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Abstract. In this paper, we state a Hardy inequality for domains with a geometric
boundary condition. As a consequence, we prove a weighted Trudinger-Moser
inequality. After that, we apply our results to investigate the existence of solutions
for a class of quasilinear elliptic equations with Neumann boundary condition and
nonlinearities with critical exponential growth.

1. Introduction and main results

As it is well-known, Sobolev embedding plays an important role in the study of partial
differential equations. For any 1 < p < N and Ω ⊂ RN a smooth open set containing
the origin, the classical N−dimensional Hardy inequality (see [13, 19]) assures that

(1.1)

(
N − p

p

)p ∫
Ω

|u|p

|x|p
dx ≤

∫
Ω

|∇u|pdx, u ∈ C∞
0 (Ω).

We refer to [2] for other results in bounded domains. The above inequality is no longer
true in the borderline case p = 2 when Ω = R2, as pointed out in the paper [17].
Although this, it is showed by Solomyak in [27] that there exists a constant C > 0 such
that ∫

R2

|u|2

|x|2(1 + log2(|x|))
dx ≤ C

∫
R2

|∇u|2dx,

for any u ∈ C∞
0 (R2) satisfying the mean zero condition

∫
∂B1(0)

u(x)dσ = 0. For Hardy

inequality in the borderline case p = N and Ω the unit ball we refer the reader [14, 26]
and references therein.

If Ω ⊂ RN is an arbitrary domain, Hardy-Sobolev inequalities and its variants have
been the subject of intensive research, see [15, 16, 24, 29, 7] and references there in.
For instance, Opic-Kurfner [22] provide different conditions on the weight functions w1

and w2 for the validity of the Hardy-Sobolev inequality∫
Ω

w1(x)|u|pdx ≤
∫
Ω

w2(x)|∇u|pdx, u ∈ C∞
0 (Ω).
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We also emphasize that, if p = 2, then the Hardy-Sobolev inequality can be derived
from the Caffarelli–Kohn–Nirenberg inequality (see [5])(∫

RN

|x|βq|u|qdx
)1/q

≤ C

(∫
RN

|x|αp |∇u|p dx
)1/p

, u ∈ C∞
0 (RN), N ≥ 2,(1.2)

for some constant C = C(α, β) > 0 where the parameters α and β satisfy the balanced
conditions

β

N
+

1

q
> 0,

α

N
+

1

p
> 0,

β − α + 1

N
=

(
1

p
− 1

q

)
, 0 ≤ β − α ≤ 1.

In particular, if we pick q = p = N , we obtain α = β+1 > 0. Thus, taking γ = αp > 0,
it follows from (1.2) that∫

RN

|x|γ−N |u|Ndx ≤ C

∫
RN

|x|γ |∇u|N dx, u ∈ C∞
0 (RN).

It is worth noticing that the above inequality is no longer true for γ ≤ 0. Indeed, if
it holds, then we can set Γ :=

{
u ∈ C∞

0 (RN) : u ≥ 1 in B1(0)
}
,

CapN,γ := inf
u∈Γ

∫
RN

|x|γ |∇u|N dx < +∞,

and obtain

CapN,γ ≥ 1

C
inf
u∈Γ

∫
RN

|x|γ−N |u|Ndx ≥ 1

C

∫
B1(0)

|x|γ−Ndx = +∞,

whenever γ ≤ 0. This contradiction shows that γ > 0 is a necessary condition.
In this paper, we are concerned with smooth function which can take nonzero values

on the boundary of Ω. More specifically, we deal with the space C∞
δ (Ω) which consists of

C∞
0 (RN)-functions restricted to Ω. We start quoting that Janssen [16] and Pfluger [24]

obtained, for any 1 < p < N , a constant C0 > 0 such that

(1.3)

∫
Ω

|u|p

(1 + |x|)p
dx ≤ C0

(∫
Ω

|∇u|pdx+
∫
∂Ω

|x · ν|
(1 + |x|)p

|u|pdσ
)
, u ∈ C∞

δ (Ω),

where ν denotes the unit outward normal vector on ∂Ω. For more results concerning
Hardy inequalities in the limiting case we refer to Ioku-Ishiwata [14], Laptev [15], Sano-
Sobukawa [26], Wang-Zhu [29] and its references.

Our main goal here is twofold. First, we address a version of the Hardy-Sobolev
inequality (1.3) in the borderline case p = N . As a consequence, after imposing some
geometric condition on the boundary of Ω, we obtain embedding from an appropriated
weighted Sobolev space into Lebesgue and Orlicz spaces. Secondly, we apply these
embedding results to investigate the existence of solutions for a class of zero mass case
quasilinear elliptic equation with Neumann boundary conditions involving exponential
critical growth in the Trudinger-Moser sense.



HARDY INEQUALITIES WITH BOUNDARY TERMS 3

1.1. Hardy-Sobolev inequality and Sobolev embedding. Let N ≥ 2 and Ω ⊂ RN

be a smooth domain. Motivated by the aforementioned results, our purpose here is to
prove the following Hardy type inequality with boundary terms in the borderline case:

Theorem 1.1 (Hardy). Let γ > 0 and suppose that 0 ̸∈ ∂Ω. Then, there exists C > 0
such that, for any u ∈ C∞

δ (Ω), it holds

(1.4)

∫
Ω

|x|γ−N |u|N dx ≤ C

(∫
Ω

|x|γ|∇u|Ndx+
∫
∂Ω

|x|γ−N |u|N(x · ν) dσ
)
.

