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Abstract. We look for positive solutions for the singular equation

−∆u−
1

2
(x · ∇u) = µh(x)uq−1 + λu+ u(N+2)/(N−2), in RN ,

where N ≥ 3, λ > 0, µ > 0 is a parameter, 0 < q < 1 and h has some
summability properties. By using a perturbation method and critical point

theory, we obtain two solutions when max{1, N/4} < λ < N/2 and the
parameter µ > 0 is small.

1. Introduction

Consider the equation

−∆u− 1

2
(x · ∇u) = g(x, u), in RN ,

with N ≥ 3. As observed by Escobedo and Kavian in [12], if g(x, s) = λs+ |s|p−2s
and 2 < p ≤ 2∗ := 2N/(N − 2), this equation naturally appears when we deal with
the nonlinear heat equation

ut −∆u = |u|p−2u, in (0,∞)× RN ,
and look for solutions with the special form uλ(t, x) := t−λu(t−1/2x), for λ =
1/(p − 1). We quote the works [17, 3, 7, 23, 9, 15, 24] and references therein
for information about existence, nonexistence, decay rate and many other aspects
concerning this subject. We emphasize that, in all of those works, the function
g(x, s) remains bounded as s → 0. So, it is natural to ask what we can do in the
singular case, that is, when g(x, s) → +∞ as s→ 0+.

This paper aims to give a first answer for the above question. More specifically,
we are concerned with positive solutions for the singular equation

−∆u− 1

2
(x · ∇u) = µh(x)uq−1 + λu+ u2

∗−1, in RN ,

where N ≥ 3, λ > 0, µ > 0 is a parameter, 0 < q < 1 and h has some summability
properties. Before presenting the condition on h, we need to say a few words about
the variational structure of the problem. We first notice that, after multiplying the
equation by K(x) := exp(|x|2/4), it can be rewritten as{

−div(K(x)∇u) = µK(x)h(x)uq−1 + λK(x)u+K(x)u2
∗−1, in RN ,

u > 0, in RN .
(Pµ)
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It is natural to look for solutions in the space X defined as the closure of C∞
0 (RN )

with respect to the norm

‖u‖ :=

(∫
RN

K(x)|∇u|2 dx
)1/2

.

It was proved in [12, Propositions 1.1 and 1.12] that X is a Hilbert space which is
continuously embedded into the weighted Lebesgue spaces

LpK(RN ) :=

{
u ∈ Lp(RN ) : ‖u‖p :=

(∫
RN

K(x)|u|pdx
)1/p

<∞

}
,

for any p ∈ [2, 2∗]. Moreover, the embedding is compact if p ∈ [2, 2∗).
Due to the difficulties related to the operator and the singular nature of the

nonlinearity at the origin, we do not expect to find regular solutions. Hence, as
usual in the literature, we call u ∈ X a solution for problem (Pµ) if it satisfies u > 0
a.e. in RN and, for any φ ∈ X, we have that h(x)uq−1φ ∈ L1

K(RN ) and

(1.1)

∫
RN

K(x)
[
(∇u · ∇φ)− µh(x)uq−1φ− λuφ− u2

∗−1φ
]
dx = 0.

In our first result, we obtain one solution with no lower limitation in the
parameter λ < N/2 and for µ > 0 is small. More specifically, we shall prove
the following:

Theorem 1.1. Suppose that λ < N/2 and h > 0 satisfies

(h) h ∈ L1
K(RN ) ∩ L2

K(RN ).

Then there exists µ∗ > 0 such that problem (Pµ) has a solution, whenever
µ ∈ (0, µ∗).

In the proof, we apply a minimization argument for a perturbed (nonsigular)
problem. We notice that condition λ < N/2 is necessary for the existence
of a solution. Indeed, it is proved in [12, Proposition 2.3] that the linearized
version of equation (Pµ) has the pair (λ, u) = (N/2, ϕ1) as a solution, where
ϕ1(x) = exp(−|x|2/4) > 0. So, if u0 ∈ X is a solution, we may pick v = ϕ1

in the integral formulation to get(
N

2
− λ

)∫
RN

K(x)uϕ1 dx =

∫
RN

K(x)
[
µh(x)uq−1ϕ1 + u2

∗−1ϕ1

]
dx > 0,

from which it follows that λ < N/2.
In our second result, we obtain another solution under an additional lower bound

on the value of λ. More specifically, we prove the following:

Theorem 1.2. Suppose that max{1, N/4} < λ < N/2, h > 0 is continuous and
satisfies (h). Then there exists 0 < µ∗ < µ∗ such that problem (Pµ) has at least two
solutions, whenever µ ∈ (0, µ∗)

To obtain the second solution, we apply the Mountain Pass Theorem to a
perturbed functional, together with a limit process. The extra assumption on λ is
related with the range of existence of positive solution for the nonsingular problem
(P0) obtained in [12, Theorem 4.10]. It is worth mentioning that the continuity of
h may be replaced by the weaker condition that the infimum of h is positive in any
ball.
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We focus now on some general comments about the singular problem

−∆u = g(x, u), in Ω, u > 0, in Ω, u ∈ H1
0 (Ω),

where N ≥ 3, Ω ⊂ RN is a domain and g(x, s) → +∞, as s → 0. There is
a vast literature concerning this kind of problem, mainly due to its applications
in boundary layer flow, fluid dynamics, non-Newtonian fluids, reaction–diffusion
processes, chemical heterogeneous catalysts, in the theory of heat conduction in
electrically conducting materials and in other geophysical and industrial contexts
(see for instance [10, 8, 22, 27]).

