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Abstract. In this paper we look for ground state solutions of the elliptic

system {
−∆u+ V (x)u+ γϕK(x)u = Q(x)f(u), x ∈ R2,

∆ϕ = K(x)u2, x ∈ R2,

where γ > 0 and the continuous potentials V, K, Q satisfy some mild growth

conditions and the nonlinearity f has exponential critical growth. The key

point of our approach is a new version of the Trudinger-Moser inequality for
weighted Sobolev space.

1. Introduction and main results

We are concerned with the existence of solution to the system

(S)

{
−∆u+ V (x)u+ γK(x)ϕu = Q(x)f(u), in R2,

∆ϕ = K(x)u2, in R2,

where γ > 0 and the continuous potentials V, K, Q satisfy some mild growth con-
ditions. As quoted by Benci and Fortunato in [8, 9], this system works as a model
describing solitary waves for the nonlinear stationary Schrödinger equation inter-
acting with the electrostatic field and also in semiconductor theory, nonlinear optics
and plasma physics.

In the past few years, many authors have considered the 3-dimensional case
assuming different conditions on the potentials and the nonlinearity f . We could
cite [26, 20, 24, 29, 6, 18, 27] and references therein. A common aspect in most
of the works is the variational approach. It essentially consists in impose some
regularity condition on K, use Lax-Milgram Theorem to solve the second equation
and obtain ϕ as the convolution ϕ = Γ3 ∗ (Ku2), where Γ3 is the fundamental
solution of the Laplacian in R3, namely Γ3(x) = (−1/4π)|x|−1.

For the planar case, we can use the same idea to conclude that

ϕu(x) :=
1

2π

∫
R2

log(|x− y|)K(y)u2(y)dy,
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where we have used that the fundamental solution in R2 is given by Γ2(x) :=
(1/2π) log |x|. Hence, we are leading to consider the nonlocal equation

(E) −∆u+ V (x)u+
γ

2π
[log | · | ∗ (Ku2)](x)K(x)u = Q(x)f(u), x ∈ R2.

After obtaining a weak solution u ∈ W , where W is an appropriated space which
depends on the potentials, we can prove that the pair (u, ϕu) weakly solves (S).

When dealing with (E) via variational methods, the first difficulty occurs due
to the logarithmic kernel, which is unbounded and has no defined sign. It turns
out that the formal energy functional associated to the equation is not well defined
in H1(R2) even if all the potentials V , K and Q are positive and bounded. To
overcome this trouble, Stubbe [30] and Cingolani & Weth [19] introduced a new
space which is appropriated to deal with the nonlocal part of the energy functional,
namely

u 7→ V(u) :=
∫
R2

∫
R2

log(|x− y|)K(y)u2(y)K(x)u2(x)dydx.

Here, we adapt this former argument in order to consider potentials with no kind
of prescribed symmetry. We just impose the following decay assumptions, which
were inspired from [5] (see also [31, 32]):

(V KQ) V, K, Q ∈ C(R2) and there exist γ ≤ 2, η > 2, β > 2 and positive constants
bV , bK , bQ such that, for any x ∈ R2,

bV
(1 + |x|)γ

≤ V (x), 0 < K(x) ≤ bK
(1 + |x|)η

, 0 < Q(x) ≤ bQ
(1 + |x|)β

.

Because of the above condition on V and the linear part on the right-hand side of
(E), it is natural to consider the Hilbert space

E :=

{
u ∈ L2

loc(R2) : |∇u| ∈ L2(R2) and

∫
R2

V (x)u2dx <∞
}

endowed with the inner product ⟨u, v⟩E :=
∫
R2 [∇u∇v + V (x)uv] dx. We are going

to prove that, for any 2 ≤ p < ∞, the space E is compactly embedded into the
weighted Lebesgue space (see Proposition 2.2)

Lp(R2;Q) :=

{
u : R2 → R measurable :

∫
R2

Q(x)|u|pdx <∞
}
,

which is a Banach space with the norm ∥u∥Lp(R2;Q) =
(∫

R2 Q(x)|u|pdx
)1/p

. The

same holds for the space L2(R2;K). Although some related results have been
appeared in [28], our proof is different and new. Moreover, our approach can
be used to obtain similar embeddings in RN , with N ≥ 3, as those presented in
[5, 11, 12].

Motivated by the above embedding, we ask if it is possible to obtain, for the
functions of the space E, exponential integrability conditions determined by a
Trudinger-Moser type inequality involving the weight Q, see for instance [21, 13, 33]
and references therein. The answer is positive, as we can see from our first main
theorem:
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Theorem 1.1. For any α > 0 and u ∈ E, the function Q(·)(eαu2 − 1) belongs to
L1(R2). Moreover, there exists α∗ ∈ (0, 4π) such that

sup
u∈E, ∥u∥E≤1

∫
R2

Q(x)(eαu
2

− 1)dx <∞,

for any 0 < α ≤ α∗.

By using the above theorem we can deal here with nonlinearities which grow
faster than any prescribed power |s|p. More specifically, we suppose that f has
exponential critical growth at infinity and is superlinear at the origin, i.e.,

(f0) f ∈ C(R) and there exists α0 > 0 such that

lim
|s|→+∞

|f(s)|
eαs2

=

{
0 if α > α0,
+∞ if α < α0;

(f1) f(s) = o(|s|) as s→ 0;
(f2) there exists θ > 4 such that 0 < θF (s) ≤ f(s)s for all s ̸= 0, where

F (s) :=
∫ s

0
f(t)dt;

(f3) there exists ν > 0 such that F (s) ≥ ν|s|4, for all s ∈ R;
(f4) the function s 7→ f(s)/|s|3 is increasing in |s| > 0.

Under the above conditions, the energy functional associated to (E) is, formally,

I(u) =
1

2
∥u∥2E +

γ

8π
V(u)−

∫
R2

Q(x)F (u)dx.

Actually, it is necessary to guarantee that the nonlocal term V(u) is well defined.
To do this, we consider a space smaller than E. As in [30], we can justify that the
correct space to look for solutions is

W :=

{
u ∈ E :

∫
R2

log(1 + |x|)K(x)u2dx <∞
}
,

which is a Hilbert space (see Lemma 2.1) with the norm

∥u∥2W :=

∫
R2

(
|∇u|2 + V (x)u2

)
dx+

∫
R2

log(1 + |x|)K(x)u2dx.