Our proof is inspired by an argument presented by Mitidieri in [20], who have
considered the inequality (1.1). We notice that, if we adittionaly assume that ∂Ω is
bounded and RN \Ω is strictly star-shaped with respect to the origin, that is, x·ν(x) < 0
for any x ∈ ∂Ω, then there exists C > 0 such that, for any u ∈ C∞

δ (Ω), it holds∫
∂Ω

|u|Ndσ +

∫
Ω

|x|γ−N |u|N dx ≤ C

∫
Ω

|x|γ|∇u|Ndx.

Indeed, since ∂Ω is compact, we can obtain C1 > 0 such that x · ν(x) ≤ −C1 < 0, over
∂Ω. The result follows from (1.4).

We introduce, for each γ > 0, the space E1,γ obtained as the completion of C∞
δ (Ω)

with respect to the norm

∥u∥E1,γ :=

(∫
Ω

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx

)1/N

.

The following result is an easy consequence of our Hardy inequality which will play an
important role to establish embedding results for E1,γ:

Corollary 1.2. If γ > 0, 0 ̸∈ ∂Ω and x · ν(x) ≤ 0, for any x ∈ ∂Ω, then the norms
∥ · ∥E1,γ and

∥u∥ :=

(∫
Ω

|x|γ|∇u|Ndx
)1/N

are equivalents in E1,γ.

Proof. By Theorem 1.1, there exists C > 0 such that, for any u ∈ C∞
δ (Ω),∫

Ω

|x|γ|∇u|Ndx ≤
∫
Ω

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx ≤ (1 + C)

∫
Ω

|x|γ|∇u|Ndx

and the result follows by density. □

From now on, we shall assume that our domain satisfies the following geometric
condition:

(∗) RN \ Ω is bounded, 0 ̸∈ Ω and x · ν(x) ≤ 0, for any x ∈ ∂Ω.

That is the case, for example, if Ω is the complement of an open ball centred at the
origin. Given a positive function ω ∈ L1

loc(Ω) and q ≥ 1, we define the weighted
Lebesgue space

Lq
ω :=

{
u ∈ L1

loc(Ω) : ∥u∥Lq
ω
:=

(∫
Ω

ω(x)|u|q dx
)1/q

< +∞

}
.
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In our next result, we prove that E1,γ embedds into the space Lq
(1+|·|)−β .

Theorem 1.3 (Sobolev embedding). Suppose that γ > 0, β ≥ N − γ and Ω satisfies
(∗). Then, for any q ≥ N , there exists C > 0 such that, for any u ∈ E1,γ,

(1.5)

∫
Ω

|u|q

(1 + |x|)β
dx ≤ C

(∫
Ω

|x|γ|∇u|Ndx
)q/N

,

and therefore E1,γ ↪→ Lq
(1+|·|)−β continuously. Furthermore, this embedding is compact

whenever β > N − γ.

1.2. Weighted Trudinger-Moser inequality. In view of Theorem 1.3, it is natural
to look for embedding from E1,γ into Orlicz spaces. Precisely, for any α > 0, we consider
the Young function

Φα(s) := eα|s|
N/(N−1) −

N−2∑
j=0

αj

j!
|s|Nj/(N−1), for all s ∈ R.

By adapting the arguments used in the proof of Theorem 1.3, we obtain the following
weighted Trudinger-Moser type inequality:

Theorem 1.4 (Trudinger-Moser). Suppose that γ > 0, β ≥ N and Ω is a connected
domain of class C1,η, η ∈ (0, 1], satisfying (∗). Then, for any α > 0 and u ∈ E1,γ, the
function (1 + | · |)−βΦα(u) belongs to L1(Ω). Moreover, there exists α∗ = α∗(N) > 0
such that

L(α, β, γ) := sup
{u∈E1,γ :∥u∥≤1}

∫
Ω

Φα(u)

(1 + |x|)β
dx < +∞,

for any 0 < α ≤ α∗.

The first results concerning Trudinger-Moser type inequalities have appeared in the
papers of Yudovich, Moser, Trudinger [31, 21, 28], for the bounded domain case. Similar
results for unbounded domains have been established by Cao [6] and Ruf [23] in R2, and

by do Ó [9], Adachi and Tanaka [1], Li and Ruf [18], in higher dimensions. Concerning
the case of weighted Sobolev spaces, we can refer the reader to [11, 10, 12, 4] and
references therein. Some of these works considered radial weight functions, in such a
way that rearrangement procedures work well. Our abstract result complement and/or
generalize the aforementioned papers.

1.3. Application. In the final part of the paper, we illustrate how the previous results
can be useful to obtain existence of solutions for a class of zero-mass case quasilinear
elliptic equations with Neumann boundary condition in a borderline case. More
specifically, we deal with the problem

(Pλ)

{
−div

(
a(x)|∇u|N−2∇u

)
= λk(x)f(u), in Ω,

a(x)|∇u|N−2(∇u · ν) = 0, on ∂Ω,

where f is continuous and the potentials a and k satisfy the following assumptions:

(a0) a : Ω → R is continuous and there exist a0, γ > 0 such that

a0|x|γ ≤ a(x), for any x ∈ Ω;



HARDY INEQUALITIES WITH BOUNDARY TERMS 5

(k0) k : Ω → R is measurable and there exist k0 > 0 and β ≥ N such that

0 < k(x) ≤ k0
(1 + |x|)β

, for a.e. x ∈ Ω.

