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Abstract. We establish some embedding results for weighted Sobolev spaces.

As an application, we obtain one nonzero solution for the equation

−div(|∇u|N−2∇u) + V (x)|u|N−2u = λQ(x)f(u), in RN ,

where V, Q are nonnegative potentials, λ > 0 is a large parameter and f has

critical growth in the Trudinger-Moser sense.

1. Introduction and main results

In this paper, we present a functional space to deal with the quasilinear equation

(P) −∆Nu+ V (x)|u|N−2u = λQ(x)f(u), in RN ,

where N ≥ 2, ∆Nu := div(|∇u|N−2∇u) is the N -laplacian operator, λ > 0 is
a parameter and V , Q are nonnegative potentials. If f(s) = |s|q−2s and we are
intending to apply variational methods, it is natural to look for an inequality like

(1.1)

∫
RN

Q(x)|u|qdx ≤ C0

(∫
RN

[
|∇u|N + V (x)|u|N

]
dx

)q/N

, ∀u ∈ C∞
0 (RN ),

with C0 = C0(q) > 0 independent of u. Our purpose here is to present conditions
on V and Q which guarantee the above inequality for any q ≥ N .

In order to precisely present our variational setting, we shall suppose that the
potentials V and Q ̸≡ 0 satisfy

(V Q) there exist cV , cQ > 0 and γ, β ∈ R such that, for any x ∈ RN , there hold

cV
(1 + |x|)γ

≤ V (x), 0 ≤ Q(x) ≤ cQ
(1 + |x|)β

.

Let p > 1, γ ∈ R and consider the space E1,p,γ defined as the completion of C∞
0 (RN )

with respect to the norm

∥u∥E1,p,γ :=

(∫
RN

[
|∇u|p + |u|p

(1 + |x|)γ
]
dx

)1/p

.
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Given a positive function ω ∈ L1
loc(RN ) and s ≥ 1, we define the weighted Lebesgue

space

Ls(RN , ω) :=

{
u ∈ L1

loc(RN ) : ∥u∥Ls(RN ,ω) :=

(∫
RN

ω(x)|u|s dx
)1/s

< +∞

}
.

In the first part of this paper, we aim to obtain conditions on β ≥ 0, γ > 0 and
q > 1 in such a way that, for some constant C0 > 0, the following inequality holds

(1.2) ∥u∥q
Lq(RN ,(1+|·|)−β)

≤ C0∥u∥qE1,N,γ , ∀u ∈ E1,N,γ .

Before presenting our result we notice that, if 1 < p < N and p∗ := Np/(N − p), it
follows from Gagliardo-Nirenberg inequality that

∥u∥p
∗

Lp∗ (RN ,(1+|·|)−β)
≤ ∥u∥p

∗

Lp∗ (RN )
≤ C1

(∫
RN

|∇u|pdx
)p∗/p

≤ C1∥u∥p
∗

E1,p,γ ,

for any u ∈ C∞
0 (RN ). Moreover, if 1 < q < p∗, we can use Hölder’s inequality with

exponents s = p∗/q > 1 and s′ = p∗/(p∗ − q), to get

∥u∥q
Lq(RN ,(1+|·|)−β)

≤ ∥u∥q
Lp∗ (RN )

(∫
RN

1

(1 + |x|)θ
dx

)1/s′

≤ C2∥u∥qLp∗ (RN )
,

whenever θ := βp∗/(p∗ − q) > N . So, we can use Gagliardo-Nirenberg inequality
again to show that (1.2) holds if we replace E1,N,γ by E1,p,γ , with p(N − β)/(N −
p) < q ≤ p∗.

As we will see, the equation (1.2) represents a (more delicate) borderline case.
There are some obstructions, since it can be proved that the inequality fails,
for example, if max{β, γ} < N and 1 < q < N(N − β)/(N − γ) (see Remark
2.2). In our first result, we show that this borderline case can be considered for
some appropriated range for the parameters. More specifically, we shall prove the
following:

Theorem 1.1. Suppose that q ≥ N ≥ 2. Then the inequality (1.2) is true if one
of the following conditions holds:

(i) 0 < γ ≤ N ≤ β;

(ii) N < γ ≤ β and q ≤ N(β −N)/(γ −N).