Although it is impossible to give a complete reference, it seems important to
quote the pioneering works of Stuart [29] and Crandall, Rabinowitz and Tartar
[11], who considered a general second order operator instead of the laplacian and
used some topological arguments to get solutions. Later, Lazer and McKenna [21]
proved existence and regularity results for g(x, s) = h(x)sq−1, where h is Hölder
continuous. Their result was generalized in different ways by Lair and Shaker
[19, 20] and Zhang and Cheng [30]. Also in the bounded domain case, we quote the
paper of Boccardo and Orsina [5], where the Laplacian is replaced by the operator
u 7→ div(M(x)∇u), with M being a bounded elliptic matrix, g(x, s) = h(x)sq−1,
with h ≥ 0 belonging to some Lebesgue space or even being a Radon measure.
Some results for quasilinear operators can be found in [25, 26, 2]. For the case
of the whole space, we refer the reader to [18, 20, 28], where it is supposed that
g(x, s) = h(x)sq−1 + f(x, s), h is continuous and f has some mild conditions.

We finally mention that our results are related to the pioneering work of
Ambrosetti et al. [1] (see also [4]), where a concave-convex type problem was
considered in a bounded domain. Here, the concave term is replaced by a singular
one. We also refer to the reader versions of [1] for the same operator in (Pµ) in the
whole space [14, 13] and in the upper half-space [16].

This article complements the aforementioned works, since we deal with a singular
term, the problem is considered in the whole space and it has a different operator.
It is organized as follows: in the next section we prove Theorem 1.1, and Section 3
is devoted to the proof of Theorem 1.2.

2. Existence of a first solution

Along all this paper we write only
∫
f to denote

∫
RN f(x)dx, where f ∈ L1(RN ).

For any s ∈ R, we consider s+ := max{s, 0} and s− := s+ − s. We denote by Ci,
i = 1, 2, . . . , positive constants depending only on the structural assumptions. The
exact value of that constants will be omitted whenever it has no importance.

Before starting the proofs, we need to say a few words about the linearization of
the problem (Pµ), namely

−div(K(x)∇u) = λK(x)u, in RN .
Its spectrum was completely characterized in [12, Proposition 2.3], where it is
proved by a Fourier approach that the first eigenvalue is given by

λ1 = inf

{∫
K(x)|∇u|2 :

∫
K(x)|u|2 = 1

}
=
N

2
.

From this, we infer the following Poincaré type inequality:

(2.1) λ1

∫
RN

K(x)|u|2 dx ≤
∫
RN

K(x)|∇u|2 dx, ∀u ∈ X.
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Since we are going to obtain solutions for small values of the parameter µ > 0,
it is important to consider the limit problem

−div(K(x)∇u) = λK(x)u+K(x)|u|2
∗−2u, in RN , (P0)

and its associated C1-functional given by

I0(u) :=
1

2
‖u‖2 − λ

2
‖u+‖22 −

1

2∗
‖u+‖2

∗

2∗ , u ∈ X.

From now on, we assume that h ∈ L1
K(RN ) ∩ L2

K(RN ). Hence, we can use
interpolation to conclude that h ∈ LθK(RN ), where θ := 2/(2− q). For any u ∈ X,
it follows from Hölder’s inequality that

(2.2)
1

q

∫
K(x)h(x)(u+)q ≤ 1

q
‖h‖θ‖u+‖q2 ≤ C1‖u‖q,

Thus, we may add the singular term to I0 and obtain the functional associated with
the problem (Pµ), namely

Iµ(u) := I0(u)−
µ

q

∫
K(x)h(x)(u+)q, u ∈ X.

It is clear that Iµ is a well-defined continuous functional in X. In our first result
we study its behaviour near the origin.

Lemma 2.1. There exists µ∗ > 0 such that, for any µ ∈ (0, µ∗), there holds

Iµ(u) ≥ ρ, ∀u ∈ ∂BR(0),

with ρ, R > 0 independent of µ.

Proof. Given u ∈ X, we can use (2.1) and the embedding X ↪→ L2∗

K (RN ) to get

(2.3) I0(u) ≥
1

2

(
1− λ

λ1

)
‖u‖2 − C2‖u‖2

∗
≥ C3‖u‖2,

if C3 = (1− λ/λ1)/4 and

‖u‖ ≤ R :=

(
C3

C2

)1/(2∗−2)

.

