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Abstract. In this paper, we state a Hardy-Sobolev type inequality with

boundary terms in a borderline case. As an application, we investigate the
existence of solutions for a class of zero-mass quasilinear elliptic problem of

the form {
−div(a(x)|∇u|N−2∇u) = k(x)f(u) in Ω,

a(x)|∇u|N−2 (∇u · ν) + |u|N−2u = 0 on ∂Ω,

where Ω ⊂ RN , N ≥ 2, is an exterior domain, the weight functions a, k satisfy

some growth conditions and the nonlinearity f has critical exponential growth.

1. Introduction and main results

As it is well-known, Hardy type inequalities have been widely used in the study
of differential equations. In [10, 15], the authors have proved a Hardy-Sobolev type
inequality in unbounded domains. Precisely, for any 1 < p < N and Ω ⊂ RN an
unbounded domain, there exists C > 0 such that∫

Ω

|u|p

(1 + |x|)p
dx ≤ C

(∫
Ω

|∇u|pdx+

∫
∂Ω

|ν · x|
(1 + |x|)p

|u|pdσ
)
,

where ν is the unit outward normal vector to ∂Ω. This inequality has been
extensively used in the study of quasilinear elliptic equations in unbounded domain
like

(1.1)

{
−div(a(x)|∇u|p−2∇u) + b(x)|u|p−2u = f(x, u) in Ω,

a(x)|∇u|p−2(∇u · ν) + c(x)|u|p−2u = 0 on ∂Ω.

We refer the interest reader to [3, 10, 12, 14, 15] for the case b 6≡ 0. When b ≡ 0, we
say that we are in the zero-mass case and the problem seems to be more difficult,
since W 1,N (Ω) is not the natural space to look for solutions. We quote the paper [9],
where the authors considered 1 < p < N , b ≡ 0 and a sign-changing nonlinearity f
with polynomial growth.

In this paper, we aim to consider a zero-mass problem in the borderline case
p = N . More precisely, we address the existence of solutions for the quasilinear
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elliptic problem

(P)

{
−div(a(x)|∇u|N−2∇u) = k(x)f(u) in Ω,

a(x)|∇u|N−2 (∇u · ν) + |u|N−2u = 0 on ∂Ω,

where N ≥ 2, Ω ⊂ RN is an open set satisfying the assumption

(∗) RN \ Ω is bounded and 0 6∈ Ω,

which will be assumed throughout, the nonlinearity f has critical exponential
growth, and the potentials a, k verify

(a0) a : Ω→ R is a continuous function and there exist a0, γ > 0 such that

a0|x|γ ≤ a(x), for any x ∈ Ω;

(k0) k : Ω → R is a measurable function and there exist k0 > 0, β ≥ N such
that

0 < k(x) ≤ k0

(1 + |x|)β
, for a.e. x ∈ Ω.

The starting point to address the existence of weak solutions for the variational
borderline problem (P) is a new Hardy-Sobolev inequality with boundary term. In
order to present it, we denote by C∞δ (Ω) the space of C∞0 (RN )-functions restricted
to Ω.

In [18, Theorem 3.1], the authors proved a Hardy-Sobolev type inequality with
boundary term. Precisely, by assuming (∗) and a < (N − 2)/2 with N ≥ 3, they
proved that there exists a constant C > 0 (depending on Ω) such that, for any
u ∈ C∞δ (Ω), there holds

(1.2)
(N − 2− 2a)2

4

∫
Ω

|u|2

|x|2(a+1)
dx ≤

∫
Ω

|∇u|2

|x|2a
dx+ C

∫
∂Ω

|u|2dσ.

Thus, a natural question is whether or not (1.2) is true in the borderline case N = 2.
By performing a new argument we are able to prove the following result.

Theorem 1.1 (Hardy-Sobolev inequality). Suppose that γ 6= 0, N ≥ 2 and (∗)
holds. Then there exists a constant C0 = C0(Ω) > 0 such that

(1.3)

∫
Ω

|x|γ−N |u|N dx ≤ C0

(∫
Ω

|x|γ |∇u|Ndx+

∫
∂Ω

|u|Ndσ
)
, ∀u ∈ C∞δ (Ω).

It is worth to notice that the above conclusion can fail if γ = 0. Actually, we
present in Remark 2.2 an interesting example in the case that the set Ω is the
complement of a ball.

We now come back to our differential equation. Under the conditions (a0)
and (k0), we shall look for weak solutions for (P) in the space Ea defined as the
completion of C∞δ (Ω) with respect to the norm

‖u‖Ea :=

(∫
Ω

a(x)|∇u|Ndx+

∫
∂Ω

|u|Ndσ
)1/N

.

We are going to prove that Ea embedds into the weighted Sobolev space Lqk, for
any q ≥ N (see Proposition 2.3), and that∫

Ω

k(x)Φα(u) dx < +∞, for any α > 0, u ∈ Ea,
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where

Φα(s) := eα|s|
N/(N−1)

−
N−2∑
j=0

αj

j!
|s|Nj/(N−1), for all s ∈ R.