Notice that, in the setting of the above theorem, the inequality (1.1) is a direct
consequence of (V Q). If we think about that inequality with N replaced by
1 < p < N and potentials V and Q which are radials, many interesting papers have
state the inequality in the context of radial functions, see for instance [21, 22, 23]
and references therein. This seems to be the simplest case, since we may consider
radial functions which has some prescribed decay rates at infinity. Even in the case
1 < p < N , when have no symmetry, the situation is more involved and we need to
control the behavior of the potentials at infinity. Some results were presented by
Opic and Kufner [18], Ambrosseti, Felli and Machiodi [4], Ambrosetti and Wang
[7], Ambrosetti, Malchiodi and Ruiz [5], Bonheure and Schaftingen [9], Alves and
Souto [3], among others. We emphasize that we are considering the borderline case
and we do not assume symmetry.

Recall that the classical Sobolev Embedding Theorem assures thatW 1,N (RN ) ↪→
Lq(RN ), for any q ≥ N . Theorem 1.1 states an analogous result for our space
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E1,N,γ , namely, for any 0 < γ ≤ N ≤ β and q ≥ N , we have the continuous
embedding

(1.3) E1,N,γ ↪→ Lq(RN , (1 + | · |)−β).

Therefore, also in accordance with the W 1,N (RN ) case, it is natural to look for an
embedding from E1,N,γ into Orlicz spaces. To be more precise, for α > 0, we define
the function

Φα(s) := eα|s|
N/(N−1)

−
N−2∑
j=0

αj

j!
|s|Nj/(N−1), s ∈ R.

In our second result, we prove the following Trudinger-Moser type result:

Theorem 1.2. Suppose that N ≥ 2 and 0 < γ ≤ N ≤ β. Then, for any α > 0
and u ∈ E1,N,γ , the function (1+ | · |)−βΦα(u) belongs to L

1(RN ). Moreover, there
exists α∗ = α∗(N) > 0 such that

sup
{u∈E1,N,γ :∥u∥

E1,N,γ≤1}

∫
RN

1

(1 + |x|)β
Φα(u) dx < +∞,

for any 0 < α < α∗.

The first results concerning Trudinger-Moser type inequalities have appeared in
the papers of Yudovich, Moser, Trudinger [26, 17, 24], for the bounded domain
case. Similar results for unbounded domains have been established by Cao [10]

and Ruf [19] in R2, and by do Ó [11], Adachi and Tanaka [1], Li and Ruf [16], in
higher dimensions. Concerning the case of weighted Sobolev spaces, we can refer
the reader to [2, 14, 12, 15, 28, 8] and references therein. Some of these works
considered radial weight functions, in such a way that rearrangement procedures
work well. We finally mention that Theorem 1.2 is closely related to some results
obtained in the 2-dimensional case by do Ó, Sani and Jianjun [13], where the authors
used an approach borrowed from Opnic-Kurfner [18]. Here, we provide a different
and simplified proof.

In the final part of the paper, we turn back to problem (P) by assuming that
the nonlinearity f ∈ C(R,R) has exponential growth at infinity and is N -sublinear
at the origin, that is,

(f0) there exists α0 > 0 such that

lim
|s|→+∞

|f(s)|
eα|s|N/(N−1)

=

{
0, if α > α0,
+∞, if α < α0;

(f1) f(s) = o(|s|N−1) as s→ 0.

As we shall see, the above conditions imply that the map u 7→
∫
RN Q(x)F (u)dx is

of class C1, where F (s) :=
∫ s

0
f(t) dt. Hence, we can apply standard variational

techniques to obtain solutions for (P).
With this basic assumption in hands, we can explore a huge variety of conditions

on f to obtain existence of solutions for the problem. In order to illustrate this
feature, we shall prove the following:

Theorem 1.3. Suppose that (V Q) holds with 0 < γ ≤ N < β. If f satisfies
(f0)− (f1) and

(f2) there exists θ > N such that

0 < θF (s) ≤ f(s)s, s ∈ R;



4 J. L. CARVALHO, M. F. FURTADO, AND E. S. MEDEIROS

(f3) there exist cF > 0 and ν > N such that F (s) ≥ cF |s|ν , for any s ∈ R,
then there exists λ∗ > 0 such that, for any λ > λ∗, the equation (P) has a nonzero
weak solution.

In the proof of this last theorem, we apply the classical Moutain Pass Theorem
[6]. Condition (f2) has been appeared in many papers and is related with the
boundedness of Palais-Smale sequences. The technical condition (f3) enable us to
localize the minimax level in the range where we have compactness. This overcomes
the lack of compactness which occurs due to the critical growth of f .

The rest of the paper is organized as follows: in the next two section we prove
our two first theorems, one in each section. In the final Section 4, we obtain a
solution for (P).

