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Abstract. We prove the existence of sign-changing solution to the problem

−∆u−
1

2
(x · ∇u) = λu, in RN

+ ,
∂u

∂ν
= |u|2∗−2u, on ∂RN

+ ,

where RN
+ = {(x′, xN ) : x′ ∈ RN−1, xN > 0} is the upper half-space,

2∗ := 2(N − 1)/(N − 2), N ≥ 7, ∂u
∂ν

is the partial outward normal derivative

and the parameter λ > 0 interacts with the spectrum of the linearized problem.

In the proof, we apply variational methods.

1. Introduction and main result

Let RN+ =
{
(x′, xN ) : x′ ∈ RN−1, xN > 0

}
be the upper half-space and consider

the nonlinear boundary value problem

(1.1) −∆v = f(x, v), in RN+ ,
∂v

∂ν
= g(x, v), on RN−1,

where ∂u
∂ν denotes the outer unit normal derivative and we have identified ∂RN+ ≃

RN−1. Its mathematical importance arises, for instance, in the study of conformal
deformation of Riemannian manifolds [10, 17, 22, 18], problems of sharp constant
in Sobolev trace inequalities [16, 14] and blow-up properties of the solutions of
related parabolic equations [26, 20]. This kind of equations also appears in several
applied contexts like glaciology [30], population genetics [2], non-Newtonian fluid
mechanics [15], nonlinear elasticity [13], among others.

There is a vast literature concerning nonnegative solutions for (1.1). Using the
moving plane method, Hu [25] obtained nonexistence of positive solutions when
f ≡ 0 and g(v) = vq, with 1 < q < N/(N − 2). Similar results were obtained
by Chipot et al. in [12] in the case that f(v) = avp and g(v) = vq with
1 < p ≤ (N + 2)/(N − 2), 1 < q ≤ N/(N − 2), with one of the inequalities being
strict, and a > 0 (see also [36] for existence and multiplicity results in the double
subcritical case). In dimension N = 2 and f ≡ 0, Cabré and Morales [7] presented
necessary and sufficient conditions on g(v) for the existence of layer solutions, that
is, bounded solutions that satisfy some monotonicity properties. When f ≡ 0 and
g(v) = (N−2)vN/(N−2), existence of positive solution decaying as |x|2−N at infinity
was obtained by Escobar [16] using the conformal equivalence between the unit ball
in RN and the half-space (see also [34]). In the same paper, it was considered the
case f(v) = N(N − 2)v(N+2)/(N−2) and g(v) = bvN/N(N−2). Later, Chipot et
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al. [11] removed the decay assumption by using the shrinking sphere method to
give a complete description of positive solutions when f(v) = av(N+2)/(N−2) and
g(v) = bvn/(N−2). Similar results were obtained by Li and Zhu in [27], including a
2-dimensional version with exponential type nonlinearities.

In this paper, we deal with the boundary critical problem

(Pλ)


−∆u− 1

2
(x · ∇u) = λu, in RN+ ,

∂u

∂ν
= |u|2∗−2u, on RN−1,

where 2∗ := 2(N − 1)/(N − 2). Notice that, if u is a solution of (Pλ), then the
function v = exp(|x|2/8)u verifies (1.1) for

f(x, v) =

(
λ− N

4
− |x|2

16

)
v, g(x, v) = exp

(
− |x|2

4(N − 2)

)
|v|2∗−2v.

Differently from the former cases, this problem is not homogeneous and the
nonlinearity f is unbounded in the spatial variable. Hence, the techniques used in
the aforementioned works do not apply and we need to perform a different approach
to deal with the drift term inside the domain.

Before presenting our result, it is essential to highlight the resemblance of our
equation to the classical problem:

−∆u = λu+ |u|2
∗−2u, u ∈ H1

0 (Ω).

In this equation, Ω ⊂ RN is a bounded domain, with N ≥ 3, and λ > 0 is a
parameter. This equation has its origins in Yamabe’s problem, which revolves
around the existence of Riemannian metrics with constant scalar curvature. In a
seminal paper by Brezis and Nirenberg [5], it was established that the existence
of a positive solution is linked to the interplay between the parameter and the
first eigenvalue λ1,Ω > 0 within the spectrum σ(−∆, H1

0 (Ω)). Among various
contributions, they demonstrated that the above equation possesses a positive
solution when N ≥ 4 and 0 < λ < λ1,Ω. This marked the commencement of an
extensive body of literature dedicated to this critical equation. Notably, we would
like to mention the work of Capozzi, Fortunato, and Palmieri [8], who obtained
solutions for λ ≥ λ1,Ω, and Cerami, Solimini, and Struwe [9], who proved the
existence of a sign-changing solution when 0 < λ < λ1,Ω and N ≥ 6.

In addition to its natural connection with the Brezis and Nirenberg problem, our
equation is closely related to the nonlinear heat equation:

wt −∆w = 0, in RN+ × (0,+∞),
∂w

∂ν
= |w|p−2w, on RN−1 × (0,+∞).

A solution with the special form w(x, t) = t−λu(t−1/2x) is referred to as a self-
similar solution. It is well-known (see, for example, [23, 29, 24]) that such
solutions provide qualitative insights into aspects like global existence, blow-up,
and asymptotic behavior. Furthermore, they maintain the scaling of the partial
differential equation, offering simultaneous information about small and large-scale
behaviors. The connection with (Pλ) becomes evident when we substitute this form
of w into the heat equation. We observe that the profile u must satisfy the same
equation as in (Pλ) with λ = 1/(2(p− 2)) and 2∗ replaced by p ∈ (2, 2∗].
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Setting K(x) = exp(|x|2/4) and noticing that 2∇K = xK, the first equation in
(Pλ) can be rewritten as

−div(K(x)∇u) = λK(x)u, in RN+ .

