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Abstract. In this paper, we prove a new Friedrich-type inequality. As an
application, we derive some existence and nonexistence results to the quasilinear
elliptic problem with Robin boundary condition{

−div(|∇u|N−2∇u) + h(x)|u|q−2u = λk(x)|u|p−2u, in Ω,

|∇u|N−2(∇u · ν) + |u|N−2u = 0, on ∂Ω,

where Ω ⊂ RN is an exterior domain such that 0 ̸∈ Ω.

1. Introduction and main results

Let Ω ⊂ RN be an exterior domain, that is, an open set such that RN \Ω is bounded,
and consider the quasilinear problem

(1.1)

{
−div(|∇u|m−2∇u) = f(x, u), in Ω

|∇u|m−2 (∇u · ν) + a(x)|u|m−2u = 0, on ∂Ω,

where 1 < m < N , N ≥ 2 and ν is the unit outward normal vector on ∂Ω. Existence,
non-existence and multiplicity of solutions for the above problem have been extensively
investigated under different conditions on the weight a and the nonlinearity f , see for
instance [3, 4, 6, 8, 10, 11, 12, 13]. This kind of problem is important because it arises in
the study of nonlinear diffusion equations, in particular, in the mathematical modeling
of non-Newtonian fluids. For a physical background, we refer the reader to [7, 12] and
references therein.

A common aspect in most of the early papers is the use of a Friedrich type inequality
proved by K. Pflüger in [12]. In order to present it, we suppose that, for contants
C1, C2 > 0,

C1

(1 + |x|)m−1
≤ l(x) ≤ C2

(1 + |x|)m−1
, for a.e. x ∈ Ω,
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and call H the completion of the C∞
0 (RN)−functions restricted to Ω with respect to

the norm

∥u∥H =

(∫
Ω

|∇u|mdx+

∫
Ω

|u|m

(1 + |x|)m
dx

)1/m

.

In this setting, there holds (see [9, 12])

(1.2)

∫
Ω

|u|m

(1 + |x|)m
dx ≤ C

(∫
Ω

|∇u|mdx+

∫
∂Ω

|ν · x|
(1 + |x|)m

|u|mdσ
)
,

where C > 0 is a positive constant. Using this inequality, it can be shown that the
norm ∥ · ∥H is equivalent to

∥u∥H,∂ =

(∫
Ω

|∇u|m +

∫
∂Ω

a(x)|u|mdσ
)1/m

.

As an application, some results of existence, non-existence and multiplicity to problem
(1.1) were obtained.

It is natural to ask if (1.2) holds in the borderline case m = N . In the first part of
this paper, after proving an interesting inequality for compacted supported functions
(see Proposition 2.1), we give a negative answer for this question. More specifically,
we denote by C∞

δ (Ω) the space of C∞
0 (RN)-functions restricted to Ω and prove the

following:

Theorem 1.1. Suppose that 0 ̸∈ Ω and γ > N . Then, for any u ∈ C∞
δ (Ω), there holds

(1.3)

∫
Ω

|u|N

(1 + |x|)γ
dx ≤ C(γ,N,Ω)

(∫
Ω

|∇u|Ndx+

∫
∂Ω

|u|Ndσ
)
,

where

C(γ,N,Ω) := max
{
d−γ+1
Ω , d−γ+N

Ω

}
·


(

N

γ −N

)N

, if N < γ < 2N,

1

γ − 2N + 1
, if γ ≥ 2N,

and dΩ := dist(0, ∂Ω) > 0. Moreover, if Ω = {x ∈ RN : |x| > 1} and γ ≤ N , the
inequality in (1.3) is false for any constant C(γ,N) > 0, and therefore (1.2) does not
hold with m = N .

It is worth noticing that, although the answer for the general question is negative,
the abstract framework developed here permits us to consider a variation of problem
(1.1) in the case m = N . To be more precise, in the second part of this paper, we study
the quasilinear problem

(Pλ)

{
−div(|∇u|N−2∇u) + h(x)|u|q−2u = λk(x)|u|p−2u, in Ω,

|∇u|N−2 (∇u · ν) + |u|N−2u = 0, on ∂Ω,

where λ is a real parameter, 0 ̸∈ Ω and the weight functions k, h satisfy
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(k1) k : Ω → R is a measurable function, and there exist k0 > 0, β > N , such that

0 < k(x) ≤ k0
(1 + |x|)β

, for a.e. x ∈ Ω;

(h1) h : Ω → R is a positive measurable function;
(h2) there holds ∫

Ω

k(x)q/(q−p)

h(x)p/(q−p)
dx < ∞.

