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Abstract. In this work, we consider two classes of elliptic problems with

nonlinear boundary conditions of concave-convex type. In the first problem, we
obtain two nonzero and nonnegative solutions when the nonlinear term exhibits

critical growth. In the second one, we obtain infinitely many solutions (with

no prescribed sign) by assuming that the nonlinearity is even and subcritical
near the origin but has no growth condition at infinity.

1. Introduction

Consider N ≥ 3 and the problem

−∆v = g(x, v,∇v), in RN
+ ,

∂v

∂ν
= h(x′, v), on ∂RN

+ ,

where RN
+ :=

{
(x′, xN ) : x′ ∈ RN−1, xN > 0

}
is the upper half-space and ν is the

outward normal vector at the boundary ∂RN
+ . The authors in [20] considered

g(x, v,∇v) = µv +
1

2
(x · ∇v), h(v) = |v|q−2v,

with 2 < q < 2∗ := 2(N − 1)/(N − 2). Besides obtaining the existence of solutions
for certain values of µ > 0, they presented the relationship between the problem
and the existence of self-similar solutions of the nonlinear heat equation

wt −∆w = 0, in RN
+ × (0,+∞),

∂w

∂ν
= |w|q−2w, on RN−1 × (0,+∞).

For other appropriate choices of functions g and f , the problem models contexts
such as glaciology [29], population genetics [4], non-Newtonian fluid mechanics [13],
nonlinear elasticity [11], among others. From a mathematical perspective, it is also
related to the study of sharp constants in Sobolev trace inequalities [15, 12] as well
as the conformal deformation of Riemannian manifolds [16, 17].

In a recent paper, Furtado and Silva [22] considered

g(x, v,∇v) = 1

2
(x · ∇v), h(x′, v) = µ|v|q−2v + |v|2∗−2v,

with 2 ≤ q < 2∗, and obtained the existence of a nonnegative nonzero solution in
two cases: 2 < q < 2∗, µ > 0; and q = 2, µ ∈ (0, µ1), where µ1 > 0 is the first
positive eigenvalue of a linear associated problem. In view of these results, it is
natural to ask what happens in the sublinear case 1 < q < 2. In the first part of
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this paper, we give a partial answer to this question. More specifically, we deal
with the problem

(P1)


−∆u− 1

2
(x · ∇u) = 0, in RN

+ ,

∂u

∂ν
= µa(x′)|u|q−2u+ b(x′)|u|2∗−2u, on RN−1,

where 1 < q < 2, µ > 0 is a real parameter and the potentials a, b are indefinite in
sign and satisfy some mild conditions.

As it will be explained in the next section, the weak solutions of problem (P1)

belongs to the space X defined as the closure of C∞
0 (RN

+ ) with respect to the norm

∥u∥ =

(∫
RN

+

K(x)|∇u|2dx

)1/2

,

where K(x) := e|x|
2/4. This kind of space was first introduced by Escobedo and

Kavian [18], who considered a problem in the whole space RN . The main point
here is that this functional space is embedded into

Lr
K :=

{
u ∈ L1

loc(RN−1) : u r :=

(∫
RN−1

K(x′, 0)|u|rdx′
)1/r

<∞

}
,

for any r ∈ [2, 2∗]. With this space in hands, we are able to present the assumptions
on the sign-changing potentials a and b.

In what follows, we denote by s′ > 1 the conjugated exponent of s > 1, that is,
1/s+ 1/s′ = 1. We also define

Ω+
a := {x′ ∈ RN−1 : a(x′) > 0}, Ω+

b := {x′ ∈ RN−1 : b(x′) > 0}
and assume the following:

(a1) a ∈ L
σq

K ∩ LN−1
loc (RN−1), where (2∗/q)

′ < σq ≤ (2/q)′;

(b1) b ∈ L∞(RN−1);

(ab) there exist δ > 0, b0 > 0 and γ > N − 1 such that

B′
δ := {x′ ∈ RN−1 : |x′| < δ} ⊂

(
Ω+

a ∩ Ω+
b

)
and

∥b∥L∞(RN−1) ≤ b(x′) + b0|x′|γ , a.e. in B′
δ.

We shall to prove the following:

Theorem 1.1. Suppose that N ≥ 4 and the functions a and b verifiy (a1), (b1)
and (ab). Then, there exists µ∗ > 0 such that, for any µ ∈ (0, µ∗), the problem (P1)
has at least two nontrivial and nonnegative weak solutions.

The first solution will be obtained with a minimization argument, while the
second one requires more challenging arguments, as the trace embedding we are
going to use fails to be compact. The main point to overcome this difficulty comes
from fine estimates of a modification of the instanton functions exploited by Escobar
[15] and Beckner [9]. We notice that the one of the solutions above can be obtained
even if N = 3.

It is worth noticing that the energy functional of problem (P1) is clearly even.
Hence, as in Bartsch and Willem [8], it is expected that we could obtain infinitely
many solutions (with no prescribed sign). In our secon result, inspired by the papers
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[33, 26], we replace the critical term b(x′)|u|2∗−2u by a general function f which is
even near the origin. More specifically, we consider the problem

(P2)


−∆u− 1

2
(x · ∇u) = 0, in RN

+ ,

∂u

∂ν
= µa(x′)|u|q−2u+ f(u), on RN−1,

where µ > 0 and 1 < q < 2 are as before. Concerning the potential a and the
nonlineairity f : R → R, we suppose that

(f1) f ∈ C(R,R);

(f2) there exists p ∈ (2, 2∗) such that

lim
s→0

f(s)

|s|p−1
= 0;

(ã1) a ∈ L
σq

K ∩ L∞(RN−1), where (p/q)′ < σq ≤ (2/q)′;

(a2) Ω+
a has an interior point.

According to Proposition 2.1, we have the continuous trace embeddingX ↪→ L2∗
K .

So, it is well defined

S2∗ := inf
{∫

RN
+

K(x)|∇u|2dx : u ∈ X, u 2∗ = 1
}

and we can state our second main result as follows:

Theorem 1.2. Suppose that a and f verifiy (ã1), (a2), (f1)− (f2) and f is odd in
the interval [−CN,p, CN,p], where

(1.1) CN,p := max
{
1, 2S−1

2∗

}1/(2∗−p)
(
2∗ + 2− p

2

)2(2∗+2−p)/(2∗−p)2

.

Then, there exists µ̄ > 0 such that, for any µ ∈ (0, µ̄), the problem (P2) has infinitely
many weak solutions.

The proof is also variational, but it presents a significant challenge that needs to
be overcome. If F (s) :=

∫ s

0
f(t)dt, the formal energy functional associated to the

problem (P2) contains the therm
∫
F (u)dx′, which could be infinite, since we have

no control on the behaviour of f at infinity. Even in the definition of weak solution,
we need to take this account in mind and consider solutions in the distributional
sense. To overcome this difficult, we adopt ideas from the papers [5, 33, 26, 7].
This involves applying a truncation to the function f in such a way that the
new (truncated) functional becomes well-defined and coercive in an appropriated
Sobolev-type space. After demonstrating the existence of infinitely many critical
points for the trucanted functional, we apply a Moser iteration technique [27] to
prove that, if µ > 0 is small, they have small L∞-norm at the boudary and therefore
they are solutions to the original problem.

