)a(x)f(un)un ≤ C1∥un∥2L2
K
+ C5∥un∥q

Lqs′
K

= on(1),

and we have done.
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