This and (2.2) imply that

Iµ(u) ≥ ‖u‖q
(
C3‖u‖2−q − µC1

)
≥ ρ :=

C3

2
Rq,

whenever ‖u‖ = R and

0 < µ < µ∗ :=
C3

2C1
R2−q.

The lemma is proved. �
Let µ∗, R > 0 as in Lemma 2.1 and µ ∈ (0, µ∗). By picking a nonnegative

function ϕ ∈ C∞
0 (RN ) \ {0}, we get

lim
t→0+

Iµ(tϕ)

tq
= −µ

q

∫
K(x)h(x)ϕq < 0,

and therefore there exists t0 > 0 small in such a way that ‖t0ϕ‖ ≤ R and
Iµ(t0ϕ) < 0. This shows that

mµ := inf
∥u∥≤R

Iµ(u) < 0.
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Since Iµ maps bounded sets onto bounded sets, we have that mµ > −∞.
Even if we prove that mµ is attained in BR(0), the singular term of the equation

gives rise to a difficulty. Actually, since 0 < q < 1, the term
∫
K(x)h(x)(u+)q is

continuous but not differentiable, and therefore it is not clear that minimizers are
solutions of our problem. However, using a direct calculation, we may prove that
this holds, as we can see in the next result.

Lemma 2.2. If u ∈ BR(0) is such that Iµ(u) = mµ, then u is a solution for
problem (Pµ).

Proof. Since u+ ∈ BR(0) and mµ ≤ Iµ(u
+) ≤ Iµ(u) = mµ, we have that

Iµ(u
+) = Iµ(u). Thus, u

− ≡ 0 or, equivalently, u = u+ ≥ 0. We claim that u > 0,
a.e. in RN . Indeed, suppose by contradiction that the set Ω0 := {x ∈ RN : u = 0}
has positive measure. Pick r > 0 such that Ω := Ω0 ∩ Br(0) has positive measure
and a nonnegative function ψ ∈ C∞

0 (RN ) such that supp(ψ) ⊂ B2r(0) and ψ > 0
in Br(0). Since ‖u‖ < R, we have that ‖u + tψ‖ < R, for any t > 0 small. If we
divide the inequality Iµ(u) ≤ Iµ(u+ tψ) by t > 0 we obtain

µ

q

∫
Ω

K(x)h(x)ψq

t1−q
dx ≤ µ

q

∫
K(x)h(x)[((u+ tψ)+)q − (u+)q]

t

≤ I0(u+ tψ)− I0(u)

t
.

Passing to the limit, using Fatou’s lemma and recalling that K(x)h(x)ψq > 0 a.e.
in Ω, we obtain

+∞ =
µ

q

∫
Ω

lim inf
t→0+

K(x)h(x)ψq

t1−q
dx ≤ µ

q
lim inf
t→0+

∫
Ω

K(x)h(x)ψq

t1−q
dx ≤ I ′0(u)ψ,

which does not make sense. Hence, Ω0 has zero measure and u > 0 a.e. in RN .
Now, taking an arbitrary nonnegative function ψ ∈ X, we can argue as above to

get that

I ′0(u)ψ ≥ µ

q
lim inf
t→0+

∫
K(x)h(x)[((u+ tψ)+)q − (u+)q]

t

=
µ

q
lim inf
t→0+

∫
[ψ>0]

K(x)h(x)[((u+ tψ)+)q − (u+)q]

t
dx.

Since ψ ≥ 0, we have that (u+ tψ)+ ≥ u+. Then, we can use Fatou’s lemma again
to obtain

(2.4) I ′0(u)ψ − µ

q

∫
K(x)h(x)(u+)q−1ψ ≥ 0, ∀ψ ∈ X, ψ ≥ 0.

Since u 6= 0, it is well-defined t0 := (R/‖u‖) − 1 > 0 and a straightforward
computation shows that ‖(1+ t)u‖ < R, whenever t ∈ (−1, t0). Hence, denoting by

γ(t) := Iµ((1 + t)u), t ∈ (−1, t0),

we can use that mµ = Iµ(u) to get

mµ ≤ inf
t∈(−1,t0)

γ(t) ≤ γ(0) = Iµ(u) = mµ,

from which we conclude that γ attains its minimum value at t = 0. Since

γ(t) =
(1 + t)2

2

[
‖u‖2 − λ‖u‖22

]
− (1 + t)2

∗

2∗
‖u‖2

∗

2∗ − µ(1 + t)q

q

∫
K(x)h(x)(u+)q,
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we conclude that γ is differentiable in (−1, t0), and therefore

(2.5) γ′(0) = I ′0(u)u− µ

∫
K(x)h(x)(u+)q = 0.

