ON A HARDY-SOBOLEV TYPE INEQUALITY AND
APPLICATIONS

JONISON L. CARVALHO, MARCELO F. FURTADO, AND EVERALDO S. MEDEIROS

ABSTRACT. In this paper, we prove a new Friedrich-type inequality. As an
application, we derive some existence and nonexistence results to the quasilinear
elliptic problem with Robin boundary condition

—div(|Vu[N72Vu) + h(z)|u|?%u = Mk(z)u[P7%u, in Q,
IVulN=2(Vu-v) + [uN2u = 0, on 09,

where Q C RY is an exterior domain such that 0 & €.

1. INTRODUCTION AND MAIN RESULTS

Let Q C RY be an exterior domain, that is, an open set such that RV \ 2 is bounded,
and consider the quasilinear problem

(1.1) { —div(|Vu["*Vu) = f(z,u), inQ

|Vu|™ 2 (Vu-v)+a(z)|ul"?u = 0, on 052,

where 1 <m < N, N > 2 and v is the unit outward normal vector on 0f). Existence,
non-existence and multiplicity of solutions for the above problem have been extensively
investigated under different conditions on the weight a and the nonlinearity f, see for
instance [3, 4, 6, 8, 10, 11, 12, 13]. This kind of problem is important because it arises in
the study of nonlinear diffusion equations, in particular, in the mathematical modeling
of non-Newtonian fluids. For a physical background, we refer the reader to [7, 12] and
references therein.

A common aspect in most of the early papers is the use of a Friedrich type inequality
proved by K. Pfliiger in [12]. In order to present it, we suppose that, for contants
C,Cy > 0,

&

< Cy
(L |zfym=t =

(1 + [zt

I(x) <

for a.e. x € (),
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and call H the completion of the C§°(RY)—functions restricted to 2 with respect to

the norm
ol = ([ 19ulan+ | ﬂd;ﬁ)”m
. Q o (L+[z))m '

In this setting, there holds (see [9, 12])

" ( [ [ vl )
1.2 /—da:SC' Vu|"dx + ———|u|"do |,
1.2 o (L 2] LVl oo (L Tl

where C' > 0 is a positive constant. Using this inequality, it can be shown that the
norm || - ||z is equivalent to

1/m
ullmo = (/ |Vu|m+/ a(x)|u|mda> :
Q o0N

As an application, some results of existence, non-existence and multiplicity to problem
(1.1) were obtained.

It is natural to ask if (1.2) holds in the borderline case m = N. In the first part of
this paper, after proving an interesting inequality for compacted supported functions
(see Proposition 2.1), we give a negative answer for this question. More specifically,
we denote by Cg°(Q) the space of C5°(RY)-functions restricted to 2 and prove the
following:

Theorem 1.1. Suppose that 0 € Q and v > N. Then, for any u € C°(Q), there holds

(1.3) /{2%(1@50(% N, Q) (/Q|Vu|Ndx—|—/m |u|Nda>,

where
N N
, if N < v < 2N,
C(/y, ]\/v7 Q) ‘— max {dg_)’)/"rl’ d57+N} . (’)/ 1N)
voav i1 TEE

and dg = dist(0,09) > 0. Moreover, if @ = {x € RN : |z| > 1} and v < N, the
inequality in (1.3) is false for any constant C(v, N) > 0, and therefore (1.2) does not
hold with m = N.

It is worth noticing that, although the answer for the general question is negative,
the abstract framework developed here permits us to consider a variation of problem
(1.1) in the case m = N. To be more precise, in the second part of this paper, we study
the quasilinear problem

{ —div(|VulV2Vu) + h(x)|[ul?u = Mk(z)u[P"2u, in Q,

P
(F) VulV =2 (Vu-v) + ulVN"2u = 0, on 0L,

where \ is a real parameter, 0 €  and the weight functions k, h satisfy
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(k1) k:Q — R is a measurable function, and there exist ky > 0, 8 > N, such that
for a.e. x € (;

(h1) h:Q — R is a positive measurable function;

(h2) there holds
k(a)9/(a=P)
/Q ()Pl dz < oo.