As a consequence, we are able to use Theorem 1.1 and some trick calculations to
prove a Trudinger-Moser type inequality (see Lemma 4.1) in the space Ea . Hence,

we may consider nonlinearities f which behave like eα|u|
N/(N−1)

at infinity. More
specifically, we shall assume that

(f0) f : R→ R is continuous and there exists α0 > 0 such that

lim
|s|→+∞

|f(s)|
eα|s|N/(N−1)

=

{
0 if α > α0,
+∞ if α < α0;

(f1) f(s) = o(|s|N−1) as s→ 0;
(f2) there exists θ > N such that, for any s ∈ R,

0 < θF (s) := θ

∫ s

0

f(t)dt ≤ f(s)s;

(f3) there exist λ > 0 and ν > N such that, for any s ∈ R,

F (s) ≥ λ|s|ν .

Our existence result for problem (P) can be stated as follows:

Theorem 1.2. Suppose that (a0), (k0), and (f0) − (f2) hold. Then there exists
λ∗ > 0 such that, if (f3) holds for λ ≥ λ∗, then the problem (P) has a nonzero weak
solution.

For the proof, we apply the Mountain Pass Theorem. Although the general
approach is in some sense standard, it is necessary to construct all the variational
setting. Actually, the abstract framework presented here can be used to deal
with many other type of problems involving Robin boundary condition. Our
main difficulties rely on the fact that we are dealing with the zero-mass case, the
domain Ω may be not symmetric, the Hardy-Sobolev inequality generally holds
for 1 < p < N and, as far we know, there is no appropriated Trudinger-Moser
inequality for our case. So, our paper complements all the aforementioned works
as well as the papers [7, 1, 4], where some related problems were considered with
N = 2. Finally, we emphasize that our results seem to be new even in the planar
(and therefore semilinear) case.

The remainder of the paper is organized as follows: in Section 2, we prove
Theorem 1.1 and some useful Sobolev embeddings. In Section 3, we prove a
weighted Trudinger-Moser type inequality. Finally, in Section 4, we present the
proof of Theorem 1.2.

2. A Hardy-Sobolev inequality and Sobolev embeddings

We start this section by proving our Hardy-Sobolev inequality. We write BR(x0)
for the open ball of radius R > 0 centered at the x0 ∈ RN . When x0 = 0, we write
only BR.

We can prove our first result as follows:
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Proof of Theorem 1.1. Let α 6= −N and u ∈ C∞δ (Ω) be fixed. If ν =
(ν1, ν2, . . . , νN ) is the unit outward normal vector at x ∈ ∂Ω, from the Divergence
Theorem we obtain∫

Ω

(|x|α)xi · xi|u|N dx = −
∫

Ω

|x|α · (xi|u|N )xi dx+

∫
∂Ω

|x|α|u|Nxiνi dσ.

By summing for i = 1, . . . , N , we get

(α+N)

∫
Ω

|x|α|u|N dx = −N
∫

Ω

|x|α|u|N−2u(x · ∇u) dx+

∫
∂Ω

|x|α|u|N (x · ν) dσ,

and therefore

(2.1) |α+N |
∫

Ω

|x|α|u|N dx ≤ N
∫

Ω

|x|α+1|u|N−1|∇u| dx+

∫
∂Ω

|x|α+1|u|N dσ.

Given ε > 0, we can use Young’s inequality to get

N

∫
Ω

|x|α+1|u|N−1|∇u| dx = N

∫
Ω

(
|x|α(N−1)/N |u|N−1

)
|x|[α+1−α(N−1)/N ]|∇u| dx

≤ (N − 1)ε

∫
Ω

|x|α|u|N dx+
1

εN−1

∫
Ω

|x|α+N |∇u|N dx.

If ε ≤ 1, we can use the above inequality and (2.1) to obtain

[|α+N |−(N−1)ε]

∫
Ω

|x|α|u|Ndx ≤ 1

εN−1

(∫
Ω

|x|α+N |∇u|Ndx+

∫
∂Ω

|x|α+1|u|Ndσ
)
.

By recalling that α 6= −N and picking

0 < ε < min

{
1,
|α+N |
(N − 1)

}
,

we get ∫
Ω

|x|α|u|N dx ≤ C1

(∫
Ω

|x|α+N |∇u|N dx+

∫
∂Ω

|x|α+1|u|N dσ
)
,

where C1 := [|α+N | − (N − 1)ε]
−1
ε1−N . By choosing α = γ − N 6= −N in the

above expression and using that ∂Ω is bounded, we obtain (1.3). The theorem is
proved. �

For each γ 6= 0, we denote by E1,γ the space obtained as the completion of
C∞δ (Ω) with respect to the norm

‖u‖E1,γ :=

(∫
Ω

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx

)1/N

.

As a consequence of Theorem 1.1, we obtain a second result which will play an
important role in the study of the zero-mass case b ≡ 0 in (1.1).

Corollary 2.1. If γ 6= 0, then the norms

‖u‖∂ :=

(∫
Ω

|x|γ |∇u|Ndx+

∫
∂Ω

|u|Ndσ
)1/N

and ‖ · ‖E1,γ are equivalents in E1,γ .
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Proof. It follows from (1.3) that, for any u ∈ C∞δ (Ω), one has

‖u‖NE1,γ ≤
∫

Ω

|x|γ |∇u|Ndx+ C0

(∫
Ω

|x|γ |∇u|Ndx+

∫
∂Ω

|u|Ndσ
)
≤ C1‖u‖N∂ ,

for some constant C1 = C1(Ω) > 0. On the other hand, since ∂Ω is bounded, we
can choose R > 0 sufficiently large in such a way that the Sobolev trace embedding
W 1,N (Ω ∩BR) ↪→ LN (∂Ω ∪ ∂BR) is continuous. Therefore,∫