Pick ε > 0, φ ∈ X and define Ω+
ε := [u+ + εφ < 0]. By using (2.4) with

ψ = (u+ + εφ)+ we get, after some computations,

0 ≤ −‖u−‖2 + I ′0(u)u− µ

∫
K(x)h(x)(u+)q

+ εI ′0(u)φ− εµ

∫
K(x)h(x)(u+)q−1φ−

∫
Ω+

ε

K(x)[∇u · ∇(u+ + εφ)] dx

+

∫
Ω+

ε

K(x)(u+ + εφ)
[
λu+ + µh(x)(u+)q−1 + (u+)2

∗−1
]
dx.

Hence, it follows from (2.5) that

0 ≤ εI ′0(u)φ− εµ

∫
K(x)h(x)(u+)q−1φ−

∫
Ω+

ε

K(x)[∇u · ∇(u+ + εφ)] dx

≤ ε

[
I ′0(u)φ− µ

∫
K(x)h(x)(u+)q−1φ−

∫
Ω+

ε

K(x)[∇u · ∇φ] dx
]

If we divide the previous expression by ε > 0, take the limit as ε → 0+ and use
that u > 0 a.e. in RN , we obtain

lim
ε→0+

1Ω+
ε
(x) = 0, a.e. in RN ,

where 1Ω+
ε
stands for the characteristic function of the set Ω+

ε , we can use Lebesgue
theorem to conclude that

I ′0(u)φ− µ

∫
K(x)h(x)(u+)q−1φ ≥ 0, ∀φ ∈ X.

Since this inequality also holds with write −φ instead of φ, we conclude that u ∈ X
satisfies the integral equation (1.1) and consequently,K(x)h(x)(u+)q−1φ ∈ L1(RN ),
for all φ ∈ X. The lemma is proved. �

We now notice that Iµ is not of class C1, and therefore we cannot perform
standard minimization arguments. So, instead of a direct approach, we are going
to consider the a perturbation argument: for each k ∈ N, define Xk : R → R as

(2.6) Xk(s) :=
∫ s

0

(
t+ +

1

k

)q−1

dt =
1

q

[(
s+ +

1

k

)q
−

(
1

k

)q]
−

(
1

k

)q−1

s−,

and the functional

Iµ,k(u) := I0(u)− µ

∫
K(x)h(x)Xk(u), u ∈ X.

Since

(2.7) X ′
k(s) =

(
s+ +

1

k

)q−1

, s ∈ R,

it is clear that Iµ,k ∈ C1(X,R).
We are going to show that Iµ,k attains its minimum at uk ∈ BR(0) and the

desired solution will be obtained passing to the limit as k → +∞. The details can
be found in the next proposition.
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Proposition 2.3. Let µ∗, R > 0 be given by Lemma 2.1. For any µ ∈ (0, µ∗) there
exists u ∈ X such that ‖u‖ < R and Iµ(u) = mµ. In particular, the problem (Pµ)
has a solution with negative energy.

Proof. Since Xk(s) ≤
∫ s
0
(t+)q−1dt, we have that Iµ,k(u) ≥ Iµ(u), for any u ∈ X

and k ∈ N. It follows from Lemma 2.1 that Iµ,k ≥ ρ on ∂BR(0). Thus, since
Iµ,k(0) = 0, we can define

mµ,k := inf
∥u∥≤R

Iµ,k(u),

and use the Ekeland Variational Principle to obtain a sequence (un,k)n∈N ⊂ BR(0)
such that

lim
n→+∞

Iµ,k(un,k) = mµ,k, lim
n→+∞

I ′µ,k(un,k) = 0.

Since Xk(s+) ≥ Xk(s), we have that Iµ,k(u
+
n,k) ≤ Iµ,k(un,k) and we can argue

as in the proof of Lemma 2.2 to suppose that un,k ≥ 0. Up to a subsequence, as
n→ +∞, we have that

(2.8)


un,k ⇀ uk, weakly in X,

un,k → uk, strongly in LpK(RN ),

un,k(x) → uk(x), a.e. in RN ,
|un,k(x)| ≤ gp(x), a.e. in RN ,

for any p ∈ [2, 2∗) and some gp ∈ LpK(RN ). By noticing that

(2.9) |Xk(s)| ≤
∫ |s|

0

k1−q dt = k1−q|s|, s ∈ R,

we infer from (2.8) that

|K(x)h(x)Xk(un,k)| ≤
(
1

k

)q−1

K(x)h(x)g2(x),

a.e. in RN . Since the right-hand side above belongs to L1(RN ), we can use the
Lebesgue Theorem to obtain

(2.10) lim
n→+∞

∫
K(x)h(x)Xk(un,k) =

∫
K(x)h(x)Xk(uk).