We shall look for solutions of the problem in the space Ea defined as the completion
of C∞

δ (Ω) with respect to the norm

∥u∥Ea :=

(∫
Ω

a(x)|∇u|Ndx
)1/N

.

In this case, we say that u ∈ Ea is a weak solution for problem (Pλ) if∫
Ω

a(x)|∇u|N−2(∇u · ∇φ) dx = λ

∫
Ω

k(x)f(u)φdx, for all φ ∈ C∞
δ (Ω).

Our aim here is to investigate the existence of weak solutions when the nonlinearity
f has the maximal growth for which the energy functional associated is well defined.
According to Theorem 1.4 and the hypotheses (a0), (k0), we may consider nonlinearities

f which behave like eα|s|
N/(N−1)

at infinity. More specifically, we shall assume that

(f0) f : R → R is continuous and there exists α0 > 0 such that

lim
|s|→+∞

|f(s)|
eα|s|N/(N−1)

=

{
0, if α > α0,
+∞, if α < α0;

(f1) f(s) = o(|s|N−1) as s→ 0;

(f2) there exists θ > N such that 0 < θF (s) := θ
∫ s

0
f(t)dt ≤ f(s)s, for any s ∈ R;

(f3) there exist CF > 0 and ν > N such that F (s) ≥ CF |s|ν , for every s ∈ (0, 1].

Our main existence result for problem (Pλ) is stated in what follows.

Theorem 1.5. Suppose that Ω is a connected domain of class C1,η, η ∈ (0, 1], satisfying
(∗). If (a0), (k0) and (f0)−(f3) hold, then there exists λ∗ > 0 such that, for any λ ≥ λ∗,
the problem (Pλ) has a nonnegative nonzero weak solution.

For the proof, we apply the Mountain Pass Theorem. Although the general approach
is in some sense standard, the idea is using all the variational setting done in the first
part of the paper. Our main difficulties rely on the fact that we are dealing with the
zero-mass case, the domain Ω may be not symmetric, the Hardy-Sobolev inequality
generally holds for 1 < p < N and, as far we know, there is no appropriated Trudinger-
Moser inequality for our case. So, our paper complements all the aforementioned works.
We emphasize that our results seem to be new even in semilinear case N = 2.

The remainder of the paper is organized as follows. In Section 2, we establish the
proof of Theorems 1.1 and 1.3. In section 3, we prove Theorem 1.4 and, finally, Section 4
is devoted to the proof of Theorem 1.5.
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2. Hardy inequality and the Sobolev embedding

In this section, we prove Theorems 1.1 and 1.3 stated in the introduction. We write
BR(x0) for the open ball of radius R > 0 centered at the x0 ∈ RN . When x0 = 0, we
write only BR.

Proof of Theorem 1.1. Let ρ ∈ C∞(R) be such that ρ ≡ 0 in [0, 1], ρ ≡ 1 in [2,+∞)
and 0 ≤ ρ ≤ 1. For any ε > 0, we define ρε(x) := ρ(|x|/ε) and the vector field

Hε(x) := x|x|αρε(x)|u|N ,
where u ∈ C∞

δ (Ω) is fixed and α > −N is free for now. Since Hε vanishes in a
neighbourhood of the origin, we can apply the divergence theorem to get

(2.1)

(α +N)

∫
Ω

|x|αρε(x)|u|N dx = −N
∫
Ω

|x|αρε(x)|u|N−2u(x · ∇u) dx

−Γε +

∫
∂Ω

|x|α|u|N(x · ν) dσ,

where

Γε := ε−1

∫
Ω

|x|α+1ρ′(|x|/ε)|u|N dx

≤ ε−1∥ρ′∥L∞(R)∥u∥L∞(Ω)

∫
{ε≤|x|≤2ε}

|x|α+1dx

≤ ε−1C1

∫ 2ε

0

rα+1rN−1dr = C2ε
α+N ,

with C1 > 0 independent of ε. Since α > −N , we conclude that Γε → 0, as ε → 0+.
Moreover, ρε(x) → 1, as ε → 0+, for any x ∈ RN \ 0. Hence, we can take the limit in
(2.1) and use the Lebesgue Theorem to get

(α +N)

∫
Ω

|x|α|u|N dx = −N
∫
Ω

|x|α|u|N−2u(x · ∇u) dx+
∫
∂Ω

|x|α|u|N(x · ν) dσ,

for any u ∈ C∞
δ (Ω).

We now take another ε > 0 and apply Young’s inequality to obtain

−N
∫
Ω

|x|α|u|N−2u(x · ∇u) dx ≤ N

∫
Ω

|x|α+1|u|N−1|∇u| dx

= N

∫
Ω

(
|x|α(N−1)/N |u|N−1

)
|x|[α+1−α(N−1)/N ]|∇u| dx

≤ (N − 1)ε

∫
Ω

|x|α|u|N dx+ ε1−N

∫
Ω

|x|α+N |∇u|N dx.

The above estimates imply that

(α +N − (N − 1)ε)

∫
Ω

|x|α|u|Ndx ≤ ε1−N

∫
Ω

|x|α+N |∇u|Ndx+
∫
∂Ω

|x|α|u|N(x · ν)dσ.

