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ABSTRACT. In this paper, we state a Hardy-Sobolev type inequality with
boundary terms in a borderline case. As an application, we investigate the
existence of solutions for a class of zero-mass quasilinear elliptic problem of
the form

—div(a(z)|Vu|V 72Vu) = k(z) f(v) in Q,
a(z)|[VulVN =2 (Vu - v) + [u/V"2u =0 on 99,
where Q@ C RV, N > 2, is an exterior domain, the weight functions a, k satisfy
some growth conditions and the nonlinearity f has critical exponential growth.

1. INTRODUCTION AND MAIN RESULTS

As it is well-known, Hardy type inequalities have been widely used in the study
of differential equations. In [10, 15], the authors have proved a Hardy-Sobolev type
inequality in unbounded domains. Precisely, for any 1 < p < N and Q € RY an
unbounded domain, there exists C' > 0 such that

uf? (/ [ e )
——dz < C VulPdz + ————|ulPdo |,
/Q<1+|x|>p o Vet | e

where v is the unit outward normal vector to 9€2. This inequality has been
extensively used in the study of quasilinear elliptic equations in unbounded domain
like

—div(a(x)|VulP~2Vu) + b(z)|u|P~?u = f(z,u) in €,
a(z)|[VulP~2(Vu - v) + c(z)|u[P72u =0 on 9.

We refer the interest reader to [3, 10, 12, 14, 15] for the case b # 0. When b = 0, we
say that we are in the zero-mass case and the problem seems to be more difficult,
since W1V (Q) is not the natural space to look for solutions. We quote the paper [9],
where the authors considered 1 < p < N, b = 0 and a sign-changing nonlinearity f
with polynomial growth.

In this paper, we aim to consider a zero-mass problem in the borderline case
p = N. More precisely, we address the existence of solutions for the quasilinear

(1.1)

2010 Mathematics Subject Classification. 35J66.

Key words and phrases. Hardy-Sobolev inequality; Weighted Sobolev embedding; Trudinger-
Moser inequality; Robin boundary condition.

The first author was supported by CAPES/Brasil.

The second author was partially supported by CNPq/Brazil and FAPDF /Brazil.

The third author was supported by CNPq/Brasil and by Grant 2019/2014 Parafba State
Research Foundation (FAPESQ).



2 J. L. CARVALHO, M. F. FURTADO, AND E. S. MEDEIROS

elliptic problem

—div(a(z)|Vu|VN2Vu) = k(z) f(u in €,
P { (a(x)|Vul ) = k(z)f(u)

a(@)|VulN "2 (Vu-v) + [ulN"2u=0 on 99,

where N > 2, Q C R" is an open set satisfying the assumption
(x) RNV \ Qis bounded and 0 ¢ Q,

which will be assumed throughout, the nonlinearity f has critical exponential
growth, and the potentials a, k verify

(ag) a:Q — R is a continuous function and there exist ag,y > 0 such that
aplz|” < a(z), for any z €

(ko) k : Q — R is a measurable function and there exist kg > 0, 8 > N such
that
0
0 <k(z)< IR

The starting point to address the existence of weak solutions for the variational
borderline problem (P) is a new Hardy-Sobolev inequality with boundary term. In
order to present it, we denote by Cg°(Q) the space of C§°(R™)-functions restricted
to Q.

In [18, Theorem 3.1], the authors proved a Hardy-Sobolev type inequality with
boundary term. Precisely, by assuming (*) and a < (N — 2)/2 with N > 3, they
proved that there exists a constant C' > 0 (depending on Q) such that, for any
u € C§°(Q), there holds

N — 2 — 2a)? 2 2
(1.2) ( “)/ ?'NM?/N@MWC/\WM.
4 q |z[2e+D o |z[* a0

Thus, a natural question is whether or not (1.2) is true in the borderline case N = 2.
By performing a new argument we are able to prove the following result.

for a.e. x € Q.

Theorem 1.1 (Hardy-Sobolev inequality). Suppose that v # 0, N > 2 and (x)
holds. Then there exists a constant Cy = Cy(2) > 0 such that

(1.3) / |x|7_N|u|Ndx < Cy (/ |x\7|Vu|Ndx—|—/ u|Nda> , Yue Q).
Q Q o0

It is worth to notice that the above conclusion can fail if v = 0. Actually, we
present in Remark 2.2 an interesting example in the case that the set €2 is the
complement of a ball.

