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Abstract. In this paper, we prove a Hardy-Sobolev type inequality which is

posteriorly used to give a characterization of an important class of Sobolev

space. The abstract setting is applied to obtain the existence of solution for a
class of elliptic equations with Neumann/Robin boundary conditions.

1. Introduction and main results

For any domain Ω ⊂ RN , we denote by C∞
δ (Ω) the set of all functions v ∈

C∞
0 (RN ) restricted to Ω. For N ≥ 2, let RN

+ :=
{
(x′, xN ) : x′ ∈ RN−1, xN > 0

}
be

the usual upper half-space. The main goal of this note is to give a characterization
of the Sobolev space defined as the completion of C∞

δ (RN
+ ) with respect to the norm

v 7→

(∫
RN

+

|∇v|2dx+

∫
RN−1

v2dx′

)1/2

.

Our starting motivation arises from the growing interest in partial differential
with Neumann/Robin boundary conditions of the form{

−∆v = f(x, v), in RN
+

∂v
∂ν + λv = g(x, v), on ∂RN

+ ,

see for instance, [1, 4, 8, 11] and references therein. One of the challenges in solving
this kind of problem via variational methods is to obtain embedding into Lebesgue
spaces. This step is crucial because it allows us to analyze the properties of the
solutions and apply powerful tools from functional analysis. As it is well-known,
Hardy-Sobolev inequality and its variants play an important role in this feature.
For example, Opic-Kufner [10] (see also [2, 7, 8, 11, 14, 3]) and references therein
provide different conditions on the weight functions w1 and w2 for the validity of
the Hardy-Sobolev inequality:∫

Ω

w1(x)|u|pdx ≤
∫
Ω

w2(x)|∇u|pdx, u ∈ C∞
0 (Ω).

In the aforementioned works, the authors deal with functions that vanish at the
boundary. However, when dealing with PDEs with Neumann/Robin boundary
conditions (see Section 2), it is important to consider functions that can take
nonzero values on the boundary of Ω. Therefore, we first cite the papers by
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Janssen [8] and Pfluger [11], where they obtained a constant C0 > 0, satisfying
the following Hardy type inequality:∫

Ω

|u|p

(1 + |x|)p
dx ≤ C0

(∫
Ω

|∇u|pdx+

∫
∂Ω

|x · ν|
(1 + |x|)p

|u|pdσ
)
, u ∈ C∞

δ (Ω).

Here, 1 < p < N and ν denotes the unit outward normal vector on ∂Ω. For further
results, we refer to the works [6, 7, 13, 14], and their references.

In order to state our results, we denote by E1,2 the completion of C∞
δ (RN

+ ) with
respect to the norm

∥v∥ :=

(∫
RN

+

|∇v|2dx+

∫
RN−1

v2dx′ +

∫
RN

+

v2

(1 + xN )2
dx

)1/2

.

In our first result, we prove the following Hardy-type inequality:

Theorem 1.1 (Hardy inequality). For any v ∈ E1,2, there holds

(1.1)
1

4

∫
RN

+

v2

(1 + xN )2
dx ≤

∫
RN

+

|∇v|2dx+
1

2

∫
RN−1

v2dx′.

The above result is an improvement of [1, Theorem 1.1]. Moreover, it also
complements some related results which can be found in the papers [12, 5, 9],
where Hardy-type inequalities are stated in the context of C∞

0 (RN
+ ) functions.

As a direct consequence of the above theorem, we see that the norm ∥ · ∥ is
equivalent to

∥v∥E1,2 :=

(∫
RN

+

|∇v|2dx+

∫
RN−1

v2dx′

)1/2

.

In order to better understand this new norm, we denote by X1,2 the completion of
C∞

δ (RN
+ ) with respect to the norm

∥u∥X1,2 :=

(∫
RN

+

(1 + xN )2|∇u|2dx

)1/2

.

If N ≥ 3, we clearly have that X1,2 ↪→ D1,2(RN
+ ) ↪→ L2∗(RN

+ ). Hence, it is
natural to ask if X1,2 can be immersed into some Lebesgue spaces even for N = 2.
Corollary 1.3 asserts that the answer is positive. It is a consequence of the next
theorem, which is the main result of this note.

Theorem 1.2 (An isometric model for E1,2). The linear map

T :
(
E1,2, ∥ · ∥E1,2

)
→
(
X1,2, ∥ · ∥X1,2

)
defined by T(v) := v(1 + xN )−1 is an isometry, that is, it is bijective and

∥Tv∥X1,2 = ∥v∥E1,2 , ∀ v ∈ E1,2.