∂Ω

|u|Ndσ ≤ C2

∫
Ω∩BR

(
|∇u|N + |u|N

)
dx

≤ C3

(∫
Ω∩BR

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx

)
,

with C3 = C3(R,N, γ) > 0 and we have used that 0 6∈ Ω and ∂Ω is bounded. It
follows from the above expression that

‖u‖N∂ ≤
∫

Ω

|x|γ |∇u|Ndx+ C3

∫
Ω

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx ≤ (1 + C3)‖u‖NE1,γ ,

which gives the desired result. �

Remark 2.2. If Ω is a bounded domain, then (1.3) holds for γ = 0, see for instance
[5, inequality (12) ] and the references [2, 18]. On the other hand, if γ = 0 and
Ω = RN \ B1, then the inequality in (1.3) fails in the space E1,γ . Indeed, by
considering the sequence of functions in E1,γ defined by

un(x) :=

{
n− log |x|, if 1 ≤ |x| ≤ en,
0, if |x| ≥ en,

we see that∫
Ω

|∇un|N dx =

∫
Ben\B1

|x|−N dx = ωN−1

∫ en

1

r−NrN−1 dr = nωN−1,

where ωN−1 is the measure of the unit sphere in RN . On the other hand,∫
Ω

|x|−N |un|Ndx =

∫
Ben\B1

|x|−N |n− log |x||Ndx

= ωN−1

∫ en

1

r−N |n− log r|NrN−1dr.

By considering the change of variables t = n− log r, we obtain∫
Ω

|x|−N |un|Ndx =
nN+1

N + 1
ωN−1.

Moreover, ∫
∂Ω

|un|Ndσ = nN
∫
∂Ω

dσ = nNωN−1.

Using the above inequalities we see that, if (1.3) holds, then

nN+1 ≤ C1(n+ nN ),

for all n ∈ N and some C1 > 0, which is impossible.
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Given a positive function ω ∈ L1
loc(Ω) and s ≥ 1, we define the weighted Lebesgue

space

Lsω :=

{
u ∈ L1

loc(Ω) : ‖u‖Lsω :=

(∫
Ω

ω(x)|u|s dx
)1/s

< +∞

}
,

and prove the following:

Proposition 2.3 (Sobolev inequality). Suppose that γ > 0, β ≥ N − γ and
q ≥ N ≥ 2. Then, there exists C = C(q,Ω) > 0 such that

(2.2)

∫
Ω

|u|q

(1 + |x|)β
dx ≤ C

(∫
Ω

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx

)q/N
, ∀u ∈ E1,γ ,

that is, the Sobolev embedding E1,γ ↪→ Lq
(1+|·|)−β is continuous. Furthermore, this

embedding is compact whenever β > N − γ.

Proof. Let j0 ∈ N be such that (RN \Ω) ⊂ B2j0 . Setting Ωj0 := Ω ∩B2j0 , we have

that Ω = Ωj0 ∪ (RN \ B2j0 ). Given u ∈ E1,γ ⊂ W 1,N
loc (Ω), we can use the Sobolev

embedding W 1,N (Ωj0) ↪→ Lq(Ωj0) to obtain∫
Ωj0

|u|q

(1 + |x|)β
dx ≤ C1

∫
Ωj0

|u|qdx ≤ C2

(∫
Ωj0

[
|∇u|N + |u|N

]
dx

)q/N
.

By recalling that 0 6∈ Ω, we can write

(2.3)

∫
Ωj0

|u|q

(1 + |x|)β
dx ≤ C3

(∫
Ωj0

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx

)q/N
,

for some C3 = C3(γ,Ω) > 0.
On the other hand, for any j ∈ N ∪ {0}, we have that

Aj := {z ∈ Ω : 2j0 · 2j < |z| < 2j0 · 2j+1} = B2j0+j+1 \B2j0+j .

Without loss generality we may assume β > 0. The change of variables y := 2−jx
provides ∫

Aj

|u|q

(1 + |x|)β
dx ≤ 1

2βj

∫
Aj

|u|qdx = 2(N−β)j

∫
A0

|uj(y)|qdy,

where uj(y) := u(2jy). Using the Sobolev embedding W 1,N (A0) ↪→ Lq(A0), we
obtain C4 > 0, such that∫

A0

|uj(y)|qdy ≤ C4

(∫
A0

[
|∇uj(y)|N + |uj(y)|N

]
dy

)q/N
= C4

(∫
Aj

[
|∇u|N + 2−Nj |u|N

]
dx

)q/N
.

We now notice that∫
Aj

|∇u|Ndx =

∫
Aj

|x|−γ |x|γ |∇u|Ndx ≤ 2−γj
∫
Aj

|x|γ |∇u|Ndx

and ∫
Aj

2−Nj |u|Ndx ≤ 2(j0+1)N · 2−γj
∫
Aj

|x|γ−N |u|Ndx.
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Consequently, for C5 = C4 · 2(j0+1)N , we have that

(2.4)

∫
Aj

|u|q

(1 + |x|)β
dx ≤ C52(N−β)j

(
2−γj

∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx

)q/N

= C52µj

(∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx

)q/N
,

where

(2.5) µj :=
(
N − β − γq

N

)
j.

Since γ > 0 and β ≥ N − γ, one has µj ≤ 0, and therefore∫
Aj

|u|q

(1 + |x|)β
dx ≤ C5

(∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx

)q/N
.