2. Sobolev type embedding

In this section, we prove our first result for the space E1,N,γ . The mains idea
consists in a covering process where we write the entire space as a union of a ball
with annular sets. For any x0 ∈ RN and r > 0, we denote along all the paper
BR(x0) := {x ∈ RN : |x− x0| < R} .

Recall that the Sobolev embedding W 1,N (B1(0)) ↪→ Lq(B1(0)) holds for any

q ≥ N . Hence, since any function u ∈ E1,N,γ clearly belongs to W 1,N
loc (RN ), there

exists C1 = C1(N, q) > 0 such that

(2.1)

∫
B1(0)

|u|q

(1 + |x|)β
dx ≤ C1

(∫
B1(0)

[
|∇u|N + |u|N

]
dx

)q/N

≤ C2

(∫
B1(0)

[
|∇u|N +

|u|N

(1 + |x|)γ

]
dx

)q/N

,

with C2 = C2(N, q, γ) > 0.
We now define, for each j ∈ N ∪ {0}, the annular set

Aj := {z ∈ RN : 2j < |z| < 2j+1},

and prove the following technical estimate.

Lemma 2.1. Let β, γ > 0 and q ≥ N . Then, for each j ∈ N ∪ {0}, there exists a
constant C = C(N, γ, q) > 0 such that

(2.2)

∫
Aj

|u|q

(1 + |x|)β
dx ≤ C

(∫
Aj

[
2ζ1j |∇u|N + 2ζ2j

|u|N

(1 + |x|)γ
]
dx

)q/N

,

where

ζ1 :=
N

q
(N − β), ζ2 := (γ −N) +

N

q
(N − β).

Proof. By using the change of variables y = 2−jx, we get∫
Aj

|u|q

(1 + |x|)β
dx ≤ 1

2βj

∫
Aj

|u|qdx = 2(N−β)j

∫
A0

|uj(y)|qdy,
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where uj(y) := u(2jy). From the Sobolev embedding W 1,N (A0) ↪→ Lq(A0), we
obtain C = C(N, q) > 0 such that∫

A0

|uj(y)|qdy ≤ C

(∫
A0

[
|∇uj(y)|N + |uj(y)|N

]
dy

)q/N

= C

(∫
Aj

[
|∇u|N + 2−Nj |u|N

]
dx

)q/N

.

Since (1 + 2j+1) ≤ 2 · 2j+1 and γ > 0, we get∫
Aj

2−Nj |u|Ndx ≤ 2−Nj(1 + 2j+1)γ
∫
Aj

|u|N

(1 + |x|)γ
dx

≤ 22γ+(γ−N)j

∫
Aj

|u|N

(1 + |x|)γ
dx.

Combining the above estimates, we deduce that∫
Aj

|u|q

(1 + |x|)β
dx ≤ 2(N−β)j22γq/NC

(∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)γ
]
dx

)q/N

,

and the lemma is proved. □

We are ready to prove our first main result.

Proof of Theorem 1.1. If any of the conditions (i) or (ii) of the the theorem holds,
the numbers ζ1, ζ2 obtained in Lemma 2.1 are nonpositive. Hence, for any
j ∈ N ∪ {0}, we have that∫

Aj

|u|q

(1 + |x|)β
dx ≤ C

(∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)γ
]
dx

)q/N

.

Recalling that the function s 7→ sq/N is super additive for q ≥ N , we conclude that

∞∑
j=0

∫
Aj

|u|q

(1 + |x|)β
dx ≤ C

∞∑
j=0

(∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)γ
]
dx

)q/N

,

≤ C

(∫
RN\B1(0)

[
|∇u|N +

|u|N

(1 + |x|)γ
]
dx

)q/N

.

Combining the above estimate with (2.1), we obtain∫
RN

|u|q

(1 + |x|)β
dx ≤ (C2 + C)∥u∥q

E1,N,γ ,

which concludes the proof. □

Remark 2.2. It is worth mention that inequality (1.2) could fail for some choices
of the parameters. Indeed, pick ω ∈ C∞

0 (RN ) a nonzero function vanishing near
the origin, define uλ(x) := ω(λx), for λ > 0, and suppose that

(2.3) max{γ, β} < N, 0 < q <
N(N − β)

(N − γ)
.
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Using the change of variables y = λx, we get∫
RN

|∇uλ(x)|Ndx = C1 > 0,

and, for γ > 0,∫
RN

|uλ|N

(1 + |x|)γ
dx ≤

∫
RN

|uλ|N

|x|γ
dx = λγ−N

∫
RN

|ω(y)|N

|y|γ
dy = C2λ

γ−N .