We now come back to our differential equation. Under the conditions (ag)
and (ko), we shall look for weak solutions for (P) in the space E, defined as the
completion of C§°(Q2) with respect to the norm

1/N
|m@,:(/amvam+/ MNw) .
Q o0

We are going to prove that E, embedds into the weighted Sobolev space L{, for
any g > N (see Proposition 2.3), and that

/ kE(x)®q(u) de < oo, for any a> 0, u € E,,
Q
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where
N/(N-1) i Oéj
By (s) = el - Z f!|s|N]/(N_1), for all s € R.
j=0
As a consequence, we are able to use Theorem 1.1 and some trick calculations to
prove a Trudinger-Moser type inequality (see Lemma 4.1) in the space E, . Hence,

O(‘ulN/(N71

we may consider nonlinearities f which behave like e " at infinity. More

specifically, we shall assume that

(fo) f:R — R is continuous and there exists o > 0 such that

| f(s)] _{ 0 if a>a,

lim —— %X — = .
eals|V/ (V-1 4+oo if a< ag;

|s]—+o0

(f1) f(s)=o(|s|N71) as s — 0;
(f2) there exists # > N such that, for any s € R,

0<OF(s) := 9/05 f@)dt < f(s)s;

(fs) there exist A > 0 and v > N such that, for any s € R,
F(s) > Als|]”.
Our existence result for problem (P) can be stated as follows:

Theorem 1.2. Suppose that (ao), (ko), and (fo) — (f2) hold. Then there ezists
A* > 0 such that, if (f3) holds for X\ > X*, then the problem (P) has a nonzero weak
solution.

For the proof, we apply the Mountain Pass Theorem. Although the general
approach is in some sense standard, it is necessary to construct all the variational
setting. Actually, the abstract framework presented here can be used to deal
with many other type of problems involving Robin boundary condition. Our
main difficulties rely on the fact that we are dealing with the zero-mass case, the
domain ) may be not symmetric, the Hardy-Sobolev inequality generally holds
for 1 < p < N and, as far we know, there is no appropriated Trudinger-Moser
inequality for our case. So, our paper complements all the aforementioned works
as well as the papers [7, 1, 4], where some related problems were considered with
N = 2. Finally, we emphasize that our results seem to be new even in the planar
(and therefore semilinear) case.

The remainder of the paper is organized as follows: in Section 2, we prove
Theorem 1.1 and some useful Sobolev embeddings. In Section 3, we prove a
weighted Trudinger-Moser type inequality. Finally, in Section 4, we present the
proof of Theorem 1.2.

2. A HARDY-SOBOLEV INEQUALITY AND SOBOLEV EMBEDDINGS

We start this section by proving our Hardy-Sobolev inequality. We write Br(xo)
for the open ball of radius R > 0 centered at the zo € RY. When zy = 0, we write
only Bpg.

We can prove our first result as follows:
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Proof of Theorem 1.1. Let @ # —N and u € C°() be fixed. If v =
(v1,v9,...,vN) is the unit outward normal vector at = € 99, from the Divergence
Theorem we obtain

/(\x|a)z xglu)N dr = —/ 2| - (2i]u|N) g, do —|—/ 2| [u|N 215 do.
Q Q a0
By summing for i = 1,..., N, we get

(a+N)/ e ful Y da = —N/ 2wl N 2u(z - V) da:+/ [N (2 - ) do,

Q Q o0

and therefore

(2.1) |a—|—N|/ [l dz < N/ |x|“+1\u|N_1|Vu|d:E+/ 2 Y do

Q Q o0
Given € > 0, we can use Young’s inequality to get
N/ |£B|a+1‘u|N71|VU|d$ _ N/ (|(E|Q(N71)/N‘U|N71) |x|[a+17a(N71)/N]|vu|d:L,
Q Q

1
eN-1

< (N — 1)5/ || |u|N dx + / 2| TN VN da.
Q Q

If ¢ <1, we can use the above inequality and (2.1) to obtain
1
ot N~ (N=1)e] [ fal*ul Vo < (/ ol Vul¥do + [ |x|a+1|u|Nda> .
Q € Q o0

By recalling that o # — N and picking

N
O<€<min{1,M},

we get

/|m|a|u\Ndsc§Cl (/ \m|o‘+N|Vu|Nd:E+/ |x|a+1u|Nda),
Q Q o0

where €y := [Ja+ N| — (N — 1)e] ' &'V, By choosing @ = y — N # —N in the
above expression and using that 9Q is bounded, we obtain (1.3). The theorem is
proved. O

For each 7 # 0, we denote by E'7 the space obtained as the completion of
C5° () with respect to the norm

1/N
fullos = ([ [lel 90 + o= jupac)
Q

As a consequence of Theorem 1.1, we obtain a second result which will play an
important role in the study of the zero-mass case b =0 in (1.1).