Setting vn,k := un,k −uk, we can use the above expression, (2.8) and the Brezis-
Lieb lemma [6, Theorem 2] to get

(2.11)

mµ,k = Iµ,k(un,k) + on(1)

=
1

2
‖vn,k‖2 +

1

2
‖uk‖2 −

λ

2
‖u+k ‖22 − µ

∫
K(x)h(x)Xk(uk)

− 1

2∗

∫
K(x)(v+n,k)

2∗ − 1

2∗

∫
K(x)(u+k )

2∗ dx+ on(1),

where on(1) stands for a quantity approaching zero as n → +∞. Recalling that
‖un,k‖ < R and using the weak convergence, we obtain

lim sup
n→+∞

‖vn,k‖2 < R2 + ‖uk‖2 − 2 lim
n→+∞

∫
K(x)(∇un,k · ∇uk)

= R2 − ‖uk‖2 ≤ R2.
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This shows that ‖vn,k‖ ≤ R, whenever n ≥ n0(k). Hence, it follows from (2.3) that

1

2
‖vn,k‖2 −

1

2∗

∫
K(x)(v+n,k)

2∗ ≥ 0, ∀n ≥ n0(k),

which combined with (2.11) imply that

mµ,k ≥ Iµ,k(uk) + on(1).

Passing to the limit as n→ +∞ we conclude that mµ,k = Iµ,k(uk). Moreover, since
mµ,k ≤ Iµ,k(0) = 0 and Iµ,k ≥ ρ > 0 on ∂BR(0), we have that ‖uk‖ < R.

For any ϕ ∈ C∞
0 (RN ), we have that∣∣∣∣∣K(x)h(x)

(
u+n,k(x) +

1

k

)q−1

ϕ(x)

∣∣∣∣∣ ≤ k1−qK(x)h(x)|ϕ(x)|, a.e. in RN .

By using the pointwise convergence and Lebesgue’s theorem, we obtain

lim
n→+∞

∫
K(x)h(x)

(
u+n,k +

1

k

)q−1

ϕ =

∫
K(x)h(x)

(
u+k +

1

k

)q−1

ϕ.

This expression, (2.8) and a standard density argument imply that I ′µ,k(uk) = 0.
We are going to show that

(2.12) lim
k→+∞

Iµ,k(uk) = mµ.

Since Iµ,k(uk) ≥ Iµ(uk) ≥ mµ, it is sufficient to verify that

(2.13) lim sup
k→+∞

Iµ,k(uk) ≤ mµ.

In order to do this, let (wn) ⊂ BR(0) be such that Iµ(wn) → mµ, as n → +∞.
Notice that w+

n ∈ BR(0) and Iµ(w
+
n ) ≤ Iµ(wn). So, replacing (wn) by (w+

n ) if
necessary, we may assume that wn ≥ 0. Then

(2.14)

Iµ(wn) = Iµ,k(wn) + µ

∫
K(x)h(x)Xk(wn)−

µ

q

∫
K(x)h(x)(w+

n )
q

≥ mµ,k + µ

∫
K(x)h(x)Xk(wn)−

µ

q

∫
K(x)h(x)(w+

n )
q.

Fixed n ∈ N, we can use (2.6) and wn ≥ 0 to obtain∫
K(x)h(x)Xk(wn) dx =

∫
K(x)h(x)

(
w+
n + 1

k

)q − (
1
k

)q
q

=
1

q

∫
K(x)h(x)(w+

n )
q + ok(1).

By combining this expression with (2.14) and taking the limsup as k → +∞, we
get

Iµ(wn) ≥ lim sup
k→+∞

mµ,k = lim sup
k→+∞

Iµ,k(uk).

Once again, passing to the limit as n→ +∞, we immediately obtain (2.13).
We are now able to prove that mµ is attained. Since (uk) is bounded, along a

subsequence uk ⇀ u weakly in X. As before, we can prove that

lim
k→+∞

∫
K(x)h(x)Xk(uk) =

1

q

∫
K(x)h(x)(u+)q.
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Hence, we can use (2.12) and the same argument used to prove that Iµ,k(uk) = mµ,k

(but now considering the limits in the index k) to conclude that Iµ(u) = mµ. We
omit the details. �

3. The second solution

Now we have obtained a first solution, we are going to apply the Mountain
Pass Theorem for the perturbed functional and obtain a second solution as a limit
process. First, we present some important facts about the problem (P0) stated in
the beginning of the previous section. In order to describe some results proved in
[12], we redefine the associated energy functional as

I0(u) :=
1

2
‖u‖2 − λ

2
‖u‖22 −

1

2∗
‖u+‖2

∗

2∗ , u ∈ X.

The least energy level of (P0) is defined as

c0 := inf
u∈N0

I0(u),

where N0 := {u ∈ X \{0} : I ′0(u)u = 0} is the Nehari manifold. In [12], the authors
obtained ground state solution for (P0) using the minimization problem

Sλ(K) := inf
u∈X\{0}

‖u‖2 − λ‖u‖22
‖u+‖22∗

.

They proved that 0 < Sλ(K) < S2∗ , when max{1, N/4} < λ < N/2. As a
consequence, the above infimum is attained by a positive function u0 ∈ X∩C2(RN ).
Since the problem is homogeneous, a scaling argument provides τ > 0 such that the
function ω0 := τ2

∗−2u0 is a solution for (P0) with I0(ω0) = c0. We finally mention
that, since u0 = τ1/(2−2∗)ω0 and ω0 ∈ N0, we have that

S2∗ > Sλ(K) =
‖u0‖2 − λ‖u0‖22

‖u+0 ‖22∗
=

‖ω0‖2 − λ‖ω0‖22
‖ω+

0 ‖22∗
=

(
‖ω0‖2 − λ‖ω0‖22

)2/N
,

which leads to the following useful inequality

(3.1)
1

N
S
N/2
2∗ >

1

N

(
‖ω0‖2 − λ‖ω0‖22

)
= I0(ω0) = c0.