Picking 0 < ε < (α+N)/(N−1) and choosing α = γ−N > −N , we obtain the desired
result. □
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The proof of the Sobolev embedding is more involved.

Proof of Theorem 1.3. For any j > 0, we set Ωj := Ω ∩ B2j . Let j0 ∈ N be such that

(RN \ Ω) ⊂ B2j0 , which implies Ω = Ωj0 ∪ (RN \ B2j0 ). Given u ∈ E1,γ ⊂ W 1,N
loc (Ω),

from the Sobolev embedding W 1,N(Ωj0) ↪→ Lq(Ωj0), we get∫
Ωj0

|u|q

(1 + |x|)β
dx ≤ C1

∫
Ωj0

|u|qdx ≤ C2

(∫
Ωj0

[
|∇u|N + |u|N

]
dx

)q/N

and hence, by Corollary 1.2, one deduce

(2.2)

∫
Ωj0

|u|q

(1 + |x|)β
dx ≤ C3

(∫
Ωj0

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx

)q/N

≤ C4

(∫
Ω

|x|γ|∇u|Ndx
)q/N

.

On the other hand, if we define Aj := {z ∈ Ω : 2j0 · 2j < |z| < 2j0 · 2j+1}, for any
j ∈ N ∪ {0}, the change of variables y := 2−jx provides∫

Aj

|u|q

(1 + |x|)β
dx ≤ C5

2βj

∫
Aj

|u|qdx = C52
(N−β)j

∫
A0

|uj(y)|qdy,

where uj(y) := u(2jy). Using the Sobolev embedding W 1,N(A0) ↪→ Lq(A0), we obtain
C6 > 0 such that∫

A0

|uj(y)|qdy ≤ C6

(∫
A0

[
|∇uj(y)|N + |uj(y)|N

]
dy

)q/N

= C6

(∫
Aj

[
|∇u(x)|N + 2−Nj|u(x)|N

]
dx

)q/N

.

Now we observe that∫
Aj

|∇u|Ndx =

∫
Aj

|x|−γ|x|γ|∇u|Ndx ≤ 2−γj

∫
Aj

|x|γ|∇u|Ndx

and∫
Aj

2−Nj|u|Ndx =

∫
Aj

2−Nj|x|−γ+N |x|γ−N |u|Ndx ≤ 2(j0+1)N2−γj

∫
Aj

|x|γ−N |u|Ndx.

Consequently, for some C7 = C7(j0, N, q) > 0, we have

(2.3)

∫
Aj

|u|q

(1 + |x|)β
dx ≤ C72

(N−β)j

(
2−γj

∫
Aj

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx

)q/N

= C72
λj

(∫
Aj

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx

)q/N

,
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where

λj :=
(
N − β − γq

N

)
j.

Since γ > 0 and β ≥ N − γ, one has λj ≤ 0, and therefore

∫
Aj

|u|q

(1 + |x|)β
dx ≤ C7

(∫
Aj

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx

)q/N

.

Thus, recalling that the function s 7→ sq/N is super additive for q ≥ N , we conclude
that

∞∑
j=0

∫
Aj

|u|q

(1 + |x|)β
dx ≤ C7

∞∑
j=0

(∫
Aj

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx

)q/N

≤ C7

(∫
RN\B

2j0

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx

)q/N

≤ C8

(∫
Ω

|x|γ|∇u|Ndx
)q/N

,

where we apply Corollary 1.2. This, combined with the estimate (2.2), imply∫
Ω

|u|q

(1 + |x|)β
dx ≤ C9

(∫
Ω

|x|γ|∇u|Ndx
)q/N

,

which proves (1.5).
For the compactness, we consider a sequence (un) ⊂ E1,γ such that un ⇀ 0 weakly

in E1,γ. Given ε > 0, we can use γ > 0 and the fact that β > N − γ to obtain j1 ∈ N
such that 2λj < ε, for any j > j1. Thus, from (2.3), we get

∫
Aj

|un|q

(1 + |x|)β
dx < C7ε

(∫
Aj

[
|x|γ|∇un|N + |x|γ−N |un|N

]
dx

)q/N

,

for any j > j1. From E1,γ ⊂ W 1,N
loc (Ω), Rellich–Kondrachov Theorem and Corollary 1.2,

we infer∫
Ω

|un|q

(1 + |x|)β
dx ≤

∫
Ωj0

|un|q

(1 + |x|)β
dx+

j1∑
j=0

∫
Aj

|un|q

(1 + |x|)β
dx+ C7ε∥un∥qE1,γ

≤ on(1) + C10ε∥un∥q,

where on(1) stands for a quantity approaching zero as n→ +∞. Since ε > 0 is arbitrary,
the above expression implies that un → 0 strongly in Lq

(1+|·|)−β , which concludes the

proof. □
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3. Trudinger-Moser type inequality

In order to prove Theorem 1.4, we need two technical lemmas. We start recalling the
definition of the Young function

Φα(s) := eα|s|
N/(N−1) −

N−2∑
j=0

αj

j!
|s|Nj/(N−1), for all s ∈ R,

and stating a basic result which is a version of [30, Lemma 4.1] in W 1,N(Ω0). Precisely,
we have the following result.