Hence, it is natural to look for finite energy solutions belonging to the Sobolev

space D1,2
K (RN+ ) defined as the closure of C∞

c (RN+ ) with respect to the norm

∥u∥ =

(∫
RN

+

K(x)|∇u|2dx

)1/2

.

This kind of space was first introduced by Escobedo and Kavian [19] who considered
a problem in the whole space RN . The upper half-space case was presented in [20],

where it is proved thatD1,2
K (RN+ ) is compactly embedded into the weighted Lebesgue

space

L2
K(RN+ ) =

{
u ∈ L2(RN+ ) :

∫
RN

+

K(x)u2dx < +∞

}
.

So, we can solve the linear problem associated with (Pλ), namely

(LP ) −∆u− 1

2
(x · ∇u) = λu, in RN+ ,

∂u

∂ν
= 0, on RN−1,

and use spectral theory to obtain an increasing sequence of eigenvalues (λj)j∈N
such that λ1 = N/2 and λj → +∞, as j → +∞.

The authors in [20] considered the subcritical version of (Pλ), that is, the same
problem with 2∗ replaced by p ∈ (2, 2∗). Among other results, they obtained the
existence of a positive solution if λ < λ1. As a consequence, self-similar solutions
to the associated heat equation exist whenever 2 + (1/N) < p < 2∗. The critical
version was recently considered in [21] and the situation turns out to be more
delicate. After proving a new trace embedding the authors showed that, in the
critical case, there is no self-similar solution to the equation. Besides this, they
obtained a positive solution whenever N ≥ 7 and the parameter λ verifies

λ∗N =
N

4
+
N − 4

8
< λ < λ1.

In the first part of this paper we complete the above study by considering the
case λ > λ1. Standard arguments show that positive solutions are not expected
and therefore we look for sign-changing solutions. More specifically, we prove the
following:

Theorem 1.1. If N ≥ 7 and λ > λ1 is not an eigenvalue of (LP ), then problem
(Pλ) has a sign-changing solution.

In the proof, we apply the Linking Theorem [31] to the energy functional
associated to (Pλ). Since usual arguments do not imply that this functional is
anticoercive in finite-dimensional subspaces, we need to perform a detailed study
of the structure of solutions of the eigenvalue problem (LP ) and prove a projection
result (see Lemma 2.4 and Proposition 2.5). The assumption that λ is not an
eigenvalue of (LP ) is a non-resonant type condition of technical nature and assures
that Palais-Smale sequences are bounded. Actually, the arguments used in [31, 8]
do not work in unbounded domains and therefore we need to perform a different
approach here (see Proposition 2.6).
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In the second part of the paper, we come back to the range where positive solution
exists and ask if it is possible to obtain another solution. In this new setting, we
prove the following:

Theorem 1.2. If N ≥ 7 and λ ∈ (λ∗N , λ1), then problem (Pλ) has a sign-changing
solution.

In order to explain the main steps for the proof, we first define u+(x) =
max{u(x), 0} and u− = u+ − u. After that, inspired by the paper of Cerami,

Solimini and Struwe [9], we introduce the Nehari nodal set Mλ = {u ∈ D1,2
K (RN+ ) :

u± ̸= 0, I ′λ(u
±)u± = 0} and prove that

dλ = inf
u∈Mλ

Iλ(u)

is attained by a solution u ∈ Mλ. Since we are dealing with the critical case, the
functional Iλ satisfies only a local Palais-Smale condition. So, we need to prove some
fine estimates (see Lemmas 5.2 and 5.3) involving the positive solution obtained
in [21], which justifies the high dimensions and the strong technical restrictions
on the parameter λ, and a slight modification of the instanton functions founded
independently by Escobar [16] and Beckner [3]. This is essential to guarantee that
dλ belongs to the range where we have compactness. SinceMλ is not a differentiable
manifold, it is not easy to construct Palais-Smale sequences on the level dλ. In order
to do this, we adapt some ideas introduced by Tarantello in [33].

The paper is organized as follows: in the next section, we present the variational
framework and some technical results for Theorem 1.1, which is proved after in
Section 3. In Section 4, we establish the minimization scheme in order to deal with
problem (Pλ) when λ ∈ (λ∗N , λ1), and in the last section we present the proof of
Theorem 1.2 .

2. Variational setting and preliminary results

We start this section setting K(x) := exp(|x|2/4) and noticing that

div(K(x)∇u) = K(x)

(
∆u+

1

2
(x · ∇u)

)
,

for any regular function u. Hence, it is natural to define the Banach space D1,2
K (Ω)

as being the closure of C∞
0 (Ω) with respect to the norm

∥u∥D1,2
K (Ω) :=

(∫
Ω

K(x)|∇u|2 dx
) 1

2

,

for any open set Ω ⊂ RN . For simplicity, we denote D1,2
K (RN+ ) by X and ∥·∥D1,2

K (RN
+ )

by ∥ · ∥. We also define, for any 2 ≤ r ≤ 2∗ := 2N/(N − 2), the weighted Lebesgue
space

LrK(RN+ ) :=

 u ∈ Lr(RN+ ) : ∥u∥r :=

(∫
RN

+

K(x)|u|rdx

)1/r

<∞

 .