We are going to consider problem (Pλ) in two different settings, depending on the
values of q, p and λ > 0. Our results can be stated as follows:

Theorem 1.2. Suppose that (k1), (h1)− (h2) and p < q hold. Then,

(i) if N ≤ p, there exists λ∗ > 0 such that problem (Pλ) has only the zero solution,
for any λ < λ∗,

(ii) if min{2, N} < p, there exists λ∗ > λ∗ such that problem (Pλ) has at least a
non-negative non-zero weak solution, for any λ > λ∗.

Theorem 1.3. Suppose that (k1), N ≤ q < p and

(h̃1) h : Ω → R is a non-negative measurable function

hold. Then problem (Pλ) has a non-negative non-zero weak solution, for any λ > 0.

Our interest in the study of problem (Pλ) comes from the works of Alama-Tarantello
[1] (where the integral condition (h2) has appeared), Filippucci-Pucci-Radulescu [8],
Lyberopoulos [10], Perera [11], Pflüger [12], and others. With our abstract results at
hand, we are able to perform a variational approach and prove Theorems 1.2 and 1.3.
For the first one, we check that the associated energy functional is coercive and has
negative energy for λ large, and therefore we can use minimization techniques. In
the case p > q, we apply the classical Moutain Pass theorem. We want to remark
that the main feature of this class of problem is that we are dealing with an indefinite
nonlinearity and the weight functions k and h are not radial. Thus, we also face the
difficulty to establish new Sobolev embeddings in our setting. Our results concerning
problem (Pλ) generalize and/or complement the aforementioned works.

The remainder of the paper is organized as follows. In Section 2, we establish some
weighted Sobolev embedding and prove Theorem 1.1. The two further sections are
devoted to the proof of Theorems 1.2 and 1.3, respectively.

2. Variational framework

In this section, beside proves Theorem 1.1, we present the variational framework to
deal with problem (Pλ). The basic condition (k1) will be assumed along all the paper.
For any R > 0, we denote by BR the open ball {x ∈ RN : |x| < R}. The complement
of a set Γ ⊂ RN is denoted by Γc. Finally, we denote by C1, C2, . . ., positive constants
(possibly different).
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2.1. A Friedrich type inequality. Our goal in this subsection is to establish the
proof of our first main theorem. We recall that C∞

δ (Ω) is the space of C∞
0 (RN)-functions

restricted to Ω. The next auxiliary result is a key point.

Proposition 2.1. Suppose that 1 < p < ∞ and let α ∈ R be such that α ̸= −N . Then,
there exists C0 > 0 such that

(2.1)

∫
Ω

|x|α|u|pdx ≤ C0

(∫
Ω

|x|α+p|∇u|pdx+

∫
∂Ω

|x|α+1|u|pdσ
)
,

for any u ∈ C∞
δ (Ω).

Proof. Let w, v be regular functions. By applying the Divergence Theorem, we get∫
Ω

wxi
v dx = −

∫
Ω

wvxi
dx+

∫
∂Ω

wvνi dσ.

Since (|x|α)xi
= α|x|α−2xi, for x ̸= 0 and i = 1, . . . , N , we can choose w = |x|α,

v = xi|u|p and sum for i = 1, . . . , N , to obtain

(α +N)

∫
Ω

|x|α|u|p dx = −p

∫
Ω

|x|α|u|p−2u(x · ∇u) dx+

∫
∂Ω

|x|α|u|p(x · ν) dσ,

which implies that

(2.2) |α +N |
∫
Ω

|x|α|u|p dx ≤ p

∫
Ω

|x|α+1|u|p−1|∇u| dx+

∫
∂Ω

|x|α+1|u|p dσ.

For any ε > 0, we can use Young’s inequality to get

p

∫
Ω

|x|α+1|u|p−1|∇u| dx = p

∫
Ω

(
|x|α(p−1)/p|u|p−1

)
|x|[α+1−α(p−1)/p]|∇u| dx

≤ (p− 1)ε

∫
Ω

|x|α|u|p dx+
1

εp−1

∫
Ω

|x|α+p|∇u|p dx.

If ε < 1, we can use the above inequality and (2.2) to obtain

(|α +N | − (p− 1)ε)

∫
Ω

|x|α|u|pdx ≤ 1

εp−1

(∫
Ω

|x|α+p|∇u|pdx+

∫
∂Ω

|x|α+1|u|pdσ
)
.