We are going to consider problem (Py) in two different settings, depending on the
values of ¢, p and A > 0. Our results can be stated as follows:

Theorem 1.2. Suppose that (ky), (hi) — (ha) and p < q hold. Then,

(i) if N < p, there exists A\« > 0 such that problem (Py) has only the zero solution,
for any A < A,

(ii) if min{2, N} < p, there exists \* > A\, such that problem (P)) has at least a
non-negative non-zero weak solution, for any A > \*.

Theorem 1.3. Suppose that (ki), N < q <p and

(h1) h:Q — R is a non-negative measurable function

hold. Then problem (Py) has a non-negative non-zero weak solution, for any A > 0.

Our interest in the study of problem (P,) comes from the works of Alama-Tarantello
[1] (where the integral condition (hy) has appeared), Filippucci-Pucci-Radulescu [8],
Lyberopoulos [10], Perera [11], Pfliiger [12], and others. With our abstract results at
hand, we are able to perform a variational approach and prove Theorems 1.2 and 1.3.
For the first one, we check that the associated energy functional is coercive and has
negative energy for A large, and therefore we can use minimization techniques. In
the case p > ¢, we apply the classical Moutain Pass theorem. We want to remark
that the main feature of this class of problem is that we are dealing with an indefinite
nonlinearity and the weight functions k and h are not radial. Thus, we also face the
difficulty to establish new Sobolev embeddings in our setting. Our results concerning
problem (Py) generalize and/or complement the aforementioned works.

The remainder of the paper is organized as follows. In Section 2, we establish some
weighted Sobolev embedding and prove Theorem 1.1. The two further sections are
devoted to the proof of Theorems 1.2 and 1.3, respectively.

2. VARIATIONAL FRAMEWORK

In this section, beside proves Theorem 1.1, we present the variational framework to
deal with problem (P,). The basic condition (k;) will be assumed along all the paper.
For any R > 0, we denote by By the open ball {x € RY : |z| < R}. The complement
of a set I' C RY is denoted by I'°. Finally, we denote by C;, Cs, ..., positive constants
(possibly different).
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2.1. A Friedrich type inequality. Our goal in this subsection is to establish the
proof of our first main theorem. We recall that C$°(€2) is the space of C5°(RY)-functions
restricted to €2. The next auxiliary result is a key point.

Proposition 2.1. Suppose that 1 < p < oo and let a € R be such that « # —N. Then,
there exists Cy > 0 such that

(2.1) / |z|*|u|Pdx < Cj (/ |z|**P|VulPdx +/ |x|a+1|u|pd0) ,
0 Q 20

for any u € C5°(92).

Proof. Let w, v be regular functions. By applying the Divergence Theorem, we get

/wmivdx: —/wvzi dac—i—/ woy; do.
Q Q PlY)

Since (|z|*),, = a|z|*?z;, for z # 0 and i = 1,..., N, we can choose w = |z|?,
v = x;|ulP and sum for i = 1,..., N, to obtain

(04 N) [ Jal*ful do = =p [ Jol"uluta- V) do+ [ ol ful?(a-v)do,
Q Q o9
which implies that
(2.2) | + N]/ |z|*|u|P dx < p/ 2| uP~ V| do —|—/ 2| *T ul? do.
Q Q o9
For any € > 0, we can use Young’s inequality to get

p / 2 PVl do = p / (2@ D/p|u[p=1) |+ C- 0/ 7y d
Q Q

1
< (p—l)s/ ]x\“|u\pdm+—1/ |z|*P|VulP dz.
Q e Ja

If e < 1, we can use the above inequality and (2.2) to obtain

1
(ot 81~ o= 1e) [ Jalupde < 5 ([ lorvapan s [ japsiras )
Q Q o0

ep1

Recalling that a@ # —N and picking

N
0<8<min{1, o+ |},
(p—1)
one has
/ 2| |ul? dx < Cy (/ |z|* P |VulP dz +/ || P da) :
Q Q o0
where
Co = [la+ Nl = (p—1)e] "e'”
and the lemma is proved. OJ

Remark 2.2. [t is worth noticing that, when considered only for C§°(S) functions,
expression (2.1) is a Hardy type inequality (see [5, Theorem 1]).