Thus, recalling that the function s 7→ sq/N is super additive for q ≥ N , we conclude
that

∞∑
j=0

∫
Aj

|u|q

(1 + |x|)β
dx ≤ C5

∞∑
j=0

(∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx

)q/N

≤ C5

(∫
RN\B

2j0

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx

)q/N
.

This, combined with (2.3), implies∫
Ω

|u|q

(1 + |x|)β
dx ≤ C6‖u‖qE1,γ ,

which proves (2.2).
For the compactness, we consider a sequence (un) ⊂ E1,γ such that un ⇀ 0

weakly in E1,γ . Given ε > 0, we can use γ > 0 and the fact that β > N − γ to
obtain j1 ∈ N such that 2µj < ε, for all j ≥ j1. Thus, from (2.4), we get∫

Aj

|un|q

(1 + |x|)β
dx < C5ε

(∫
Aj

[
|x|γ |∇un|N + |x|γ−N |un|N

]
dx

)q/N
,

for any j ≥ j1. Hence, from the embedding E1,γ ⊂ W 1,N
loc (Ω) and the Rellich-

Kondrachov Theorem, we obtain∫
Ω

|un|q

(1 + |x|)β
dx ≤

∫
Ωj0

|un|q

(1 + |x|)β
dx+

j1∑
j=0

∫
Aj

|un|q

(1 + |x|)β
dx+ C5ε‖un‖qE1,γ

= on(1) + C5ε‖un‖qE1,γ ,

where on(1) stands for a quantity approaching zero as n → +∞. Since ε > 0 is
arbitrary, the above expression implies that un → 0 strongly in Lq

(1+|·|)−β and the

proposition is proved. �

Remark 2.4. The embedding E1,γ ↪→ Lq
(1+|·|)−β is also continuous if γ < 0,

β ≥ N − γ and N ≤ q ≤ N(N − β)/γ. The proof of this statement can be done as
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above since, in this case, a simple calculation shows that the number µj defined in
(2.5) is nonpositive.

3. Trudinger–Moser type inequality

In view of the Proposition 2.3, it is natural to look for embedding into Orlicz
spaces. As we will see, this allows us to consider functions with exponential growth
in problem (P). For any α > 0, we recall the Young function defined in the
introduction

Φα(s) := eα|s|
N/(N−1)

−
N−2∑
j=0

αj

j!
|s|Nj/(N−1), for all s ∈ R.

If follows from the definition that

(3.1) Φα(ts) = φαtN/(N−1)(s), s ∈ R, t > 0.

We state in the sequel the main result of this section.

Theorem 3.1 (Trudinger-Moser inequality). Suppose that γ > 0 and β ≥ N .
Then, for any α > 0 and u ∈ E1,γ , the function (1 + | · |)−βΦα(u) belongs to L1(Ω).
Moreover, there exists α∗ = α∗(N) > 0 such that

L(α, γ, β) := sup
{u∈E1,γ :‖u‖E1,γ≤1}

∫
Ω

Φα(u)

(1 + |x|)β
dx < +∞,

for any 0 < α ≤ α∗. Furthermore, there exists α∗∗ > α∗ such that

(3.2) L(α, γ, β) = +∞, for any α > α∗∗.

For the proof of Theorem 3.1, we need two technical results.

Lemma 3.2. Let x0 ∈ RN and u ∈W 1,N
0 (BR(x0)) be such that

∫
BR(x0)

|∇u|Ndx ≤
1. Then, there exists C = C(N) > 0 such that∫

BR(x0)

ΦαN (u)dx ≤ C(N) ·RN
∫
BR(x0)

|∇u|Ndx,

where αN := Nω
1/(N−1)
N−1 with ωN−1 denoting the measure of the unit sphere in RN .

Proof. See [19, Lemma 3.1]. �

The second auxiliary result reads as

Lemma 3.3. Suppose that γ > 0 and β ≥ N . Then, there exist CN > 0 and
α∗ = α∗(N) > 0 such that∫

Ω

Φα(u)

(1 + |x|)β
dx ≤ CN

∫
Ω

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx,

for any 0 < α ≤ α∗ and u ∈ E1,γ verifying ‖u‖E1,γ ≤ 1.

Proof. Let j0 ∈ N and Ωj0 as in the proof of Proposition 2.3. For each y ∈ Ωj0 , set
Ry := dist(y, ∂Ωj0) and notice that BRy (y) ⊂ Ωj0 . Moreover, from the compactness

of Ωj0 , we obtain points y1, . . . , yk ∈ Ωj0 such that Ωj0 ⊂
⋃k
i=1BRi/2(yi), where

Ri := Ryi . For each i = 1, . . . , k, we set Bi := BRi(yi) and pick a function
ϕi ∈ C∞0 (Bi) such that 0 ≤ ϕi ≤ 1, ϕi ≡ 1 in BRi/2(yi) and |∇ϕi| ≤ 4/Ri in Bi.
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Since E1,γ ⊂ W 1,N
loc (Ω), we have that ϕu ∈ W 1,N

0 (Bi), for any u ∈ E1,γ . So, by
Poincaré’s inequality, we get∫

Bi
|∇ (ϕiu)|N dx ≤ C1

∫
Bi
|∇u|Ndx+ C1R

−N
i

∫
Bi
|u|Ndx

≤ C2

∫
Bi

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx,

where C2 = C2(N, γ) > 0.

We now set v := (1/C2)
1/N

ϕiu and suppose that

0 < α ≤ αN

C
1/(N−1)
2

.