From now on, we are going to look for a second solution for problem (Pµ) as a
weak limit of a sequence of positive energy critical point of

Iµ,k(u) := I0(u)− µ

∫
RN

K(x)h(x)Xk(u) dx, u ∈ X,

with I0 redefined as before. It is clear that its critical points are weak solutions for
the (nonsingular) problem

−div(K(x)∇u) = µK(x)
h(x)

(u+ 1/k)1−q
+λK(x)u+K(x)|u|2

∗−2u, in RN . (Pµ,k)

In our next result we prove that such solutions are, indeed, zero or positive in RN .

Lemma 3.1. If uk ∈ X is a nonzero critical point of Iµ,k, then it is a positive weak
solution for (Pµ,k).
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Proof. It is clear that uk weakly solves the problem. Moreover, computing

0 = I ′µ,k(uk)u
−
k = −‖u−k ‖

2 + λ‖u−k ‖
2
2 − µk1−q

∫
K(x)h(x)u−k ,

and recalling that λ < N/2, we conclude that uk ≥ 0 a.e. in RN . In order to prove
that uk > 0 a.e. in RN , we consider an arbitrary (but fixed) radius r > 0 and
Σ ⊂ Br(0) a compact subset of RN . Given a nonnegative function ϕ ∈ H1

0 (Br(0)),
we can use K,λ ≥ 1 to write∫

Br(0)

K(x) (∇uk · ∇ϕ) dx ≥
∫
Br(0)

[
(uk + u2

∗−1
k ) +

µh(x)

(uk + 1)1−q

]
ϕdx

It follows from the inequality

(s+ s2
∗−1) +

a

(s+ 1)1−q
≥ min

{
1,

a

21−q

}
, ∀ a > 0, s ≥ 0,

that

(3.2)

∫
Br(0)

K(x) (∇uk · ∇ϕ) dx ≥ Cr

∫
Br(0)

ϕ,

for

Cr := min

{
1, µ

minx∈Br(0) h(x)

21−q

}
> 0.

On the other hand, using the Lax-Milgram theorem, we obtain a nonnegative
v ∈ H1

0 (Br(0)) such that

(3.3) − div(K(x)∇v) = Cr, in Br(0).

Following the ideas developed in [12, Theorem 3.12], we can prove that v ∈
C2(Br(0) ∩ C(Br(0)) and therefore the Strong Maximum Principle ensures that
v > 0 in Br(0). Thus, there exists a constant CΣ > 0 such that v(x) ≥ CΣ, for any
x ∈ Σ.

By using (3.2) and (3.3), we obtain∫
Br(0)

K(x)(∇uk · ∇ϕ) dx ≥
∫
Br(0)

K(x)(∇v · ∇ϕ) dx, ∀ 0 ≤ ϕ ∈ H1
0 (Br(0)).

In particular, taking ϕ := max{v − uk, 0} ∈ H1
0 (Br(0)) and using K ≥ 1 again, we

obtain

‖ϕ‖2H1
0 (BR(0)) ≤

∫
[v≥uk]

K(x)|∇ϕ|2dx ≤
∫
Br(0)

K(x)(∇(v − uk) · ∇ϕ) dx ≤ 0,

from which we conclude that ϕ = 0 or, equivalently, uk ≥ v a.e. in Br(0). Hence,
uk ≥ v ≥ CΣ > 0 in the (arbitrary) set Σ and the lemma is proved. �

Remark 3.2. In the above proof, we have used the continuity of h to guarantee
that Cr > 0. So, it is clear that the same result is true if we just assume that, for
any r > 0, there holds

inf
x∈Br(0)

h(x) > 0.

If d ∈ R, we say that (un) ⊂ X is a (PS)d sequence for Iµ,k if

lim
n→+∞

Iµ,k(un) = d, lim
n→+∞

I ′µ,k(un) = 0.
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The functional Iµ,k satisfies the Palais-Smale condition at level d if any such
sequence has a convergent subsequence. In what follows, we prove that our
functional satisfies this compactness condition in an appropriated subset of R.

Lemma 3.3. There exists M1 =M1(q, λ,N, ‖h‖θ) > 0 and M2 =M2(q, ‖h‖1) > 0
such that, for any µ > 0 and k ∈ N, the functional Iµ,k satisfies the Palais-Smale
condition at any level

d <
1

N
S
N/2
2∗ −M1µ

θ − M2

kq
µ.