On the other hand, there exist C3, C4 > 0 such that,∫
RN

|uλ|q

(1 + |x|)β
dx ≥ C3

∫
RN\B1(0)

|uλ|q

|x|β
dx = C4λ

β−N .

If (1.2) holds, we obtain

1

C0
≤

(∫
RN

[
|∇uλ|+ |uλ|N

(1+|x|)γ

]
dx
)q/N

∫
RN

|uλ|q
(1+|x|)β dx

≤
(
C1 + C2λ

γ−N
)q/N

C4λβ−N
≤ C5

(
λθ1 + λθ2

)
,

for some C5 > 0 and

θ1 = N − β, θ2 =
q

N
(γ −N) + (N − β).

But (2.3) implies that θ1, θ2 > 0, and we obtain a contradiction as λ→ 0+.

3. A Trudinger-Moser type inequality

We present in this section the proof of Theorem 1.2. We start with two technical
results.

Lemma 3.1. Let x0 ∈ RN and v ∈W 1,N
0 (BR(x0)) be such that

∫
BR(x0)

|∇v|Ndx ≤
1. Then there exists C = C(N) > 0 such that∫

BR(x0)

ΦαN
(v)dx ≤ C(N) ·RN

∫
BR(x0)

|∇v|Ndx,

where αN := Nω
1/(N−1)
N−1 and ωN−1 is the measure of the unit sphere in RN−1.

Proof. See [25, Lemma 3.1]. □

The second auxiliar result reads as

Lemma 3.2. Suppose that 0 < γ ≤ N ≤ β. Then, there exist CN > 0 and
α∗ = α∗(N) > 0 such that∫

RN

1

(1 + |x|)β
Φα(u) dx ≤ CN ,

for any 0 < α < α∗ and u ∈ E1,N,γ verifying ∥u∥E1,N,γ ≤ 1.

Proof. Since the above integral and ∥·∥E1,N,γ are monotonic in β and γ, respectively,
we may consider γ = β = N . Let φ ∈ C∞

0 (B2(0)) be such that φ ≡ 1 in B1(0) and
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|∇φ| ≤ 2 in B2(0). For any u ∈ E1,N,γ such that ∥u∥E1,N,γ ≤ 1, there hold∫
B2(0)

|∇(φu)|Ndx ≤ C1

∫
B2(0)

|∇u|Ndx+ C1

∫
B2(0)

|u|Ndx

≤ C1

∫
B2(0)

|∇u|Ndx+ C1 · 3N
∫
B2(0)

|u|N

(1 + |x|)N
dx

≤ C2

∫
B2(0)

[
|∇u|N +

|u|N

(1 + |x|)N

]
dx ≤ C2,

with C2 = C2(N) > 0. Hence, if we set v := (1/C2)
1/Nφu and apply Lemma 3.1,

we obtain ∫
B2(0)

ΦαN
(v) dx ≤ C(N) · 2N

∫
B2(0)

|∇v|N dx ≤ C3,

with C3 := C(N) · 2N .
Form the definition of Φα, we easily conclude that

(3.1) Φα(ts) = ΦαtN/(N−1)(s), s ∈ R, t > 0.

Thus, since φ ≡ 1 in B1(0) and Φα ≥ 0 is monotonic in α, we have that∫
B1(0)

Φα(u) dx =

∫
B1(0)

Φα(φu) dx ≤
∫
B2(0)

Φα(C
1/N
2 v)dx

=

∫
B2(0)

Φ
αC

1/(N−1)
2

(v) dx ≤
∫
B2(0)

ΦαN
(v) dx ≤ C3,

whenever

0 < α <
αN

C
1/(N−1)
2

.

Hence,

(3.2)

∫
B1(0)

1

(1 + |x|)N
Φα(u) dx ≤ C3.

We now consider, for each j ∈ N ∪ {0}, the annulus Aj = {z ∈ RN : 2j <
|z| < 2j+1} and claim that, if α > 0 is small enough, there exists C4 = C4(N) > 0,
independent of j, such that

(3.3)

∫
Aj

1

(1 + |x|)N
Φα(u) dx ≤ C4

∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)N

]
dx.

By using this inequality and (3.2), we get∫
RN

1

(1 + |x|)N
Φα(u) dx ≤ C3 +

∞∑
j=0

∫
Aj

1

(1 + |x|)N
Φα(u) dx.