Our first main theorem is a consequence of this last proposition.
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Proof of Theorem 1.1. We are going to use the proof of Proposition 2.1 with p = N
and o = —v. Define the function
N
| —_ )

1
I = NSNS © ( N1

It achieves its minimum value at

vy—N - vy—N

N N -1’
with g(gg) = [N/(y — N)]¥. If N < v < 2N, then &g < 1. On the other hand, if
v > 2N, then g(1) < g(¢e), for any 0 < £ < 1. Since |z| > dg, for any = € Q, inequality
(1.3) is now a direct consequence of Proposition 2.1 and the definition of g.

Suppose now that Q@ = Bf and 7 < N. Considering the sequence of functions in
C5°(€2) defined by

Eg - —

ey o [ tolel, LS el <o
0, if |x| > €™,

we see that

n

e
IV |N dr = / 2 do = wny / B
B Ben\ By 1

where wy_; is the measure of the unit sphere in RY. We may assume, with no loss of
generality, that 0 <~ < N. Hence, since (1 + |z|) < 2|z| in BY, one has

N N en N
/ —|un| dx > / [tin] dr = WN-1 / (n l;g r) rNLdr.
pe (1+]z[) e 27|z 27 r

Considering the change of variables ¢t = n — logr, we obtain

/ |un’N / wN 1nN+1
ge (L+]z]) 0
/ |un|Nda—nN/ do = wy_1n™.
OB OB

Using the above inequalities we see that, if (1. 3) holds, then

nM < Ci(n + ),

Moreover,

for all n € N and some C; > 0, which is impossible. O

2.2. Sobolev embeddings. With Theorem 1.1 at hand we are prepared to introduce
the variational framework to deal with (Py). Given a positive function w € L, .(Q2) and
s > 1, we denote by L} the weighted Lebesgue space

Ly = (/Qw(xﬂulsdzz:) v < +oo}.

w

L: ::LS(Q,w):{u:Q—HR ;
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For each v € R, we denote by E'7 the space obtained as the completion of C§°(Q)
with respect to the norm

N N
1,y 1= e — d .

For simplicity, we write E instead of E'7 from now on.
In our first results we establish some embedding of E into suitable weighted Lebesgue
spaces.

Proposition 2.3. Suppose that N <~y < and N <p < N(f—N)/(y—N). Then we

have the continuous embedding E — LI(71+|x\)—B' Moreover, the embedding is compact if

N<y<fBand N<p<N(B—-N)/(y—N).

Proof. For the first statement, we need to obtain Cy > 0, such that

ulP N ul¥ p/N
(2.3) Lﬁdm <y (/Q [|Vu| + mym) , YuekE.

Let jo € N be such that Q¢ C Byj,. Setting §2;, := 2N Byjy, we have that 2 = Q; UBS

290

Given u € E C WA (Q), from the Sobolev embedding W' (Q;,) < LP(Q;,), we get

/ﬂdm‘</ |ulPder < Cy /
o, (1+|z[)? Q N Q

70
Hence, since (1 4 |z])? < (1 + 270)7 in Q;,, there exists Cy = Cy(N, jo,v,p) > 0 such
that

) " p/N
(2.4) /Q #dw < Cy </ﬂj0 |:|VU|N - M} d:z:)

J0

p/N
[[Vul™ + |ul™] dx) :

Jo Jo

On the other hand, if we define A; := {z € RN : 270 . 27 < |z| < 270 . 2771} for any
given j € NU {0}, the change of variables y := 277z provides

|u|p _ / Py
—  dr < 27H ulPdz = 2WV=A) w;(y)[Pdy,
[, <2 1

where u;(y) := u(2’y). Using the Sobolev embedding W (Ay) < LP(A,) we obtain
C3 = C3(N, jo) > 0, such that