Lemma 3.1. Let Ω0 ⊂ RN be a bounded connected domain of class C1,β, for some
β ∈ (0, 1]. If ωN−1 denotes the measure of the unit sphere in RN then, for any
0 < α < αN := (NNωN−1/2)

1/(N−1), there exists C0 = C0(α,Ω0) > 0 such that∫
Ω0

Φα(v)dx ≤ C0

∫
Ω0

[
|∇v|N + |v|N

]
dx,

for any v ∈ W 1,N(Ω0) such that ∥v∥W 1,N (Ω0) ≤ 1.

Proof. By the Trudinger-Moser inequality (see [8]) we know that, for any α < αN ,

L(α,Ω0) := sup{
u∈W 1,N (Ω0):∥u∥W1,N (Ω0)

=1
}
∫
Ω0

eα|u|
N/(N−1)

dx < +∞.

Thus, if ∥v∥W 1,N (Ω0) ≤ 1 and ṽ := v/∥v∥W 1,N (Ω0), ones has

L(α,Ω0) ≥
∫
Ω0

eα|ṽ|
N/(N−1)

dx ≥
∫
Ω0

(
∞∑

j=N−1

αj

j!

|v|Nj/(N−1)

∥v∥Nj/(N−1)

W 1,N (Ω0)

)
dx

≥ 1

∥v∥N
W 1,N (Ω0)

∫
Ω0

(
∞∑

j=N−1

αj

j!
|v|Nj/(N−1)

)
dx,

and the result follows. □

As a consequence of this result we can prove the next lemma.

Lemma 3.2. Suppose that γ > 0 and β ≥ N hold. Then, there exists CN , α
∗ =

α∗(N) > 0 such that, for any 0 < α < α∗,∫
Ω

Φα(u)

(1 + |x|)β
dx ≤ CN

∫
Ω

|x|γ|∇u|Ndx,

whenever u ∈ E1,γ satisfies ∥u∥ ≤ 1.

Proof. Let j0 ∈ N and Ωj0 be as in the proof of Theorem 1.3. If ∥u∥ ≤ 1, then it follows
from 0 ̸∈ Ω and Corollary 1.2 that

∥u∥NW 1,N (Ωj0
) ≤ C1

∫
Ωj0

[|x|γ|∇u|N + |x|γ−N |u|N ]dx ≤ C2

∫
Ωj0

|x|γ|∇u|Ndx ≤ C2.

From the definition of Φα, we easily conclude that

(3.1) Φα(ts) = ΦαtN/(N−1)(s), s ∈ R, t > 0.



10 ABREU, CARVALHO, FURTADO, AND MEDEIROS

Thus,

(3.2)

∫
Ωj0

Φα(u)

(1 + |x|)β
dx ≤

∫
Ωj0

Φα(u)dx =

∫
Ωj0

Φ
αC

1/(N−1)
2

(
u

N
√
C2

)
dx.

This, together with Lemma 3.1 and Corollary 1.2 imply that

(3.3)

∫
Ωj0

Φα(u)

(1 + |x|)β
dx ≤ C0

C2

∥u∥NW 1,N (Ω0)
≤ C3

∫
Ω

|x|γ|∇u|Ndx,

for some C3 = C3(γ) > 0 and any

0 < α < ζ1N :=
αN

C
1/(N−1)
2

.

Considering now the annulus Aj := {z ∈ Ω : 2j0 ·2j < |z| < 2j0 ·2j+1} we claim that,
for some C4 > 0 and α > 0 small, there holds

(3.4)

∫
Aj

Φα(u)

(1 + |x|)β
dx ≤ C4

∫
Aj

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx,

for any j ∈ N ∪ {0}. If this is true, we can apply Corollary 1.2 to get∫
Bc

2j0

Φα(u)

(1 + |x|)β
dx =

∞∑
j=0

∫
Aj

Φα(u)

(1 + |x|)β
dx ≤ C4

∫
Ω

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx

≤ C5

∫
Ω

|x|γ|∇u|Ndx.

So, recalling that Ω = Ωj0 ∪ (RN \B2j0 ), we see that the lemma is a direct consequence
of this inequality and (3.3).

It remains to prove (3.4). In order to do that, we adapt our former argument. First,
we fix j ∈ N ∪ {0} and use the change of variables y = 2−jx to obtain

(3.5)

∫
Aj

Φα(u)

(1 + |x|)β
dx ≤ C6

2βj

∫
Aj

Φα(u)dx = C62
(N−β)j

∫
A0

Φα (uj) dy,

where uj(y) := u(2jy) and C6 > 0 is a constant independent of j. Recalling that
∥u∥ ≤ 1, we get

∥uj∥NW 1,N (A0)
=

∫
Aj

[
|∇u|N +

|u|N

2jN

]
dx =

∫
Aj

1

|x|γ
[
|x|γ|∇u|N +

|x|γ−N |u|N

2jN |x|−N

]
dx

≤ 2(j0+1)N

∫
Ω

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx ≤ C7

where C7 > 0 does not depend on j. Hence, by applying Lemma 3.1 once again, we
obtain

(3.6)

∫
A0

Φα(uj)dy ≤ C0

C7

∥uj∥NW 1,N (Ω0)
≤ C8

∫
Aj

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx,

for some C8 = C8(γ) > 0 and any

0 < α < ζ2N :=
αN

C
1/(N−1)
7

.
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Thus, defining α∗ := min {ζ1N , ζ2N}, we can use (3.5)-(3.6) to conclude that∫
Aj

Φα(u)

(1 + |x|)β
dx ≤ C62

(N−β)j

(
C8

∫
Aj

[
|x|γ|∇u|N + |x|γ−N |u|N

]
dx

)
,

for any 0 < α < α∗. Since β ≥ N , it follows that inequality (3.4) holds and the proof
is finished. □

We can now present the the proof of our weighted Trudinger-Moser inequality.