It is worth mentioning some valid examples for the nonlinearity f . Besides the

classical example f(s) = |s|r−2s, with r > 2, we may pick f(s) = |s|r−2ses
2

with
r > 2, which has exponential growth. Actually, there is no growth restriction for
large values of |s|.



4 M. F. FURTADO AND R. F. OLIVEIRA

Due to the asymmetric nature of the nonlinear boundary term, our problems
fall into a broader class known as concave-convex type problems. With the aim of
presenting a historical perspective, we may consider

−∆u = g(x, u), in Ω, α1u+ α2
∂u

∂ν
= h(x, u), on ∂Ω,

where Ω ⊂ RN , N ≥ 3, is a bounded domain. In their seminal paper, Ambrosetti,
Brezis, and Cerami [3] obtained two positive solutions when α2 = 0, h ≡ 0, and
g(x, s) = µsq−1 + sp−1, with 1 < q < 2 < p ≤ 2∗, and µ > 0 is small. In
[19], de Figueiredo, Gossez, and Ubilla generalized these results by considering
g(x, s) = µc(x)|s|q−2s+ d(x)|s|p−2s, with c and d having no constant sign. In this
setting of Dirichlet boundary conditions, we can refer to [2, 28, 34], and references
therein.

For the Neumann case, when α1 = 0, we can cite the paper of Azorezo, Peral,
and Rossi [6], who consider g(x, s) = |s|p−2s − s, h(x, s) = µ|s|q−2s and have
obtained results similar to those of [3]. In [23], the authors considered g ≡ 0 and
h(x, s) = µc(x)|s|q−2s + d(x)|s|p−2s, with 1 < q < 2 < p < 2∗. The bounded
potentials c and d are supposed to verify the sign conditions

∫
∂Ω
c(x)dσx < 0,∫

∂Ω
d(x)dσx ̸= 0. Under some other technical conditions, they obtained two positive

solutions if µ > 0 is small. Some other results concerning the existence of infinitely
many solutions can be found in [33, 32, 24, 26, 7], and their references.

The two results proved in this paper extend and/or complement the
aforementioned works in several ways: we consider a different operator, sign-
changing potentials, the upper half-space, and local symmetry conditions.

The paper contains four more sections: in the next one, we obtain the first
solution of problem (P1). The second solution is obtained in Section 3. In Section
4, we deal with a modified problem which is related with problem (P2). In the
final section, we prove that the solutions of the modified problem solve the original
problem.

2. The first solution in Theorem 1.1

In this section, we start the proof of our first main theorem. In the next two
sections, we assume that (a1), (b1) and (ab) hold. Moreover, along all the paper, we
write v ∞ for the L∞(RN−1) norm of an essentially bounded function v defined
a.e. in RN−1.

As quoted in the introduction, we shall consider the weigth

K(x) := e|x|
2/4, x ∈ RN .

A formal computation shows that, if u is a smooth function, then

div(K(x)∇u) = K(x)

[
∆u+

1

2
(x · ∇u)

]
and therefore, for solving (P1) with a variational approach, it is natural to consider

the space X defined as the closure of C∞
c (RN

+ ) with respect to the norm

∥u∥ :=

(∫
RN

+

K(x)|∇u|2dx

)1/2

.
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We also define, for r ∈ [2, 2∗], the weighted Lebesgue space

Lr
K :=

{
u ∈ L1

loc(RN−1) : u r
r :=

∫
RN−1

K(x′, 0)|u|rdx′ < +∞
}
.

The following abstract result was proved in [21, Theorem 1.1] (cf. also [20]).

Proposition 2.1. For any r ∈ [2, 2∗], we have that

(2.1) Sr := inf
u∈X\{0}

∫
RN

+
K(x)|∇u|2dx(∫

RN−1 K(x′, 0)|u|rdx′
)2/r < +∞

and therefore there holds the continuous Sobolev trace embedding X ↪→ Lr
K .

Moreover, the embedding is compact if r ∈ [2, 2∗).

After multiplying the first equation in (P1) by K, we reach the energy functional
associated with the problem, namely

I(u) :=
1

2
∥u∥2 − µ

q

∫
RN−1

K(x′, 0)a(x′)(u+)qdx′ − 1

2∗

∫
RN−1

K(x′, 0)b(x′)(u+)2∗dx′.

Standard calculations show that I is well defined, I ∈ C1(X,R) and its critical
points are precisely the weak solutions of the problem.

We start with the following regularity result:

Lemma 2.2. If u ∈ X is a critical point of I, then u ≥ 0 a.e. in RN
+ . Moreover,

if (a1) and (b1) hold, then u ∈ Lν
loc(RN

+ ) ∩ Lν
loc(RN−1), for any ν ≥ 1.

Proof. Let u+ := max{u, 0} and u− := u+ − u be the positive and negative part
of u, respectively. Since u+u− = 0 a.e. in RN

+ , a simple computation shows that
0 = I ′(u)u− = −∥u−∥2. This proves that u = u+ ≥ 0, as stated.

For the regularity, we first notice that v := K1/2u ∈W 1,2
loc (RN

+ ) is a weak solution
to the problem −∆v = g1(x, v), in RN

+

∂v

∂ν
= g2(x

′, v), on RN−1
,

where g1 : RN
+ × R → R and g2 : RN−1 × R → R are given by

g1(x, s) := −
(
|x|2 + 4N

16

)
s

and

g2(x
′, s) := a(x′)e(2−q)|x′|2/8|s|q−2s+ b(x′)e(2−2∗)|x′|2/8|v(x′, 0)|2∗−2s.

By setting

L1(x) :=

(
|x|2 + 4N

16

)
, L2(x

′) := |a(x′)|e(2−q)|x′|2/8 + b ∞|v(x′, 0)|2∗−2,

we have, for any x ∈ RN
+ , x′ ∈ RN−1 and s ∈ R,

|g1(x, s)| ≤ L1(x)(1 + |s|), |g2(x′, s)| ≤ L2(x
′)(1 + |s|).

We know that L1 ∈ L
N/2
loc (RN

+ ) and L2 ∈ LN−1
loc (RN−1), this last one due to

(a1) and v ∈ L2∗
loc(RN−1). So, we may apply [1, Lemma 4.1] to conclude that

u ∈ Lν
loc(RN

+ ) ∩ Lν
loc(RN−1), for any ν ≥ 1. □
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In the first part of the proof of Theorem 1.1, we are going to use a minimization
argument to obtain a solution uµ with negative energy. So, we need to prove the
following:

Lemma 2.3. There exist µ∗ = µ∗(q, a σq
, b ∞) > 0, ρ = ρ(q, b ∞) > 0 and

α = α(ρ) > 0 such that, for any µ ∈ (0, µ∗), there holds

I(u) ≥ α, ∀u ∈ X ∩ ∂Bρ(0).