/AO =G (/ [19() " + s ()1 dy)”/N

p/N
= (5 (/A [|Vu(:v)|N + 2_Nj|u(x)|N} dx) :

J
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Since (1 4 270 - 271y < 21%30 . 27+ and 4 > 0, we have that

N
/ 2Ny (z) [N dar < 2Nj(1+2j0.21+1)7/ u(@)[™
4, N a; (L z[)
N
< 2(2+jo)72(7N)j/ M x.
- a; (L4 z])

So,

/ W gy < a5 / [|Vu(a:)lN+02<7—N>j u@)I* }dm "
A, (L fa)? = “\Ua, ) (1 + Jz[)

J

with Cy := 2+40)7 > 1. Thus,

) " p/N
(2.5) /Aj ﬁdm < O52t (/A {|W|N + M] d:p) :

J

with Cs = C5 - C*'Y > 0 and

My = [N—ﬁjLW}j‘

Since p < N(B — N)/(v — N), one has u; <0, and therefore

P u N P/N
[t f s )

J

Thus, recalling that the function s — sP/V is super-additive for p > N, we conclude

that )
00 p/N
= jp [ [ e ]
———dx < () Vul" + ——— | dx
Z/ e = G2\ |V

=0 J

e ( [ [ ] )

Combining the above estimate with (2.4), we obtain

C.
270

ul?
——ngdr < (Co+ Cs)|lullg,
/Q (1 + [=[)? y
which proves (2.3).
For the compactness, we consider a sequence (u,) C E such that u, — 0 weakly in
E. Given € > 0, we can use p < N(5— N)/(y— N) to obtain j; € N such that 2# < ¢,
for all j > j;. Thus, from (2.5), we get

/ Nl < e / @VU |N+M} dx .
a; (L+1z])? "\ Ua, (L ) ’
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for any j > j;. On the other hand, the compact embedding W' (Q,,) < LP(£;,) and
Wl’N(Aj) — LP(AJ) for ] S {0, ]., e 7j1}, 1mply that

[t | / [t & / [t |
e dr < | eadr+ Y | e da 4 Cselfun [}
/Q<1+rx\>ﬁ o, L+ )P "y (T4 Jal)? g
= 0,(1) + Chel[un%,

where o0,(1) stands for a quantity approaching zero as n — +oo. Since ¢ > 0 is
arbitrary, the above expression implies that u, — 0 strongly in Li)l )P and the

theorem is proved. O
As a consequence of this last result together with Theorem 1.1, we get the following:

Corollary 2.4. If v > N, then the norms

1N
lullo = (/ |Vu|Ndx+/ |u\Nda>
Q o0

and || - || are equivalent in E.

Proof. 1t follows from (1.3) that

||u||g < / |Vu|Ndx~|—C’1 </ |Vu|Nd$+/ |u|Nda) < C’2||u||]8V.
Q Q o0

On the other hand, taking into account that 02 is bounded, we can choose R > 0
sufficiently large such that the trace embedding WYY (Q N Br) — LY (0Q U dBR) is
continuous. Therefore, there exists C3 = C5(R,2) > 0, such that

N
uNdo—gc/ VaulN + |ulN d:v§0</ quder/de),
I oy VUl A ) dw < Cu{ J Ve + et

where Cy = C3(1 + R)”. Consequently,

Jul™

N</VNd C/[VN —]d<0 B
||uH6 = Q‘ U‘ T+ Oy 0 ’ u| +(1+|Z‘|)7 T > 5HuHE7

and this yields the desired result. 0

3. THE CASE p < ¢q

In this section we prove Theorem 1.2. Since § > N, we can choose 7 sufficiently close
to NV in such way that

N(B—N)
(y—N)
We are going to look for solutions of problem (P)) in the subspace of E defined by

(3.2) B = {u cE: /Qh(x)|u|qu < oo} .