Proof of Theorem 1.4. It follows from Lemma 3.2 that L(α, γ, β) < +∞, for any
0 < α ≤ α∗. So, we need only to check that Φα(u)(1 + | · |)−β ∈ L1(Ω), for u ∈ E1,γ

and α > 0. Given ε > 0, we pick u0 ∈ C∞
δ (Ω) such that

∥u− u0∥E1,γ ≤ ε.

A simple computation shows that, for any s ≥ 0,

0 ≤ Φ′
α(s) ≤ αN ′|s|1/(N−1)eα|s|

N′

,

where N ′ := N/(N − 1) is the conjugated exponent of N . Thus, for any s, t ≥ 0, we
can use the Mean Value Theorem to obtain θ ∈ [min{s, t},max{s, t}] such that

Φα(s) ≤ Φα(t) + αN ′|θ|1/(N−1)eα|θ|
N′

|t− s|.
Using this inequality with s = |u| and t = |u− u0|, we obtain a function x 7→ θ(x) such
that, for a.e. x ∈ Ω,

(3.7) Φα(|u|) ≤ Φα(|u− u0|) + αN ′|θ(x)|1/(N−1)ψ(x)eα|θ(x)|
N′

,

where ψ :=
∣∣∣|u− u0| − |u|

∣∣∣ ∈ E1,γ has the same support of u0.

We now notice that, by (3.1),∫
Ω

1

(1 + |x|)β
Φα(|u− u0|)dx ≤

∫
Ω

1

(1 + |x|)β
Φα∥u−u0∥N

′
E1,γ

(
|u− u0|

∥u− u0∥E1,γ

)
dx,

and therefore we can choose ε > 0 small in such way that we can apply Lemma 3.2 to
get

(3.8)

∫
Ω

1

(1 + |x|)β
Φα(|u− u0|)dx < CN .

Since u0 is bounded and θ is between |u− u0| and |u|, it is clear that
|θ(x)| ≤ |u− u0|+ |u| ≤ C1(|u|+ 1), for a.e. x ∈ suppu0,

and some C1 > 0. Thus, we can use Hölder’s inequality to obtain∫
Ω

1

(1 + |x|)β
|θ|1/(N−1)ψeα|θ|

N′

dx ≤ C2

∫
Ω

(|u|+ 1)1/(N−1)ψeC3|u|N
′

dx

≤ C4

(∫
Ω

er3C3|u|N
′

dx

)1/r3

,

where C4 := C2∥(|u| + 1)∥1/(N−1)

Lr1/(N−1)(Ω)
∥ψ∥r2Lr2 (Ω) and r1, r2, r3 are such that 1/r1 +

1/r2 + 1/r3 = 1, r1 ≥ N(N − 1) and r2 ≥ N . Since the first integral above can be
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considered only in the compact support of u0, it follows from the classical Trudinger-
Moser inequality that ∫

Ω

1

(1 + |x|)β
|θ|1/Nψeα|θ|N

′

dx < +∞.

Recalling that Φα(|u|) = Φα(u), we can use (3.7), (3.8) and the above expression to
conclude that (1 + | · |)−βΦα(u) ∈ L1(Ω). □

4. Weak nonnegative solution for (Pλ)

In this section, we apply our abstract result for obtaining a weak solution for problem
(Pλ). In order to do this, we first use (a0), (k0) and Theorem 1.3 to get the compact
embedding

(4.1) Ea ↪→ Lq
k, for all q ≥ N.

As a direct consequence of (a0) and Corollary 1.2, it follows that Ea ⊂ E1,γ. Thus, we
can use condition (k0) and Theorem 1.4 to get

(4.2) k(·)Φα(u) ∈ L1(Ω), for all α > 0, u ∈ Ea.

Moreover, from (a0) and Corollary 1.2, there exists C0 > 0 such that

∥u∥ ≤ C0∥u∥Ea , for all u ∈ Ea

and hence the following Trudinger-Moser inequality in the space Ea holds:

Lemma 4.1. Let α∗ > 0 be given by Theorem 1.4. Then

sup
{u∈Ea:∥u∥Ea≤1}

∫
Ω

k(x)Φα(u)dx < +∞,

for any 0 < α ≤ α := α∗/C
N/(N−1)
0 .