Since ϕi ≡ 1 in BRi/2(yi) and Φα ≥ 0 is monotonic in α, it follows from (3.1) and
Lemma 3.2 that∫

BRi/2(yi)

Φα(u)dx =

∫
BRi/2(yi)

Φα(ϕiu)dx ≤
∫
Bi

Φα

(
C

1/N
2 v

)
dx

=

∫
Bi

Φ
αC

1/(N−1)
2

(v)dx ≤
∫
Bi

ΦαN (v)dx

≤ C3

∫
Bi

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx,

for some C3 = C3(γ). Therefore, there exists C4 = C4(β) > 0 such that

(3.3)

∫
Ωj0

Φα(u)

(1 + |x|)β
dx ≤ C4

k∑
i=1

∫
BRi/2(yi)

Φα(u)dx ≤ C4 · C3‖u‖NE1,γ .

By considering again the annulus Aj = {z ∈ Ω : 2j0 · 2j < |z| < 2j0 · 2j+1}, we
claim that

(3.4)

∫
Aj

Φα(u)

(1 + |x|)β
dx ≤ C5

∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx,

for any j ∈ N ∪ {0} and some C5 > 0. If this is true, the statement of the lemma
is a direct consequence of this inequality, (3.3) and

∫
Ω

Φα(u)

(1 + |x|)β
dx =

∫
Ωj0

+

∞∑
j=0

∫
Aj

 Φα(u)

(1 + |x|)β
dx.

It remains to be proved that (3.4) holds. In order to do that, we use the change
of variables y = 2−jx to obtain

(3.5)

∫
Aj

Φα(u)

(1 + |x|)β
dx ≤ C6

2βj

∫
Aj

Φα(u)dx = C62(N−β)j

∫
A0

Φα (uj) dy,

where uj(y) := u(2jy) and C6 > 0 is a constant independent of j. Arguing as

before, we obtain points y1, . . . , yk ∈ A0 such that A0 ⊂
⋃k
i=1BRi/2(yi), where

Ri = dist(yi, ∂Aj). By setting Bi = BRi/2(yi), we pick ϕi ∈ C∞0 (Bi) such that
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0 ≤ ϕi ≤ 1, ϕi ≡ 1 in BRi/2(yi) and |∇ϕi| ≤ 4/Ri in Bi, and compute∫
Bi
|∇ (ϕi(y)uj(y))|N dy ≤ C7

∫
Bi
|∇uj(y)|Ndy + C7R

−N
i

∫
Bi
|uj(y)|Ndy

≤ C7

∫
A0

|∇u(2jy)|N2jNdy + C7R
−N
i

∫
A0

|u(2jy)|Ndy

= C7

∫
Aj

|∇u|Ndx+
C7

RNi
2−Nj

∫
Aj

|u|Ndx.

But, as in the proof of Proposition 2.3, we have that∫
Aj

|∇u|Ndx ≤ C82−γj
∫
Aj

|x|γ |∇u|Ndx,

and

2−Nj
∫
Aj

|u|Ndx ≤ C92−γj
∫
Aj

|x|γ−N |u|Ndx,

with C8 = C8(γ) > 0 and C9 = C9(N, γ) > 0. Recalling that γ > 0, one deduces∫
Bi
|∇ (ϕi(y)uj(y))|N dy ≤ C102−γj

∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx

≤ C10

∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx.

Since ‖u‖E1,γ ≤ 1, the above inequality shows that we can apply Lemma 3.2

with v := (1/C10)
1/N

ϕiuj to obtain C11 = C11(N) > 0 such that∫
Bi

ΦαN (v)dy ≤ C11

∫
Bi
|∇v|Ndy ≤ C11

∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx.

Hence, if we define

α∗ := min

{
αN

C
1/(N−1)
2

,
αN

C
1/(N−1)
10

}
,

we can use the definition of v and (3.1) to obtain∫
Bi

Φα∗(ϕiuj)dy ≤
∫
Bi

ΦαN (v)dy ≤ C11

∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx.

Thus, for any 0 < α ≤ α∗, we can argue as in the first part of the proof to get∫
A0

Φα(uj)dy ≤
k∑
i=1

∫
BRi/2(yi)

Φα(uj)dy =

k∑
i=1

∫
BRi/2(yi)

Φα(ϕiuj)dy

≤
k∑
i=1

∫
BRi/2(yi)

Φα∗(ϕiuj)dy ≤ C11

∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx.

This, together with (3.5) implies that∫
Aj

Φα(u)

(1 + |x|)β
dx ≤ C122(N−β)j

∫
Aj

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx.

The inequality in (3.4) is a consequence of the above expression and β ≥ N . �

We are ready to prove the main result of this section.
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Proof of Theorem 3.1. If we consider α∗ > 0 as in Lemma 3.3, we have that

(3.6) sup
{u∈E1,γ :‖u‖E1,γ≤1}

∫
Ω

Φα(u)

(1 + |x|)β
dx < CN ,

for any 0 < α ≤ α∗. So, we need only to verify that, for each u ∈ E1,γ , the function
(1 + | · |)−βΦα(u) belongs to L1(Ω). In order to do this, we pick u0 ∈ C∞δ (Ω) such
that

‖u− u0‖E1,γ ≤ ε,
with ε > 0 to be chosen later.

A simple computation shows that

|Φ′α(s)| ≤ αN

N − 1
|s|1/(N−1)eα|s|

N/(N−1)

, s ≥ 0.