According to [20, Lemma 2.2], the embedding X ↪→ LrK(RN+ ) is continuous for
2 ≤ r ≤ 2∗ and compact for 2 ≤ r < 2∗ . Moreover, denoting by

LrK(RN−1) :=

{
u ∈ Lr(RN−1) : u r :=

(∫
RN−1

K(x′, 0)|u|rdx′
)1/r

<∞

}
,
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it was proved in [20, Lemma 2.4] the compact trace embedding X ↪→ LrK(RN−1),
for 2 < r < 2∗. Subsequently, the authors in [21, Theorem 1.1] extended this
former result by proving that the embedding is really continuous for 2 ≤ r ≤ 2∗
and compact for 2 ≤ r < 2∗. So, the natural range of the trace embedding is
covered and we can define the best constant

(2.1) S(K) := inf
φ∈X\{0}

∥φ∥2

φ 2
2∗

> 0.

Actually, it is proved in [21] that the above infimum is achieved and it is equal to
the best constant S of the Sobolev trace embedding D1,2(RN+ ) ↪→ L2∗(RN−1).

The energy functional associated with our problem Iλ : X → R is given by

Iλ(u) :=
1

2
∥u∥2 − λ

2
∥u∥22 −

1

2∗
u 2∗

2∗
, ∀u ∈ X.

Standard calculations show that Iλ ∈ C1(X,R) and the weak solutions of (Pλ) are
precisely the critical points of Iλ.

For proving Theorem 1.1, we shall use the following variant of the Mountain
Pass Theorem [31] (see also [35, Theorem 2.12]).

Theorem 2.1. Let E = V ⊕W be a real Banach space with dimV <∞. Suppose
I ∈ C1(E,R) satisfies

(I1) there exist ρ, α > 0 such that I|W∩∂Bρ(0)≥ α;
(I2) there exists e ∈W ∩ ∂B1(0) and R > ρ such that

I|∂Q≤ 0,

with

Q :=
(
BR(0) ∩ V

)
⊕ {te : 0 < t < R}.

If

(2.2) c := inf
γ∈Γ

max
u∈Q

I(γ(u)),

where Γ :=
{
γ ∈ C(Q,E) : γ ≡ Id on ∂Q

}
, then there exists a sequence (un) ⊂ E

such that I(un) → c and I ′(un) → 0, as n→ +∞.

We are intending to apply this abstract result with E = X and I = Iλ. In order
to present the decomposition of the space X we consider the linearized problem

(LP )


−div(K(x)∇u) = λK(x)u, in RN+ ,
∂u
∂η = 0, on RN−1,

u ∈ D1,2
K (RN+ ).

Thanks to the compact embedding X ↪→ L2
K(RN+ ), we can use standard spectral

theory to obtain sequence of eigenvalues (λj)j∈N such that

0 < λ1 < λ2 ≤ · · · ≤ λj ≤ · · ·

with lim
j→∞

λj = +∞. A straightforward computation shows that

φ1(x) := exp
(
−|x|2/4

)
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satisfies (LP ). Since this function is positive, its associated eigenvalue is the first
one. Noticing that ∇φ1 = −(x/2)K(x)−1, we can explicitly compute this first
eigenvalue in the following way:

λ1 = −div(K(x)∇φ1)

K(x)φ1
=

1

2
div(x) =

N

2
.

Along this entire section we shall assume that λ ∈ (λk, λk+1), for some k ∈ N.
In order to apply Theorem 2.1, we pick φi the eigenfunction associated with the
eigenvalue λi of problem (LP ), for 1 ≤ i ≤ k, and set

(2.3) V := span{φ1, . . . , φk}, W := V ⊥.

We have that X = V ⊕ W . Besides this, it is well known from the variational
characterization of the eigenvalue of (LP ) that

(2.4)
1

λk
∥v∥2 ≤ ∥v∥22, ∥w∥22 ≤ 1

λk+1
∥w∥2, ∀ v ∈ V, w ∈W.

The condition (I1) easily follows from the above inequalities.

Lemma 2.2. The functional Iλ satisfies assumption (I1) of Theorem 2.1 .

Proof. Using (2.4) and (2.1) we obtain, for any w ∈W ,

Iλ(w) ≥
1

2

(
λk+1 − λ

λk+1

)
∥w∥2 − 1

2∗
w 2∗

2∗
≥ ∥w∥2

(
C1

2
− 1

2∗
S−2∗/2∥w∥2∗−2

)
,

where C1 := (λk+1 − λ)/λk+1 > 0. Hence,

Iλ(w) ≥
ρ2C1

4
, ∀w ∈W ∩ ∂Bρ(0),

for ρ :=
[
(2∗C1S

2∗/2)/4
]1/(2∗−2)

. The lemma is proved. □

The proof of (I2) is more involved since the usual techniques are not sufficient
to show that Iλ is anticoercive in general finite-dimensional subspaces. Thus, we
need to construct a specific subspace where this property holds. In order to do
this we need to perform a detailed study of the solutions of (LP ). We start with
an interesting result proved by Escobedo and Kavian [19, Proposition 2.3] via a
Fourier Transform approach:

Proposition 2.3. The eigenvalues of the problem

(2.5)

{
−div(K(x)∇u) = µK(x)u, in RN ,

u ∈ D1,2
K (RN ),

are µk = (N + k − 1)/2, with k ∈ N. The associated eigenspaces are given by

Vk := span
{
Dβφ1 : |β| = k − 1

}
where φ1(x) = exp(−|x|2/4), β ∈ (N ∪ {0})N , |β| := β1 + · · · + βN and
Dβ := ∂β1 · · · ∂βN . In particular, any eigenfunction can be written as P (x)φ1(x),
for some polynomial function P .