≤ C3 + C4

∫
RN\B1(0)

[
|∇u|N +

|u|N

(1 + |x|)N

]
dx,

and therefore ∫
RN

1

(1 + |x|)N
Φα(u) dx ≤ CN := C3 + C4,

whenever u ∈ E1,N,γ satisfies ∥u∥E1,N,γ ≤ 1.
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It remains to be proved that (3.3) holds. First, we use the change of variables
y = 2−jx to obtain, for uj(y) := u(2jy), the following

(3.4)

∫
Aj

1

(1 + |x|)N
Φα(u) dx ≤ 1

2jN

∫
Aj

Φα(u) dx =

∫
A0

Φα (uj) dy.

For each y ∈ A0, set Ry := dist(y, ∂A0) and notice that BRy
(y) ⊂ A0.

Moreover, from the compactness of A0, we obtain points y1, . . . , yk ∈ A0 such that

A0 ⊂
⋃k

i=1BRi/2(yi), where Ri := Ryi
. For each i = 1, . . . , k, we set Bi := BRi

(yi)

and pick a function φi ∈ C∞
0 (Bi) such that 0 ≤ φi ≤ 1, φi ≡ 1 in BRi/2(yi) and

|∇φi| ≤ 4/Ri in B
i. We have that∫

Bi

|∇ (φiuj)|N dy ≤ C5

∫
Bi

|∇uj |Ndy + C6R
−N
i

∫
Bi

|uj |Ndy

≤ C5

∫
A0

|∇u(2jy)|N2jNdy + C6R
−N
i

∫
A0

|u(2jy)|Ndy

= C5

∫
Aj

|∇u|Ndx+
C6

RN
i 2jN

∫
Aj

|u|Ndx.

Since j ≥ 0, we have that (1 + 2j+1) ≤ 4 · 2j , and therefore∫
Aj

|u|Ndx ≤ 4N2jN
∫
Aj

|u|N

(1 + |x|)N
dx.

All together, the above inequalities imply that,

(3.5)

∫
Bi

|∇ (φiuj)|N dy ≤ C7

∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)N

]
dx,

with C7 = C7(N) > 0.
Since ∥u∥E1,N,γ ≤ 1, the above inequality shows that we can apply Lemma

Lemma 3.1 with v := (1/C7)
1/N

φiuj to obtain C8 = C8(N) > 0 such that∫
Bi

ΦαN
(v) dy ≤ C(N) ·RN

i

∫
Bi

|∇v|Ndy

≤ C8

∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)N

]
dx,

where we have used (3.5) and Ri ≤ 1.
If we define

α∗ := min

{
αN

C
1/(N−1)
2

,
αN

C
1/(N−1)
7

}
,

we can use the definition of v and (3.1) as before to get∫
Bi

Φα∗ (φiuj) dy ≤
∫
Bi

ΦαN
(v) dy ≤ C8

∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)N

]
dx.
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For any 0 < α < α∗, we can proceed as in the first part of the proof to get∫
A0

Φα(uj) dy ≤
k∑

i=1

∫
BRi/2

(yi)

Φα(uj) dy

=

k∑
i=1

∫
BRi/2

(yi)

Φα(φiuj) dy

≤
k∑

i=1

∫
BRi/2

(yi)

Φα∗(φiuj) dy

≤ C8

∫
Aj

[
|∇u|N +

|u|N

(1 + |x|)N

]
dx.

The inequality (3.3) is now a consequence of the above expression and (3.4). □

We are ready to present the proof of our second theorem.

Proof of Theorem 1.2. If we consider α∗ > 0 as in Lemma 3.2, we have that

(3.6) sup
{u∈E1,N,γ :∥u∥

E1,N,γ≤1}

∫
RN

1

(1 + |x|)β
Φα(u) dx < CN ,

for any 0 < α < α∗. So, we need only to verify that the function (1 + | · |)−βΦα(u)
is integrable for each u ∈ E1,N,γ . In order to do that, we pick u0 ∈ C∞

0 (RN ) such
that

∥u− u0∥E1,N,γ ≤ δ,

with δ > 0 to be chosen later.
A simple computation shows that, for any s ≥ 0,

|Φ′
α(s)| ≤

αN

N − 1
|s|1/(N−1)eα|s|

N/(N−1)

.

Thus, for any s, t ≥ 0, we can use the Mean Value Theorem to obtain θ ∈
[min{s, t},max{s, t}] such that

Φα(s) ≤ Φα(t) +
αN

N − 1
|θ|1/(N−1)eα|θ|

N/(N−1)

|t− s|.