Recalling that α ̸= −N and picking

0 < ε < min

{
1,

|α +N |
(p− 1)

}
,

one has ∫
Ω

|x|α|u|p dx ≤ C0

(∫
Ω

|x|α+p|∇u|p dx+

∫
∂Ω

|x|α+1|u|p dσ
)
,

where
C0 := [|α +N | − (p− 1)ε]−1 ε1−p

and the lemma is proved. □

Remark 2.2. It is worth noticing that, when considered only for C∞
0 (Ω) functions,

expression (2.1) is a Hardy type inequality (see [5, Theorem 1]).

Our first main theorem is a consequence of this last proposition.
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Proof of Theorem 1.1. We are going to use the proof of Proposition 2.1 with p = N
and α = −γ. Define the function

g(ε) =
1

[γ −N − (N − 1)ε] εN−1
, ε ∈

(
0,

γ −N

N − 1

)
.

It achieves its minimum value at

ε0 :=
γ −N

N
<

γ −N

N − 1
,

with g(ε0) = [N/(γ − N)]N . If N < γ < 2N , then ε0 < 1. On the other hand, if
γ ≥ 2N , then g(1) ≤ g(ε), for any 0 < ε < 1. Since |x| ≥ dΩ, for any x ∈ Ω, inequality
(1.3) is now a direct consequence of Proposition 2.1 and the definition of g.
Suppose now that Ω = Bc

1 and γ ≤ N . Considering the sequence of functions in
C∞

δ (Ω) defined by

un(x) :=

{
n− log |x|, if 1 ≤ |x| ≤ en,

0, if |x| ≥ en,

we see that∫
Bc

1

|∇un|N dx =

∫
Ben\B1

|x|−N dx = ωN−1

∫ en

1

r−NrN−1 dr = nωN−1,

where ωN−1 is the measure of the unit sphere in RN . We may assume, with no loss of
generality, that 0 ≤ γ ≤ N . Hence, since (1 + |x|) ≤ 2|x| in Bc

1, one has∫
Bc

1

|un|N

(1 + |x|)γ
dx ≥

∫
Bc

1

|un|N

2γ|x|γ
dx =

ωN−1

2γ

∫ en

1

(n− log r)N

rN
rN−1dr.

Considering the change of variables t = n− log r, we obtain∫
Bc

1

|un|N

(1 + |x|)γ
dx ≥ ωN−1

2γ

∫ n

0

tNdt =
ωN−1

2γ
nN+1.

Moreover, ∫
∂Bc

1

|un|Ndσ = nN

∫
∂Bc

1

dσ = ωN−1n
N .

Using the above inequalities we see that, if (1.3) holds, then

nN+1 ≤ C1(n+ nN),

for all n ∈ N and some C1 > 0, which is impossible. □

2.2. Sobolev embeddings. With Theorem 1.1 at hand we are prepared to introduce
the variational framework to deal with (Pλ). Given a positive function ω ∈ L1

loc(Ω) and
s ≥ 1, we denote by Ls

ω the weighted Lebesgue space

Ls
ω := Ls(Ω, ω) =

{
u : Ω → R : ∥u∥Ls

ω
:=

(∫
Ω

ω(x)|u|sdx
)1/s

< +∞

}
.
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For each γ ∈ R, we denote by E1,γ the space obtained as the completion of C∞
δ (Ω)

with respect to the norm

∥u∥E1,γ :=

(∫
Ω

[
|∇u|N +

|u|N

(1 + |x|)γ
]
dx

)1/N

.

For simplicity, we write E instead of E1,γ from now on.
In our first results we establish some embedding of E into suitable weighted Lebesgue

spaces.

Proposition 2.3. Suppose that N < γ ≤ β and N ≤ p ≤ N(β−N)/(γ−N). Then we
have the continuous embedding E ↪→ Lp

(1+|x|)−β . Moreover, the embedding is compact if

N < γ < β and N ≤ p < N(β −N)/(γ −N).

Proof. For the first statement, we need to obtain C0 > 0, such that

(2.3)

∫
Ω

|u|p

(1 + |x|)β
dx ≤ C0

(∫
Ω

[
|∇u|N +

|u|N

(1 + |x|)γ
]
dx

)p/N

, ∀u ∈ E.

Let j0 ∈ N be such that Ωc ⊂ B2j0 . Setting Ωj0 := Ω∩B2j0 , we have that Ω = Ωj0∪Bc
2j0

.