As a byproduct, we obtain the following:

Corollary 1.3. For any u ∈ X1,2, there holds

∥u∥2W 1,2(RN
+ ) ≤ 5∥u∥2X1,2 .

In particular, X1,2 ↪→ W 1,2(RN
+ ).

In the next section, we prove the results stated in this introduction. In Section
3, we present a simple application in PDE.
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2. Proofs of Theorems 1.1, 1.2 and Corollary 1.3

Proof of Theorem 1.1. We first prove the inequality for v ∈ C∞
δ (RN

+ ). Integrating
by parts, we obtain∫ ∞

0

v2

(1 + xN )2
dxN = −

∫ ∞

0

v2
d

dxN

1

(1 + xN )
dxN

= − v2

(1 + xN )

∣∣∣∞
xN=0

+

∫ ∞

0

2vvxN

(1 + xN )
dxN .

Since v has compact support, for any ε > 0 we get∫ ∞

0

v2

(1 + xN )2
dxN = v(x′, 0)2 +

∫ ∞

0

2vvxN

(1 + xN )
dxN

≤ v(x′, 0)2 +

∫ ∞

0

[
ε

v2

(1 + xN )2
+

1

ε
|∇v|2

]
dxN ,

where we have used 2ab ≤ εa2 + ε−1b2. After integrating over RN−1, we obtain

ε(1− ε)

∫
RN

+

v2

(1 + xN )2
dx ≤

∫
RN

+

|∇v|2dx+ ε

∫
RN−1

v(x′, 0)2dx′

and the result follows by picking ε = 1/2.
For an arbitrary v ∈ E1,2, we consider a sequence (vk) ⊂ C∞

δ (RN
+ ) such that

vk → v in E1,2. Thus,
|∇vk| → |∇v|, in L2(RN

+ ),

|vk| → |v|, in L2(RN−1),

|vk|
(1+xN ) →

|v|
(1+xN ) , in L2(RN

+ ),

and we can take the inequality

1

4

∫
RN

+

v2k
(1 + xN )2

dx ≤
∫
RN

+

|∇vk|2dx+
1

2

∫
RN−1

v2kdx
′

to the limit to conclude the proof.
□

Proof of Theorem 1.2. Let v ∈ E1,2 and denote u := Tv = v(1 + xN )−1. A
straightforward computation shows that

|∇v|2 = (1 + xN )2|∇u|2 + 2(1 + xn)uuxN
+ u2.

Using integration by parts, we get∫
RN

+

|∇v|2dx =

∫
RN

+

[
(1 + xN )2|∇u|2 + (1 + xn)(u

2)xN
+ u2

]
dx

=

∫
RN

+

(1 + xN )2|∇u|2dx−
∫
RN−1

v2dx′,

where we have used that the exterior normal to ∂RN
+ is ν = (0′,−1). Thus,

(2.1) ∥v∥2E1,2 =

∫
RN

+

|∇v|2dx+

∫
RN−1

v2dx′ =

∫
RN

+

(1 + xN )2|∇u|2dx = ∥Tv∥2X1,2

and the proof is concluded. □
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Proof of Corollary 1.3. Given u ∈ X1,2, we set v := T−1u = (1 + xN )u ∈ E1,2 and
compute ∫

RN
+

(1 + xN )2|∇u|2dx =

∫
RN

+

|∇v|2dx+

∫
RN−1

v2dx′

≥ 1

4

∫
RN

+

v2

(1 + xN )2
dx =

1

4

∫
RN

+

u2dx,

where we have used Theorem 1.2 and inequality (1.1). By using the above inequality
and 1 ≤ (1 + xN )2, we conclude that∫

RN
+

[
|∇u|2 + u2

]
dx ≤ ∥u∥2X1,2 +

∫
RN

+

u2dx ≤ 5∥u∥2X1,2 ,

and we have done. □

3. Applications to PDE’s

In this section, we briefly discuss how we can apply our abstract results to look
for weak solution of partial differential equations. As a simple example, we pick
a ∈ L∞(RN

+ ) and consider the zero-mass problem

(P )

{
−∆v = a(x)|v|q−2v, in RN

+

∂v
∂ν + v = 0, on ∂RN

+ .

Formally, the energy functional associated to the above problem is given by

I(v) := 1

2

∫
RN

+

|∇v|2dx+

∫
RN−1

v2dx′ − 1

p

∫
RN

+

a(x)|v|qdx, v ∈ E1,2.

Let 2∗ := 2N/(N − 2), if N ≥ 3, and 2∗ := ∞, if N = 2. When N ≥ 3, the above
functional is well defined for q = 2∗ due to the embedding D1,2(RN

+ ) ↪→ L2∗(RN
+ ).