Using this inequality with s = |u| and t = |u− u0|, we obtain a function x 7→ θ(x)
such that, for a.e. x ∈ RN ,

(3.7) Φα(|u|) ≤ Φα(|u− u0|) +
αN

N − 1
|θ(x)|1/(N−1)ψ(x)eα|θ(x)|

N/(N−1)

,

where ψ :=
∣∣∣|u− u0| − |u|

∣∣∣ ∈ E1,N,γ has compact support Ω.

We now notice that,∫
RN

1

(1 + |x|)β
Φα(|u−u0|)dx ≤

∫
RN

1

(1 + |x|)β
Φ

α∥u−u0∥N/(N−1)

E1,N,γ

(
|u− u0|

∥u− u0∥E1,N,γ

)
dx,

and therefore we can choose δ > 0 small in such way that we can apply (3.6) to
conclude that

(3.8)

∫
RN

1

(1 + |x|)β
Φα(|u− u0|)dx < CN .
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Since u0 is bounded and θ lives between |u− u0| and |u|, it is clear that

|θ(x)| ≤ |u− u0|+ |u| ≤ C1(|u|+ 1),

for a.e. x ∈ Ω and some C1 > 0. Thus, we can use Hölder’s inequality to obtain∫
Ω

1

(1 + |x|)β
|θ|1/(N−1)ψeα|θ|

N/(N−1)

dx ≤ C2

∫
Ω

(|u|+ 1)1/(N−1)ψeC3|u|N/(N−1)

dx

≤ C4

(∫
Ω

er3C3|u|N/(N−1)

dx

)1/r3

,

where C4 := ∥(|u| + 1)∥1/(N−1)

Lr1/(N−1)(Ω)
∥ψ∥r2Lr2 (Ω) and r1, r2, r3 are such that 1/r1 +

1/r2+1/r3 = 1, r1 ≥ N(N−1) and r2 ≥ N . It follows from the classical Trudinger-
Moser inequality in W 1,N (Ω) that∫

Ω

1

(1 + |x|)β
|θ|1/Nψeα|θ|

N/(N−1)

dx < +∞.

Since Φα(|u|) = Φα(u), we can use (3.7), (3.8) and the above expression to conclude
that (1 + | · |)−βΦα(u) ∈ L1(RN ). The theorem is proved. □

4. Existence of solution for (P)

In this section, we prove Theorem 1.3. From now on, we shall assume that
(f0) − (f3) and (V Q) hold with 0 < γ ≤ N < β, and we look for solutions in the
subspace of E1,N,γ defined as

EV :=
{
u ∈ E1,N,γ : ∥u∥EV

< +∞
}
,

where ∥u∥EV
:=
(∫

RN [|∇u|N + V (x)|u|N ]dx
)1/N

.
As a byproduct of Theorem 1.1, we have the following embedding result:

Lemma 4.1. Suppose that 0 < γ ≤ N < β. Then, the embedding EV ↪→ Lq(RN , Q)
is continuous and compact for any q ≥ N .

Proof. For any u ∈ EV , we can use (V Q) and Theorem 1.1 to get∫
RN

Q(x)|u|qdx ≤ cQ

∫
RN

|u|q

(1 + |x|)β
dx ≤ C1

(∫
RN

[
|∇u|N +

|u|N

(1 + |x|)γ
]
dx

)q/N

≤ C2

(∫
RN

[
|∇u|N + V (x)|u|N

]
dx

)q/N

= C2∥u∥qEV
.

This shows that we have continuous embedding.
In order to prove the compactness, consider (un) ⊂ EV such that un ⇀ 0.

Given ε > 0, we can choose N ≤ β0 < β and R > 0 such that (1 + |x|)β0−β < ε
for |x| ≥ R. This, together with (V Q) and the continuous embedding E1,N,γ ↪→
Lq(RN , (1 + | · |)−β0) imply that∫

RN\BR(0)

Q(x)|un|qdx ≤ εcQ

∫
RN\BR(0)

|un|q

(1 + |x|)β0
dx

≤ εC3

(∫
RN

[
|∇un|N +

|un|N

(1 + |x|)γ
]
dx

)q/N

≤ εC4∥un∥qEV
≤ εC5.
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On the other hand, from the embedding EV ⊂ E1,N,γ ⊂ W 1,N
loc (RN ) and Rellich-

Kondrachov Theorem, we get∫
BR(0)

Q(x)|un|qdx ≤ ∥Q∥L∞(BR(0))

∫
BR(0)

|un|qdx = on(1),

where on(1) stands for a quantity approaching zero as n → +∞. It follows from
the above inequalities that un → 0 strongly in Lq(RN , Q). □

In order to introduce the energy functional which is associated with our problem
we notice that, for any given ε > 0, α > α0 and r ≥ 1, we can use (f0) − (f1) to
obtain C > 0 such that