Given u ∈ E ⊂ W 1,N
loc (Ω), from the Sobolev embedding W 1,N(Ωj0) ↪→ Lp(Ωj0), we get

∫
Ωj0

|u|p

(1 + |x|)β
dx <

∫
Ωj0

|u|pdx ≤ C1

(∫
Ωj0

[
|∇u|N + |u|N

]
dx

)p/N

.

Hence, since (1 + |x|)γ ≤ (1 + 2j0)γ in Ωj0 , there exists C2 = C2(N, j0, γ, p) > 0 such
that

(2.4)

∫
Ωj0

|u|p

(1 + |x|)β
dx ≤ C2

(∫
Ωj0

[
|∇u|N +

|u|N

(1 + |x|)γ

]
dx

)p/N

.

On the other hand, if we define Aj := {z ∈ RN : 2j0 · 2j < |z| < 2j0 · 2j+1}, for any
given j ∈ N ∪ {0}, the change of variables y := 2−jx provides∫

Aj

|u|p

(1 + |x|)β
dx ≤ 2−βj

∫
Aj

|u|pdx = 2(N−β)j

∫
A0

|uj(y)|pdy,

where uj(y) := u(2jy). Using the Sobolev embedding W 1,N(A0) ↪→ Lp(A0) we obtain
C3 = C3(N, j0) > 0, such that∫

A0

|uj(y)|pdy ≤ C3

(∫
A0

[
|∇uj(y)|N + |uj(y)|N

]
dy

)p/N

= C3

(∫
Aj

[
|∇u(x)|N + 2−Nj|u(x)|N

]
dx

)p/N

.
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Since (1 + 2j0 · 2j+1) < 21+j0 · 2j+1 and γ > 0, we have that∫
Aj

2−Nj|u(x)|Ndx ≤ 2−Nj(1 + 2j0 · 2j+1)γ
∫
Aj

|u(x)|N

(1 + |x|)γ
dx

≤ 2(2+j0)γ2(γ−N)j

∫
Aj

|u(x)|N

(1 + |x|)γ
dx.

So, ∫
Aj

|u|p

(1 + |x|)β
dx ≤ 2(N−β)jC3

(∫
Aj

[
|∇u(x)|N + C42

(γ−N)j |u(x)|N

(1 + |x|)γ

]
dx

)p/N

,

with C4 := 2(2+j0)γ ≥ 1. Thus,

(2.5)

∫
Aj

|u|p

(1 + |x|)β
dx ≤ C52

µj

(∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)γ

]
dx

)p/N

,

with C5 = C3 · Cp/N
4 > 0 and

µj :=

[
N − β +

(γ −N)p

N

]
j.

Since p ≤ N(β −N)/(γ −N), one has µj ≤ 0, and therefore∫
Aj

|u|p

(1 + |x|)β
dx ≤ C5

(∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)γ

]
dx

)p/N

.

Thus, recalling that the function s 7→ sp/N is super-additive for p ≥ N , we conclude
that

∞∑
j=0

∫
Aj

|u|p

(1 + |x|)β
dx ≤ C5

∞∑
j=0

(∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)γ

]
dx

)p/N

≤ C5

(∫
Bc

2j0

[
|∇u|N +

|u|N

(1 + |x|)γ

]
dx

)p/N

.

Combining the above estimate with (2.4), we obtain∫
Ω

|u|p

(1 + |x|)β
dx ≤ (C2 + C5)∥u∥pE,

which proves (2.3).
For the compactness, we consider a sequence (un) ⊂ E such that un ⇀ 0 weakly in

E. Given ε > 0, we can use p < N(β−N)/(γ−N) to obtain j1 ∈ N such that 2µj < ε,
for all j > j1. Thus, from (2.5), we get∫

Aj

|un|p

(1 + |x|)β
dx < C5ε

(∫
Aj

[
|∇un|N +

|un|N

(1 + |x|)γ

]
dx

)p/N

,
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for any j ≥ j1. On the other hand, the compact embedding W 1,N(Ωj0) ↪→ Lp(Ωj0) and
W 1,N(Aj) ↪→ Lp(Aj) for j ∈ {0, 1, . . . , j1}, imply that∫

Ω

|un|p

(1 + |x|)β
dx ≤

∫
Ωj0

|un|p

(1 + |x|)β
dx+

j1∑
j=0

∫
Aj

|un|p

(1 + |x|)β
dx+ C5ε∥un∥pE

= on(1) + C5ε∥un∥pE,

where on(1) stands for a quantity approaching zero as n → +∞. Since ε > 0 is
arbitrary, the above expression implies that un → 0 strongly in Lp

(1+|x|)−β and the

theorem is proved. □

As a consequence of this last result together with Theorem 1.1, we get the following:

Corollary 2.4. If γ > N , then the norms

∥u∥∂ :=

(∫
Ω

|∇u|Ndx+

∫
∂Ω

|u|Ndσ
)1/N

and ∥ · ∥E are equivalent in E.