As an application of the above result, we can describe the shape of the solutions
of the problem (LP ). More specifically, we have the following:

Lemma 2.4. If φ ∈ X is an eigenfunction of (LP ), then there exists a polynomial
p(x) such that φ(x) = p(x)φ1(x), for any x ∈ RN+ .
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Proof. Suppose that φ ∈ X is an eigenfunction of (LP ) and define

v(x′, xN ) :=

{
φ(x′, xN ), if xN ≥ 0,

φ(x′,−xN ), if xN < 0.

Since ∂φ
∂xN

(x′, 0) = 0 in RN−1, we can check that v ∈ D1,2
K (RN ). Moreover,

v|RN−
∈ D1,2

K (RN− ) is a solution of a linear problem analogous to (LP ) but with

RN+ replaced by RN− := {(x′, xN ) : x′ ∈ RN−1, xN < 0}.
Let ϕ ∈ C∞

0 (RN ) and denote by ϕ+ ∈ C∞
0 (RN+ ) the restriction of ϕ to RN+ . We

define ϕ− in an analogous way and compute∫
RN

K(x)(∇v · ∇ϕ) dx =

∫
RN

+

K(x)(∇φ · ∇ϕ+) dx

+

∫
RN

−

K(x)(∇φ(x′,−xN ) · ∇ϕ−) dx

= λ

∫
RN

+

K(x)vϕ+ dx+ λ

∫
RN

−

K(x)vϕ− dx

= λ

∫
RN

K(x)vϕ dx,

that is, v is an eigenfunction of (2.5). The result follows from Proposition 2.3. □

We are ready to prove a technical result which will be useful for verifying the
geometric condition (I2).

Proposition 2.5. Suppose that ϕ ∈ C∞
0 (RN+ ) \ {0} is such that ϕ|RN−1

̸= 0 and

its orthogonal projection ϕ⊥ over W is nonzero. Then the functional Iλ satisfies
assumption (I2) of Theorem 2.1 for e := ϕ⊥/∥ϕ⊥∥.

Proof. Since λ > λk, we can use the variational inequality (2.4) to check that Iλ ≤ 0
in V . From the definition of Q given in Theorem 2.1, condition (I2) holds if we can
prove that

(2.6) lim
∥z∥→+∞, z∈V⊕Re

Iλ(z) = −∞.

In order to prove the above claim, we first notice that there exists a maximal set
of indices L = {j1, . . . , jl} ⊂ {1, . . . , k} such that O := {φj1(x′, 0), . . . , φjl(x′, 0)} is
linearly independent and

(2.7) spanO = span{φ1(x
′, 0), . . . , φk(x

′, 0)}

After a rearrangement, we may assume that L = {1, 2, . . . ,m}, with m ≤ k.
We first show that the function

|(b1, · · · , bm, bm+1)|1 := b1φ1 + · · ·+ bmφm + bm+1ϕ
⊥

2∗

defines a norm in Rm+1. Indeed, suppose that |(b1, · · · , bm, bm+1)|1 = 0, in such
way that

b1φ1(x
′, 0) + · · ·+ bmφm(x′, 0) + bm+1ϕ

⊥(x′, 0) = 0, ∀x′ ∈ RN−1.

If bm+1 ̸= 0, then ϕ⊥(·, 0) is a linear combination of the elements of O. By
Lemma 2.4, there exists a polynomial q such that ϕ⊥(x′, 0) = q(x′)φ1(x

′, 0), for
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any x′ ∈ RN−1. Since X = V ⊕W and, consequently, ϕ− ϕ⊥ ∈ span{φ1, · · · , φk},
it follows again from Lemma 2.4 that there exists a polynomial r such that

ϕ(x′, 0) = [(ϕ− ϕ⊥) + ϕ⊥](x′, 0) = r(x′)φ1(x
′, 0), ∀x′ ∈ RN−1.

But ϕ|RN−1
̸= 0, φ1 > 0 and ϕ has compact support, and therefore we could

construct polynomials of type t 7→ p(x1, . . . , t, . . . , xN−1) with infinitely many roots,
which is absurd. Thus, we have that bm+1 = 0 and, since O is linearly independent,
all the others coefficients are also null. The other properties of a norm can be easily
verified.

Now we prove that there exist m polynomials Qi : Rk → R of degree 1,
1 ≤ i ≤ m, and C1 > 0 such that

(2.8) a1φ1 + · · ·+ akφk + ak+1ϕ
⊥

2∗ ≥ C1

[(
m∑
i=1

Q2
i (a1, . . . , ak)

)
+ a2k+1

]1/2
,

for any a1, . . . , ak+1 ∈ R. Indeed, since | · |1 is a norm in Rm+1, there exists C1 > 0
such that

(2.9) |(b1, . . . , bm, bm+1)|1 ≥ C1

(
m+1∑
i=1

b2i

)1/2

,

for any (b1, . . . , bm+1) ∈ Rm+1. For each l = 1, . . . , k, we infer from (2.7) that
φl =

∑m
i=1 c

l
iφi in RN−1, and consequently(
k∑
l=1

alφl

)
+ ak+1ϕ

⊥ =

(
m∑
i=1

Qi(a)φi

)
+ ak+1ϕ

⊥, in RN−1,

where Qi(a) :=
∑k
l=1 alc

l
i and a = (a1, . . . , ak) ∈ Rk. Setting bi := Qi(a),

1 ≤ i ≤ m, and bm+1 = ak+1, (2.8) is a direct consequence of the above expression,
(2.9) and the definition of | · |1.