Proof. Let (un) ⊂ X be a (PS)d sequence for Iµ,k. In order to verify that it is a
bounded sequence, we set

(3.4) α0 :=
1

2

(
1

2
− 1

2∗

)(
λ1 − λ

λ1

)
and use (2.1) to get

d+ on(1)(1 + ‖un‖) = Iµ,k(un)−
1

2∗
I ′µ,k(un)un

≥ 2α0‖un‖2 − µ

∫
K(x)h(x)Xk(un)

+
µ

2∗

∫
K(x)h(x)X ′

k(un)un.

It follows from the above expression and (2.6)-(2.7) that

(3.5) d+ on(1)(1 + ‖un‖) ≥ 2α0‖un‖2 −
µ

q

∫
K(x)h(x)

(
u+n +

1

k

)q
.

Since (a + b)q ≤ Cq(a
q + bq), for some Cq > 0 and any a, b ≥ 0, we can use

Young’s inequality to obtain, for each ε > 0, a constant Cε,q > 0 such that

µ

q
K(x)h(x)

(
u+n (x) +

1

k

)q
≤ Cq

µ

q
K(x)h(x)

[
(u+n )

q(x) + k−q
]

≤ εK(x)u+n (x)
2 + Cε,qµ

θK(x)h(x)θ

+Cq
µ

q
K(x)h(x)k−q,

for a.e. x ∈ RN and where 1 < θ := (2/q)′ = 2/(2− q) < 2. Picking ε = α0λ1, we
can use the above expression, (3.5) and (2.1), to obtain

d+ on(1)(1 + ‖un‖) ≥ α0‖un‖2 −M1µ
θ −M2

µ

kq
,

where

M1 := Cε,q‖h‖θθ, M2 :=
Cq
q
‖h‖1.

Thus, (un) ⊂ X is bounded.
Up to a subsequence, we may assume that un ⇀ u weakly in X and an analogous

of (2.8) holds. Arguing as in the proof of Proposition 2.3, we can prove that
I ′µ,k(u) = 0 and

lim
n→+∞

∫
K(x)h(x)X ′

k(un)un =

∫
K(x)h(x)X ′

k(u)u.
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Moreover, the former computations provide

(3.6) Iµ,k(u) = Iµ,k(u)−
1

2∗
I ′µ,k(u)u ≥ α0‖u‖2 −M1µ

θ −M2
µ

kq
.

Hence, if we set vn := (un − u), we can use (2.8) and the Brezis-Lieb lemma to get

on(1) = I ′µ,k(un)un = ‖vn‖2 − ‖vn‖2
∗

2∗ + I ′µ,k(u)u+ on(1),

from which it follows that

lim
n→+∞

‖vn‖2 = l = lim
n→+∞

‖vn‖2
∗

2∗ ,

for some l ≥ 0.
Suppose, by contradiction, that l > 0. Then we can use the definition of S2∗ to

conclude that l ≥ S
N/2
2∗ . On the other hand, using Brezis-Lieb lemma again, (2.10)

and (3.6) we obtain

d+ on(1) = Iµ,k(un) =
1

2
‖vn‖2 −

1

2∗
‖vn‖2

∗

2∗ + Iµ,k(u) + on(1)

≥ 1

2
‖vn‖2 −

1

2∗
‖vn‖2

∗

2∗ + α0‖u‖2 −M1µ
θ −M2

µ

kq
+ on(1).

Taking the limit as n→ +∞ and recalling that l ≥ S
N/2
2∗ , we obtain

d ≥ 1

N
S
N/2
2∗ −M1µ

θ −M2
µ

kq
,

which contradicts the hypotheses. Hence, l = 0 or, equivalently, un → u strongly
in X. �

We solve in the sequel the modified problem.

Proposition 3.4. Let µ∗, ρ > 0 be given by Lemma 2.1. Then, there exists
k∗ = k∗(q, h) > 0 and µ∗ = µ∗(q,N, h) < µ∗ such that, for any k ≥ k∗ and
µ ∈ (0, µ∗), the functional Iµ,k has a positive critical point uk ∈ X verifying
Iµ,k(uk) ≥ ρ > 0.

Proof. Let M1, M2 be given by Lemma 3.3. Recalling that the function ω0

obtained in the beginning of the section is positive, we obtain Iµ,k(tω0) ≤ I0(tω0),
for any t ≥ 0. Since I0(tω0) → 0, as t → 0+, we can find t∗ > 0, independent of µ
and k, such that

(3.7) max
0≤t≤t∗

Iµ,k(tω0) <
c0
2
< c0 −M1µ

θ −M2
µ

kq
,

whenever

µ < min

{
1,

c0
2(M1 +M2)

}
.