Since clearly W ↪→ E, we can define the numbers

S4(Q) := inf
u∈W\{0}

∥u∥2W
∥u∥2L4(R2;Q)

, S2(K) := inf
u∈W\{0}

∥u∥2W
∥u∥2L2(R2;K)

.

Moreover, we can prove that (f0)− (f1) implies that I ∈ C1(W ). We call u ∈W a
weak solution to equation (E) if, for all φ ∈ C∞

0 (R2), it holds

⟨u, φ⟩E +

∫
R2

∫
R2

log(|x− y|)K(y)u2(y)K(x)u(x)φ(x)dydx =

∫
R2

Q(x)f(u)φdx.

So, by using standard calculations we conclude that the weak solutions are exactly
the critical points of I.

The main existence result for problem (E) can be stated as follows:

Theorem 1.2. Suppose that (V KQ) and (f0) − (f4) hold. Then, there exists
α∗ ∈ (0, 4π) such that problem (E) has a nonzero small energy solution provided

(1.1) ν > S2
4(Q)max

{
1

S2(K)
,
α0

2α∗

}
.
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As a byproduct of Theorem 1.2, we can give a contribution concerning the exis-
tence of solutions to the system (S), namely

Theorem 1.3. Suppose the same hypotheses of Theorem 1.2 and let u ∈ W be
the solution obtained in that theorem. Then, the pair (u, ϕu) is a weak solution of
system (S), where ϕu = Γ2 ∗ (Ku2).

Unlike in the 3-dimensional case, the study of the planar version of Schrödinger-
Poisson systems like (S) is a very recent trend. Besides [30, 19], we could cite [22],
where the authors consider an autonomous problem with f(s) = |s|p−2s, p > 2,
and obtained a ground state nonnegative solution and infinitely many sign-changing
solutions. We refer to [14, 15, 16, 10] and its references for other results with f
having polynomial growth. Concerning exponential type nonlinearities, we cite the
works [3, 17]. In the first one, we have V = K = Q ≡ 1, while in the other one, the
unique nonconstant potential V has axial symmetry. We also quote [2], where the
authors obtained some results which are similar to ours but for radial potentials.
Here, we consider potentials which depend on x and have no prescribed symmetry.
In particular, we do not have any kind of radial decay property at infinity for the
functions of our working space. Hence, our results do not follow as in these previous
works.

It is worth noticing that, even ifW provides a variational framework to our prob-
lems, some difficulties appear due to some unpleasant facts. The first one is that the
norm inW does not appear explicitly in the expression of the functional. Moreover,
it is not invariant under translations. Third, we can see that the quadratic part of
I is not coercive on W . Besides all of these troubles, we can use condition (f4) for
obtaining a nonzero critical as a minimization argument in the Nehari manifold.
As a final comment, we notice that we prove Theorem 1.1 to permit exponential
growth for the function f . However, this weighted Trudinger-Moser inequality has
an interest in its own and it can be used in many other contexts different from the
Schrödinger-Poisson system.

The remainder of the paper is organized as follows: In Section 2, we present some
basic results and prove the embedding of E into the weighted Lebesgue spaces. The
Trudinger-Moser type inequality is proved in Section 3. The final section is devoted
to the proof of our existence results.

2. Functional setting and embeddings results

In this section, we establish some preliminary results used in the proof of our
main theorems. Throughout the paper, we shall assume that condition (V KQ)
holds. For any R > 0 and y ∈ R2, we denote by BR(x) the open ball {x ∈ R2 :
|y−x| < R}. If x = 0, we write only BR. Finally, we denote by C1, C2, . . ., positive
constants (possibly different).

We are going to use the functional spaces E and W defined in the first sec-
tion. Although E is well known, it is not so clear that W is a Hilbert space. For
completeness, we present the proof of this fact (see also [1]).

Lemma 2.1. (W, ∥ · ∥W ) is a Hilbert space.

Proof. Let (un) ⊂W be a Cauchy sequence and notice that(
∂un
∂xi

)
(i = 1, 2),

(
V 1/2(·)un

)
and

(
[log(1 + | · |)K(·)]1/2un

)
,
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are also Cauchy sequences in L2(R2). Hence, there exist u1, u2, v, z ∈ L2(R2) such
that, as n→ +∞,

(2.1)
∂un
∂xi

→ ui (i = 1, 2), V 1/2(·)un → v, [log(1 + | · |)K(·)]1/2un → z,

strongly in L2(R2). Moreover, up to a subsequence,

(2.2)
∂un
∂xi

→ ui (i = 1, 2), un → w := V −1/2(x)v = [log(1 + |x|)K(x)]
−1/2

z,

for a.e. x ∈ R2.
We shall prove that w ∈ W and un → w in W . In order to do that, we pick

R > 0 and consider φ ∈ C∞
0 (BR+1) such that φ ≡ 1 in BR. Since φ(un − um) ∈

H1
0 (BR+1), we can use Poincaré’s inequality to get

∥un − um∥2L2(BR) ≤
∫
BR+1

|φ(un − um)|2dx ≤ C1

∫
BR+1

|∇(φ(un − um))|2dx

≤ C2

(
∥un − un∥2H1

0 (BR+1)
+

∫
BR+1\BR

|un − um|2dx

)
.

Since infBR+1\BR
V > 0, we obtain

(2.3)
∥un − um∥2L2(BR) ≤ C2∥un − um∥2H1

0 (BR+1)
+ C3

∫
R2

V (x)|un − um|2dx

≤ C4∥un − um∥2E ≤ C4∥un − um∥2W ,

from which it follows that, for some uR ∈ L2(BR), there holds

(2.4) un → uR in L2(BR) and un → uR a.e. in BR,

as n→ +∞. This and (2.2) imply that w = uR ∈ L2(BR) and so w ∈ L2
loc(R2).

Next, we prove that w has weak derivate and |∇w| ∈ L2(R2). In fact, let
ψ ∈ C∞

0 (BR) and notice that, for any n ∈ N,∫
R2

un
∂ψ

∂xi
dx = −

∫
R2

∂un
∂xi

ψdx, i = 1, 2.