We are ready to prove (2.6). Let z =
(∑k

i=1 aiφi

)
+ ak+1ϕ

⊥ ∈ V ⊕ Re and

notice that, by (LP ) and the orthogonality of the eigenfunctions, we have that

Iλ(z) = −1

2

k∑
i=1

a2i (λ− λi)∥φi∥22 +
a2k+1

2
(∥ϕ⊥∥2 − λ∥ϕ⊥∥22)−

1

2∗
z 2∗

2∗
.

Hence, if we set

C2 := min
1≤i≤k

(λ− λi)∥φi∥22 > 0, C3 := (∥ϕ⊥∥2 − λ∥ϕ⊥∥22) > 0,

it follows from (2.4) and (2.8) that

(2.10) Iλ(z) ≤ −C2

2

(
k∑
i=1

a2i

)
+
C3

2
a2k+1 −

C2∗
1

2∗
|ak+1|2∗ .

Since V ⊕ Re is finite-dimensional, there exists C4 > 0 such that

C4∥z∥2 ≤ |z|21 =

(
k∑
i=1

a2i

)
+ a2k+1.

So, if ∥z∥ → +∞, at least one of the terms on the right-hand side above goes to
infinity and therefore (2.6) is a consequence of (2.10). The proposition is proved. □
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In the final result of this section, we follow ideas of the celebrated paper of Brezis
and Nirenberg [5] to get a local compactness result.

Proposition 2.6. Suppose that (un) ∈ X satisfies

(2.11) 0 ̸= lim
n→∞

Iλ(un) = d <
1

2(N − 1)
SN−1, lim

n→∞
I ′λ(un) = 0.

Then (un) is bounded and, along a subsequence, (un) weakly converges to a nonzero
weak solution to (Pλ).

Proof. Since

Iλ(u) :=
1

2
∥u∥2 − λ

2
∥u∥22 −

1

2∗
u 2∗

2∗
, ∀u ∈ X,

we get that

I ′λ(u)v :=

∫
RN

+

K(x)∇u · ∇v dx− λ

∫
RN

+

K(x)uv dx−
∫
RN−1

|u|2∗−2uv dx′,

for any u, v ∈ X. Hence, from (2.11), we obtain

(2.12)

(
1

2
− 1

2∗

)
un

2∗
2∗

= Iλ(un)−
1

2
I ′λ(un)un ≤ C1 + C1∥un∥.

Using the decomposition X = V ⊕W , one can write un = vn+wn, with vn ∈ V
and wn ∈W . Setting

J(u) :=
1

2∗

∫
RN−1

K(x′, 0)|u|2∗dx′, ∀u ∈ X,

we can use (2.11) and (2.4) to get

C2 + on(1)∥vn∥ ≥ Iλ(un)−
1

2
I ′λ(un)vn

≥ 1

2
∥wn∥2 −

λ

2
∥wn∥22 +

1

2
J ′(un)vn − 1

2∗
un

2∗
2∗

≥ 1

2

(
1− λ

λk+1

)
∥wn∥2 +

1

2
J ′(un)vn − 1

2∗
un

2∗
2∗
,

where on(1) stands for a quantity approaching zero as n → +∞. If A1 :=
(λk+1 − λ)/(2λk+1) > 0, the above expression, (2.12), Holder’s inequality imply
that

A1∥wn∥2 ≤ C3 + on(1)∥vn∥+ C3∥un∥ −
1

2

∫
RN−1

K(x′, 0)|un|2∗−2unvn dx
′

≤ C3 + C4∥un∥+ C5 un
2∗−1
2∗

vn 2∗ .

By using the trace embedding we obtain

A1∥wn∥2 ≤ C3 + C4∥un∥+ C6(C1 + C1∥un∥)(2∗−1)/2∗∥un∥,

and therefore

(2.13) A1∥wn∥2 ≤ C3 + C7∥un∥+ C8∥un∥2−(1/2∗).

On the other hand, from (2.4) we obtain

on(1)∥vn∥ = I ′λ(un)vn ≤
(
1− λ

λk

)
∥vn∥2 −

∫
RN−1

K(x′, 0)|un|2∗−2unvn dx
′.
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and we can argue as above to get

A2∥vn∥2 ≤ C9∥un∥+ C10∥un∥2−(1/2∗),

where A2 := (λ− λk) /λk > 0. Since ∥un∥2 = ∥vn∥2 + ∥wn∥2, the above expression
and (2.13) imply that

∥un∥2 ≤ C11 + C12∥un∥+ C13∥un∥2−(1/2∗).

and therefore it follows from 2− (1/2∗) < 2 that (un) is bounded in X.
Up to a subsequence, we may assume that

un ⇀ u, weakly in X,

un → u, strongly in L2
K(RN+ ),

un → u, strongly in LsK(RN−1),

for any 2 ≤ s < 2∗ and for some u ∈ X. Given ϕ ∈ C∞
0 (RN+ ), we can use the above

convergences, Young’s inequality and standard computations to show that

0 = lim
n→+∞

I ′λ(un)ϕ = I ′λ(u)ϕ,

and therefore u is a critical point of Iλ.
We prove now that u ̸= 0. Suppose, by contradiction, that this is not the case.

Then, un → 0 in L2
K(RN+ ) and we can use Iλ(un) → d and I ′λ(un)un → 0 to obtain

(2.14)
1

2
∥un∥2 −

1

2∗
un

2∗
2∗

= d+ on(1)

and
∥un∥2 − un

2∗
2∗

= on(1).