Proof. It follows from Hölder’s inequality, (a1) and (2.1) that∫
RN−1

K(x′, 0)a(x′)(u+)qdx′ ≤ a σq u
+ q

qσ′
q
≤ S

−q/2
qσ′

q
a σq u

q.

This and (2.1) again imply that

I(u) ≥ 1

2
∥u∥q

[
∥u∥2−q − µ

2

q
S
−q/2
qσ′

q
a σq − C1∥u∥p−q

]
,

where C1 := (2/2∗)S
−2∗/2
2∗

b ∞ > 0.

A simple computation shows that the function h(t) = t2−q − C1t
2∗−q, for t > 0,

achieves its global maximum at

ρ :=

[
2− q

C1(2∗ − q)

]1/(2∗−2)

> 0.

So, if we set C2 := h(ρ), we have that

I(u) ≥ 1

2
ρq
[
C2 − µ

2

q
S
−q/2
qσ′

q
a σq

]
≥ C2ρ

q

4
=: α > 0,

whenever ∥u∥ = ρ and

0 < µ < µ∗ :=
qC2

4 a σq

S
q/2
qσ′

q
.

The lemma is proved. □

The next resul provides a first solution for the problem (P1).

Proposition 2.4. Let µ∗ and ρ > 0 as in Lemma 2.3. Then, for any µ ∈ (0, µ∗),
the infimum

cµ := inf
u∈Bρ(0)

I(u) < 0

is achivied at a nonnegative critical point uµ ∈ Bρ(0).

Proof. Using (a1), (b1) and Proposition 2.1, we can check cµ > −∞. Let δ > 0 be
given by condition (ab) and φ ∈ C∞

0 (Bδ(0)) be a nonnegative function such that
φ ≡ 1 in Bδ/2(0). Since Bδ(0) ∩ ∂RN

+ ⊂ Ω+
a , we obtain∫

RN−1

K(x′)a(x′)φqdx′ ≥
∫
Bδ1/2(0)∩∂RN

+

K(x′)a(x′)dx′ > 0,

from which it follows that

lim sup
t→0+

I(tφ)

tq
≤ −µ

q

∫
RN−1

K(x′)a(x′)φqdx′ < 0,

and therefore I(tφ) < 0, for any t > 0 small. This proves that cµ < 0.

Let (un) ⊂ Bρ(0) be such that I(un) → cµ. Since (un) is bounded, there exists
uµ ∈ X such that un ⇀ uµ weakly in X, stronlgy in Lr

K , for any r ∈ [2, 2∗),



CRITICAL AND SUPERCRITICAL GROWTH AT THE BOUNDARY 7

and un(x
′, 0) → uµ(x

′, 0) a.e. in RN−1. Moreover, by Lemma 2.3, we have that
(un) ⊂ Bρ(0), for any n ≥ n0. So, we may use Ekeland’s Variational Principle [14]
to assume that I ′(un) → 0, as n→ +∞.

We are going to show that I ′(uµ) = 0. Since σq > (2∗/q)
′, we have that

1/σq + (q − 1)/2∗ < 1. Hence, there exist r ∈ (2, 2∗) and τ > 1 such that

1

σq
+
q − 1

r
+

1

τ
= 1.

From the strong convergence in Lr
K , we obtain η0 ∈ Lr

K such that |un(x′, 0)| ≤
η0(x

′) for a.e. x′ ∈ RN−1. Thus, for any v ∈ C∞
0 (RN

+ ), we can use Young’s
inequality to get,

|Ka(u+n )q−1v| ≤ K

[
|a|σq

σq
+
q − 1

r
|η0|r +

|v|τ

τ

]
a.e. in RN−1.

Since v has compact support, the right-hand side above belongs to L1(RN−1). It
follows from Lebesgue’s Theorem that

lim
n→+∞

∫
RN−1

K(x′, 0)a(x′)(u+n )
q−1v dx′ =

∫
RN−1

K(x′, 0)a(x′)(u+µ )
q−1v dx′.

By using b ∈ L∞(RN−1) and an easier argument, we may check that

lim
n→+∞

∫
RN−1

K(x′, 0)b(x′)(u+n )
2∗−1v dx′ =

∫
RN−1

K(x′, 0)b(x′)(u+µ )
2∗−1v dx′.

Combining the last two convergences and the weak convergence, we conclude that

0 = lim
n→+∞

I ′(un)v = I ′(uµ)v, ∀ v ∈ C∞
0 (RN

+ )

and it follows by density that I ′(uµ) = 0. By Lemma 2.2, we know that uµ is
nonnegative.

Since qσ′
q ∈ [2, 2∗), there exists η1 ∈ L

qσ′
q

K such that |un(x′, 0)| ≤ η1(x
′) a.e. in

RN−1. So, we can use Young’s inequality and Lebesgue’s Theorem as before to
conclude that

lim
n→+∞

∫
RN−1

K(x′)a(x′)(u+n )
qdx′ =

∫
RN−1

K(x′)a(x′)(u+µ )
qdx′.

Thus,

cµ = lim inf
n→+∞

[
I(un)−

1

2∗
I ′(un)un

]
= lim inf

n→+∞

[(
1

2
− 1

2∗

)
||un||2 +

(
1

2∗
− 1

q

)
µ

∫
RN−1

K(x′, 0)a(x′)(u+n )
qdx′

]
≥

(
1

2
− 1

2∗

)
||uµ||2 +

(
1

2∗
− 1

q

)
µ

∫
RN−1

K(x′, 0)a(x′)(u+µ )
qdx′

= I(uµ)−
1

2∗
I ′(uµ)uµ = I(uµ).

Since we already know that I(uµ) ≥ cµ, we conclude that I(uµ) = cµ. □
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3. The second solution in Theorem 1.1

In order to obtain a second solution, we adapt arguments from [24]. Given c ∈ R,
we recall that I satisfies the Palais-Smale condition at level c ((PS)c for short) if
any sequence (un) ⊂ X such that I(un) → c and I ′(un) → 0 has a convergent
subsequence.

Lemma 3.1. Suppose that uµ given by Lemma 2.3 is the only nonzero critical point
of I. Then I satisfies the (PS)c condition at any level

c < c := I(uµ) +
1

2(N − 1)

1

b N−2
∞

SN−1
2∗

.

Proof. Let (un) be such that I(un) → c < c and I ′(un) → 0. By Hölder’s inequality,

c+ on(1)∥un∥ = I(un)−
1

2∗
I ′(un)un

≥
(
1

2
− 1

2∗

)
∥un∥2 −

(
1

q
− 1

2∗

)
µS

−q/2
qσ′

q
a σq

∥un∥2,

and therefore (un) is bounded. So, there exists u ∈ X such that un ⇀ u weakly in
X. Arguing as in the proof of Proposition 2.4, we can verify that

lim
n→+∞

∫
RN−1

K(x′, 0)a(x′)(u+n )
qdx′ =

∫
RN−1

K(x′, 0)a(x′)(u+)qdx′.