Corollary 2.1. If~y # 0, then the norms

1/N
lullo := (/ |x\7|Vu|Nd:c+/ u|Ndcr>
Q o0

and || - || g1~ are equivalents in E17.
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Proof. It follows from (1.3) that, for any v € C§°(€2), one has

lallY §/|x|7|Vu|Ndx+Co (/ |a:|7|Vu|Ndm+/ |u|Ndo> < Cullully,
Q Q o0

for some constant C; = C1(Q2) > 0. On the other hand, since 9 is bounded, we
can choose R > 0 sufficiently large in such a way that the Sobolev trace embedding
WLN(Q N Br) — LN (0Q U 0BR) is continuous. Therefore,

/ N do < 02/ (Vul™ + [u]V) de
o0 QNBgr

<cu( [ [alva + eV as).
QNBr

with C3 = C3(R, N,7) > 0 and we have used that 0 ¢ Q and 99 is bounded. It
follows from the above expression that

Jull¥ < [ Jol"1Vuldo +Ca [ [l 1VulY + ol Mal]de < (14 €l
Q Q
which gives the desired result. (|

Remark 2.2. IfQ is a bounded domain, then (1.3) holds for~y = 0, see for instance
[5, inequality (12) | and the references [2, 18]. On the other hand, if v = 0 and
Q = RN\ By, then the inequality in (1.3) fails in the space EY. Indeed, by
considering the sequence of functions in EYY defined by

o [P loglel i 1<l < e,
Up(x) = :
0, if el > en,

we see that

on
/ |Vun\Ndx = / o |x|7N dx = wN_l/ r NN e = nwy g,
Q Bon\B1 1

where wy_1 is the measure of the unit sphere in RN . On the other hand,

l/|ﬂ*ande:1/ 2] N — log |V de
Q Ben \B1

n

e
= wN_1 / r~N|n —logr|NrN1dr.
1
By considering the change of variables t = n — logr, we obtain

[ v+
/Q\xr [t | dz:N+1wN_1.

Moreover,
/ |un\Nda=nN do =nNwy_1.
2Q o0
Using the above inequalities we see that, if (1.3) holds, then
N < Cy(n+ ),

for all n € N and some C1 > 0, which is impossible.
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Given a positive function w € L} (92) and s > 1, we define the weighted Lebesgue

loc
space
1/s
Ls = </ w(x)|u|sdx> < —l—oo}7
Q

Proposition 2.3 (Sobolev inequality). Suppose that v > 0, 8 > N — v and
q > N > 2. Then, there exists C = C(q,Q) > 0 such that

e [ de<c< / [|x|7|vu|N+|x|*—N|uN}dx)”N Yue B
o T+l =\ ’ ’

that is, the Sobolev embedding E'*7 Lglﬂ-\)*f’ s continuous. Furthermore, this

Lg = {u € Lioe() : [lu|

and prove the following:

embedding is compact whenever § > N — .

Proof. Let jo € N be such that (RN \ Q) C Byjo. Setting Q;, := QN Byj,, we have
that Q = Q;, U (RN \ Byj,). Given u € E C Wi)cN(Q), we can use the Sobolev
embedding W1V (Q;,) < L9(Q;,) to obtain

|l / /
——dx < C ulldr < C
/Q e @ = f, 1 *\ Jy

J0

[|vu\N + |u|N}dx> q/N.
Jo

By recalling that 0 € Q, we can write

|ul?
ey [ s ( /

for some C5 = C5(, ) > 0.
On the other hand, for any 5 € NU {0}, we have that

Aj={2€Q:200.27 < |z| < 2002771} = Bojiyi01 \ Bosors-

q/N
[x|Wu|N+|w-Nu|N}dx> ,

Jo

Without loss generality we may assume 3 > 0. The change of variables y := 277
provides

Juf ! N8
——da < [ [ulde =29 [y (y)|9dy,
/Aj A+ [e)?™ = 25 0

where u;(y) := u(2’y). Using the Sobolev embedding WM (A4y) — Li(A), we
obtain C4 > 0, such that

sty < o ([ [I9m@ + )
Ao "

A
We now notice that

/ \Vu\Ndx:/ |x|_7|x|”’|Vu|Ndx§2_7j/ |z |Vl N de

j Aj Aj

a/N
[|VU|N +2_Nju|N}dx> .

J

and
/ z—Nf\u|Ndxg2<J‘o+1>N-2—w/ 2N u|N da.