Since we may assume that ∥un∥2 → l ≥ 0, the above expression shows that
un

2∗
2∗

→ l. Thus, it follows from (2.14) that

(2.15) d =

(
1

2
− 1

2∗

)
l =

1

2(N − 1)
l.

Recall that the constant S(K) defined in (2.1) is equal to the best constant S
of the trace embedding D1,2(RN+ ) ↪→ L2∗(RN−1). So, passing the inequality

S un
2
2∗ ≤ ∥un∥2 to the limit we obtain Sl2/2∗ ≤ l. If l > 0, we conclude that

l ≥ SN−1. Combining this with (2.15), we obtain d ≥ SN−1/[2(N − 1)], which
is a contradiction. Hence, l = 0 and therefore un → 0 in X, which implies that
Iλ(un) → d = 0, contrary to the hypothesis. Thus, u ̸= 0 and we have done. □

3. Nodal solution for λ > λ1

We devote this section to the proof of Theorem 1.1. For any ε > 0, consider the
function

Uε(x
′, xN ) :=

ε(N−2)/2

[|x′|2 + (xN + ε)2](N−2)/2
, (x′, xN ) ∈ RN+ .

They are the so-called instantons which achieves the best constant of the Sobolev
trace embedding D1,2(RN+ ) ↪→ L2∗(RN−1) (see [16]).

We now fix R > 0, pick ϕ ∈ C∞(RN+ , [0, 1]) such that ϕ ≡ 1 in RN+ ∩ BR(0),

ϕ ≡ 0 in RN+\B2R(0) and set, for each ε > 0,

ψε(x) := K(x)−1/2ϕ(x)Uε(x), x ∈ RN+ .
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This function ψε was extensively exploited in [21], where it was proved that, if
N ≥ 7, then

∥ψε∥2 = AN +O(ε4) + ε2γN , ∥ψε∥22 = O(εN−2) + ε2αN

and

(3.1) ψε
2∗
2∗

= B
2∗/2
N − ε2DN + o(ε2),

where the constants AN , BN , DN , αN , γN > 0 depend only on the dimension N .
Moreover, if we set

Qλ(u) :=
∥u∥2 − λ∥u∥22

u 2
2∗

, ∀u ∈ X \ {0},

there exists EN > 0, depending only on N , such that

(3.2) Qλ(ψε) = S + ε2 (−EN + o(1)) ,

whenever λ > λ∗N . It is worth mention that, along this section, the notations O
and o refers to ε→ 0+.

Remark 3.1. We would like to emphasize that all the constants above can be
explicitly computed in terms of the Beta function

B(a, b) :=

∫ ∞

0

sa−1

(s+ 1)a+b
ds, ∀ a, b > 0,

the dimension N and the volume σN−2 of the (N−2)-dimensional sphere. Actually,

AN :=

∫
RN

+

|∇Uε|2dx, BN :=

(∫
RN−1

|Uε|2∗dx′
)2/2∗

,

DN :=
σN−2

8(N − 2)
B

(
N + 1

2
,
N − 3

2

)
, αN :=

σN−2

2(N − 4)
B

(
N − 1

2
,
N − 3

2

)
γN :=

σN−2(N − 2)

4(N − 4)

[
B

(
N + 1

2
,
N − 3

2

)
+

1

(N − 3)
B

(
N − 1

2
,
N − 1

2

)]
and

EN :=
λαN − γN − (2/2∗)ANB

−2/2∗
N DN

BN
.

Before stating our next result, we need to introduce some useful notation. For
any u1, u2 ∈ X, we denote

(3.3) (u1, u2) :=

∫
RN

+

K(x) (∇u1 · ∇u2) dx, (u1, u2)2 :=

∫
RN

+

K(x)u1u2 dx.

Since ψε has compact support, for any τ ≥ 1 it is well defined

ψε τ :=

(∫
RN−1

K(x′, 0)|ψε|τdx′
)1/τ

.

Moreover, the following holds:

Lemma 3.2. We have that

(3.4) ψε
τ
τ = O(ε(N−1)−τ(N−2)/2), ψε 1 = O(ε(N−2)/2),

(3.5) (v, ψε) = ∥v∥2O(ε(N−2)/2), (v, ψε)2 = ∥v∥2O(ε(N−2)/2),

for any v ∈ V and τ ∈ R such that (N − 1)/(N − 2) < τ < 2∗.
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Proof. For saving notation, we write only K and ϕ to denote K(x′, 0) and ϕ(x′, 0),
respectively. Using the definition of ψε and the change of variable y′ = (x′/ε), we
get ∫

RN−1

K|ψε|τdx′ = ετ(N−2)/2

∫
RN−1

K(2−τ)/2ϕτ

[|x′|2 + ε2]τ(N−2)/2
dx′

≤ C1ε
−τ(N−2)/2

∫
B2R(0)∩RN−1

1

[|x′/ε|2 + 1]τ(N−2)/2
dx′

≤ C1ε
(N−1)−τ(N−2)/2

∫
RN−1

1

[|y′|2 + 1]τ(N−2)/2
dy′.

Using τ > (N − 1)/(N − 2), we obtain∫
RN−1

1

[|y′|2 + 1]τ(N−2)/2
dy′ ≤ C2 +

∫
{|y′|≥1}

1

|y′|τ(N−2)
dy′

≤ C2 + C3

∫ +∞

1

r−τ(N−2)rN−2dr < +∞,

and therefore the first equality in (3.4) holds. For the second one, notice that∫
RN−1

K|ψε| dx′ = ε(N−2)/2

∫
RN−1

K1/2ϕ

[|x′|2 + ε2](N−2)/2
dx′

≤ C4ε
(N−2)/2

∫
B2R(0)∩RN−1

1

[|x′|2 + ε2](N−2)/2
dx′

≤ C4ε
(N−2)/2

∫
B2R(0)∩RN−1

1

|x′|N−2
dx′.