Setting vn := un − u and applying Brezis-Lieb’s Lemma, we get

0 = I ′(un)un = I ′(u)u+ ∥vn∥2 −
∫
RN−1

K(x′, 0)b(x′)(v+n )
2∗dx′ + on(1).

As in the proof of Proposition 2.4, we have that I ′(u) = 0. Thus, there exists l ≥ 0
such that

lim
n→+∞

∥vn∥2 = l = lim
n→+∞

∫
RN−1

K(x′, 0)b(x′)(v+n )
2∗dx′.

Using the trace embedding X ↪→ L2∗
K (RN−1), we deduce∫

RN−1

K(x′)b(x′)(v+n )
2∗dx′ ≤ b ∞S

−2∗/2
2∗

(∫
RN

+

K(x)|∇vn|2dx
)2∗/2

.

If l > 0, we can take the above expression to the limit to get

(3.1) l ≥ 1

b N−2
∞

SN−1
2∗

.

On the other hand,

c+ on(1) = I(un) = I(u) +
1

2
∥vn∥2 −

1

2∗

∫
RN−1

K(x′, 0)b(x′)(v+n )
2∗dx′.

Since I ′(u) = 0, it follows that u ∈ {0, uµ}, and therefore I(u) ≥ I(uµ). Thus,
taking the limit in the above equality and using (3.1), we obtain

c ≥ I(u) +
1

2(N − 1)

1

b N−2
∞

SN−1
2∗

≥ c,

which is a contraditcion. Hence, l = 0 and we have that

lim
n→+∞

∥un − u∥2 = lim
n→+∞

∥vn∥2 = l = 0,

which proves that un → u strongly in X. □
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Define, for each ϵ > 0, the function

Uϵ(x
′, xN ) :=

(
ϵ

|x′|2 + (xN + ϵ)2

)(N−2)/2

, (x′, xN ) ∈ RN
+ .

The family {Uϵ}ϵ>0 consists of exactly the functions achieving the best constant of
the Sobolev trace embedding D1,2(RN

+ ) ↪→ L2∗(RN−1) (see [15] for more details).
Now, consider

(3.2) ψϵ(x) := K(x)−1/2φ(x)Uϵ(x), x ∈ RN
+ ,

where φ ∈ C∞
c (RN

+ ) is such that 0 ≤ φ ≤ 1, φ ≡ 1 in Bδ/2(0) ∩ RN
+ , φ ≡ 0 outside

Bδ(0) ∩ RN
+ , and δ > 0 is given by the condition (ab).

If we now define

AN :=

∫
RN

+

|∇Uϵ|2dx, BN :=

(∫
RN−1

|Uϵ|2∗dx′
)2/2∗

,

it was proved in [22, Lemma 2.2] that AN/BN = S2∗ . Moreover, as ϵ→ 0+,

∥ψϵ∥2 = AN +

{
O(ϵ2| ln ϵ|), if N = 4,

O(ϵ2), if N ≥ 5,
and ψϵ

2∗
2∗

= B
2∗/2
N +O(ϵ2).

The next result will be used to accurately determine the minimax level of the
functional associated with problem (P1).

Lemma 3.2. Suppose that N ≥ 4 and set

vϵ :=
ψϵ

ψϵ 2∗

,

where ψϵ was defined in (3.2). Then, as ϵ→ 0+, we have that

∥vϵ∥2(N−1) = SN−1
2∗

+

{
O(ϵ2| ln ϵ|), if N = 4,

O(ϵ2), if N ≥ 5,

and

vϵ
s
s = O

(
ϵN−1−s(N−2)/2

)
,

for any 2∗/2 < s < 2∗.

Proof. If N ≥ 5, we can use the definition of vϵ, the Mean Value Theorem and the
above expression to get

∥vϵ∥2(N−1) =
∥ψϵ∥2(N−1)

ψϵ
2(N−1)
2∗

=
[AN +O(ϵ2)]N−1

[B
2∗/2
N +O(ϵ2)]N−2

=
AN−1

N +O(ϵ2)

B
2∗(N−2)/2
N +O(ϵ2)

=
AN−1

N +O(ϵ2)

BN−1
N +O(ϵ2)

=

(
AN

BN

)N−1

+O(ϵ2) = SN−1
2∗

+O(ϵ2).

For the case N = 4, we can compute analogously

∥vϵ∥2(N−1) =
AN−1

N +O(ϵ2| ln ϵ|)
BN−1

N +O(ϵ2)
=
AN−1

N +O(ϵ2| ln ϵ|)
BN−1

N +O(ϵ2| ln ϵ|)
= SN−1

2∗
+O(ϵ2| ln ϵ|).
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We now prove the estimative for vϵ
s
s. Since 0 ≤ φ ≤ 1 and φ vanishes outside

a ball, we can use the change of variables x′ = ϵy′ to obtain C1 > 0 such that

ψϵ
s
s ≤ C1

∫
{|x′|≤δ}

[
ϵ

|x′|2 + ϵ2

]s(N−2)/2

dx′

≤ C1ϵ
N−1−s(N−2)/2

∫
{|y′|≤δ/ϵ}

[
1

|y′|2 + 1

]s(N−2)/2

dy′

≤ C1ϵ
N−1−s(N−2)/2

[
C2 +

∫
{|y′|≥1}

|y′|−s(N−2)dy′

]
.

The term into the brackets above is finite if, and only if, s > (N − 1)/(N − 2),
which is according with our hypothesis. Thus, the last statement follows from the

above expression and ψϵ
s
2∗ = B

s/2
N + o(1). □

Lemma 3.3. Suppose that N ≥ 4. For each ϵ > 0, let vϵ ∈ X be given by Lemma
3.2 and define tϵ > 0 as

mϵ := I(uµ + tϵvϵ) = max
t≥0

I(uµ + tvϵ),

where uµ ∈ X is the local mimimun given by Proposition 2.4. Then (tϵ) remains
bounded as ϵ→ 0+.

Proof. For each ϵ > 0, set hϵ(t) := I(uµ + tvϵ), for t > 0. It is easy to show that hϵ
achieves its maximun at some tϵ > 0. Suppose, by contradiction, that tϵn → +∞,
along some sequence ϵn → 0+. By combining 0 = h′ϵn(tϵn) = I ′(uµ + tϵnvϵn)vϵn
with I ′(uµ)vϵn = 0, and recalling that a and b are positive in the support of vϵn ,
we obtain∫

RN−1

K(x′, 0)b(x′)v2∗ϵndx
′ ≤ t2−2∗

ϵn ∥vϵn∥2 + t1−2∗
ϵn

∫
RN−1

K(x′, 0)b(x′)u2∗−1
µ vϵndx

′.

It follows from Hölder’s inequality, vϵn 2∗ = 1 and Lemma 3.2 that

lim
n→+∞

∫
RN−1

K(x′, 0)b(x′)v2∗ϵndx
′ = 0.

On the other hand, by condition (ab) we have that

b(x′) ≥ b ∞ − b0|x′|γ , a.e. in {|x′| ≤ δ},
with b0 > 0. Consequently,

(3.3) on(1) =

∫
RN−1

K(x′, 0)b(x′)v2∗ϵndx
′ ≥ b ∞ − b0

∫
RN−1

K(x′, 0)|x′|γv2∗ϵndx
′.