3 Aj
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Consequently, for Cs = Cy - 200N " we have that

|ul? N=B)j [ o—~j
— 1 __dr < 052( B)i [ 9=i
/Aj (L+ |z[)? A
4)
_ Cyom /
A
where

(2.5) wi=(N=-g-20)5

Since v > 0 and 8 > N — v, one has p; < 0, and therefore

[, T </A

Thus, recalling that the function s — s9/V is super additive for ¢ > N, we conclude
that

o] q/N
—rgde < C NVulY + |z NN | d
Z/ e < 5;(@““' ul -+ oV )Y

q/N
<Cs (/ [|$|7|VU|N + |x|7_N|u\N} dac) )
RN\szO

This, combined with (2.3), implies

/ |u|q de < CGH“”?QLW:
o (1+[z])
which proves (2.2).

For the compactness, we consider a sequence (u,) C E such that u, — 0
weakly in EY. Given € > 0, we can use v > 0 and the fact that 8 > N — v to
obtain j; € N such that 2% < ¢, for all j > j;. Thus, from (2.4), we get

/ﬂda:<(}'5/
A, (1+]z))? "\ Ja

for any j > j;. Hence, from the embedding E'" C Wli(fv (©2) and the Rellich-
Kondrachov Theorem, we obtain

Il gy [l [ et
TrEnFdes Tonadr T dx—l—Cs Up |
/n(lel)ﬁ 0. (1+]z])8 Z 5] tin|| 1

J0

q/N
(el v + |w-N|u|N]dx)

J

q/N
(a7 Ful™ + 2~ fu]] da:> 7

J

J

a/N
[a;|'v|VuN+|w—N|u|N]dx> .

q/N
[P 19 ¥ + ol ] d””) |

J

= on(1) + C5€||un|\Em

where o0,,(1) stands for a quantity approaching zero as n — 4o00. Since € > 0 is
arbitrary, the above expression implies that u,, — 0 strongly in L‘(J1 H-# and the
proposition is proved.

Remark 2.4. The embedding BV — L?H_H),ﬂ is also continuous if v < 0,
B>N—vand N <q< N(N —p)/v. The proof of this statement can be done as
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above since, in this case, a simple calculation shows that the number u; defined in
(2.5) is nonpositive.
3. TRUDINGER—MOSER TYPE INEQUALITY

In view of the Proposition 2.3, it is natural to look for embedding into Orlicz
spaces. As we will see, this allows us to consider functions with exponential growth
in problem (P). For any o > 0, we recall the Young function defined in the
introduction

N-2
_ J .
D, (s) := eols M/ D E Oé,—'|s|N]/(N_1)7 for all s € R.
J!
7=0

If follows from the definition that
(3.1) (I)a(ts) = ¢atN/(N—1)(5), seR, t>0.
We state in the sequel the main result of this section.

Theorem 3.1 (Trudinger-Moser inequality). Suppose that v > 0 and § > N.
Then, for any a > 0 and u € EY7, the function (1+]-]) 7P ®,(u) belongs to L' ().
Moreover, there exists a* = o*(N) > 0 such that

Q.
L(a,, B) = sup / _®a(w) 5 dx < 400,
{ueELilul g1, <1} Jo (1+ |2])
for any 0 < a < a*. Furthermore, there exists o* > o such that
(3.2) L(a,y,B) = 400, for any a > ™.
For the proof of Theorem 3.1, we need two technical results.
Lemma 3.2. Let 2o € RY andu € Wol’N(BR(xo)) be such that fBR(xo) |Vu|Ndr <
1. Then, there exists C = C(N) > 0 such that

/ ®, (u)dx < C(N) - RN/ \Vu|Nde,
BR(QIQ)

BR(ZE())
where ay = Nwllv/iqf_l) with wy_1 denoting the measure of the unit sphere in RV
Proof. See [19, Lemma 3.1]. O

The second auxiliary result reads as

Lemma 3.3. Suppose that v > 0 and B > N. Then, there exist Cn > 0 and
o* = a*(N) > 0 such that

P

/ Balt) CN/ (12190l + [ ful ] d,
o (1+z[) 0

for any 0 < a < o* and u € EY wverifying |Jul| g1~ < 1.