Proof. It follows from (1.3) that

∥u∥NE ≤
∫
Ω

|∇u|Ndx+ C1

(∫
Ω

|∇u|Ndx+

∫
∂Ω

|u|Ndσ
)

≤ C2∥u∥N∂ .

On the other hand, taking into account that ∂Ω is bounded, we can choose R > 0
sufficiently large such that the trace embedding W 1,N(Ω ∩ BR) ↪→ LN(∂Ω ∪ ∂BR) is
continuous. Therefore, there exists C3 = C3(R,Ω) > 0, such that∫

∂Ω

|u|N dσ ≤ C3

∫
Ω∩BR

(
|∇u|N + |u|N

)
dx ≤ C4

(∫
Ω

|∇u|Ndx+

∫
Ω

|u|N

(1 + |x|)γ
dx

)
,

where C4 = C3(1 +R)γ. Consequently,

∥u∥N∂ ≤
∫
Ω

|∇u|Ndx+ C4

∫
Ω

[
|∇u|N +

|u|N

(1 + |x|)γ

]
dx ≤ C5∥u∥NE ,

and this yields the desired result. □

3. The case p < q

In this section we prove Theorem 1.2. Since β > N , we can choose γ sufficiently close
to N in such way that

(3.1) N < γ < β, N ≤ p <
N(β −N)

(γ −N)
.

We are going to look for solutions of problem (Pλ) in the subspace of E defined by

(3.2) Eq :=

{
u ∈ E :

∫
Ω

h(x)|u|qdx < ∞
}
.
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This is a reflexive Banach space when endowed with the norm

∥u∥Eq :=
(
∥u∥N∂ + ∥u∥NLq

h

)1/N
,

where ∥·∥∂ was defined in Corollary 2.4. Using this same corollary, (3.1) and Proposition
2.3, we conclude that the embedding Eq ↪→ Lp

k is compact.
Notice that one weak solution of problem (Pλ) is exactly a function u ∈ Eq such that∫
Ω

|∇u|N−2∇u · ∇φdx+

∫
∂Ω

|u|N−2uφ dσ = λ

∫
Ω

(
λk(x)|u|p−2u− h(x)|u|q−2u

)
φdx,

for any φ ∈ C∞
δ (Ω). So, the weak solutions are precisely the critical points of the

functional Iλ : Eq → R given by

Iλ(u) :=
1

N
∥u∥N∂ +

1

q

∫
Ω

h(x)|u|q dx− λ

p

∫
Ω

k(x)|u|p dx.

Using the abstract results of the previous section and standard arguments we can prove
that Iλ ∈ C1(Eq,R).

In our first result we check that non-zero solutions do not exist if λ is close to 0.

Lemma 3.1. Suppose that (h1)− (h2) and N ≤ p < q hold. Then, there exists λ∗ > 0
such that problem (Pλ) has no non-zero weak solution if λ < λ∗.

Proof. If u ∈ E is a non-zero solution, we have that

(3.3) ∥u∥N∂ = λ

∫
Ω

k(x)|u|pdx−
∫
Ω

h(x)|u|qdx,

and therefore it is clear that λ > 0. Using Young’s inequality with exponents
s = q/(q − p) and s′ = q/p, we obtain

λk(x)|s|p = λk(x)

h(x)p/q
(
h(x)p/q|s|p

)
≤ q − p

q
λq/(q−p) k(x)

q/(q−p)

h(x)p/(q−p)
+

p

q
h(x)|s|q,

for any x ∈ Ω, s ∈ R. The above inequality, (3.3) and (h1)− (h2) provide

(3.4) ∥u∥N∂ ≤ C1λ
q/(q−p) +

p− q

q

∫
Ω

h(x)|u|qdx ≤ C1λ
q/(q−p),

with C1 := q/(q − p)
∫
Ω
k(x)q/(q−p)h(x)−p/(q−p)dx.