Proof. If ∥u∥Ea ≤ 1, then ∥u/C0∥ ≤ 1. Using condition (k0), (3.1) and Theorem 1.4,
we get ∫

Ω

k(x)Φα(u)dx ≤ k0

∫
Ω

1

(1 + |x|)β
ΦαCN′

0

(
u

C0

)
dx ≤ C1,

for some C1 > 0 independent of u. □

For any given ε > 0, α > α0 and r ≥ 1, we can use (f0)− (f1) to obtain C > 0 such
that

(4.3) |f(s)| ≤ ε|s|N−1 + C|s|r−1Φα(s), |F (s)| ≤ ε|s|N + C|s|rΦα(s),

for any s ∈ R. Given u ∈ Ea, we can apply the above inequality to get∫
Ω

k(x)F (u)dx ≤ ε

∫
Ω

k(x)|u|Ndx+ C

∫
Ω

k(x)|u|rΦα(u)dx.
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By (4.1), the first integral on the right-hand side above is finite. Moreover, picking
r1, r2 > 1 such that 1/r1+1/r2 = 1, we can use Hölder’s inequality together with (4.1)
and (4.2), to get∫

Ω

k(x)|u|rΦα(u)dx ≤ ∥u∥r
L
r1r
k

(∫
Ω

k(x)Φr2α(u)dx

)1/r2

< +∞,

where we also have used the inequality (see [32, Lemma 2.1])

(4.4) [Φα(s)]
r ≤ Φrα(s), s ∈ R, r > 1.

Hence, the functional Iλ : Ea → R given by

Iλ(u) :=
1

N
∥u∥NEa

− λ

∫
Ω

k(x)F (u)dx

is well defined and standard arguments show that Iλ ∈ C1(Ea,R) with

I ′λ(u)φ =

∫
Ω

a(x)|∇u|N−2(∇u · ∇φ) dx− λ

∫
Ω

k(x)f(u)φdx, for all u, φ ∈ Ea.

Consequently, critical points of Iλ are weak solutions for problem (Pλ).
The next lemma shows that the functional Iλ satisfies the Mountain Pass geometry.

Lemma 4.2. There are constants ρ, τ > 0 such that Iλ(u) ≥ τ , for any ∥u∥Ea = ρ.
Furthermore, there exists e ∈ Ea such that ∥e∥Ea > ρ and Iλ(e) < 0.

Proof. From (4.1) and (4.3), we obtain C1 > 0 such that∫
Ω

k(x)F (u)dx ≤ C1ε∥u∥NEa
+ C

∫
Ω

k(x)|u|rΦα(u)dx.

By Hölder’s inequality, (3.1) and (4.4), we deduce∫
Ω

k(x)|u|rΦα(u)dx ≤ ∥u∥r
L
r1r
k

(∫
Ω

k(x)Φr2α∥u∥N
′

Ea

(
u

∥u∥Ea

)
dx

)1/r2

.

Hence, choosing ρ1 > 0 such that r2αρ
N ′
1 ≤ α, we can apply (4.1) and Lemma 4.1 to

get ∫
Ω

k(x)|u|rΦα(u)dx ≤ C2∥u∥rEa
,

whenever ∥u∥Ea ≤ ρ1. Thus, from the above estimates, one has

Iλ(u) ≥
1

N
∥u∥NEa

− λC1ε∥u∥NEa
− λC3∥u∥rEa

= ∥u∥NEa

(
1

N
− λC1ε− λC3∥u∥r−N

Ea

)
,

whenever ∥u∥Ea ≤ ρ1. The first statement of the lemma follows from the above
expression if we pick 0 < ε < 1/(NλC1) and r > N .

In order to prove the second one, we take φ ∈ C∞
δ (Ω) \ {0}. From (f2) it is possible

to obtain constants C4, C5 > 0 such that F (s) ≥ C4|s|θ − C5, for any s ∈ R. So, it
follows that

Iλ(tφ) ≤
tN

N
∥φ∥NEa

− λC4t
θ

∫
suppφ

k(x)|φ|θdx+ λC5

∫
suppφ

k(x)dx,
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for any t > 0. Since θ > N , the last inequality implies that limt→+∞ Iλ(tφ) = −∞, and
so there exists t > 0 large in such a way that the desired result holds for e = tφ. □

It follows from Lemma 4.2 that the minimax level

cλ := inf
g∈Γ

max
t∈[0,1]

Iλ(g(t)) ≥ τ > 0,

where Γ := {g ∈ C ([0, 1], Ea) : g(0) = 0 and Iλ(g(1)) < 0} is well defined. Moreover,
the following estimate holds true.

Lemma 4.3. There exists λ∗ > 0 such that, for any λ ≥ λ∗, it holds

cλ < c0 :=

(
α

α0

)N−1(
θ −N

Nθ

)
.

Proof. Let R > 0 be such that |Ω ∩ BR/2| > 0 and pick a function φ ∈ C∞(RN) such
that φ ≡ 1 in BR/2, φ ≡ 0 outside BR and 0 ≤ φ ≤ 1 in RN . Here, | · | stands for
the Lebesgue measure of a set. If we define φ̃ := φ|Ω ∈ C∞

δ (Ω), we can easily use∫
Ω
k(x)F (φ̃) > 0 to conclude that Iλ(φ̃) < 0, for any λ > λ∗. Hence, for these values

of λ, we have that the path g(t) := tφ̃ belongs to Γ. Now using (f3) and recalling that
φ ≡ 1 in BR/2, we obtain

Iλ(tφ̃) ≤
tN

N

∫
Ω∩BR

a(x)|∇φ̃|Ndx− λ

∫
Ω∩BR

k(x)F (tφ̃) dx ≤ C1t
N − λC2t

ν .

with

C1 :=
1

N

∥∥a|∇φ̃|N∥∥
L∞(Ω∩BR)

|Ω ∩BR|, C2 := CF

∫
Ω∩BR

k(x)|φ̃|ν dx.