Proof. Let jo € N and €2, as in the proof of Proposition 2.3. For each y € €2;,, set

R, := dist(y, 9§2;,) and notice that Br, (y) C ;,. Moreover, from the compactness

of ©j,, we obtain points y1, ...,y € Qj, such that Q;, C Ule Bpg, /2(yi), where

R; := R,,. For each i = 1,...,k, we set B' := Bpg,(y;) and pick a function
@i € C5°(B") such that 0 < ¢; <1, p; =1 in Bpg,2(y;) and |V, < 4/R; in B'.
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Since BT € WuN(Q), we have that gu € Wy (B;), for any u € EY7. So, by
Poincaré’s inequality, we get

/ » IV (piw)|N dz < ¢4 /E |Vu|Ndx+C'1R;N/B |u|N dx
s 02/. [ [Vul™ + |2~ [u|"] da,
B’L

where Cy = C3(N,v) > 0.
We now set v := (1/(72)1/N p;u and suppose that

anN

l<a< ————.
C;/(N_l)

Since ¢; = 1 in Bg, 2(y;) and ®, > 0 is monotonic in «, it follows from (3.1) and
Lemma 3.2 that

/ O, (u)dx :/ D, (piu)dx < / D, (C;/Nv) dx
Br,/2(y:) Br, /2(y:) i
:/i®ac21/(N—l)(U)d$ < /’i D, (v)dx
<Ca [ [laP Va4l ul]aa,
Bi

for some C3 = C3(7y). Therefore, there exists Cy = Cy(8) > 0 such that

d,
(33) /Q (1 n |x| d <Oy Z/ dl’ <Cy- Cg”’LL”Eq 5 -

Jo Br; /2(y

By considering again the annulus A; = {z € Q : 290 .27 < |z] < 270 . 271} we
claim that

(3.4) / i T |)) x < Cs /Aj {|x|7|Vu|N+ |x|7—N|u\N}dJC,

for any j € NU {0} and some C5 > 0. If this is true, the statement of the lemma
is a direct consequence of this inequality, (3.3) and

/fffiﬁ = / +Z/ 1+|x| T+ ™

It remains to be proved that (3.4) holds. In order to do that, we use the change
of variables y = 277z to obtain

P (u) Cs N-B)j

(3.5) / _Palw) g6 [ g )de = e W/ B, (u;) dy,

a, (T+]z))P 283 ] 4, “ a7

where u;(y) := u(2’y) and Cs > 0 is a constant independent of j. Arguing as
before, we obtain points y1,...,yx € Ag such that Ay C Uf:l Bpg, /2(y:), where

R; = dist(y;,04;). By setting B = Bg, /2(y;), we pick ¢; € C5°(B") such that
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0<¢; <1, ¢;=1in Bg,/s(y;) and |Ve;| < 4/R; in B', and compute
N _
/ AV (@i(y)u; ()] dy < 07/ |V (y) |V dy + CrR; N/ Jug ()N dy
B?r B'L BZ

< / Vu(@iy) VN dy + Cr RN / (@) Vdy
AO AO

:07/ |Vu|Ndx + CN2 Nﬂ/ Ju| N da.
R; A

j j
But, as in the proof of Proposition 2.3, we have that
/ \Vau|Ndx < 082_’”/ 2|7 |Vu|Nda,
Aj Aj
and
z—Nf‘/ N de < 092—%/ N |V dz,

3 Aj

with Cg = Cg(v) > 0 and Cy = Cy(N, ) > 0. Recalling that v > 0, one deduces

| ¥ o)) dy < €2 /A [l 19l + 2~ |u]V] da
Bl

J

< Cm/ (a9l + 27~ [ulN | da.
A]

Since ||ul|g1.~ < 1, the above inequality shows that we can apply Lemma 3.2
with v := (1/C10)1/N @;u; to obtain Ci1 = C11(N) > 0 such that

/ @aN(v)dySCH/ |Vv|Ndy§CH/ {\x|7|Vu\N+|x\7_N|u|N]dx
3 Bq‘, A

J

% mi { an aN }
& = min J(N=1)° AJ(N=1) (°
G Gl =)

we can use the definition of v and (3.1) to obtain

/ (3. (gpiu]‘)dy < / (I)(XN (U)dy <Chn / [|x|7|VU|N =+ |Z‘|7_N|’U,‘N:| dx.
i i A

Bi

Hence, if we define

J

Thus, for any 0 < a < o, we can argue as in the first part of the proof to get

/ aluj)dy < Z/ aluj)dy = Z/ D, (piuj)dy
Bpg, /2(%

Br, 2(yi)
k

< Z/ P (wiuj)dy < Cll/ {|x|7|VU|N + |$|7_N|u|N} dx.
Br,/2(y:) A

J

This, together with (3.5) implies that

Do (1) _
< (N=B)j Y, | N =NV g
/ AR dx < C92 /Aj [|x| [Vul™ + |z)7™V|ul }dw

The inequality in (3.4) is a consequence of the above expression and 8 > N. O

We are ready to prove the main result of this section.
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Proof of Theorem 3.1. If we consider a* > 0 as in Lemma 3.3, we have that