On the other hand, using (2.3), (3.3), (k1) and (h1) again, we get

C2

(∫
Ω

k(x)|u|pdx
)N/p

≤ ∥u∥N∂ ≤ λ

∫
Ω

k(x)|u|pdx,

with C2 := C0k
−N/p
0 > 0. If p = N , we conclude that λ ≥ λ∗ := C2. Otherwise, this

last inequality and (3.4) imply that(
C2λ

−1
)p/(p−N) ≤

∫
Ω

k(x)|u|pdx ≤ C
−p/N
2 ∥u∥p∂ ≤ C

−p/N
2 C

p/N
1 λqp/[N(q−p)]
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and a straightforward computation shows that

λ ≥ λ∗ :=

[
C

p/(p−N)
2 C

p/N
2

C
p/N
1

]qp/[N(q−p)]+p/(p−N)

.

So, we conclude that (Pλ) does not have non-zero solution if λ < λ∗. □

For the existence result, we need an elementary inequality. Let A, B > 0 and
q > p > 0. A straightforward calculation shows that f(s) := Asp − Bsq, for s ≥ 0,

achieves its maximum at s0 := [(pA)/(qB)]1/(q−p). Hence, for any s ∈ R,

(3.5) A|s|p −B|s|q = f(|s|) ≤ f(s0) ≤ Asp0 ≤ A

(
A

B

)p/(q−p)

=
Aq/(q−p)

Bp/(q−p)
.

The next lemma shows that we can deal with our problem via minimization
arguments.

Lemma 3.2. Suppose that (h1)− (h2) and p < q hold. Then Iλ is coercive and

(3.6) λ∗ := inf
u∈Eq

{
1

N
∥u∥N∂ +

1

q

∫
Ω

h(x)|u|qdx :

∫
Ω

k(x)|u|pdx = p

}
> 0.

Proof. Since p < q, it follows from (3.5) and (h2) that

λ

p

∫
Ω

k(x)|u|pdx− 1

2q

∫
Ω

h(x)|u|qdx ≤ C1

∫
Ω

k(x)q/(q−p)

h(x)p/(q−p)
dx = C2.

Thus, since we can write

Iλ(u) =
1

N
∥u∥N∂ +

1

2q

∫
Ω

h(x)|u|q dx− λ

p

∫
Ω

k(x)|u|p dx+
1

2q

∫
Ω

h(x)|u|q dx,

we conclude that

Iλ(u) ≥
1

N
∥u∥N∂ +

1

2q

∫
Ω

h(x)|u|qdx− C2.

This and the definition of ∥ · ∥Eq show that Iλ(u) → +∞, as ∥u∥Eq → +∞.
We now prove that λ∗ > 0. Suppose, by contradiction, that λ∗ = 0. Then there

exists (un) ⊂ Eq such that

1

N
∥un∥N∂ +

1

q

∫
Ω

h(x)|un|qdx = on(1),

∫
Ω

k(x)|un|pdx = p,

where on(1) stands for a quantity approaching zero as n → +∞. Hölder’s inequality
with exponents s = q/p, s′ = q/(q − p) and the integrability condition (h2) provide

p =

∫
Ω

h(x)|un|p
k(x)

h(x)
dx ≤

(∫
Ω

h(x)|un|qdx
)p/q (∫

Ω

k(x)q/(q−p)

h(x)p/(q−p)
dx

)(p−q)/q

= on(1),

which is a contradiction. □

We are ready to present the proof of our first application.
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Proof of Theorem 1.2. We focus on item (ii), since the non-existence part is exactly
Lemma 3.1. Let λ∗ > 0 be given by (3.6) and λ > λ∗. From the embedding Eq ↪→ Lp

k,
we conclude that Iλ maps bouded sets into bounded sets. So, recalling that Iλ is
coercive, we conclude that

cλ := inf
u∈Eq

Iλ(u) > −∞.

We claim that, if λ > λ∗, then cλ < 0. Indeed, using the definition of λ∗ we obtain
uλ ∈ Eq such that

∫
Ω
k(x)|uλ|pdx = p and

λ >
1

N
∥uλ∥N∂ +

1

q

∫
Ω

h(x)|uλ|qdx.

This implies that Iλ(uλ) < 0, and therefore cλ < 0. Once we have proved that

J(u) :=

∫
Ω

F (x, u)dx =

∫
Ω

[
λk(x)|u|p

p
− h(x)|u|q

q

]
dx,

is weakly continuous, the direct method of calculus of variations (cf. [15, Theorem 1.2])
shows that Iλ has a global minimum uλ. Since Iλ(uλ) = cλ < 0, we have that uλ ̸= 0.
Noticing that Iλ(uλ) = Iλ(|uλ|), we may assume that uλ ≥ 0 and the theorem is proved.
It remains to prove the claimed regularity for J . For simplicity, we will assume λ = 1.