Passing to the limit, using (2.1), (2.4) and uR = w in BR, we obtain∫
R2

w
∂ψ

∂xi
dx = −

∫
R2

uiψdx, i = 1, 2,

and therefore w has weak derivative with ∇w = (u1, u2). The last equality, (2.1)
and (2.2) guarantee that |∇w| ∈ L2(R2) and∫

R2

V (x)w2dx =

∫
R2

v2dx <∞,

∫
R2

log(1 + |x|)K(x)w2dx =

∫
R2

z2dx <∞,

in such way that w ∈W . For the same reasons∫
R2

|∇un −∇w|2dx→ 0,

∫
R2

V (x)|un − w|2dx =

∫
R2

∣∣∣V (x)1/2un − v
∣∣∣2 dx→ 0,∫

R2

log(1 + |x|)K(x)|un − w|2dx =

∫
R2

∣∣∣[log(1 + |x|)K(x)]1/2un − z
∣∣∣2 dx→ 0,

as n→ +∞. Hence, un → w in W and we have done. □
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Now, we quote an auxiliary result, which will be useful in the paper. The em-
bedding can be view as a version of similar ones presented in [28]. However, the
technique used here is a simple one.

Proposition 2.2. The embedding E ↪→ Lp(R2;Q) is compact for any 2 ≤ p <∞.

Proof. Arguing as in the proof of (2.3) we can check that E ↪→ H1
loc(R2). So, given

u ∈ E and p ≥ 2, we can use (V KQ) to obtain C1, C2 > 0 such that

(2.5)

∫
B1

|u|p

(1 + |x|)β
dx <

∫
B1

|u|pdx ≤ C1

(∫
B1

[
|∇u|2 + u2

]
dx

)p/2

≤ C2

(∫
B1

[
|∇u|2 + V (x)u2

]
dx

)p/2

.

If we define Aj := {z ∈ R2 : 2j < |z| < 2j+1}, for j ∈ N ∪ {0}, the change of
variables y := 2−jx provides∫

Aj

|u|p

(1 + |x|)β
dx ≤ 1

2βj

∫
Aj

|u|pdx = 2(2−β)j

∫
A0

|uj(y)|pdy,

where uj(y) := u(2jy). Using the Sobolev embeddingH1(A0) ↪→ Lp(A0), we obtain
C3 > 0 such that∫

A0

|uj(y)|pdy ≤ C3

(∫
A0

[
|∇uj(y)|2 + u2j (y)

]
dy

)p/2

= C3

(∫
A0

[
|∇u(x)|2 + 2−2ju2(x)

]
dx

)p/2

.

Since (1 + 2j+1) ≤ 2 · 2j+1 and we may assume without loss of generality that
γ ≥ 0, one has∫
Aj

2−2ju2(x)dx ≤ 2−2j(1+2j+1)γ
∫
Aj

u2(x)

(1 + |x|)γ
dx ≤ 22γ+(γ−2)j

∫
Aj

u2(x)

(1 + |x|)γ
dx.

Using the above estimates and that γ ≤ 2 < β, we get

(2.6)

∫
Aj

|u|p

(1 + |x|)β
dx ≤ 2(2−β)j

(∫
Aj

[
|∇u(x)|2 + 22γ+(γ−2)j u2(x)

(1 + |x|)γ

]
dx

)p/2

≤ C4

(∫
Aj

[
|∇u(x)|2 + u2(x)

(1 + |x|)γ

]
dx

)p/2

,

where C4 := C3 · 2γp does not depend on j. Thus, recalling that the function
s 7→ sp/2 is super additive for p ≥ 2, we conclude that

∞∑
j=0

∫
Aj

|u|p

(1 + |x|)β
dx ≤ C4

(∫
R2\B1

[
|∇u|2 + u2

(1 + |x|)γ

]
dx

)p/2

.

This, (2.5) and (V KQ) imply that∫
R2

Q(x)|u|pdx ≤ bQ

∫
R2

|u|p

(1 + |x|)β
dx ≤ C5

(∫
R2

[
|∇u|2 + V (x)u2

]
dx

)p/2

,

which proves the continuous embedding.
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For the compactness result, we take (un) ⊂ E such that un ⇀ 0 weakly in E.
Since β > 2, for any given ε > 0 there exists j0 ∈ N such that 2(2−β)j < ε, whenever
j ≥ j0. Since E ↪→ H1

loc(R2), it follows from Rellich-Kondrachov Theorem that∫
B1

Q(x)|un|pdx+

j0−1∑
j=0

∫
Aj

Q(x)|un|pdx ≤ ∥Q∥L∞(R2)

∫
B

2j0

|un|pdx = on(1),

where on(1) stands for a quantity approaching zero as n → +∞. Using this,
(V KQ), (2.6) and that s 7→ sp/2 is super additive, we obtain

∞∑
j=0

∫
Aj

Q(x)|un|pdx ≤ on(1) + εC6

∞∑
j=j0

(∫
Aj

[
|∇un(x)|2 + V (x)u2n(x)

]
dx

)p/2

≤ on(1) + εC6∥un∥pE = on(1),

and the proposition is proved. □

Corollary 2.3. The embeddings E, W ↪→ L8/3(R2;K4/3) are compact.

Proof. By assumption (V KQ), there exists η > 2 such that

K(x)4/3 ≤
b
4/3
K

(1 + |x|)4η/3
, ∀x ∈ R2.

Since 4η/3 > 2, we can apply Proposition 2.2 with p = 8/3 and Q = K4/3 to get
the result for E. Finally, take into account that W ↪→ E, we conclude that the
result also holds for the subspace W . □

3. Trudinger-Moser type inequality

We devote this section to the proof of Theorem 1.1. Before, we need two technical
results.

Lemma 3.1. Let x0 ∈ R2 and u ∈ H1
0 (BR(x0)) be such that

∫
BR(x0)

|∇u|2dx ≤ 1.

Then there exists C > 0 such that∫
BR(x0)

(
e4πu

2

− 1
)
dx ≤ C ·R2

∫
BR(x0)

|∇u|2dx.

Proof. See [34, Lemma 3.1]. □

The second auxiliary result is a version, for our functional space, of a previous
result presented in [21]. In their proof, the authors used, among other things, Besi-
covitch covering lemma. Here we will use a similar approach used in [13] where the
authors obtain a Trudinger Moser type inequality involving weight with logarithm
growth.