P (u)
(3.6) sup / ————dx < Cy,
(weB iul 1, <1} Jo (14 |2])P

for any 0 < o < a*. So, we need only to verify that, for each u € E'7, the function
(1+]-])7P®4(u) belongs to L1(). In order to do this, we pick ug € C$°(Q) such
that
|u—uol[prr <,
with € > 0 to be chosen later.
A simple computation shows that

N 1
|q);(5)| < %|5|1/(N71)6a|8\N/(N ), s> 0.
Thus, for any s, ¢t > 0, we can use the Mean Value Theorem to obtain 6 €
[min{s, ¢}, max{s,t}] such that

N _
Da(s) < Dalt) + o 6/ .

Using this inequality with s = |u| and ¢ = |u — ug|, we obtain a function = — 6(z)
such that, for a.e. z € Q,

N _
(7 Pallul) < Pallu—ugl) + 1 [6()[ /N Vp(a)e PO,
where ¥ := ||lu — ug| — |ul| € 7 has its support contained in the open bounde
here 1 i= ||u — uo| — [ul| € B has its supp ined in the open bounded
set ©.

We now notice that, by (3.1),

1 1 |u — uo|
P, (lu — dr= | ————— & y | ————— ) da.
/9(1+\x|)ﬁ (Ju —uo|)dz /Q(1+|z|)ﬁ arlfu—ug || N V=1 (|u—u0||E1,n,> *

By choosing € > 0 small, we can use (3.6) to conclude that

1
(3.8) /Q Wq)aﬂu —ug|)dz < Cy.

Since ug is a bounded function and 6 is between |u — ug| and |ul, it is clear that
10(2)] < |u—wuo| + |u] < Ci(Ju| +1), ae. in®,

for some C7 > 0. Thus, we can use Holder’s inequality to obtain

L e s <G [ (] el g
e [S]

1+ |=|)8
1/r
Cy (/ e’“SCS“lN/(Nl)dJ:) ) ;
e
1/(N=1)

where Cy := ||(Ju| + 1)||LT1/(N_1)(@)H’(/J||£2T2(®) and 7, 72, rg are such that
1/ri 4+ 1/ra +1/rs3 =1, 11 > N(N — 1) and r, > N. Since O is bounded, it
follows from the classical Trudinger-Moser inequality in W~ (@), see for instance
[7, 1, 4], that

IN

1 1/N ), el V/ (V=D

Since @, (|u]) = ®o(u), we can use (3.7), (3.8) and the above expression to conclude
that (14| -|)7P®,(u) € L1().
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We now prove that (3.2) holds for some o** > a*. Indeed, let xg € Q be such
that B = Bi(z¢) C © and observe that, for some constant Cs > 0, one has

L(a,v,8) > Cs sup / D, (u)dz.
{ueWy N (B):|lul| g1,y <1}/ B

On the other hand, for any u € Wy (B) with ||u||W01,N(B) < 1, we have

Jull¥o = [ ol IVl o+ faf ¥l o < Colfullg v i < Co
B 0

for some constant Cs = Cg(N,v). As in [8], defining v := Cg'u, we see that
vE Wol’N(B) and ||[v||gr~ < 1. Thus, it follows from (3.1) that

L(a,~, B8) > C’7/B<I>a(06*1u)dx = 07/B(I)acgN/<N*1)(u)dx'
Since ¥, (s) > eelsI™ ™Y for any s € R, we obtain that

L(Oé,’%ﬁ) Z C?/

B

eaCG*N/(Nfl)lu‘N/(Nfl)

dx, for any u € Wy (B).
Consequently,

L(a,y,8) = C7 sup / eoCo " TIIN Y g
{uewy ™ (Byillull 1 v <1}/ B

By the classical Trudinger-Moser inequality (see for instance [11, 13, 17]) we
conclude that L(a,7y, ) = 400 for any a > o** := C’év/(Nfl)aN. This completes

the proof. 0
4. PROOF OF THEOREM 1.2

By using a variational approach, we obtain in this section one weak solution for
(P). From now on, we assume that (ag), (ko) and (fo) — (f2) hold. We shall look
for solutions of (P) in the space E, defined in the introduction as the completion
of C§°(Q2) with respect to the norm

1/N
lullg, = (/ a(m)\Vu|Ndx+/ |’LL|NdO'> .
Q a0

From (ag), (ko), Corollary 2.1 and Proposition 2.3, we obtain the compact
embedding

(4.1) E, — L}, for any ¢ > N.