Thus, for any s, t ≥ 0, we can use the Mean Value Theorem to obtain θ ∈
[min{s, t},max{s, t}] such that

Φα(s) ≤ Φα(t) +
αN

N − 1
|θ|1/(N−1)eα|θ|

N/(N−1)

|t− s|.

Using this inequality with s = |u| and t = |u− u0|, we obtain a function x 7→ θ(x)
such that, for a.e. x ∈ Ω,

(3.7) Φα(|u|) ≤ Φα(|u− u0|) +
αN

N − 1
|θ(x)|1/(N−1)ψ(x)eα|θ(x)|N/(N−1)

,

where ψ :=
∣∣∣|u − u0| − |u|

∣∣∣ ∈ E1,γ has its support contained in the open bounded

set Θ.
We now notice that, by (3.1),∫

Ω

1

(1 + |x|)β
Φα(|u− u0|)dx =

∫
Ω

1

(1 + |x|)β
Φ
α‖u−u0‖N/(N−1)

E1,γ

(
|u− u0|

‖u− u0‖E1,γ

)
dx.

By choosing ε > 0 small, we can use (3.6) to conclude that

(3.8)

∫
Ω

1

(1 + |x|)β
Φα(|u− u0|)dx < CN .

Since u0 is a bounded function and θ is between |u− u0| and |u|, it is clear that

|θ(x)| ≤ |u− u0|+ |u| ≤ C1(|u|+ 1), a.e. in Θ,

for some C1 > 0. Thus, we can use Hölder’s inequality to obtain∫
Θ

1

(1 + |x|)β
|θ|1/(N−1)ψeα|θ|

N/(N−1)

dx ≤ C2

∫
Θ

(|u|+ 1)1/(N−1)ψeC3|u|N/(N−1)

dx

≤ C4

(∫
Θ

er3C3|u|N/(N−1)

dx

)1/r3

,

where C4 := ‖(|u| + 1)‖1/(N−1)

Lr1/(N−1)(Θ)
‖ψ‖r2Lr2 (Θ) and r1, r2, r3 are such that

1/r1 + 1/r2 + 1/r3 = 1, r1 ≥ N(N − 1) and r2 ≥ N . Since Θ is bounded, it
follows from the classical Trudinger-Moser inequality in W 1,N (Θ), see for instance
[7, 1, 4], that ∫

Θ

1

(1 + |x|)β
|θ|1/Nψeα|θ|

N/(N−1)

dx < +∞.

Since Φα(|u|) = Φα(u), we can use (3.7), (3.8) and the above expression to conclude
that (1 + | · |)−βΦα(u) ∈ L1(Ω).



12 J. L. CARVALHO, M. F. FURTADO, AND E. S. MEDEIROS

We now prove that (3.2) holds for some α∗∗ > α∗. Indeed, let x0 ∈ Ω be such
that B = B1(x0) ⊂ Ω and observe that, for some constant C5 > 0, one has

L(α, γ, β) ≥ C5 sup
{u∈W 1,N

0 (B):‖u‖E1,γ≤1}

∫
B

Φα(u)dx.

On the other hand, for any u ∈W 1,N
0 (B) with ‖u‖W 1,N

0 (B) ≤ 1, we have

‖u‖NE1,γ =

∫
B

[
|x|γ |∇u|N + |x|γ−N |u|N

]
dx ≤ C6‖u‖NW 1,N

0 (B)
≤ C6,

for some constant C6 = C6(N, γ). As in [8], defining v := C−1
6 u, we see that

v ∈W 1,N
0 (B) and ‖v‖E1,γ ≤ 1. Thus, it follows from (3.1) that

L(α, γ, β) ≥ C7

∫
B

Φα(C−1
6 u)dx = C7

∫
B

Φ
αC

−N/(N−1)
6

(u)dx.

Since Ψα(s) ≥ eα|s|N/(N−1)

, for any s ∈ R, we obtain that

L(α, γ, β) ≥ C7

∫
B

eαC
−N/(N−1)
6 |u|N/(N−1)

dx, for any u ∈W 1,N
0 (B).

Consequently,

L(α, γ, β) ≥ C7 sup
{u∈W 1,N

0 (B):‖u‖
W

1,N
0
≤1}

∫
B

eαC
−N/(N−1)
6 |u|N/(N−1)

dx.

By the classical Trudinger-Moser inequality (see for instance [11, 13, 17]) we

conclude that L(α, γ, β) = +∞ for any α > α∗∗ := C
N/(N−1)
6 αN . This completes

the proof. �

4. Proof of Theorem 1.2

By using a variational approach, we obtain in this section one weak solution for
(P). From now on, we assume that (a0), (k0) and (f0) − (f2) hold. We shall look
for solutions of (P) in the space Ea defined in the introduction as the completion
of C∞δ (Ω) with respect to the norm

‖u‖Ea :=

(∫
Ω

a(x)|∇u|Ndx+

∫
∂Ω

|u|Ndσ
)1/N

.

From (a0), (k0), Corollary 2.1 and Proposition 2.3, we obtain the compact
embedding

(4.1) Ea ↪→ Lqk, for any q ≥ N.

On the other hand, as direct consequence of (a0) and Corollary 2.1, it follows that
Ea ⊂ E1,γ and therefore we can use condition (k0) and Theorem 3.1 to obtain

(4.2)

∫
Ω

k(x)Φα(u) dx < +∞, for any α > 0, u ∈ Ea.