Lemma 3.2. There exist C > 0 and α∗ ∈ (0, 4π) such that∫
R2

Q(x)(eαu
2

− 1)dx ≤ C∥u∥2E ,

for any 0 < α ≤ α∗ and u ∈ E verifying ∥u∥E ≤ 1.
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Proof. Let u ∈ E be such that ∥u∥E ≤ 1 and φ ∈ C∞
0 (B2) satisfying φ ≡ 1 in B1

and |∇φ| ≤ 2 in B2. As in the first part of the proof of Proposition 2.2, we can
estimate∫

B2

|∇ (φu)|2 dx ≤ C1

∫
B2

[
|∇u|2 + u2

]
dx ≤ C2

∫
B2

[
|∇u|2 + V (x)u2

]
dx.

Setting v := (1/C2)
1/2φu, we can apply Lemma 3.1 to obtain∫

B2

(
e4πv

2

− 1
)
dx ≤ C · 22

∫
B2

|∇v|2dx ≤ C3

∫
B2

[
|∇u|2 + V (x)u2

]
dx.

Thus, for any 0 < α ≤ 4π/C2, one has

(3.1)

∫
B1

(
eαu

2

− 1
)
dx =

∫
B1

(
eα(φu)2 − 1

)
dx ≤

∫
B2

(
eα(φu)2 − 1

)
dx

=

∫
B2

(
eαC2v

2

− 1
)
dx

≤ C3

∫
B2

[
|∇u|2 + V (x)u2

]
dx.

We claim that, for some C4 > 0, there holds

(3.2)

∫
Aj

Q(x)
(
eαu

2

− 1
)
dx ≤ C4

∫
Aj

[
|∇u|2 + V (x)u2

]
dx,

for any j ∈ N∪ {0} and 0 < α ≤ α∗, with α∗ > 0 to be chosen later. If this is true,
the statement of the lemma is a direct consequence the above inequality, (3.1) and∫

R2

Q(x)
(
eαu

2

− 1
)
dx =

∫
B1

Q(x)
(
eαu

2

− 1
)
dx+

∞∑
j=0

∫
Aj

Q(x)
(
eαu

2

− 1
)
dx.

In order to prove (3.2), we first fix j ∈ N ∪ {0} and use the change of variables
y := 2−jx, (V KQ) and β > 2 to obtain

(3.3)

∫
Aj

Q(x)
(
eαu

2

− 1
)
dx ≤ bQ

2βj

∫
Aj

(
eαu

2

− 1
)
dx = bQ

∫
A0

(
eαu

2
j − 1

)
dy,

where uj(y) := u(2jy). Consider y ∈ A0, set Ry := dist(y, ∂A0) and notice that

BRy
(y) ⊂ A0. Moreover, from the compactness of A0, we obtain points y1, . . . , yk ∈

A0 such that A0 ⊂
⋃k

i=1BRi/2(yi), where Ri := Ryi
. For each i = 1, . . . , k, we pick

a function φi ∈ C∞
0 (BRi

(yi)) such that 0 ≤ φi ≤ 1 in BRi
(yi), φi ≡ 1 in BRi/2(yi)

and |∇φi| ≤ 4/Ri in BRi
(yi). If we call Bi := BRi

(yi), we have that∫
Bi

|∇ (φi(y)uj(y))|2 dy ≤ C5

∫
A0

22j |∇u(2jy)|2dy + C6R
−2
i

∫
A0

u2(2jy)dy

≤ C5

∫
Aj

|∇u(x)|2dx+
C6R

−2
i

22j

∫
Aj

u2(x)dx.

Since (1 + 2j+1)γ ≤ 4γ · 2γj and we may assume without loss of generality that
γ ≥ 0, we get ∫

Aj

u2(x)dx ≤ 4γ · 2γj
∫
Aj

u2(x)

(1 + |x|)γ
dx.
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All together, the above inequalities, γ ≤ 2 and (V KQ) imply that,∫
Bi

|∇ (φi(y)uj(y))|2 dy ≤ C7

∫
Aj

[
|∇u(x)|2 + V (x)u2(x)

]
dx.

At this point we define

α∗ := min

{
4π

C2
,
4π

C7

}
.

If vi,j := (1/C7)
1/2

φiuj , we can use Lemma 3.1 to estimate∫
Bi

(
e4πv

2
i,j − 1

)
dy ≤ C ·R2

i

∫
Bi

|∇vi,j |2dy ≤ C8

∫
Aj

[
|∇u|2 + V (x)u2

]
dx.

If 0 < α ≤ α∗, we obtain∫
Bi

(
eα(φiuj)

2

− 1
)
dy ≤ C8

∫
Aj

[
|∇u|2 + V (x)u2

]
dx,

and thus∫
A0

(
eαu

2
j − 1

)
dy ≤

k∑
i=1

∫
BRi/2

(yi)

(
eαu

2
j − 1

)
dy =

k∑
i=1

∫
BRi/2

(yi)

(
eα(φiuj)

2

− 1
)
dy

≤ C9

∫
Aj

[
|∇u(x)|2 + V (x)u2(x)

]
dx.

The inequality (3.2) is a consequence of the last estimate and (3.3). □

We are ready to present the proof of our first main theorem.

Proof of Theorem 1.1. Let α > 0 and u ∈ E. By density, there exists u0 ∈ C∞
0 (R2)

such that

∥u− u0∥E ≤ δ,

with δ > 0 to be chosen later. Since u2 ≤ 2(u− u0)
2 + 2u20, we may estimate∫

R2

Q(x)
(
eαu

2

− 1
)
dx ≤

∫
R2

Q(x)
(
e2α(u−u0)

2

e2αu
2
0 − 1

)
dx.