Since ψϵn
2∗
2∗

= B
2∗/2
N + o(1), we obtain∫

RN−1

K(x′, 0)|x′|γv2∗ϵndx
′ ≤ C1

ψϵn
2∗
2∗

∫
{|x′|≤δ}

ϵN−1
n |x′|γ

[|x′|2 + ϵ2n]
N−1

dx′

≤ O(ϵN−1
n )

∫
{|x′|≤δ}

|x′|γ−2(N−1)dx′ = O(ϵN−1
n ),

where we have used γ > N − 1 in the last equality above. It follows from (3.3) that
b ∞ = 0, which contradicts Ω+

a ̸= ∅. □

The next lemma is crucial for the completion of the proof of Theorem 1.1.
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Lemma 3.4. If N ≥ 4 then, for any ϵ > 0 small, the number mϵ defined in Lemma
3.3 verifies mϵ < c̄.

Proof. By using I ′(uµ)vϵ = 0, we obtain

(3.4) mϵ = I(uµ) +
t2ϵ
2
∥vϵ∥2 −

µ

q
Γ1,ϵ −

1

2∗
Γ2,ϵ,

where

Γ1,ϵ :=

∫
RN−1

K(x′, 0)a(x′)
[
(uµ + tϵvϵ)

q − uqµ − tϵqu
q−1
µ vϵ

]
dx′,

and

Γ2,ϵ :=

∫
RN−1

K(x′, 0)b(x′)
[
(uµ + tϵvϵ)

2∗ − u2∗µ − tϵ2∗u
2∗−1
µ vϵ

]
dx′.

The Mean Value Theorem and the positivity of a in the support of vϵ imply that
Γ1,ϵ ≥ 0. Moreover, for any r, s ≥ 0 and σ ∈ (1, 2∗ − 1), there exists Cσ > 0 such
that

(r + s)2∗ ≥ r2∗ + s2∗ + 2∗r
2∗−1s+ 2∗rs

2∗−1 − Cσr
2∗−σsσ.

Picking r = uµ, s = tϵvϵ and σ = 2∗/2, we can use Γ1,ϵ ≥ 0 and (3.4) to get

(3.5) mϵ ≤ I(uµ) +

(
t2ϵ
2
∥vϵ∥2 −

t2∗ϵ
2∗

b ∞

)
+ Γ2,ϵ,1 − Γ2,ϵ,2 + Γ2,ϵ,3,

where

Γ2,ϵ,1 :=
t2∗ϵ
2∗

∫
RN−1

K(x′, 0) [ b ∞ − b(x′)] v2∗ϵ dx′,

Γ2,ϵ,2 := t2∗−1
ϵ

∫
RN−1

K(x′, 0)b(x′)uµv
2∗−1
ϵ dx′

and

Γ2,ϵ,3 := Cσ
t
2∗/2
ϵ

2∗

∫
RN−1

K(x′, 0)b(x′)u2∗/2µ v2∗/2ϵ dx′.

We now notice that

max
t≥0

{
t2

2
∥vϵ∥2 −

t2∗

2∗
b ∞

}
=

1

2(N − 1)

∥vϵ∥2(N−1)

b N−2
∞

Assuming N ≥ 5, from Lemma 3.2 we have that ∥vϵ∥2(N−1) = SN−1
2∗

+ O(ϵ2).
So, by definition of c̄ and (3.5), we obtain

(3.6) mϵ ≤ c̄+O(ϵ2) + Γ2,ϵ,1 − Γ2,ϵ,2 + Γ2,ϵ,3.

We are going to estimate each of the therms Γ2,ϵ,i, for i = 1, 2, 3. For the first
one, we can argue as in the proof of Lemma 3.3 to obtain Γ2,ϵ,1 = O(ϵN−1). The
other two are more involved. So, pick r1 > 1 in such a way that

1

N + 4
<

r1
2(N − 1)

<
1

N
.

Using Lemma 2.2 and Hölder’s inequality, we get∫
RN−1

K(x′, 0)b(x′)uµv
2∗−1
ϵ dx′ ≤ b ∞

(∫
{|x′|≤δ}

K(x′, 0)u
r′1
µ dx

′
)1/r′1

vϵ
2∗−1
(2∗−1)r1

.
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Since 1 < r1 < 2(N − 1)/N , we have that N/(N − 2) < (2∗ − 1)r1 < 2∗, and
therefore we can use the above expression, Lemma 3.2 with s = (2∗ − 1)r1 and
Lemma 3.3 to obtain

Γ2,ϵ,2 = O
(
ϵ(N−1)/r1−N/2

)
.

Now, we pick r2 ∈ (1, 2) and argue as above to get

Γ2,ϵ,3 ≤ b ∞

(∫
{|x′|≤δ}

K(x′, 0)u
(2∗/2)r

′
2

µ dx′
)1/r′2

vϵ
2∗/2
(2∗/2)r2

.

Since r2 ∈ (1, 2), we can use Lemma 3.3 with s = (2∗/2)r2 ∈ (2∗/2, 2∗) to obtain

Γ2,ϵ,3 = O(ϵ(N−1)/r2−(N−1)/2).

Noticing that

lim
r→2(N−1)/N

(
N − 1

r
− N

2

)
= 0 <

N − 1

2
= lim

r→1

(
N − 1

r
− N − 1

2

)
,

we can choose the numbers r1, r2 above in such a way that

ν1 :=
N − 1

r1
− N

2
< 2, ν2 :=

N − 1

r2
− N − 1

2
> ν1.

Since ν1 < min{2, ν2} and N ≥ 5, we can use all the estimates performed above to
rewrite (3.6) as

mϵ ≤ c̄+O(ϵ2) +O(ϵN−1)−O(ϵν1) +O(ϵν2) < c̄,

if ϵ > 0 is small enough. This concludes the proof if N ≥ 5.
In the case N = 4, the only change is that ∥vϵ∥2(N−1) = SN−1

2∗
+O(ϵ2| ln ϵ|). By

repeating all the previous steps, we obtain, for ϵ > 0 small,

mϵ ≤ c̄+O(ϵ2| ln ϵ|) +O(ϵN−1)−O(ϵν1) +O(ϵν2) < c̄,

because ϵ2−ν1 | ln ϵ| → 0, as ϵ→ 0+. □

We are ready to prove our first main theorem.