(3.1) N<y<f, N<p<
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This is a reflexive Banach space when endowed with the norm

N N 1/N
lulle = (lully + luldy)

where ||-||s was defined in Corollary 2.4. Using this same corollary, (3.1) and Proposition
2.3, we conclude that the embedding E¢ < L7 is compact.
Notice that one weak solution of problem (P,) is exactly a function v € E9 such that

/ |Vu|N2Vu - Vo d + / lu|Vup do = )\/ (Me(2)|ulP"*u — h(z)|u]"*u) ¢ dz,
Q o9 Q
for any ¢ € C§°(€2). So, the weak solutions are precisely the critical points of the
functional I : E9 — R given by
D) =l + 5 [ h@laptde = [ ka)fupd
u) == —|lu - x)|ul?de — — x)|ulf dx.
g N ? q4Ja P Ja

Using the abstract results of the previous section and standard arguments we can prove
that I, € C'(E,R).
In our first result we check that non-zero solutions do not exist if A is close to 0.

Lemma 3.1. Suppose that (hy) — (he) and N < p < q hold. Then, there exists A\, > 0
such that problem (Py) has no non-zero weak solution if A < ..

Proof. If uw € E is a non-zero solution, we have that

(3.3) |wg:Aémmwwmiémwwwa

and therefore it is clear that A > 0. Using Young’s inequality with exponents
s =q/(q—p) and s’ = q/p, we obtain

k() 4= P \g/tgm k@)Y p
P _ p/q|g|P a/(a—p) z q
)\k’(ilf)|$| - h(l’)p/q (h(:lj) |8‘ ) S q >‘ h(m)p/(q,p) + qh($)|8| )
for any x € €2, s € R. The above inequality, (3.3) and (h;) — (ha) provide
(3.4) ully < CyA/aP) 4 p—4 / h(z)|u|?dz < CyAY @),

7 Ja

with Cy :=q/(q¢ — p) fQ k()4 @=P) () ~P/@=P) .
On the other hand, using (2.3), (3.3), (k1) and (h;) again, we get

N/p
@(/M@M%@ <l < [ k@lulras,
Q 9]

with Cy = Cokng/p > 0. If p = N, we conclude that A > A\, := (5. Otherwise, this
last inequality and (3.4) imply that

(Cg)\*l)p/(p_N) < / k(az‘)]u\pdaf < C;p/NHqu < C;p/NCf/N)\qp/[N(qu)}
Q
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and a straightforward computation shows that

Cp/(p_N)Cp/N qp/[N(g—p)]+p/(p—N)
P = S
ot/
So, we conclude that (Py) does not have non-zero solution if A < A,. 0J

For the existence result, we need an elementary inequality. Let A, B > 0 and
g > p > 0. A straightforward calculation shows that f(s) := As? — Bs?, for s > 0,

achieves its maximum at so := [(pA)/(¢B)]"/“""). Hence, for any s € R,
) . , ANP/@=P)  pa/(a—p)
(3.5) Als|” = Bls|* = f([s]) < f(s0) < Asg SA(E) = Bl

The next lemma shows that we can deal with our problem via minimization
arguments.

Lemma 3.2. Suppose that (hy) — (he) and p < q hold. Then I, is coercive and

1 1
(3.6) A= inf {—||u||]av + —/h($)|u|qu : / k(x)|ulPdx :p} > 0.
N q.Ja Q

ue k4

Proof. Since p < g, it follows from (3.5) and (hs) that

k(x)9/(a=p)

Thus, since we can write

1 1
szﬁmw+%é<nwm——/<hmm+—/ )l da,
we conclude that

1 1
L) > — ||y + — Iy — Cb.
w0 = lull + 5 [ h@lalrda - Co

This and the definition of || - ||z« show that I(u) — +o00, as [|ul| g« = +00.