Let (un) ⊂ Eq be such that un ⇀ u0 weakly in Eq. Using the Fundamental Theorem
of Calculus, we obtain

F (x, un)− F (x, u0) =

∫ 1

0

∫ t

0

Fss(x, u0 + τ(un − u0))(un − u0)
2dτdt

+ Fs(x, u0)(un − u0).

A standard computation shows that Fs(x, s) = k(x)|s|p−2s−h(x)|s|q−2s and Fss(x, s) =
(p − 1)k(x)|s|p−2 − (q − 1)h(x)|s|q−2. This, the above equality and (3.5) (with p − 2
instead of p and q − 2 instead of q) imply that∣∣Fss(x, u0 + τ(un − u0))(un − u0)

2
∣∣ ≤ C1k(x)

(
k(x)

h(x)

)(p−2)/(q−p)

(un − u0)
2.

Therefore, ∣∣∣∣∫
Ω

[F (x, un)− F (x, u0)] dx

∣∣∣∣ ≤ C1I
1
n + I2n,

with

I1n :=

∫
Ω

k(x)

(
k(x)

h(x)

)(p−2)/(q−p)

(un − u0)
2dx, I2n :=

∣∣∣∣∫
Ω

Fu(x, u0)(un − u0)dx

∣∣∣∣ ,
and therefore it sufficent to show that I1n = on(1) and I2n = on(1).
For the first one, we use Hölder’s inequality with exponents s = p/(p− 2), s′ = p/2,

hypothesis (k2) and the compactness of E ↪→ Lp
k to get

I1n =

(∫
Ω

k(x)q/(q−p)

h(x)p/(q−p)
dx

)(p−2)/p

∥un − u0∥2Lp
k
= on(1).
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We now estimate I2n observing that the linear functional

Ψ(v) :=

∫
Ω

Fs(x, u0)vdx =

∫
Ω

(
k(x)|u0|p−2u0 − h(x)|u0|q−2u0

)
vdx, v ∈ Eq,

is such that

|Ψ(v)| ≤ ∥u0∥p−1
Lp
k
∥v∥Lp

k
+ ∥u0∥q−1

Lq
h
∥v∥Lq

h
≤ C2∥v∥Eq .

Hence, Ψ is continuous and the weak convergence of (un) implies that I2n = |Ψ(un −
u0)| = on(1), finishing the proof. □

4. The case p > q

This section is devoted to the proof of Theorem 1.3. As in the last section, we pick
γ > N such that

N < γ < β, N ≤ q < p <
N(β −N)

(γ −N)

and consider Eq defined in (3.2). In order to find non-negative solutions for (Pλ), we
consider now the energy functional given by

Iλ(u) :=
1

N
∥u∥N∂ +

1

q

∫
Ω

h(x)|u|q dx− λ

p

∫
Ω

k(x)(u+)p dx,

where u+(x) := max{u(x), 0}.
We prove in the sequel that the functional Iλ satisfies the hypotheses of the Mountain

Pass Theorem.

Lemma 4.1. Suppose that (h̃1) holds. Then, for each λ > 0,

(i) there exist ξ, ρ > 0 such that Iλ(u) ≥ ξ, for any u ∈ Eq, ∥u∥Eq = ρ;
(ii) there exists e ∈ Eq such that ∥e∥Eq > ρ and Iλ(e) < 0.

Proof. If u ∈ Eq is such that ∥u∥Eq ≤ 1, we can use N ≤ q to obtain ∥u∥q∂ ≤ ∥u∥N∂ .
Hence,

Iλ(u) ≥
1

q

(
∥u∥q∂ + ∥u∥q

Lq
h

)
− λ

p

∫
Ω

k(x)|u|p dx.

So, using the inequality (aN +bN)q/N ≤ 2(q−N)/N(aq+bq), Proposition 2.3 and Corollary
2.4, one has

Iλ(u) ≥ C1∥u∥qEq − λC2∥u∥pEq = ∥u∥qEq(C1 − λC2∥u∥p−q
Eq ),

for constants C1, C2 > 0. Then, item (i) holds for ρ := min
{
1, [C1/(2λC2)]

1/(p−q)
}
and

ξ := C1ρ
q/2.

For proving (ii), we pick u ∈ Eq \ {0} such that u ≥ 0 a.e. in RN . Using N ≤ q < p
and k > 0, we conclude that

Iλ(su) =
sN

N
∥u∥N∂ +

sq

q

∫
Ω

h(x)|u|q dx− λsp

p

∫
Ω

k(x)(u+)p dx → −∞,

as s → +∞. So, the result follows for e = s0u, with s0 > 0 sufficiently large. □
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We say that Iλ satisfies the Palais-Smale condition if any sequence (un) ⊂ Eq such
that

(4.1) Iλ(un) → c ∈ R, I ′λ(un) → 0.

has a convergent subsequence. In the next result we see that, in the setting of Theorem
1.3, this property is verified.