However, it is not clear how we can deal with the subcritical case 2 ≤ q < 2∗.
We are going to show that, using the isometry T, we may consider the problem

when the power q belongs to the classical subcritical range. More specifically, we
assume that

(a0) 2 ≤ q < 2∗ and there exists C1 > 0, such that

0 ≤ a(x) ≤ C1

(1 + xN )q
, ∀x ∈ RN

+ .

Under the above hypothesis, we can use Corollary 1.3 to guarantee that the
functional

J (u) :=
1

2

∫
RN

+

(1 + xN )2|∇u|2dx− 1

2

∫
RN

+

a(x)(1 + xN )q|u|qdx, u ∈ X1,2,

is well defined and belongs to C1(X1,2,R). It follows from Theorem 2.1 that
I(T−1u) = J (u), for any u ∈ X1,2. Since T is linear, we conclude that u ∈ X1,2 is
a critical point of J if, and only if, v = T−1u ∈ E1,2 is a critical point of I.

Remark 3.1. If v ∈ C2(RN
+ ) ∩ C1(RN−1) is a classical solution of (P ), we may

use a straightforward computation to verify that u = (1 + xN )−1v is a solution of{
−div((1 + xN )2∇u) = a(x)(1 + xN )q|u|q−2u, in RN

+

∂u
∂ν = 0, on ∂RN

+ .
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In order to obtain a critical point for J , we need some kind of compactness. So,
suppose that b ∈ L∞

loc(RN
+ ) is nonnegative and b(x) → 0 as |x| → +∞. We shall

prove that the embedding of X1,2 into the weighted Lebesgue space

Lq
b(R

N
+ ) :=

{
u ∈ L1

loc(RN
+ ) :

∫
RN

+

b(x)|u|qdx < ∞

}
is compact. Indeed, let (uk) ⊂ X1,2 be such that uk ⇀ 0 weakly in X1,2. For
any given ε > 0, there exists R = Rε > 0 such that b(x) ≤ ε in RN

+ \ BR(0).

Consequently, if we denote B+
R := RN

+ ∩BR(0), we have that∫
RN

+

b(x)|uk|qdx ≤ ∥b∥L∞(B+
R)

∫
B+

R

|uk|qdx+ ε

∫
RN

+ \B+
R

|uk|qdx.

By using Corollary 1.3, the compact embedding W 1,2(B+
R) ↪→ Lq(B+

R), and the
boundedness of (uk), we can further derive:

lim sup
k→+∞

∫
RN

+

b(x)|uk|qdx ≤ C2ε,

where C2 := supk∈N{∥uk∥Lq(RN
+ )} > 0. Since ε > 0 is arbitrary, we conclude that

uk → 0 strongly in Lq
b(RN

+ ).
We are now able to present the following application of our abstract results:

Theorem 3.2. Suppose that 2 ≤ q < 2∗. If a : RN
+ → R satisfies (a0) and

(a1) lim
|x|→+∞

a(x)(1 + xN )q = 0,

then the problem (P ) has a nonzero weak solution.

Proof. As noticed before, we need only to obtain a nonzero critical point for J . In
order to do that, we define

M :=

{
u ∈ X1,2 :

∫
RN

+

a(x)(1 + xN )q|u|qdx = 1

}
and

c0 := inf
u∈M

∥u∥2X1,2 .

If (uk) ⊂ M is a minimizing sequence for c0, we may assume that uk ⇀ u0 weakly
in X1,2. Since the norm is weakly lower semicontinuous, we get

∥u0∥2X1,2 ≤ lim inf
k→+∞

∥uk∥2X1,2 = c0.

Moreover, from (a1) and the former considerations, along a subsequence we have
that

1 = lim
k→+∞

∫
RN

+

a(x)(1 + xN )q|uk|qdx =

∫
RN

+

a(x)(1 + xN )q|u|qdx.

All together, the above expressions imply that c0 is attained at u0 ∈ M. By using
the Lagrange’s Multiplier Theorem and a straightforward computation, we conclude

that u := c
1/(q−2)
0 u0 ∈ X1,2 is a nonzero critical point of J . □
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We conclude the paper by noticing that we can deal with nonlinearities of type
a(x)f(u) provided we impose correct growth conditions on f . Moreover, we can
use the isometry T and its consequences to deal with problems like{

−div(b(x)∇u) = a(x)f(u), in RN
+

∂u
∂ν = 0, on ∂RN

+ .

We omit the details since the focus here is the abstract setting developed in the
first section.
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