Recalling the elementary inequality

ab− 1 ≤ 1

2
(a2 − 1) +

1

2
(b2 − 1), ∀ a, b ≥ 0,

setting w := u− u0 and denoting by Ω0 the support of u0, we obtain

2

∫
R2

Q(x)
(
eαu

2

− 1
)
dx ≤

∫
R2

Q(x)
(
e4αw

2

− 1
)
dx+

∫
Ω0

Q(x)
(
e4αu

2
0 − 1

)
dx

≤
∫
R2

Q(x)

(
e
4α∥w∥2

E

(
w

∥w∥E

)2

− 1

)
dx+ C1

∫
Ω0

1dx,

with C1 := ∥Q∥L∞(R2)e
4α∥u0∥2

L∞(R2) . We now pick δ > 0 in such way that

4α∥w∥2E ≤ 4αδ2 ≤ α∗

and we use Lemma 3.2 to conclude that∫
R2

Q(x)
(
eαu

2

− 1
)
dx ≤ C

2
+
C1

2
|Ω0| <∞.
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This proves the first statement of Theorem 1.1. The second one is a direct conse-
quence of Lemma 3.2. □

4. Existence results

We prove in this section Theorems 1.2 and 1.3. The idea is looking for critical
points of the energy functional defined in the introductory section. Since the value
of γ > 0 is not important, we shall simplify the notation putting γ = 2π, in such a
way that the functional becomes

I(u) :=
1

2
∥u∥2E+

1

4

∫
R2

∫
R2

log(|x−y|)K(y)u2(y)K(x)u2(x)dydx−
∫
R2

Q(x)F (u)dx.

Using that log r = log(1 + r) − log(1 + r−1), for any r > 0, the nonlocal part of I
can be decomposed as∫

R2

∫
R2

log(|x− y|)K(y)u2(y)K(x)u2(x)dydx = V1(u)− V2(u),

with

V1(u) :=

∫
R2

∫
R2

log(1 + |x− y|)K(y)u2(y)K(x)u2(x)dydx,

and

V2(u) :=

∫
R2

∫
R2

log(1 + |x− y|−1)K(y)u2(y)K(x)u2(x)dydx.

So, we can rewrite I as

I(u) :=
1

2
∥u∥2E +

1

4
V1(u)−

1

4
V2(u)−

∫
R2

Q(x)F (u)dx, u ∈W.

As proved in [19, Lemma 2.2], the nonlocal parts V1, V2 are well defined. More-
over, they belong to C1(W ) and, for any u, v ∈W , there hold

(4.1) V ′
1(u)v = 4

∫
R2

∫
R2

log(1 + |x− y|)K(y)u2(y)K(x)u(x)v(x)dydx,

and

(4.2) V ′
2(u)v = 4

∫
R2

∫
R2

log(1 + |x− y|−1)K(y)u2(y)K(x)u(x)v(x)dydx.

In particular,

(4.3) V ′
1(u)u = 4V1(u), V ′

2(u)u = 4V2(u), ∀u ∈W.

Since 1 + |x− y| ≤ (1 + |x|)(1 + |y|), for any x, y ∈ R2, we have that

log(1 + |x− y|) ≤ log((1 + |x|)(1 + |y|)) = log(1 + |x|) + log(1 + |y|).
This inequality, Proposition 2.2 and a straightforward computation yield

(4.4) V1(u) ≤ 2∥u∥2L2(R2;K)∥u∥
2
W , ∀u ∈W.

The argument for obtaining an estimate for V2 is more involved and use the
following Hardy-Littlewood-Sobolev inequality:

Proposition 4.1. [25] Let r, s > 1, 0 < µ < 2 with 1/r+1/s+µ/2 = 2, g ∈ Lr(R2)
and h ∈ Ls(R2). Then, there exists C(r, s, µ) > 0 such that∣∣∣∣∫

R2

∫
R2

g(y)h(x)

|x− y|µ
dydx

∣∣∣∣ ≤ C(s, µ, r)∥g∥Lr(R2)∥h∥Ls(R2).
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Using the elementary inequality log(1 + r) ≤ r, for any r > 0, and the above
result with µ = 1 and r = s = 4/3, we can estimate

(4.5)

V2(u) ≤
∫
R2

∫
R2

K(y)u2(y)K(x)u2(x)

|x− y|
dydx

≤ C

(∫
R2

(K(x)u2)4/3dx

)3/4(∫
R2

(K(x)u2)4/3dx

)3/4

.

From Corollary 2.3, we get C > 0 such that

(4.6) V2(u) ≤ C∥u∥4E , ∀u ∈W.

In order to study the local part of I we notice that, for any given ε > 0, α > α0

and p ≥ 1, we can use (f0) and (f1) to obtain C > 0 such that

(4.7) |f(s)| ≤ ε|s|+ C|s|p−1(eαs
2

− 1), |F (s)| ≤ εs2 + C|s|p(eαs
2

− 1),

for any s ∈ R. This, the inequality

(4.8)
(
eαs

2

− 1
)r

≤
(
erαs

2

− 1
)
, ∀ r > 0, s ∈ R,

and Hölder’s inequality imply that∫
R2

Q(x)F (u)dx ≤ ε∥u∥2L2(R2;Q) + C∥u∥pLpr1 (R2;Q)

(∫
R2

Q(x)
(
er2αu

2

− 1
)
dx

)1/r2

whenever r1, r2 > 1 satisfy 1/r1+1/r2 = 1 and r1 ≥ 2. Hence, we can use Theorem
1.1 and (4.7) to conclude that u 7→

∫
R2 Q(x)F (u)dx belongs to C1(W ).

All together, the above considerations prove that the functional I is well defined
in W . Moreover, it belongs to C1(W ) with

I ′(u)v = ⟨u, v⟩E +
1

4
V ′
1(u)v −

1

4
V ′
2(u)v −

∫
R2

Q(x)f(u)v dx,

for any u, v ∈W .
In what follows, we denote by N the Nehari manifold associated to the functional

I, namely
N := {u ∈W \ {0} : I ′(u)u = 0} .

We first prove that N is a nonempty set.

Lemma 4.2. Suppose that (f1), (f3) and (f4) hold. If u ∈ W \ {0}, then there
exists a unique tu > 0 such that tuu ∈ N .