On the other hand, as direct consequence of (ag) and Corollary 2.1, it follows that
E, C EY and therefore we can use condition (k) and Theorem 3.1 to obtain

(4.2) / k(x)®q(u) de < +o00, for any o> 0, u € E,.
Q

By (ao) and Corollary 2.1 again, we can assure the existence of Cy > 0 such that
llul|grv < Collul||lg,, forallu e E,

and hence the following Trudinger-Moser inequality in the space E, holds:
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Lemma 4.1. Let o™ be given by Theorem 3.1. Then,

sup / k(2)®q(u) de < +oo.
{u€Ea:|lullp, <1} JQ

for any 0 < o < @ := a*/(Cy)V/ V-1,

Proof. If |lul|g, <1, then ||u/Cylgr.~ < 1. So, by using (ko) and (3.1), we obtain

1 U
k(2)®o(u)de < ko | —————® v | — ) dz,
[ H@eatwar <o [ Gty (& ) do

and the result follows from Theorem 3.1. O

In order to define the energy functional associated to (P), we pick a > «ap and
g > 1. For any given € > 0, we obtain from (fy) — (f1) a constant C' > 0 such that

(4.3) ()] < els|¥ 71+ COls|T @a(s),  |F(s)] < sV + Cls|@als),

for any s € R. Hence, if u € E, and r1,r79 > 1 are such that 1/ry + 1/ry = 1,
r1 > N, we can use (4.3), Holder’s inequality, (4.1) and (4.2), to get

1/rs
/Qk(;l:)F(u)d;l: < 6||u\|gkN + ClHUHQLZlq </Q k(x)‘bma(u)d:v) / < +o0,
where we also have used the inequality (see [20, Lemma 2.1])
(4.4) [@a(s)]) < ran(s), sER t>1.
All the above considerations show that the functional I : £, — R given by

Iw) = g lully, = [ k) Fus

is well defined. Moreover, we can use standard arguments to check that I €
Cl(E,,R) with

! = [ a(2)|VulN3(Vu - i ulN2updo — ) f(u)o dx
I(ﬂt)@—/ﬁ()lvl (Vu- Vi) d +/m|\ od /Qk<>f<>sod,

for any u, ¢ € E,. Hence, the critical points of I are precisely the weak solutions
of the problem (P).
We recall that (u,) C E, is a Palais-Smale sequence for I at level ¢ € R ((PS).
for short), if
. 3 !
ngr—ir-loo I(up) =c and nEToo 1" (wn)| £ = 0.
We prove in the sequel a local compactness result for the functional 1.

Lemma 4.2. Suppose that (u,) C E, is a (PS). sequence with

(= N-1 /9 _ N
¢ (%)) N6 '
Then (uy) has a convergent subsequence.

Proof. By computing I(u,) — (1/6)I'(u,)u, and using (f2) and (kg), we obtain
C1,C5 > 0 such that

01+ Calunl, = (= 5 ) bl + [ ko) (G0 = Flun))

1 1
> (3 - 3) Il
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Recalling that 8 > N, we conclude that (u,) is bounded in E, and therefore, up to
a subsequence, we have that u, — u weakly in E,.
We claim that

(4.5) / k() f (1) (i, — ) = op(1).
Indeed, by using (4.3), we get

—u)dx| <eA, + C5D

where
A, = /Qk(m)|un|N*1|un —u|dx, D, := /Qk(:v)|un|q*1<l>a(un)|un — ul dz.
Holder’s inequality and the Sobolev embedding (4.1) ensure that
An < lunll 75 lun = ullpy < Callunllz " un — g,

Hence, (A,) C R is bounded and, since € > 0 is arbitrary, we see that (4.5) will be
proved if we can guarantee that D,, = 0,,(1).
It follows from (f2) that

1 1 1
c= lim (I(un) — 91’(un)un> > <N — 9> lim ||un||E ,

n——+o0o n——+o00

and therefore we can use # > N and the hypothesis on ¢ to get

1/(N-1) _
: N/(N 1) < Nb 1/(N-1) _ &
ol s (9 N ¢ S

We now pick r1 > 1 and a > ag in such way that 7“104||uan({(N71) < @, for any

n € N large enough. So, Hélder’s inequality, (ko), (4.1), Lemma 4.1, (4.4) and (3.1)
imply that

1/7“1
- ol _Un
D, < ”unH 7'2(11 1)||un u”LkL‘ (/Q k(x)q)manunngé(N*l) (” n”E >d$>

< 05||un||qr2(q 1) l[un — “HL? = on(1),

where 1/r1 +1/ra +1/r3 =1, r3 > N and ¢ > 1 is such that ro(¢ — 1) > N. This
concludes the proof of (4.5).
Since I'(up,)(u, — u) = 0,(1), we can use (4.5) to get