By (a0) and Corollary 2.1 again, we can assure the existence of C0 > 0 such that

‖u‖E1,γ ≤ C0‖u‖Ea , for all u ∈ Ea
and hence the following Trudinger-Moser inequality in the space Ea holds:
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Lemma 4.1. Let α∗ be given by Theorem 3.1. Then,

sup
{u∈Ea:‖u‖Ea≤1}

∫
Ω

k(x)Φα(u) dx < +∞.

for any 0 < α ≤ α := α∗/(C0)N/(N−1).

Proof. If ‖u‖Ea ≤ 1, then ‖u/C0‖E1,γ ≤ 1. So, by using (k0) and (3.1), we obtain∫
Ω

k(x)Φα(u)dx ≤ k0

∫
Ω

1

(1 + |x|)β
Φ
αC

N/(N−1)
0

(
u

C0

)
dx,

and the result follows from Theorem 3.1. �

In order to define the energy functional associated to (P), we pick α > α0 and
q ≥ 1. For any given ε > 0, we obtain from (f0)− (f1) a constant C > 0 such that

(4.3) |f(s)| ≤ ε|s|N−1 + C|s|q−1Φα(s), |F (s)| ≤ ε|s|N + C|s|qΦα(s),

for any s ∈ R. Hence, if u ∈ Ea and r1, r2 > 1 are such that 1/r1 + 1/r2 = 1,
r1 ≥ N , we can use (4.3), Hölder’s inequality, (4.1) and (4.2), to get∫

Ω

k(x)F (u)dx ≤ ε‖u‖NLNk + C1‖u‖qLr1qk

(∫
Ω

k(x)Φr2α(u)dx

)1/r2

< +∞,

where we also have used the inequality (see [20, Lemma 2.1])

(4.4) [Φα(s)]
t ≤ Φtα,N (s), s ∈ R, t ≥ 1.

All the above considerations show that the functional I : Ea → R given by

I(u) =
1

N
‖u‖NEa −

∫
Ω

k(x)F (u)dx

is well defined. Moreover, we can use standard arguments to check that I ∈
C1(Ea,R) with

I ′(u)ϕ =

∫
Ω

a(x)|∇u|N−2(∇u · ∇ϕ) dx+

∫
∂Ω

|u|N−2uϕdσ −
∫

Ω

k(x)f(u)ϕdx,

for any u, ϕ ∈ Ea. Hence, the critical points of I are precisely the weak solutions
of the problem (P).

We recall that (un) ⊂ Ea is a Palais-Smale sequence for I at level c ∈ R ((PS)c
for short), if

lim
n→+∞

I(un) = c and lim
n→+∞

‖I ′(un)‖E∗
a

= 0.

We prove in the sequel a local compactness result for the functional I.

Lemma 4.2. Suppose that (un) ⊂ Ea is a (PS)c sequence with

c <

(
α

α0

)N−1(
θ −N
Nθ

)
.

Then (un) has a convergent subsequence.

Proof. By computing I(un) − (1/θ)I ′(un)un and using (f2) and (k0), we obtain
C1, C2 > 0 such that

C1 + C2‖un‖Ea ≥
(

1

N
− 1

θ

)
‖un‖NEa +

∫
Ω

k(x)

(
1

θ
f(un)un − F (un)

)
dx

≥
(

1

N
− 1

θ

)
‖un‖NEa .
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Recalling that θ > N , we conclude that (un) is bounded in Ea and therefore, up to
a subsequence, we have that un ⇀ u weakly in Ea.

We claim that

(4.5)

∫
Ω

k(x)f(un)(un − u)dx = on(1).

Indeed, by using (4.3), we get∣∣∣∣∫
Ω

k(x)f(un)(un − u)dx

∣∣∣∣ ≤ εAn + C3Dn,

where

An :=

∫
Ω

k(x)|un|N−1|un − u| dx, Dn :=

∫
Ω

k(x)|un|q−1Φα(un)|un − u| dx.

Hölder’s inequality and the Sobolev embedding (4.1) ensure that

An ≤ ‖un‖N−1
LNk
‖un − u‖LNk ≤ C4‖un‖N−1

Ea
‖un − u‖Ea .

Hence, (An) ⊂ R is bounded and, since ε > 0 is arbitrary, we see that (4.5) will be
proved if we can guarantee that Dn = on(1).

It follows from (f2) that

c = lim
n→+∞

(
I(un)− 1

θ
I ′(un)un

)
≥
(

1

N
− 1

θ

)
lim

n→+∞
‖un‖NEa ,

and therefore we can use θ > N and the hypothesis on c to get

lim
n→+∞

‖un‖N/(N−1)
Ea

≤
(

Nθ

θ −N

)1/(N−1)

c1/(N−1) <
α

α0
.

We now pick r1 > 1 and α > α0 in such way that r1α‖un‖N/(N−1)
Ea

< α, for any
n ∈ N large enough. So, Hölder’s inequality, (k0), (4.1), Lemma 4.1, (4.4) and (3.1)
imply that

Dn ≤ ‖un‖q−1

L
r2(q−1)

k

‖un − u‖Lr3k

(∫
Ω

k(x)Φ
r1α‖un‖N/(N−1)

Ea

(
un

‖un‖Ea

)
dx

)1/r1

≤ C5‖un‖q−1

L
r2(q−1)

k

‖un − u‖Lr3k = on(1),

where 1/r1 + 1/r2 + 1/r3 = 1, r3 ≥ N and q > 1 is such that r2(q − 1) ≥ N . This
concludes the proof of (4.5).