Again, the last integral above is finite.

For proving (3.5) we pick v =
∑k
i=1 aiφi ∈ V and notice that, since each φi ∈ X

is a solution to the linear problem (LP ) with λ = λi, then

|(v, ψε)| =

∣∣∣∣∣
k∑
i=1

λiai(φi, ψε)2

∣∣∣∣∣ ≤ λk

k∑
i=1

|ai||(φi, ψε)2|

≤ λk

k∑
i=1

|ai|∥φi∥L∞(RN
+ )

∫
RN

+

K(x)|ψε| dx.

Since all the norms in V are equivalent, there exists C5 > 0, independent of v, such

that
∑k
i=1 |ai| ≤ C5∥v∥2. Hence, if we set C6 := λk max

1≤i≤n
∥φi∥L∞(RN

+ ), we obtain

|(v, ψε)| ≤ C5C6∥v∥2ε(N−2)/2C7

∫
B2R(0)∩RN

+

1

|x|(N−2)
dx

≤ C8∥v∥2ε(N−2)/2,

from which the first equality in (3.5) follows. The second one can be proved along
the same lines. □
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The following result is the keystone for proving Theorem 1.1.

Proposition 3.3. For any ε > 0 small, there holds

max
u∈V⊕Rψε

Iλ(u) <
1

2(N − 1)
SN−1.

Proof. Given u ̸= 0, a straightforward computation yields

max
t≥0

Iλ(tu) =
1

2(N − 1)

(
∥u∥2 − λ∥u∥22

u 2
2∗

)N−1

.

Therefore, by homogeneity, we see that it is sufficient to prove that

(3.6) max
u∈Σε

(
∥u∥2 − λ∥u∥22

)
< S,

where

Σε := {u = v + tψε : v ∈ V, t ∈ R, u 2∗ = 1}.

We first check that, for any u = v + tψε ∈ Σε, there holds t = O(1) as ε → 0+.
Indeed, setting

A(u) := u 2∗
2∗

− v 2∗
2∗

− tψε
2∗
2∗
,

integrating the equality

d

ds

(
|sv + tψε|2∗ − |sv|2∗

)
= 2∗

[
|sv + tψε|2∗−2(sv + tψε)− |sv|2∗−2(sv)

]
v

and using the Mean Value Theorem we obtain

A(u) =

∫
RN−1

K(x′, 0)
(
|v + tψε|2∗ − |v|2∗ − |tψε|2∗

)
dx′

= 2∗

∫
RN−1

∫ 1

0

K(x′, 0)
(
|sv + tψε|2∗−2(sv + tψε)− |sv|2∗−2(sv)

)
v ds dx′

= 2∗(2∗ − 1)

∫
RN−1

∫ 1

0

K(x′, 0)(|sv + tψεθ|2∗−2tψεv) ds dx
′,

with θ(x) ∈ [0, 1]. Since s ∈ [0, 1], we get∣∣|sv + tψεθ|2∗−2tψεv
∣∣ ≤ C1(|t||v|2∗−1|ψε|+ |t|2∗−1|v||ψε|2∗−1)

and therefore it follows from (3.4) with τ = 2∗ − 1 = N/(N − 2) that

|A(u)| ≤ C1|t|
∫

RN−1

K(x′, 0)|v|2∗−1|ψε|dx′ + C1|t|2∗−1

∫
RN−1

K(x′, 0)|v||ψε|2∗−1dx′

≤ C1|t|∥v∥2∗−1
L∞(RN−1)

O(ε(N−2)/2) + C1|t|2∗−1∥v∥L∞(RN−1)O(ε(N−2)/2).

Since V is finite-dimensional and the eigenfunctions φi of (LP ) are regular up
to the boundary (see Lemma 2.4), there exists C2 > 0, independent of v, such that
∥v∥L∞(RN−1) ≤ C2 v 2∗ . So, we infer from the above expression that

(3.7) |A(u)| ≤ |t| v 2∗−1
2∗

O(ε(N−2)/2) + |t|2∗−1 v 2∗O(ε(N−2)/2).
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From Young’s inequality with exponents s = 2∗/(2∗ − 1) and s′ = 2∗, we get

v 2∗−1
2∗

|t|O(ε(N−2)/2) ≤ 1

4
v 2∗

2∗
+ C3|t|2∗O(ε(N−2)/2)2∗

=
1

4
v 2∗

2∗
+ C3|t|2∗O(εN−1)

and

v 2∗ |t|2∗−1O(ε(N−2)/2) ≤ 1

4
v 2∗

2∗
+ C4|t|2∗O(ε(N−1)(N−2)/N ).

Replacing the above expressions in (3.7) and using (N − 1)(N − 2)/N < (N − 1),
we obtain

|A(u)| ≤ 1

2
v 2∗

2∗
+ |t|2∗O(ε(N−1)(N−2)/N ).