We now prove that A* > 0. Suppose, by contradiction, that \* = 0. Then there
exists (u,) C E? such that

1 1
-—mwg+—/hmww%x=%a» /k@WM%xzn
N q.Ja Q

where o0,(1) stands for a quantity approaching zero as n — +o00. Hélder’s inequality
with exponents s = ¢/p, s’ = q/(¢ — p) and the integrability condition (hy) provide

p= /Qh(if)|un|ng;dx < (/Q h(w)|un|qdm)p/q (/Q %dx)(p—q)/q
= on(1),

which is a contradiction. O

We are ready to present the proof of our first application.
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Proof of Theorem 1.2. We focus on item (ii), since the non-existence part is exactly
Lemma 3.1. Let A* > 0 be given by (3.6) and A > A*. From the embedding E? < L7,
we conclude that I, maps bouded sets into bounded sets. So, recalling that I, is
coercive, we conclude that

ey = inf Iy(u) > —oc.
ue k4

We claim that, if A > A\*, then ¢y < 0. Indeed, using the definition of \* we obtain
uy € B such that [, k(x)|ur|[Pdz = p and

1 1
)\>—uN+—/hxuqu.
NH N /. (z)|usl

This implies that I(uy) < 0, and therefore ¢, < 0. Once we have proved that

1) = [ Faie = [ [A’fwu\p h(@)ule

p q

is weakly continuous, the direct method of calculus of variations (cf. [15, Theorem 1.2])
shows that I, has a global minimum wy. Since I(uy) = ¢y < 0, we have that uy # 0.
Noticing that I)(uy) = Ix(Jua|), we may assume that u, > 0 and the theorem is proved.

It remains to prove the claimed regularity for J. For simplicity, we will assume A = 1.
Let (u,) C E? be such that u, — uy weakly in £9. Using the Fundamental Theorem
of Calculus, we obtain

dx,

F(z,u,) — F(x,ug) = /0 /0 Foo(w,ug 4 7(un — o)) (tn — ug)*drdt
+ Fy(z,uo) (u, — up)-

A standard computation shows that Fy(x,s) = k(x)|s[P2s—h(x)|s|?%s and F,(z,s) =
(p — Dk(x)|s|P72 — (¢ — 1)h(x)|s|72. This, the above equality and (3.5) (with p — 2
instead of p and ¢ — 2 instead of ¢) imply that

) () P2/ 0P
| Fos(,u0 4 7(tn — 1)) (un — ug)®| < Crk() (%> (U — ug)?.
Therefore,
/ F(z,u) — F(z,u0)] dz| < Gy} + 12,
with '

I = /Q k() (%)W)/M) (up — wo)2dz, I?:= /Q Fo(w, uo) (un — uo)dz|

and therefore it sufficent to show that I! = 0,(1) and I? = 0,(1).
For the first one, we use Holder’s inequality with exponents s = p/(p — 2), s’ = p/2,
hypothesis (k2) and the compactness of E — L} to get

_ (p—2)/p
k(x)‘I/(q p)
I = (/Q (e lr4n = wolly = on(1).
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We now estimate I2 observing that the linear functional

U(v) := / Fy(x,up)vdr = / (k(z)uol"?uo — h(z)|uo|* *uo) vdzx, v € EY,
Q Q

is such that
-1 -1
(W ()| < luollyp lvllzy + lluollzs lvllzg < Collvllza.
Hence, VU is continuous and the weak convergence of (u,) implies that I? = |U(u, —
up)| = 0, (1), finishing the proof. O

4. THE CASE p > q

This section is devoted to the proof of Theorem 1.3. As in the last section, we pick
~v > N such that
N(5—N)
(y—N)
and consider EY defined in (3.2). In order to find non-negative solutions for (Py), we
consider now the energy functional given by

D)= ol + [ wlulde =5 [ Kty de

where vt (z) := max{u(x),0}.
We prove in the sequel that the functional I satisfies the hypotheses of the Mountain
Pass Theorem.