Proof of Theorem 1.1. Suppose that µ ∈ (0, µ∗), where µ∗ is given by Lemma 2.3.
According to Proposition 2.4, there exists a nonnegative solution uµ such that
I(uµ) < 0. Suppose, by contradiction, that this is the only nonzero critical point.
Then, according to Lemma 3.1, I satisifies the (PS)c at any level c < c̄. Since vϵ
vanishes outside a ball, a straightforward computation shows that

lim
t→+∞

I(uµ + tvϵ) = −∞,

and therefore there exists t∗ > 0 such that that I(uµ+t∗vϵ) < 0 and ∥uµ+t∗vϵ∥ > ρ,
where ρ > 0 comes from Lemma 2.3. This shows that it is well defined the Mountain
Pass level

cMP := inf
θ∈Γ

max
0≤t≤1

I(θ(t)) > 0,

where Γ := {θ ∈ C([0, 1], X) : θ(0) = 0, θ(1) = uµ + t∗vϵ}. By Lemma 3.4, we have
that cMP < c̄. Applying the Mountain Pass Theorem (cf. [30, Theorem 2.2]) we
obtain a critical point u0 ̸= 0 such that I(u0) > 0. Since uµ has negative energy,
we conclude that u0 ̸= uµ, which is absurd. This guarantees the existence of our
second nonzero solution. As before, it is nonnegative in RN

+ . □
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4. Solving a modified problem

We start in this section the proof of our second main result. From now on, we
assume that conditions (ã1), (a2) and (f1)− (f2) hold.

As quoted in the introduction, if F (s) :=
∫ s

0
f(t)dt, then the term∫

RN−1 K(x′, 0)F (u)dx′ can be infite, since we have no control on the bahaviour
of F (s) for large values of s, this integral may not be finite. So, we draw upon the
ideas of Azorezo and Alonso [5] and define g : R → R as

(4.1) g(s) :=


f(s), if |s| ≤ CN,p,

f(CN,p)
p−1

CN,p
|s|p−2s, if |s| > CN,p,

where CN,p is given in (1.1). Since f is odd in [−CN,p, CN,p] we have that g is an
odd function. Moreover, from (f2), we obain a constant Cg > 0, depending on N
and p, such that

(4.2) |g(s)| ≤ Cg|s|p−1, ∀ s ∈ R.

Define G(s) :=
∫ s

0
g(t)dt and J : X → R by

J(u) :=
1

2
∥u∥2 − µ

q

∫
RN−1

K(x′, 0)a(x′)|u|qdx′ −
∫
RN−1

K(x′, 0)G(u)dx′

and notice that any critical point u of J such that u ∞ ≤ CN,p is a weak solution
of the problem (P2). Moreover, since the nonquadratic part of J has subcritical
growth, we can use a standard argument and the compact embedding of Proposition
2.1 to conclude that any bounded Palais-Smale sequence of J has a convergent
subsequece.

Based on the previous remark, our objective is to establish the existence of an
infinite number of critical points for J with small L∞(RN−1) norms.

Using Hölder’s inequality as in Lemma 2.3, we obtain

J(u) ≥ 1

2
∥u∥2 − µM1∥u∥q −M2∥u∥p,

where

M1 := ( a σq
/q)S

−q/2
qσ′

q
, M2 := (Cg/p)S

−p/2
p ,

and Cg > 0 comes from (4.2). Let

(4.3) h(t) :=
1

2
t2 − µM1t

q −M2t
p, t ≥ 0,

and notice that h(0) = 0, h < 0 near the origin and limt→+∞ h(t) = −∞. Moreover,
since the map t→ (1/2)t2−q −M2t

p−q attains its positive maximum in (0,+∞), it
is clear that there exists µ∗∗ > 0 such that, for any µ ∈ (0, µ∗∗), h has a positive
maximum. For these values of µ, the function has at least two positive roots
R1 < R2. By the generalized version of Descartes’ rule of signs (see [25, Theorem
2.1]), it has no other positive roots. We assume from now on that µ ∈ (0, µ∗∗).

We observe that R1 is dependent on µ, as the smaller the value of µ, the faster
the function h assumes positive values. In fact, when µ = 0, the function h begins
to take positive values, resulting in R1 = 0. Therefore, we can expect the following
outcome:

Lemma 4.1. The first root of h verifies limµ→0+ R1(µ) = 0.
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Proof. Recalling that h(R1) = 0 and h′(R1) > 0, we get

1

2
= µM1R

q−2
1 +M2R

p−2
1 >

q

2
µM1R

q−2
1 +

p

2
M2R

p−2
1 .

From p > 2 and the above expression, we obtain α ≥ 0 such that R1 → α ≥ 0, as
µ→ 0+. If α > 0, passing the limit on both sides of the above expression and using
q < 2, we get M2α

p−2 ≥ (p/2)M2α
p−2, which implies p ≤ 2. This contradiction

proves that α = 0 and we have done. □

Whereas 0 < R1 < R2, we can define a cutoff function ϕ ∈ C∞
c (R) such that

0 ≤ ϕ ≤ 1, ϕ ≡ 1 on [0, R1] and ϕ ≡ 0 on [R2,+∞). Under these conditions, we
consider the C1−functional Φ : X → R given by

Φ(u) :=
1

2
∥u∥2 − µ

q

∫
RN−1

K(x′, 0)a(x′)|u|qdx′ − ϕ(∥u∥)
∫

RN−1

K(x′, 0)G(u)dx′.

Below, we present the key properties of Φ:

Lemma 4.2. The following holds:

(i) Φ is coercive;
(ii) if Φ(u) < 0, then ∥u∥ < R1 and there exists a small neighborhood of u

where Φ ≡ J ;
(iii) Φ satisfies (PS)c, for any c < 0.

Proof. Arguing as in the proof of Lemma 2.3 and using (4.2), we obtain

Φ(u) ≥ 1

2
∥u∥2 − µM1∥u∥q − ϕ(∥u∥)M2∥u∥p.

Since ϕ vanishes on (R2,+∞) and q < 2, we conclude that Φ is coercive.
For proving item (ii), we define

hϕ(t) :=
1

2
t2 − µM1t

q − ϕ(t)M2t
p, t ≥ 0.

A simple computation shows that h′ϕ(t) > 0 for any t > (µM1)
1/(2−q). Since

h(R2) = 0, we have that

R2 > (2µM1)
1/(2−q) > (µM1)

1/(2−q),

and therefore hϕ is increasing in [R2,+∞).
Let u ∈ X be such that Φ(u) < 0 and suppose, by contradiction, that ∥u∥ ≥ R1.

If ∥u∥ > R2, then we can use h(R2) again to get

0 > Φ(u) ≥ hϕ(∥u∥) ≥ hϕ(R2) = h(R2) +M2(1− ϕ(R2))R
p
2 =M2R

p
2 > 0,

which is absurd. Hence, we may have R1 ≤ ∥u∥ ≤ R2. But in this case h(∥u∥) ≥ 0
and we obtain

0 > Φ(u) ≥ hϕ(∥u∥) ≥ h(∥u∥) ≥ 0,

which also is a contradiction. This proves that ∥u∥ < R1, and therefore Φ(u) =
J(u). Using the continuity of Φ, we obtain ν > 0 such that Φ < 0 in Bν(u). For
any element in this ball the former argument shows that Φ = J . This proves (ii).

Suppose (un) ⊂ X is such that Φ(un) → c < 0 and Φ′(u) → 0. Since we
may assume that Φ(un) < 0, it follows from item (ii) that Φ(un) = J(un) → c
and Φ′(un) = J ′(un) → 0, that is, (un) a Palais-Smale sequence of J . Since Φ is
coercive, we have that (un) is bounded and therefore, as quoted before, (un) has a
convergent subsequence. □
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The next result is the keystone that enables us to apply critical point for
symmetric functionals.