/ a(x)|Vun, |V 2 Vuy, - V(u, — u)dx +/ [ | N "2, (1, — w)da = 0, (1).
Q oQ
Moreover, from the weak convergence, we have that

/ a(z)|VuN "2 Vu - V(u, — u)dx —|—/ [u|N "2 u(uy, — u)dz = o, (1).
Q o0

Hence,

(4.6) /QTN(Vun, Vu) - V(u, —u)dr + /69 Ty (tn, w) (U, — u)dz = 0,(1),

where
Ty (y1,y2) = (\y1|N72y1 - Iyle’Qyz) . Y1,v2 €RF,
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for k € {1, N}. But we know that (see [16, inequality (2.2)])
Ti(y1,92) - (y1 —y2) > Clk, N)|yr — 2™, V1, y2 € RE
From this inequality and (4.6) we obtain Cg > 0 such that
Collun — ]|, < on(1),
and therefore u,, — u strongly in E,. The lemma is proved. O
In what follows we prove that I has the Mountain Pass geometry.

Lemma 4.3. There exist 7,p > 0 such that I(u) > 7, if ||ul|lg, = p. Moreover,
there exists e € E,, with |le||g, > p, such that I(e) < 0.

Proof. Let ¢ > N and r1, ro > 1 be such that 1/rqy + 1/r2 = 1. By using Hoélder’s
inequality, (4.4) and (3.1), we get

1/7’2
/ k(2)[u|?®q (u)dz < [lul|$rq (/ k(x)® X/ V=D <u) d:c) .
Q k Q rreltlie, [[ull e,

If p1 > 0 is such that rgapiv/(Nfl) < @, we can apply Lemma 4.1 and use the
second inequality in (4.3) to obtain C; > 0 such that

| k@) Pudo < el ¥y + Culul
Q
for any € > 0 and ||ul|g, < p1. Hence, according to (4.1), there exists Cy > 0 with

1 1 _N
) 2 g, - <Calll, - Calllly, =l (57 - Co — Callull5™ )

N

Picking 0 < € < 1/(NC5) and recalling that ¢ > N, we can easily use the above
expression to obtain the first statement of the lemma for p > 0 small enough.

For the second one, we consider a function ¢ € C§°(2) \ {0} with support
contained in the open bounded set ©. From (f2), we obtain constants C3, Cy > 0
such that F(s) > C3|s|? — Cy, for all s € R. Thus, for all £ > 0, it holds that

tN
It0) < el = Cat’ [ k@lol'de+Ci [ ka)da.
© ©

Since 8 > N, the second statement holds for e := ty, with ¢ > 0 sufficiently
large. (]

We finish the paper by presenting the proof of our last theorem.

Proof of Theorem 1.2. By using Lemma 4.3, we can define the minimax level

=1 >
cup = inf Jnax, I(g(t)) =7 >0,

with T := {g € C([0,1], E,) : g(0) = 0 and I(g(1)) < 0}. From the Mountain Pass
Theorem without the Palais-Smale condition (see e.g. [6]), we obtain a sequence
(un) C Eq such that

lim I(up)=cyp and  lim |[I'(u,)|| g = 0.
n—+0o0 n—+o00 a

We claim that there are D(A) > 0 and A\, > 0 such that

(4.7) exrp < DY) < ("‘)N_l (‘)NHN) ,

Qo
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whenever f satisfies (f3) with A > \,. If this is true, we infer from Lemma 4.2 that,
along a subsequence, u,, — u strongly in F,. From the regularity of I we conclude
that I'(u) = 0 and I(u) = cprp > 0, and therefore u is the desired solution of (P).

It remains to be proved that (4.7) holds. We first use the compact embedding
(4.1) to obtain w € E, such that

[w||F, =S, = inf {||u||ga : / k(x)|u|’de = 1} .
Q
From (f3), we know that F'(s) > A|s|”, for all s € R. Thus,
1 1
<5, — Vg = —S,, —
I(w) < NS,, )\/Qk(:c)|w| dx NS” A<0

for any A > (S, /N). Thus, for such values of A, the path g(¢) := tw belongs to the
set of paths I' which appears in the definition of cj;p, and therefore we obtain
gy/(v=N) _N
v —: D(V).
(A\v)N/(v=N) \ " Nv
Since D(A) — 0 as A — +o0, it is clear that (4.7) holds for any A > A, large
enough. This concludes the proof. (|

1 N
< < — — v —
cup < rilzagd(tw) < (NSl,t Mt )
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