Proof. Let u ∈W \ {0} and define ψu(t) := I(tu), for t > 0. We have that tu ∈ N
if, and only if, ψ′

u(t) = 0.
Given ε > 0, α > α0 and p > 2, we can argue as in the proof of the regularity of

I and use Proposition 2.2 to obtain∫
R2

Q(x)F (tu)dx ≤ εC1t
2∥u∥2E

+ C2t
p∥u∥pE

(∫
R2

Q(x)

(
e
r2α∥tu∥2

E

(
u

∥u∥E

)2

− 1

)
dx

)1/r2

,

where r1, r2 > 1 satisfy 1/r1 + 1/r2 = 1. Choosing t∗ > 0 small in such way that
r2α∥t∗u∥2E < α∗ and applying Theorem 1.1, we obtain

(4.9)

∫
R2

Q(x)F (tu)dx ≤ εC1t
2∥u∥2E + C3t

p∥u∥pE ,
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for all t ∈ (0, t∗). Picking 0 < ε < 1/(2C1), we can use the above expression,
V1 ≥ 0, (4.6) and p > 2, to get

ψu(t) ≥ t2
[
1

2
∥u∥2E − C

4
t2∥u∥4E − εC1∥u∥2E − C3t

p−2∥u∥pE
]
> 0,

for all t > 0 small. Moreover, it follows from (f3) that, if |s| ≤ 1, then F (s) ≥ ν|s|q,
for q > 4 fixed. This and (f0) imply that, for some C4 > 0, F (s) ≥ C4|s|q for all
s ∈ R. Thus, from V2 ≥ 0, (4.4) and q > 4, we infer that

ψu(t) ≤
t2

2
∥u∥2E +

t4

2
∥u∥2L2(R2;Q)∥u∥

2
W − C4t

q

q

∫
R2

Q(x)|u|qdx→ −∞,

as t → +∞. So, the function ψu achieves its maximum value at tu > 0 such that
ψ′
u(tu) = 0.
In order to prove that tu is the unique critical point of ψu we notice that, from

(4.1) and (4.2), we obtain

V ′
1(tu)u = 4t3V1(u), V ′

2(tu)u = 4t3V2(u).

Hence,

ψ′
u(t) = t∥u∥2E + t3V1(u)− t3V2(u)−

∫
R2

Q(x)f(tu)udx

= t3
(

1

t2
∥u∥2E + V1(u)− V2(u)−

∫
R2

Q(x)
f(tu)

(tu)3
u4dx

)
.

It follows from (f4) that ψ
′
u(t)/t

3 is decreasing, and therefore it cannot vanish twice.
This concludes the proof of the lemma. □

Remark 4.3. As a byproduct of the above proof, we see that the point tu which
projects u in the Nehari manifold is exactly the maximum point of ψu. Since ψu > 0
near the origin and it has a unique critical point, we conclude that ψ′

u is positive in
(0, tu) and negative in (tu,+∞). In particular, we have that tu ∈ (0, 1] whenever
ψ′
u(1) = I ′(u)u ≤ 0.

The next result shows that N is the far way the origin.

Lemma 4.4. Suppose that (f1) holds. Then, there exists δ > 0 such that

∥u∥E ≥ δ, ∀u ∈ N .

Proof. Otherwise, there exists (un) ⊂ N such that un → 0 strongly in E. Since
I ′(un)un = 0 and V ′

1(un)un = 4V1(un) ≥ 0, as n→ +∞ we have that

(4.10) ∥un∥2E ≤ 1

4
V ′
2(un)un +

∫
R2

Q(x)f(un)undx ≤ on(1) +

∫
R2

Q(x)f(un)undx,

where we have used V ′
2(un)un = 4V2(un) and (4.5) in the last inequality.

Given ε > 0, we can use the first part of (4.7) and the same argument employed
in the proof of Lemma 4.2, to get∫

R2

Q(x)f(un)undx ≤ εC1∥un∥2

+ C2∥un∥pE
(∫

R2

Q(x)

(
e
r2α∥un∥2

E

(
un

∥un∥E

)2

− 1

)
dx

)1/r2

,
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where r1, r2 > 1 satisfy 1/r1 + 1/r2 = 1. From the convergence un → 0 in E, we
get r2α∥un∥2E < α∗ for large n ∈ N. Hence, we can use Theorem 1.1, the above
expression and (4.10) to conclude that

(1− εC1)∥un∥2E ≤ C3∥un∥pE + on(1).

Since p > 2, we obtain a contradiction choosing 0 < ε < 1/C1. □

If u ∈ N we can use the definition of Vi together with (4.3) to obtain

(4.11)

I(u) = I(u)− 1

4
I ′(u)u

=
1

4
∥u∥2E +

∫
R2

Q(x)

(
1

4
f(u)u− F (u)

)
dx ≥ 1

4
∥u∥2E ,

where we also have used (f2). So, it is well defined the number

c := inf
u∈N

I(u).

The idea for proving Theorem 1.2 is to verify that c is attained. We shall need the
following local compactness result:

Lemma 4.5. Suppose that (f1) and (f2) hold. Let (un) ⊂ N be a minimizing
sequence for c < α∗/(4α0). Then, up to a subsequence, un ⇀ u ̸= 0 weakly in E.
Moreover

lim
n→+∞

∫
R2

Q(x)f(un)un dx =

∫
R2

Q(x)f(u)udx

and

lim
n→+∞

∫
R2

Q(x)F (un) dx =

∫
R2

Q(x)F (u) dx,

Proof. By (4.11) we conclude that (un) is bounded in E. So, up to a subsequence,
we have that un ⇀ u weakly in E. For any R > 0, we can write

(4.12)

∫
R2

Q(x)(f(un)un − f(u)u)dx = JR
1 (n) + JR

2 (n),

where

JR
1 (n) :=

∫
BR

Q(x)(f(un)un − f(u)u) dx,

JR
2 (n) :=

∫
R2\BR

Q(x)(f(un)un − f(u)u) dx.

Given ε > 0, we can apply Egorov’s Theorem to otbain a measurable set Ω ⊂ BR

such that |Ω| < ε and un → u uniformly in BR \ Ω. Hence,

(4.13)
∣∣JR

1 (n)
∣∣ ≤ ∫

Ω

Q(x)f(un)undx+

∫
Ω

Q(x)f(u)udx+ on(1),

as n→ +∞. Using (4.7) with p ≥ 2, we see that

(4.14)

∫
Ω

Q(x)f(un)undx ≤ ε

∫
Ω

Q(x)u2ndx+ C1

∫
Ω

Q(x)|un|p
(
eαu

2
n − 1

)
dx.