Lemma 4.3. For each k ∈ N, there exist r = r(k) > 0, β = β(k) > 0 and a
k-dimensional subspace Xk ⊂ X such that

sup
u∈Xk∩∂Br(0)

Φ(u) ≤ −β < 0.

Proof. According to condition (a2), there exists a ball B′ ⊂ RN−1 such that a > 0
a.e. in B′. Let ν > 0 and y1 = (y′1, 0), · · · , yk = (y′k, 0) ∈ ∂RN

+ be such that(
Bν(yi) ∩ ∂RN

+

)
⊂ B′ and Bν(yi) ∩Bν(yj) = ∅, for any i, j = 1, . . . , k, with i ̸= j.

For each i = 1, . . . , k, we pick a smooth function ϕi such that ϕi ≡ 1 in Bν/2(yi)∩RN
+

and ϕi ≡ 0 outside Bν(yi) ∩ RN
+ .

Considering that these functions have disjoint support, the set {ϕ1, ..., ϕk} is
linearly independent, and the spanned space Xk := ⟨{ϕ1, ..., ϕk}⟩ has dimension k.
We assert that the mapping

Q(u) :=

(∫
RN−1

K(x′, 0)a(x′)|u|qdx′
)1/q

,

defines a norm in Xk. To verify this, we initially establish that Q(u) > 0 for any

u ̸= 0. Let u =
∑k

i=1 αiϕi be a nonzero function. If we denoteB
′
i := Bν/2(yi)∩∂RN

+ ,
it follows from (a2) that

Q(u)q =

∫
RN−1

K(x′, 0)a(x′)|α1ϕ1 + ...+ αkϕk|qdx′

≥
k∑

i=1

∫
B′

i

K(x′, 0)a(x′)|α1ϕ1 + ...+ αkϕk|qdx′

=

k∑
i=1

|αi|q
∫
B′

i

K(x′, 0)a(x′)dx′ > 0,

since the sets Bi are disjoint, ϕi ≡ 1 and a > 0 in Bi, and at least one of the αi’s
is nonzero. The other properties that need to be verified by a norm can be easily
deduced from the definition of Q.

Since dimXk <∞, there exists C1 = C1(k) > 0 such that

C1∥u∥q ≤
∫
RN−1

K(x′, 0)a(x′)|u|qdx′, ∀u ∈ Xk.

Hence, for some C2 > 0, there holds

Φ(u) ≤ 1

2
∥u∥q

(
∥u∥2−q + C2∥u∥p−q − 2µC1

q

)
≤ −β < 0, ∀u ∈ Xk.

for r = r(k) > 0 such that

r2−q + C2r
p−q <

µC1

q

and β = β(k) := rqµC1/(2q). The lemma is proved. □

Let Σ the class of all closed subsets of X \ {0} that are symmetric with respect
to the origin. If A ⊂ Σ, then the genus of γ(A) is defined as

γ(A) := inf
{
k ∈ N : there exists φ : A→ Rk continuous and odd

}
,
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when this set is not empty. Otherwise, if it is empty, we just say that γ(A) = +∞.
We refer to [30, Chapter 7] for more details on this subject.

We are ready to prove the main result of this section.

Proposition 4.4. The funcional Φ has infnitely many critical points with negative
energy.

Proof. For each k ∈ N, let

Γk := {A ∈ Σ : γ(A) ≥ k}

and

ck := inf
A∈Γk

sup
u∈A

Φ(u)

Since Φ remains bounded in balls and it is coercive, we conclude that ck ∈ R.
Let Xk and r > 0 be given by Lemma 4.3. It is clear that we can define an odd
homeomorphism between Xk ∩ ∂Br(0) and the unit sphere Sk−1 ⊂ Rk. Hence, we
may use [30, Proposition 7.7] to conclude that γ (Xk ∩ ∂Br(0)) = k.

Since Xk ∩ ∂Br(0) is closed and sysmmetric, it belongs to Γk. It follows from
Lemma 4.3 that

ck ≤ sup
u∈Xk∩∂Br(0)

Φ(u) ≤ −β < 0,

so that all the minimax levels ck are negative. By Lemma 4.2(iii), Φ satisfies the
Palais-Smale condition at each of this levels. By using Γk+1 ⊂ Γk, we conclude
that ck ≤ ck+1. Moreover, since Φ is even and satisfies the Palais-Smale condition
at any negative level, we can argue along the same lines of [30, Proposition 9.3] to
prove that, if ck = · · · = ck+j = c and Kc = {u ∈ X : Φ(u) = c, Φ′(u) = 0}, then
γ(Kc) ≥ j + 1.

The aforementioned considerations prove that each ck < 0 is a critical value of
Φ. Furthermore, if one of these values repeats, namely cl = cl+1 < 0, we have
that γ(Kcl) ≥ 2, thereby implying that Kcl has infinitely many elements (cf. [30,
Remark 7.3]). Hence, we conclude that Φ has infinitely many critical points with
negative energy. □

5. A priori estimates and the proof of Theorem 1.2

We dedicate this final section to proving our second main theorem.

Proof of Theorem 1.2. Let u ∈ X be one of the critical points given by Proposition
4.4. Since Φ(u) < 0, it follows from Lemma 4.2(ii) that ∥u∥ < R1 and J ′(u) = 0.
We are going to show that, for any µ > 0 sufficiently small, there holds

(5.1) |u(x′, 0)| ≤ CN,p, a.e. in RN−1,

ans therefore it follows from the definition of g (see (4.1)) that f(u) = g(u). Thus,
J ′(u) = 0 implies that u is a solution of the original problem (P2).

The idea for the proof of (5.1) is an adaptation of the classical Moser Iteration
Method [27]. In what follows, we argue assuming that u ≥ 0. If this is not the
case, it is sufficient to perform all the calculations separately for the postive part
u+ and after for the negative part u−.
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Inspired by Stampacchia’s truncation (see [31, 10]) we define, for any 0 < L < 1

and for x ∈ RN
+ ,

uL(x) :=

{
u(x)− L, if u(x) > L,

0, if u(x) ≤ L.

For β > 1, we also define ϕL := u
2(β−1)
L u. Since Φ(u) < 0, it follows from Lemma

4.2 that J ′(u)ϕL = 0. Hence, we may use (4.2) to get

(5.2)

∫
RN

+

K(x)(∇u · ∇ϕL)dx ≤ µ

∫
RN−1

K(x′, 0)a(x′)uq−1ϕLdx
′

+ Cg

∫
RN−1

K(x′, 0)up−1ϕLdx
′.

Since u∇uL = u∇u in the set {u > L} and

∇ϕL = 2(β − 1)u2β−3
L u∇uL + u2β−2

L ∇u,

we have that∫
RN

+

K(x)(∇u · ∇ϕL)dx =

∫
{u>L}

K(x)(∇u · ∇ϕL)dx

=

∫
{u>L}

K(x)
[
2(β − 1)u2β−3

L u+ u
2(β−1)
L

]
|∇u|2dx

Therefore, since uL = 0 in {u ≤ L}, we get

(5.3)

∫
RN

+

K(x)(∇u · ∇ϕL)dx ≥
∫
RN

+

K(x)u
2(β−1)
L |∇u|2dx.