(4.1) |f(s)| ≤ ε|s|N−1 + C|s|r−1Φα(s), |F (s)| ≤ ε|s|N + C|s|rΦα(s),

for any s ∈ R. Given u ∈ EV and r1, r2 > 1 such that 1/r1 + 1/r2 = 1, r1 ≥ N , we
can use Hölder’s inequality, Lemma 4.1 and Theorem 1.2 to get∫
RN

Q(x)F (u)dx ≤ ε∥u∥NLN (RN ,Q)+C∥u∥
r
Lr1r(RN ,Q)

(∫
RN

Q(x)Φr2α(u)dx

)1/r2

< +∞,

where we also have used the inequality (see [27, Lemma 2.1])

(4.2) [Φα(s)]
r ≤ Φrα(s).

By the above considerations, the functional Iλ : EV → R given by

Iλ(u) :=
1

N
∥u∥NEV

− λ

∫
RN

Q(x)F (u) dx

is well defined. Moreover, using some standard calculations, we can prove that
Iλ ∈ C1(EV ,R) and the weak solutions of problem (P) are precisely the critical
points of Iλ.

In our first auxiliary result, we prove a local compactness result.

Lemma 4.2. Let (un) ⊂ EV be such that

lim
n→+∞

Iλ(un) = d <

(
α∗

α0

)N−1(
ν −N

Nν

)
, lim

n→+∞
I ′λ(un) = 0.

Then (un) has a convergent subsequence.

Proof. By computing Iλ(un)− (1/θ)I ′λ(un)un and using (f2), we obtain C1, C2 > 0
such that

C1 + C2∥un∥EV
≥
(

1

N
− 1

θ

)
∥un∥NEV

+ λ

∫
RN

Q(x)

(
1

θ
f(un)un − F (un)

)
dx

≥
(

1

N
− 1

θ

)
∥un∥NEV

,

which implies that (un) is bounded in EV , since θ > N . So, up to a subsequence,
un ⇀ u weakly in EV .

We claim that

(4.3)

∫
RN

Q(x)f(un)(un − u)dx = on(1).

Indeed, by using (4.1), we get∣∣∣∣∫
RN

Q(x)f(un)(un − u)dx

∣∣∣∣ ≤ εAn + CBn,
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where

An :=

∫
RN

Q(x)|un|N−1|un − u| dx,

Dn :=

∫
RN

Q(x)|un|r−1Φα(un)|un − u| dx.

Hölder’s inequality and Lemma 4.1 provide

An ≤ ∥un∥N−1
LN (RN ,Q)

∥un − u∥LN (RN ,Q) ≤ C3∥un∥N−1
EV

∥un − u∥EV
≤ C4.

Since ε > 0 is arbitrary, it is sufficient to prove that Dn = on(1). Since we may
assume that θ ≥ ν, it follows from (f2) that

d = lim
n→+∞

(
Iλ(un)−

1

θ
I ′λ(un)un

)
≥
(

1

N
− 1

ν

)
lim

n→+∞
∥un∥NEV

,

and therefore the hypothesis on d implies that

lim
n→+∞

∥un∥N/(N−1)
EV

≤
(

Nν

ν −N

)1/(N−1)

d1/(N−1) <
α∗

α0
.

We now pick r1 > 1 and α > α0 in such way that r1α∥un∥N/(N−1)
EV

< α∗, for all
n ∈ N large enough. By using Hölder’s inequality, Lemma 4.1, (V Q), Theorem 1.2
and (4.2), we deduce

Dn ≤
(∫

RN

Q(x)Φ
r1α∥un∥N/(N−1)

EV

(
un

∥un∥EV

)
dx

)1/r1

× ∥un∥r−1
Lr2(r−1)(RN ,Q)

∥un − u∥Lr3 (RN ,Q)

≤ C5∥un∥r−1
EV

∥un − u∥Lr3 (RN ,Q) = on(1),

where r > 1 and r2, r3 are such that 1/r1 + 1/r2 + 1/r3 = 1, r3 ≥ N , r2 > 1 and
r2(r − 1) ≥ N . This concludes the proof of (4.3).

Since I ′(un)(un − u) = on(1), we can use (4.3) to get∫
RN

|∇un|N−2∇un · ∇(un − u) dx+

∫
RN

V (x)|un|N−2un(un − u) dx = on(1).

Moreover, from the weak convergence, we have that∫
RN

|∇u|N−2∇u · ∇(un − u)dx+

∫
RN

V (x)|u|N−2u(un − u)dx = on(1).