From (4.11) and inequality c < α∗/(4α0), one has

lim
n→∞

∥un∥2E ≤ 4c <
α∗

α0
.
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Thus, we can pick α > α0 and r1 > 1 such that r1α∥un∥2E < α∗, for large n ∈ N.
Using Hölder’s inequality with exponents 1/r1+1/r2+1/r3 = 1, (4.8), Proposition
2.2 and Theorem 1.1, we get∫

Ω

Q(x)|un|p
(
eαu

2
n − 1

)
dx ≤

(∫
Ω

Q(x)

(
e
r1α∥un∥2

E

(
un

∥un∥E

)2

− 1

)
dx

)1/r1

× ∥un∥pLpr2 (R2;Q)

(∫
Ω

Q(x)dx

)1/r3

≤ C2

(∫
Ω

Q(x)dx

)1/r3

≤ C3|Ω|1/r3 = C3ε
1/r3 .

Above estimate combined with (4.14) implies∫
Ω

Q(x)f(un)undx ≤ C4(ε+ ε1/r3),

for n large. Since a similar estimate holds for
∫
Ω
Q(x)f(u)udx, we infer from (4.13)

that, for each fixed R > 0, there holds JR
1 (n) → 0, as n→ +∞.

In order to estimate JR
2 (n), we take s1 > 1 such that s1α∥un∥2E < α∗, for large

n ∈ N, and argue as before to obtain∫
R2\BR

Q(x)f(un)undx ≤ ε

∫
R2

Q(x)u2ndx+ C5

(∫
R2\BR

Q(x)|un|ps2dx

)1/s2

,

where 1/s1 + 1/s2 = 1. So, by Proposition 2.2,

lim sup
n→∞

∫
R2\BR

Q(x)f(un)undx ≤ ε∥u∥2L2(R2;Q) + C5

(∫
R2\BR

Q(x)|u|p2pdx

)1/s2

≤ C6ε,

for R > 0 large enough. A similar argument provides
∫
R2\BR

Q(x)f(u)udx < ε.

Since ε > 0 is arbitrary, we conclude that JR
2 (n) → 0, as n→ +∞. Recalling that

the same holds for JR
1 (n), we infer from (4.12) that

lim
n→+∞

∫
R2

Q(x)f(un)un dx =

∫
R2

Q(x)f(u)udx.

The limit for
∫
R2 Q(x)F (un) dx is a consequence of the above expression, (f2) and

the Lebesgue Theorem.
It remains to check that u ̸= 0. Suppose, by contradiction, that this is not

the case. Then, (4.3), (4.5) and Corollary 2.3 imply that V ′
2(un)un = on(1), as

n→ +∞. Hence,

∥un∥2E +
1

4
V ′
1(un)un = o(1) +

∫
R2

Q(x)f(un)undx = on(1).

Recalling that V ′
1(un)un = 4V1(un) ≥ 0, we conclude that ∥un∥E → 0, which

contradicts Lemma 4.4. Thus, u ̸= 0 and the lemma is proved. □

We infer from (4.11) that minimizing sequences for c are bounded in E. In the
next result, we prove that the same holds in the space W .

Lemma 4.6. Suppose that f satisfies (f1) − (f2). If (un) ⊂ N is a minimizing
sequence for c < α∗/(4α0), then (un) is bounded in the norm ∥ · ∥W .
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Proof. Using Lemma 4.5, we can assume that un ⇀ u ̸= 0 weakly in E. Since

∥un∥2W = ∥un∥2E +

∫
R2

log(1 + |x|)K(x)u2ndx,

it is sufficient to bound the last integral above. In order to do that, we first notice
that, since I ′(un)un = 0, we get

(4.15)
1

4
V ′
1(un)un ≤ ∥un∥2E +

1

4
V ′
1(un)un =

1

4
V ′
2(un)un +

∫
R2

Q(x)f(un)undx.

By (4.3), V ′
2(un)un = 4V2(un) ≤ 4C∥un∥2E ≤ C1, for all n ∈ N. Moreover, by

Lemma 4.5, the last integral above is bounded, since it converges. So, we conclude
that V ′

1(un)un ≤ C2, for some C2 > 0.
Let R > 0 be such that

∫
BR

K(x)u2 dx > 0. For any x ∈ R2 \B2R and y ∈ BR,

there holds

1 + |x− y| ≥ 1 + |x| − |y| ≥ 1 + |x| −R ≥ 1 +
|x|
2

≥
√

1 + |x|.

Hence,

V ′
1(un)un ≥ 4

∫
R2\B2R

∫
BR

log(1 + |x− y|)K(y)u2n(y)K(x)u2n(x)dydx

≥ 2

∫
R2\B2R

∫
BR

log(1 + |x|)K(y)u2n(y)K(x)u2n(x)dydx

= 2

(∫
BR

K(y)u2n(y)dy

)(∫
R2\B2R

log(1 + |x|)K(x)u2n(x)dx

)
,

and we can use Proposition 2.2 to get

lim sup
n→+∞

∫
R2\B2R

log(1 + |x|)K(x)u2n(x)dx ≤ C2

2

(∫
BR

K(x)u2 dx

)−1

.

On the other hand, since log(1 + |x|) ≤ 1 + |x|, we obtain∫
B2R

log(1 + |x|)K(x)u2n(x)dx ≤ (1 + 2R)∥un∥2E ≤ C3,

and we have done. □

We obtain in what follows the required estimate on the minimax level c.

Lemma 4.7. Suppose that (f3) holds and let α∗ ∈ (0, 4π) be given by Theorem 1.1.
If ν satisfies (1.1), then c < α∗/(4α0).

Proof. Since W ↪→ E ↪→ L4(R2;Q) and this last embedding is compact (see Propo-
sition 2.2), there exists ω ∈W \ {0} such that

∥ω∥2W = S4(Q),

∫
R2

Q(x)ω4dx = 1.

We may assume ω ≥ 0, and therefore we obtain from Lemma 4.2 a number tω > 0
such that tωω ∈ N . So, recalling that V2 ≥ 0, using (4.4), (f3) and the above
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equalities, we obtain

c ≤ I(tωω) ≤
t2ω
2
S4(Q) +

1

4
V1(tωω)−

∫
R2

Q(x)F (tωω)dx

≤ t2ω
2
S4(Q) +

t4ω
2
∥ω∥2L2(R2;K)S4(Q)− t4ων.

But the definition of S2(K) and (1.1) provide

∥ω∥L2(R2;K) ≤
1

S2(K)
∥ω∥2W =

S4(Q)

S2(K)
≤ ν

S4(Q)
,

and therefore

c ≤ t2ω
2
S4(Q) +

t4ω
2
ν − t4ων

≤ 1

2
max
t>0

[
t2S4(Q)− t4ν

]
=

1

2

(
S2
4(Q)

4ν

)
=
S2
4(Q)

8ν
<

α∗

4α0
,

where we have used (1.1) again in the last part. The proof is complete. □

We are ready to present the proof of our existence theorems.