If we call Γ1 the term multiplying µ in (5.2), we have that

Γ1 =

∫
{L<u<1}

K(x′, 0)a(x′)uq−1ϕLdx
′ +

∫
{u≥1}

K(x′, 0)a(x′)uq−1ϕLdx
′.

Since uL ≤ u < 1, in the set {L < u < 1} we have that

uq−1ϕL = uq−1u
2(β−1)
L u ≤ uq.

Moreover, in {u ≥ 1} there holds uq−1 ≤ up−1. Thus

Γ1 ≤
∫
RN−1

K(x′, 0)a(x′)uqdx′ + a ∞

∫
RN−1

K(x′, 0)up−1ϕldx
′.

Using Hölder’s inequality in the first integral above, (5.3) and (5.2), we obtain

(5.4)

∫
RN

+

K(x)u
2(β−1)
L |∇u|2dx ≤ µS

−q/2
qσ′

q
a σq

∥u∥q

+ (µ a ∞ + Cg)

∫
RN−1

K(x′, 0)up−1ϕLdx
′

From uL ≤ u and Hölder’s inequality with exponents s = 2∗/(p − 2) and
s′ = 2∗/(2∗ + 2− p), we obtain∫

RN−1

K(x′, 0)up−1ϕLdx
′ ≤

∫
RN−1

K(x′, 0)up−2u2βdx′

≤ u p−2
2∗

u 2β
mβ ≤ S

(2−p)/2
2∗

∥u∥p−2 u 2β
mβ ,
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where

m := 2s′ =
2 · 2∗

2∗ + 2− p
< 2∗.

By definition, uL(x) → u(x), as L → 0+. Moreover, we know that ∥u∥ ≤ R1. So,
we can replace the above inequality in (5.4) and use Fatou’s lemma to obtain

(5.5)

∫
RN

+

K(x)u2(β−1)|∇u|2dx ≤ µS
−q/2
qσ′

q
a σqR

q
1

+ (µ a ∞ + Cg)S
(2−p)/2
2∗

Rp−2
1 u 2β

mβ

At this point, we define zL := uβ−1
L u and notice that(∫

RN−1

K(x′, 0)z2∗L dx′
)2/2∗

≤ S−1
2∗

∫
RN

+

K(x)|∇zL|2dx.

Since uL = 0 in {u ≤ L},

∇zL =
[
(β − 1)uβ−2

L u+ uβ−1
L

]
∇u.

Hence, using uL ≤ u and (β − 1)2 + 1 + 2(β − 1) = β2, we obtain(∫
RN−1

K(x′, 0)z2∗L dx′
)2/2∗

≤ S−1
2∗
β2

∫
RN

+

K(x)u2(β−1)|∇u|2dx.

Since zL(x) → uβ(x), as L → 0+, it follows from the above estimate, (5.5) and
Fatou’s lemma that

u 2β
2∗β

≤ S−1
2∗
β2
[
µS

−q/2
qσ′

q
a σq

Rq
1 + (µ a ∞ + Cg)S

(2−p)/2
2∗

Rp−2
1 u 2β

mβ

]
We now recall that we are assuming that µ < µ∗∗, where this last number was

introduced in the beginning of the last section and it assures that the function h
defined in (4.3) has exactly 2 positive roots R1 < R2. We need to reduce the value
of µ once more. Actually, since R1(µ) → 0, as µ → 0+ (see Lemma 4.1) we know
that there exists 0 < µ̄ < µ∗∗ such that, for any µ ∈ (0, µ̄), all the inequalities
below are satisfied:

(5.6) µS
−q/2
qσ′

q
a σq

Rq
1 < 1, (µ a ∞ + Cg)S

(2−p)/2
2∗

Rp−2
1 < 1, S−1

2∗
R1 < 1.

With the above restriction on µ, we have that

(5.7) u 2β
2∗β

≤ C1β
2 max

{
1, u 2β

mβ

}
,

where C1 := 2S−1
2∗

. This shows that, once we know that u ∈ Lmβ
K , then u ∈ L2∗β

K .
So, if we fix β := 2∗/m > 1, we have that 2∗β > 2∗ = mβ, and we can improve the
regularity of u. Moreover, 2∗β = mβ2 and we can repeat the previous calculations,
replacing β by β2, and use (5.7) to get

u 2β2

2∗β2 ≤ C1β
4 max

{
1, u 2β2

mβ2

}
= C1β

4 max
{
1, u 2β2

2∗β

}
≤ C1β

4 max

{
1,
(
C1β

2 max{1, u 2β
2∗
}
)β}

.

Setting C2 := max{1, C1}, we can rewrite the above estimate as

u 2β2

2∗β2 ≤ C1+β
2 β2(2+β) max

{
1, u 2β2

2∗

}
.
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Repeating this process k ∈ N times, we get

(5.8) u 2∗βk ≤ C

1

2βk

∑k−1
i=0 βi

2 (β2)

1

2βk

∑k
i=1 iβk−i

max {1, u 2∗} .
Since β > 1, we have that

1

βk

k−1∑
i=0

βi ≤
∞∑
i=1

(
1

β

)i

=
1

(β − 1)
,

1

βk

k∑
i=1

iβk−i ≤
∞∑
i=1

i

(
1

β

)i

=
β

(β − 1)2
.

Moreover, from the last inequality in (5.6) and ∥u∥ ≤ R1, we get

u 2∗ ≤ S−1
2∗

∥u∥ ≤ S−1
2∗
R1 < 1.

These remarks, β = (2∗ + 2− p)/2, C2 > 1, (5.8) and (1.1) imply that

(5.9) u 2∗βk ≤ C
1/[2(β−1)]
2 ββ/(β−1)2 = CN,p, ∀ k ∈ N,

from which we conclude that (5.1) holds. Indeed, suppose by contradiction that
there exist C3 > CN,p and Ω ⊂ RN−1 with positive and finite measure in RN−1

such that |u(x′, 0)| > C3 for a.e. x′ ∈ Ω. Thus,

u 2∗βk ≥
(∫

Ω

|u|2∗β
k

dx′
)1/(2∗β

k)

≥ C3|Ω|1/(2∗β
k),

which implies lim infn→+∞ u 2∗βk ≥ C3 > CN,p, contrary to (5.9). This
contradiction concludes the proof of Theorem 1.2. □

Remark 5.1. In [7], the authors state a multiplicity result which can be viewed as
a version of our Theorem 1.2 for a different problem. Unfortunately, it seems that
the proof has a gap, as the equation (11) in that paper is false. We believe that the
truncation defined in the proof of our Theorem 1.2 can be used to fix the proof of
the main result in [7].

Acknowledgment. The authors would like to express their sincere gratitude to the
anonymous referee for his/her valuable suggestions which improves the presentation
of the paper.
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