Hence,

(4.4)

∫
RN

[TN (∇un,∇u) · ∇(un − u) + V (x)T1(un, u)(un − u)] dx = on(1),

where

Tk(y1, y2) :=
(
|y1|N−2y1 − |y2|N−2y2

)
, y1, y2 ∈ Rk,

for k ∈ {1, N}. But we know that (see [20, inequality (2.2)])

Tk(y1, y2) · (y1 − y2) ≥ C(k,N)|y1 − y2|N , ∀ y1, y2 ∈ Rk.

From this inequality and (4.4) we obtain C6 > 0 such that

C6∥un − u∥NEV
≤ on(1),

and therefore un → u strongly in EV and the lemma is proved. □
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In our next step, we prove that Iλ verifies the geometric conditions of the classical
Mountain Pass Theorem.

Lemma 4.3. There are constants ρ, τ > 0 such that Iλ(u) ≥ τ , for any ∥u∥EV
= ρ.

Moreover, there exists e ∈ EV such that ∥e∥EV
> ρ and Iλ(e) < 0.

Proof. From (4.1), Hölder’s inequality, (3.1) and (4.2), we deduce∫
RN

Q(x)F (u)dx ≤ ε

∫
RN

Q(x)|u|Ndx+ C

(∫
RN

Q(x)|u|r1rdx
)1/r1

×
(∫

RN

Q(x)Φ
r2α∥u∥N/(N−1)

EV

(
u

∥u∥EV

)
dx

)1/r2

,

for any u ∈ EV . By picking ρ1 > 0 such that r2αρ
N/(N−1)
1 < α∗, we can use Lemma

4.1, (V Q) and Theorem 1.2 to get∫
RN

Q(x)F (u)dx ≤ εC1∥u∥NEV
+ C2∥u∥rEV

,

whenever ∥u∥EV
≤ ρ1. Thus,

Iλ(u) ≥ ∥u∥NEV

((
1

N
− εC1λ

)
− C2λ∥u∥r−N

EV

)
.

By picking r > N and 0 < ε < 1/(C1λN), we can easily use the above expression
to obtain the first statement of the lemma.

In order to prove the second one, we fix φ ∈ C∞
0 (RN ) such that

∫
RN Q(x)|φ|θdx >

0. From (f2), there exist constants C3, C4 > 0 such that F (s) ≥ C3|s|θ − C4, for
any s ∈ R. So, if we call Ω the support of φ, we obtain

Iλ(tφ) ≤
tN

N
∥φ∥NEV

− C3λt
θ

∫
RN

Q(x)|φ|θdx+ C4λ

∫
Ω

Q(x)dx,

for any t > 0. Since θ > N , it is suficient to take e = tφ, with t > 0 sufficiently
large. The lemma is proved. □

We are ready to prove our existence result.

Proof of Theorem 1.3. According to Lemma 4.3, it is well defined the Mountain
Pass level

cλ := inf
g∈Γ

max
t∈[0,1]

Iλ(g(t)) ≥ τ,

where Γ := {g ∈ C([0, 1], EV ) : g(0) = 0 and Iλ(g(1)) < 0}. We claim that there
exists λ∗ > 0 such that, for any λ > λ∗, there holds

(4.5) cλ <

(
α∗

α0

)N−1(
ν −N

Nν

)
.

If this is true, we can use Lemma 4.2 and the Mountain Pass Theorem [6] to obtain
a nonzero critical point of Iλ.

In order to prove the claim, we notice that there exists ω ∈ EV such that

∥ω∥NEV
= Sν := inf

{
∥u∥NEV

:

∫
RN

Q(x)|u|νdx = 1

}
,
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since the embedding EV ↪→ Lν(RN , Q) is compact. From (f3), we know that
F (s) ≥ cF |s|ν , for all s ∈ R. Thus, for any λ > Sν/(NcF ), we obtain

Iλ(ω) ≤
Sν

N
− λcF

∫
RN

Q(x)|ω|νdx =
Sν

N
− λcF < 0,

and therefore the path g(t) := tω belongs to Γ, which implies that

cλ ≤ max
t≥0

Iλ(tω) ≤ max
t≥0

(
Sν

N
tN − λcF t

ν

)
=

S
ν/(ν−N)
ν

(λcF ν)N/(ν−N)

(
ν −N

Nν

)
.

Since the right-hand side above goes to zero as λ → +∞, there exists λ∗ >
Sν/(NcF ) such that (4.5) is verified, for any λ > λ∗. This concludes the proof. □
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