Since I ′(un)(un − u) = on(1), we can use (4.5) to get∫
Ω

a(x)|∇un|N−2∇un · ∇(un − u)dx+

∫
∂Ω

|un|N−2un(un − u)dx = on(1).

Moreover, from the weak convergence, we have that∫
Ω

a(x)|∇u|N−2∇u · ∇(un − u)dx+

∫
∂Ω

|u|N−2u(un − u)dx = on(1).

Hence,

(4.6)

∫
Ω

TN (∇un,∇u) · ∇(un − u)dx+

∫
∂Ω

T1(un, u)(un − u)dx = on(1),

where

Tk(y1, y2) :=
(
|y1|N−2y1 − |y2|N−2y2

)
, y1, y2 ∈ Rk,
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for k ∈ {1, N}. But we know that (see [16, inequality (2.2)])

Tk(y1, y2) · (y1 − y2) ≥ C(k,N)|y1 − y2|N , ∀ y1, y2 ∈ Rk.
From this inequality and (4.6) we obtain C6 > 0 such that

C6‖un − u‖NEa ≤ on(1),

and therefore un → u strongly in Ea. The lemma is proved. �

In what follows we prove that I has the Mountain Pass geometry.

Lemma 4.3. There exist τ, ρ > 0 such that I(u) ≥ τ , if ‖u‖Ea = ρ. Moreover,
there exists e ∈ Ea, with ‖e‖Ea > ρ, such that I(e) < 0.

Proof. Let q > N and r1, r2 > 1 be such that 1/r1 + 1/r2 = 1. By using Hölder’s
inequality, (4.4) and (3.1), we get∫

Ω

k(x)|u|qΦα(u)dx ≤ ‖u‖q
L
r1q

k

(∫
Ω

k(x)Φ
r2α‖u‖N/(N−1)

Ea

(
u

‖u‖Ea

)
dx

)1/r2

.

If ρ1 > 0 is such that r2αρ
N/(N−1)
1 ≤ α, we can apply Lemma 4.1 and use the

second inequality in (4.3) to obtain C1 > 0 such that∫
Ω

k(x)F (u)dx ≤ ε‖u‖NLNk + C1‖u‖qLr1qk

,

for any ε > 0 and ‖u‖Ea ≤ ρ1. Hence, according to (4.1), there exists C2 > 0 with

I(u) ≥ 1

N
‖u‖NEa − εC2‖u‖NEa − C2‖u‖qEa = ‖u‖NEa

(
1

N
− εC2 − C2‖u‖q−NEa

)
.

Picking 0 < ε < 1/(NC2) and recalling that q > N , we can easily use the above
expression to obtain the first statement of the lemma for ρ > 0 small enough.

For the second one, we consider a function ϕ ∈ C∞δ (Ω) \ {0} with support
contained in the open bounded set Θ. From (f2), we obtain constants C3, C4 > 0
such that F (s) ≥ C3|s|θ − C4, for all s ∈ R. Thus, for all t > 0, it holds that

I(tϕ) ≤ tN

N
‖ϕ‖NEa − C3t

θ

∫
Θ

k(x)|ϕ|θdx+ C4

∫
Θ

k(x)dx.

Since θ > N , the second statement holds for e := tϕ, with t > 0 sufficiently
large. �

We finish the paper by presenting the proof of our last theorem.

Proof of Theorem 1.2. By using Lemma 4.3, we can define the minimax level

cMP := inf
g∈Γ

max
t∈[0,1]

I(g(t)) ≥ τ > 0,

with Γ := {g ∈ C([0, 1], Ea) : g(0) = 0 and I(g(1)) < 0}. From the Mountain Pass
Theorem without the Palais-Smale condition (see e.g. [6]), we obtain a sequence
(un) ⊂ Ea such that

lim
n→+∞

I(un) = cMP and lim
n→+∞

‖I ′(un)‖E∗
a

= 0.

We claim that there are D(λ) > 0 and λ∗ > 0 such that

(4.7) cMP ≤ D(λ) <

(
α

α0

)N−1(
θ −N
Nθ

)
,
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whenever f satisfies (f3) with λ ≥ λ∗. If this is true, we infer from Lemma 4.2 that,
along a subsequence, un → u strongly in Ea. From the regularity of I we conclude
that I ′(u) = 0 and I(u) = cMP > 0, and therefore u is the desired solution of (P).

It remains to be proved that (4.7) holds. We first use the compact embedding
(4.1) to obtain ω ∈ Ea such that

‖ω‖NEa = Sν := inf

{
‖u‖NEa :

∫
Ω

k(x)|u|νdx = 1

}
.

From (f3), we know that F (s) ≥ λ|s|ν , for all s ∈ R. Thus,

I(ω) ≤ 1

N
Sν − λ

∫
Ω

k(x)|ω|νdx =
1

N
Sν − λ < 0

for any λ > (Sν/N). Thus, for such values of λ, the path g(t) := tω belongs to the
set of paths Γ which appears in the definition of cMP , and therefore we obtain

cMP ≤ max
t≥0

I(tω) ≤
(

1

N
Sνt

N − λtν
)

=
S
ν/(ν−N)
ν

(λν)N/(ν−N)

(
ν −N
Nν

)
=: D(λ).

Since D(λ) → 0 as λ → +∞, it is clear that (4.7) holds for any λ ≥ λ∗ large
enough. This concludes the proof. �
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