Moreover, since the function t 7→ tω0(x) [tω0(x) + 1]
q−1

is increasing in [0,+∞),
a change of variables provides

(3.8)

Xk(tω0(x)) =

∫ tω0(x)+1/k

1/k

1

τ1−q
dτ ≥ tω0(x)

[tω0(x) + 1/k]
1−q

≥ tω0(x)

[tω0(x) + 1]
1−q

≥ t∗ω0(x)

[t∗ω0(x) + 1]
1−q ,
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for any x ∈ RN and t ≥ t∗. Hence, if we define

Ch,q := t∗

∫
K(x)h(x)

ω0

(t∗ω0 + 1)
1−q ,

we can use (3.8) and that I0(ω0) = maxt≥0 I0(tω0) to obtain

(3.9) Iµ,k(tω0) = I0(tω0)− µ

∫
K(x)h(x)Xk(tω0) ≤ c0 − Ch,qµ, t ≥ t∗.

We now notice that, if

k ≥ k∗ :=

(
2M2

Ch,q

)1/q

, µθ−1 <
Ch,q
2M1

,

then

M1µ
θ +M2

µ

kq
<
Ch,q
2
µ+

Ch,q
2
µ = µCh,q.

This inequality, together with (3.9) and (3.7), imply that

(3.10) sup
t≥0

Iµ,k(tω0) < c0 −M1µ
θ −M2

µ

kq
,

whenever k ≥ k∗ and

0 < µ < µ∗ := min

{
1,

c0
2(M1 +M2)

,

(
Ch,q
2M1

)1/(θ−1)
}
.

Since

lim
t→+∞

Iµ,k(tω0)

t2∗
≤ − 1

2∗
‖ω0‖2

∗

2∗ < 0,

there exists T > 0, independent of µ and k, such that ‖Tω0‖ > ρ and Iµ,k(tω0) < 0,
for any t ≥ T . Thus, we can use Lemma 2.1 to define the Moutain Pass level

cµ,k := inf
γ∈Γ

sup
0≤t≤1

Iµ,k(γ(t)),

where Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = Tω0}.
The definition of Γ and (3.10) imply that

(3.11) cµ,k < c0 −M1µ
θ −M2

µ

kq
,

whenever k ≥ k∗ and µ ∈ (0, µ∗). Using Lemma 3.3 and the Mountain Pass
Theorem we obtain a critical point uk ∈ X such that Iµ,k(uk) ≥ ρ. By Lemma 3.1
this solution is positive and the proposition is proved. �

We are ready to prove our final main result.

Proof of Theorem 1.2. Let µ∗ > 0 be given by Lemma 2.1 and 0 < µ < µ∗. Using
Proposition 2.3, we obtain a first positive solution with negative energy. In order
to obtain the second one, we denote by (uk)k≥k∗ ⊂ X the sequence of positive
solutions given by Proposition 3.4. As in Lemma 3.3, we can prove that

cµ,k = Iµ,k(uk)−
1

2∗
I ′µ,k(uk)uk ≥ α0‖uk‖2 −M1µ

θ −M2
µ

kq
,

where α0 > 0 was defined in (3.4) and M1, M2 come from Lemma 3.3. The above
inequality and (3.11) imply that (uk) ⊂ X is bounded.

Up to a subsequence, we may assume that uk ⇀ u weakly in X, as k → +∞,
and an analogous of (2.8) holds. Arguing as in the proof of Proposition 2.3, we can
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prove that I ′µ(u) = 0. Moreover, for each compact set Σ ⊂ RN , it follows from the
proof of Lemma 3.1 that uk(x) ≥ CΣ, for some CΣ > 0 independent of k. Thus, we
infer from the pointwise convergence of (uk) that u ≥ CΣ > 0 a.e. in the (arbitrary)
set Σ, and therefore u is a solution for (Pµ).

In order to guarantee that u is different from the first solution, we shall prove
that Iµ(u) > 0. We first notice that, arguing as in Lemma 3.3 and using u 6= 0, we
get

(3.12) Iµ(u) ≥ α0‖u‖2 −M1µ
θ > −M1µ

θ.

By setting vk := uk−u, using Brezies-Lieb lemma, Iµ(uk)uk = 0 and repeating the
calculations of Lemma 3.3, we obtain

ok(1) = ‖vk‖2 − ‖vk‖2
∗

2∗ + I ′µ(u)u+ ok(1),

and therefore, for some l ≥ 0, there holds

lim
k→+∞

‖vk‖2 = l = lim
k→+∞

‖vk‖2
∗

2∗ .

Thus, we can use (3.11) and the same argument employed in the proof of Lemma
3.3 to obtain

c0 −M1µ
θ −M2

µ

kq
> Iµ,k(uk) =

1

N
l + Iµ(u) + ok(1).

If l > 0, then l ≥ S
N/2
2∗ and we can pass to the limit as k → +∞, use (3.1) and

(3.12) to obtain

c0 −M1µ
θ ≥ 1

N
S
2/N
2∗ + Iµ(u) > c0 −M1µ

θ,

which does not make sense. Hence, l = 0 and therefore uk → u strongly in X. This
implies that

ρ ≤ Iµ,k(uk) = Iµ(u) + ok(1),

and therefore Iµ(u) ≥ ρ > 0. The theorem is proved. �
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70910-900,Braśılia-DF, Brazil
Email address: karlakcvs@gmail.com