N<y<pB, N<g<p<

Lemma 4.1. Suppose that (fval) holds. Then, for each A > 0,
(i) there exist &, p > 0 such that I \(u) > &, for any v € EY, ||ul|g« = p;
(ii) there exists e € E1 such that ||e||ga > p and I)(e) < 0.

Proof. If uw € E4 is such that |lulp« < 1, we can use N < ¢ to obtain |Jul|f < ||lull}.
Hence,

1 A
> q q _ p .
B = = (lally + ally) =5 [ kel da

So, using the inequality (a™ +bN)¥/N < 2@=N)/N(g9 4+ p7) Proposition 2.3 and Corollary
2.4, one has

In(u) = Cillullge = ACalullfs = [Julla (Cr = ACal|ullz"),

for constants Cy, Cy > 0. Then, item (i) holds for p := min {1, [Cl/(Z)\CQ)]l/(p_q)} and

f = Clpq/Q
For proving (ii), we pick u € E7\ {0} such that u > 0 a.e. in RY. Using N < ¢ <p
and k£ > 0, we conclude that

sN s AsP
Lsu) = S ull + —/ @)l de — 25 [ k@)t de — —oo,
N q Ja P Ja

as s — +00. So, the result follows for e = sou, with sy > 0 sufficiently large. 0J
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We say that I, satisfies the Palais-Smale condition if any sequence (u,) C E? such
that
(4.1) L(u,) > ceR, I(u,) —0.
has a convergent subsequence. In the next result we see that, in the setting of Theorem

1.3, this property is verified.

Lemma 4.2. Suppose that (ii) holds. Then, for each A > 0, the functional I satisfies
the Palais-Smale condition.

Proof. Let (u,) C E? be such that (4.1) holds. Computing I)(u,) — (1/p)I}(un)u,, we
obtain C4,Cs > 0 such that

1 1 1 1
~ == lually + (= = = ) lunllfs < C1+ Colltn]| o
N p q p h

From N < g < p, we conclude that (u,) is bounded in E?. Hence, up to a subsequence,
we have that u, — u weakly in F?. As in the last section, we may also assume that
u, — u strongly in L}. Using Holder’s inequality with exponents s = p/(p — 1) and
s’ = p, we get

[ K@) — wyds
Q
This and I} (uy,)(u, — u) = 0,(1) imply that

/ V|V 2 [V, - V(u, —u)]de + / h(2) [t 2wy (U — w) da
0 Q

< N5y um — wly = 0a(1).

+ / |un|N_2un(un —u)do = o0,(1).
a0

On the other hand, using that u,, — u weakly in £9 and arguing as in the final part of
the proof of Theorem 1.2, ones has

/Q VulVN 2 [Vu - V(u, —u)]de + /Qh(a:)|u|q2u(un —u)dx

+ / lu| N 2 u(u, — u) do = o,(1).
o0

For any k£ € N and r > 2, we set
Ter(y1,92) = (il 290 = |92 12), w1, y2 € RE,
We deduce from the two above convergences that

/QTN,N(VUm Vu)-V(u, —u)de + /Qh(w)TLq(un,u)(un —u)dx

+ / Ty N (U, w)(u, —u) do = o,(1).
o9
But we know that, for any £ € N and r > 2, there holds (see [14, inequality (2.2)])
Tir(y1,92) - (11 — 42) = Clk, )|y — wal*, Yy, y2 € R,
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and therefore we infer from the last convergence that
= wlly + [lun — ul|§y = 0a(1),
which implies that u,, — u strongly in £? and completes the proof. O

We can now finish the paper proving our second existence result.

Proof of Theorem 1.3. Using Lemmas 4.1 and 4.2 together with the Mountain Pass

Theorem [2], we obtain a non-zero critical point of I. If ™ := u™ —u, a straightforward

computation shows that 0 = I(u)u™ = —|u~||%, and therefore uy > 0 a.e. in RY.

Hence uy # 0 is a non-negative solution of (Py) and the theorem is proved. 0J
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