Lemma 4.2. Suppose that (h̃1) holds. Then, for each λ > 0, the functional Iλ satisfies
the Palais-Smale condition.

Proof. Let (un) ⊂ Eq be such that (4.1) holds. Computing Iλ(un)− (1/p)I ′λ(un)un, we
obtain C1, C2 > 0 such that(

1

N
− 1

p

)
∥un∥N∂ +

(
1

q
− 1

p

)
∥un∥qLq

h
≤ C1 + C2∥un∥Eq .

From N ≤ q < p, we conclude that (un) is bounded in Eq. Hence, up to a subsequence,
we have that un ⇀ u weakly in Eq. As in the last section, we may also assume that
un → u strongly in Lp

k. Using Hölder’s inequality with exponents s = p/(p − 1) and
s′ = p, we get ∣∣∣∣∫

Ω

k(x)(u+
n )

p−1(un − u)dx

∣∣∣∣ ≤ ∥u+
n ∥

p−1
Lp
k
∥un − u∥p

Lp
k
= on(1).

This and I ′λ(un)(un − u) = on(1) imply that∫
Ω

|∇un|N−2 [∇un · ∇(un − u)] dx +

∫
Ω

h(x)|un|q−2un(un − u) dx

+

∫
∂Ω

|un|N−2un(un − u)dσ = on(1).

On the other hand, using that un ⇀ u weakly in Eq and arguing as in the final part of
the proof of Theorem 1.2, ones has∫

Ω

|∇u|N−2 [∇u · ∇(un − u)] dx +

∫
Ω

h(x)|u|q−2u(un − u) dx

+

∫
∂Ω

|u|N−2u(un − u) dσ = on(1).

For any k ∈ N and r ≥ 2, we set

Tk,r(y1, y2) := (|y1|r−2y1 − |y2|r−2y2), y1, y2 ∈ Rk.

We deduce from the two above convergences that∫
Ω

TN,N(∇un,∇u) · ∇(un − u) dx +

∫
Ω

h(x)T1,q(un, u)(un − u) dx

+

∫
∂Ω

T1,N(un, u)(un − u) dσ = on(1).

But we know that, for any k ∈ N and r ≥ 2, there holds (see [14, inequality (2.2)])

Tk,r(y1, y2) · (y1 − y2) ≥ C(k, r)|y1 − y2|k, ∀ y1, y2 ∈ Rk,
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and therefore we infer from the last convergence that

∥un − u∥N∂ + ∥un − u∥q
Lq
h
= on(1),

which implies that un → u strongly in Eq and completes the proof. □

We can now finish the paper proving our second existence result.

Proof of Theorem 1.3. Using Lemmas 4.1 and 4.2 together with the Mountain Pass
Theorem [2], we obtain a non-zero critical point of Iλ. If u

− := u+−u, a straightforward
computation shows that 0 = Iλ(u)u

− = −∥u−∥NEq , and therefore uλ ≥ 0 a.e. in RN .
Hence uλ ̸= 0 is a non-negative solution of (Pλ) and the theorem is proved. □

References

[1] S. Alama, G. Tarantello.: Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal.
141, (1996) 159–215. 3

[2] A. Ambrosetti, P.H. Rabinowitz.:Dual variational methods in critical point theory and
applications. J. Functional Analysis 14 (1973), 349–381. 14

[3] G. Autuori; P. Pucci.: Existence of entire solutions for a class of quasilinear elliptic equations
NoDEA Nonlinear Differential Equations Appl. 20, (2013) 977–1009. 1

[4] G. Autuori, P. Pucci, C. Varga.: Existence theorems for quasilinear elliptic eigenvalue problems
in unbounded domains, Adv. Differential Equations. 18, (2013) 1–48. 1

[5] N.P. Các.: On an inequality of Hardy’s type. Chinese J. Math. 13, (1985) 203-–208. 4
[6] J. Chabrowski.: Elliptic variational problems with indefinite nonlinearities, Topological Meth.

Nonlinear Anal. 9, (1997) 221–231. 1
[7] J. I. Diaz.: Nonlinear partial differential equations and free boundaries, Elliptic equations, Pitman

Adv. Publ. Boston etc. (1986). 1
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