Thus, using the definition of cλ, we get

cλ ≤ max
t≥0

Iλ(tφ̃) ≤ max
t≥0

[
C1t

N − λC2t
ν
]

=
1

(λC2)N/(ν−N)

(
NC1

ν

)ν/(ν−N)(
ν −N

N

)
.

Since ν > N , the right-hand side above goes to zero, as λ → +∞. Hence, there exists
λ∗ > λ∗ such that cλ < c0, for any λ > λ∗. □

Lemma 4.4. The functional Iλ satisfies the (PS)c condition for all c < c0, that is,
every sequence (un) ⊂ Ea such that

(4.5) lim
n→+∞

Iλ(un) = c and lim
n→+∞

∥I ′λ(un)∥E∗
a
= 0

has a convergent subsequence.



HARDY INEQUALITIES WITH BOUNDARY TERMS 15

Proof. From (k0), (f2) and (4.5), one deduces

C1 + C2∥un∥Ea ≥ Iλ(un)−
1

θ
I ′λ(un)un =

(
1

N
− 1

θ

)
∥un∥NEa

+ λ

∫
Ω

k(x)

(
1

θ
f(un)un − F (un)

)
dx

≥
(

1

N
− 1

θ

)
∥un∥NEa

.

It follows from θ > N that (un) is bounded in Ea and hence, up to a subsequence, we
may assume that un ⇀ u weakly in Ea.

We claim that

(4.6)

∫
Ω

k(x)f(un)(un − u)dx = on(1).

If this is true, we can use I ′λ(un)(un − u) = on(1) to conclude that∫
Ω

a(x)|∇un|N−2∇un · ∇(un − u)dx = on(1).

On the other hand, from the weak convergence, we have∫
Ω

a(x)|∇u|N−2∇u · ∇(un − u)dx = on(1).

Consequently, we get∫
Ω

a(x)[|∇un|N−2∇un − |∇u|N−2∇u] · ∇(un − u)dx = on(1).

This, together with the inequality (see [25, inequality (2.2)])(
|y1|N−2y1 − |y2|N−2y2

)
· (y1 − y2) ≥ C(N)|y1 − y2|N , ∀ y1, y2 ∈ RN ,

implies that

C(N)∥un − u∥NEa
= C(N)

∫
Ω

a(x)|∇(un − u)|Ndx ≤ on(1),

and therefore un → u strongly in Ea.
Now we will verify that (4.6) holds. To see this, we first use (4.3) to compute∣∣∣∣∫

Ω

k(x)f(un)(un − u)dx

∣∣∣∣ ≤ ε

∫
Ω

k(x)|un|N−1|un − u|dx

+C3

∫
Ω

k(x)|un|r−1Φα(un)|un − u|dx.

Using Hölder’s inequality, (4.1) and the fact that (un) is bounded in Ea, one has∫
Ω

k(x)|un|N−1|un − u|dx ≤ ∥un∥N−1
LN
k

∥un − u∥LN
k

≤ C4

(
∥un∥NEa

+ ∥un∥N−1
Ea

∥u∥Ea

)
≤ C5,
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for any n ∈ N. Since ε > 0 is arbitrary, it remains to be proved that

(4.7)

∫
Ω

k(x)|un|r−1Φα(un)|un − u|dx = on(1).

For this purpose, from (f2) we obtain

c = lim
n→+∞

(
Iλ(un)−

1

θ
I ′λ(un)un

)
≥
(

1

N
− 1

θ

)
lim

n→+∞
∥un∥NEa

,

and hence the hypothesis on c implies that

lim
n→+∞

∥un∥N
′

Ea
≤
(

Nθ

θ −N

)1/(N−1)

c1/(N−1) <
α

α0

.

Thus, we can choose α > α0 and r1 > 1 such that r1α∥un∥N
′

Ea
≤ α, for all n ∈ N large

enough. Applying Hölder’s inequality, (3.1), (4.4) and Theorem 1.4, we conclude that∫
Ω

k(x)|un|r−1Φα(un)|un − u|dx ≤
(∫

Ω

k(x)Φr1α∥un∥N
′

Ea

(
un

∥un∥Ea

)
dx

)1/r1

× ∥un∥r−1

L
r2(r−1)
k

∥un − u∥Lr3
k

≤ C6∥un∥r−1

L
r2(r−1)
k

∥un − u∥Lr3
k
,

where 1/r1 + 1/r2 + 1/r3 = 1, r3 ≥ N and r2(r − 1) ≥ N . The convergence in (4.7) is
now a consequence of the above expression and (4.1). The lemma is proved. □

We are ready to prove our existence result.

Proof of Theorem 1.5. Let λ∗ > 0 be given by Lemma 4.3 and suppose that λ > λ∗.
According to all the previous lemmas we may invoke the Mountain Pass Theorem [3] to
obtain uλ ∈ Ea such that I ′λ(uλ) = 0 and Iλ(uλ) = cλ > 0. In order to prove that this
critical point can be taken nonnegative, we notice that we may assume f(s) = 0, for
s ≤ 0, and repeat all the previous calculations. So, if we set u−λ (x) := max{−uλ(x), 0},
we obtain 0 = I ′λ(uλ)u

−
λ = −∥u−λ ∥NEa

, and therefore uλ ≥ 0 a.e. in Ω. The theorem is
proved. □
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