Proof of Theorem 1.2. Let (un) ⊂ N be a minimizing sequence for c. According
to Lemma 4.7, we have that c < α∗/(4α0). Hence, by Lemma 4.5, we may assume
that un ⇀ u ̸= 0 wealy in E. Since (un) is also bounded in W (Lemma 4.6) we also
have that un ⇀ v weakly in W . From the compactness of the embeddings given by
Proposition 2.2, we conclude that un(x) → u(x) and un(x) → v(x) for a.e. x ∈ R2

and consequently v = u ∈W .
Let tu > 0 be such that tuu ∈ N . Arguing as in (4.11), we conclude that

(4.16) c ≤ I(tuu) =
1

4
∥tuu∥2E +

∫
R2

Q(x)

(
1

4
f(tuu)tuu− F (tuu)

)
dx.

By hypothesis (f4), the function h(s) := (1/4)f(s)s − F (s) is increasing in (0,∞)
and decreasing in (−∞, 0) (see [3, Lemma 2.4]). Hence, after we proving that
tu ∈ (0, 1], we can use I(un) = c + on(1), (4.11), the weak semicontinuity of the
norm, Lemma 4.5, tu ≤ 1, the monotonicity of h and (4.16), to get

c = lim inf
n→+∞

I(un) ≥
1

4
∥u∥2E +

∫
R2

Q(x)

(
1

4
f(u)u− F (u)

)
dx ≥ I(tuu) ≥ c.

Thus, I(tuu) = c and we can use a (by now standard) deformation argument as in
[7, Proposition 3.1] (see also [4, pp. 1163]) to conclude that I ′(tuu) = 0, that is,
tuu ̸= 0 is the desired solution.

It remains to prove that tu ≤ 1 or, equivalently, that I ′(u)u ≤ 0 (see Remark
4.3). We first check that

(4.17) lim inf
n→+∞

V ′
1(un)un ≥ V ′

1(u)u, lim
n→+∞

V ′
2(un)un = V ′

2(u)u.

Indeed, for any R > 0, a simple computation shows that

V ′
1(un)un ≥ 4Γn(R) + 4

∫
BR

∫
BR

log(1 + |x− y|)K(y)u2(y)K(x)u2(x)dydx,

where Γn := Γn,1 + Γn,2 and

Γn,1 :=

∫
BR

∫
BR

K(y)K(x)u2n(y)
(
u2n(x)− u2(x)

)
dydx,
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and

Γn,2 :=

∫
BR

∫
BR

K(y)K(x)
(
u2n(y)− u2(y)

)
u2(x)dydx.

Using Hölder’s inequality and Proposition 2.2, we may write

|Γn,1| ≤ ∥un∥2L2(R2;K)∥un − u∥L2(R2;K)∥un + u∥L2(R2;K) = on(1),

as n→ +∞. Since a similar estimate holds for Γn,2, we conclude that

lim inf
n→∞

V ′
1(un)un ≥ 4

∫
BR

∫
BR

log(1 + |x− y|)K(y)u2(y)K(x)u2(x)dydx.

For proving the first statement in (4.17), it is sufficient to let R → +∞ in the
above expression and use Monotone Convergence Theorem together with the first
equality in (4.3).

In order to prove the second part of (4.17), we first recall that V ′
2(un)un =

4V2(un) to see that Σn := |V ′
2(un)un − V ′

2(u)u| can be written as

Σn = 4

∫
R2

∫
R2

log(1 + |x− y|−1)K(y)K(x)
(
u2n(y)u

2
n(x)− u2(y)u2(x)

)
dydx.

Arguing as in the estimate of Γn and using log(1 + r) ≤ r, for r > 0, we obtain

|V ′
2(un)un − V ′

2(u)u| ≤ 4Σ1,n + 4Σ2,n,

where

Σ1,n :=

∫
R2

∫
R2

K(y)K(x)u2n(y) |un(x)− u(x)| |un(x) + u(x)|
|x− y|

dydx

and

Σ2,n :=

∫
R2

∫
R2

K(y)K(x) |un(y)− u(y)| |un(y) + u(y)|u2(x)
|x− y|

dydx.

Using Proposition 4.1 with µ = 1, r = s = 4/3, Hölder’s inequality and Corollary
2.3, we obtain

|Σ1,n| ≤ C∥un∥2L8/3(R2;K4/3)∥un − u∥L8/3(R2;K4/3)∥un + u∥L8/3(R2;K4/3) = on(1),

as n→ +∞. The same can be done with Σ2,n and therefore V ′
2(un)un = V ′

2(u)u+
on(1), as claimed.

Recalling that the norm is weakly lower semicontinuous, we can pass the lim inf
in the equality 0 = I ′(un)un, use (4.17) and Lemma 4.5, to obtain

I ′(u)u = ∥u∥2E +
1

4
V ′
1(u)u− 1

4
V ′
2(u)u−

∫
R2

Q(x)f(u)udx ≤ 0.

This concludes the proof of Theorem 1.2. □

Using the solution obtained in Theorem 1.2 and elliptic regularity, we can easily
obtain a weak solution for the system (S).

Proof of Theorem 1.3. Let u ∈ W be the solution given by Theorem 1.2, φ ∈
C∞

0 (R2) and R > 0 be such that the support of φ is contained in BR. For any
1 < p <∞, we have that∫

BR

|K(x)u2|pdx ≤ ∥K∥pL∞(R2)

∫
BR

|u|2pdx <∞,
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sinceW ↪→ L2p(BR). It follows from the classical potential theory (see [23, Theorem
9.9]) that ϕu := Γ2 ∗ (Ku2) ∈W 2,p(BR) and ∆ϕu = K(x)u2 for a.e. x ∈ BR. This
and Divergence Theorem ensure that

−
∫
BR

∇ϕu · ∇φdx =

∫
BR

(∆ϕu)φdx =

∫
BR

(K(x)u2)φdx.

Therefore, the pair (u, ϕu) ∈ W ×W 2,p
loc (R2) is a weak solution of system (S) and

the theorem is proved. □
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