Hence, using (3.1) we get

1 = u 2∗
2∗

= A(u) + v 2∗
2∗

+ tψε
2∗
2∗

≥ −1

2
v 2∗

2∗
− |t|2∗O(ε(N−1)(N−2)/N ) + v 2∗

2∗
+ |t|2∗ ψε 2∗

2∗

=
1

2
v 2∗

2∗
+ |t|2∗

(
B

2∗/2
N +O(1)

)
,

and therefore t = O(1) as ε→ 0+.
For any given u = v + tψε ∈ Σε, it follows from (2.4), (3.5) and t = O(1) that

(3.8)

∥u∥2 − λ∥u∥22 ≤ (λk − λ)∥v∥22 + ∥v∥2O(ε(N−2)/2) + ∥tψε∥2 − λ∥tψε∥22

≤ 1

4(λ− λk)
O(εN−2) +Qλ(tψε) tψε

2
2∗ ,

where we have used, in the last inequality, that as2 + bs ≤ −b2/(4a) for a < 0 and
s ∈ R. Since Qλ(tψε) = Qλ(ψε), by (3.2) we obtain that

(3.9) Qλ(tψε) = S + ε2 (−EN + o(1)) .

In order to estimate tψε
2
2∗ we notice that, since the function s 7→ |s|2∗ is convex,

we have that

1 =

∫
RN−1

K|v + tψε|2∗dx′

≥ tψε
2∗
2∗

+ 2∗

∫
RN−1

K|tψε|2
∗−2tψεv

≥ tψε
2∗
2∗

− 2∗∥v∥L∞(RN−1)|t|2∗−1 ψε
2∗−1
2∗−1

and therefore we infer from (3.4) that

tψε
2
2∗ ≤

(
1 + v 2∗O(ε(N−2)/2)

)2/2∗
= 1 +O(ε(N−2)/2).

Thus, it follows from (3.9) that

Qλ(tψε) tψε
2
2∗ ≤ S + ε2

[
−EN +O(ε(N−6)/2) + o(1)

]
.

Using this inequality, N ≥ 7 and (3.8) we obtain

∥u∥2 − λ∥u∥22 ≤ S + ε2
[
−EN +O(ε(N−6)/2) +O(εN−4) + o(1)

]
< S,

for any ε > 0 sufficiently small. This establishes (3.6) and concludes the proof. □

We are ready to present the first part of the proof of our main result.
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Proof of Theorem 1.1. Consider the decomposition X = V ⊕W , with V and W as
in (2.3). Let ε > 0 and notice that the function ϕ = ψε verifies all the conditions of
Proposition 2.5. Hence, we can use Lemma 2.2 and Theorem 2.1 to obtain (un) ⊂ X
such that

Iλ(un) → c, I ′λ(un) → 0,

with the minimax level c > 0 defined in (2.2). We can pick ε > 0 so small in such
way that Proposition 3.3 holds. Since V ⊕Re = V ⊕Rψε, Proposition 3.3 and (2.2)
imply that c < SN−1/(2(N − 1)). It follows from Proposition 2.6 that Iλ has a
nonzero critical point u ∈ X. In order to prove that u changes its sign we consider
φ1 > 0 a first eigenfunction of (LP ) and notice that, since I ′λ(u)φ1 = 0, there holds

(λ1 − λ)

∫
RN

+

K(x)uφ1dx =

∫
RN−1

K(x′, 0)|u|2∗−2uφ1dx
′.

If u ≥ 0 in RN+ , it follows from the above expression and
∫
RN

+
K(x)uφ1dx > 0 that

λ ≤ λ1, which is not true. A similar argument discard u ≤ 0 and therefore the
proof is complete. □

4. A Nehari type approach for λ∗N < λ < λ1

We present in this section some preliminary results for the proof of Theorem 1.2.
From now on, we suppose that λ∗N < λ < λ1. Hence, we can use [21, Theorem 1.5]
to obtain a positive solution u0 ∈ X of the problem (Pλ). Since u0 2∗ ̸= 0, the
number R > 0 appearing in the definition of the function ψε in the Section 3 can
be chosen in such way that

(4.1)

∫
RN−1\B2R(0)

K(x′, 0)u2∗0 dx
′ > 0.

For any given u ∈ X, we define u+(x) := max{u(x), 0}, u− := u+ − u and the
sets

Nλ := {u ∈ X \ {0} : I ′λ(u)u = 0} , Mλ :=
{
u ∈ X : u± ∈ Nλ

}
.

Notice that the Nehari manifold Nλ contains all the nonzero critical points of Iλ
and Mλ ⊂ Nλ. The idea is to look for a critical point of Iλ which belongs to Mλ

and therefore changes sign.
If u ∈ Nλ, we have that

∥u∥2 = λ∥u∥22 + u 2∗
2∗

≤ λ

λ1
∥u∥2 + S−2∗/2∥u∥2∗ ,

and therefore there exists γ > 0 such that

(4.2) ∥u∥ ≥ γ, ∀u ∈ Nλ.

Moreover, on Nλ we have that

Iλ(u) =

(
1

2
− 1

2∗

)
∥u∥2 − λ

(
1

2
− 1

2∗

)
∥u∥22 ≥ 1

2(N − 1)

(
1− λ

λ1

)
∥u∥2,

in such way that we can define the positive numbers

cλ := inf
u∈Nλ

Iλ(u), dλ := inf
u∈Mλ

Iλ(u).

Although Mλ is not a differentiable manifold, we can adapt an argument of [33]
for proving the following:
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Lemma 4.1. There exists a sequence (un) ⊂ Mλ such that Iλ(un) → dλ and
I ′λ(un) → 0, as n→ +∞.

Proof. Using Ekeland’s Variational Principle, we obtain a sequence (un) ⊂ Mλ

such that

(4.3) Iλ(un) ≤ dλ +
1

n
, Iλ(z) ≥ Iλ(un)−

1

n
∥z − un∥, for all z ∈ Mλ.

Using (4.2) and recalling that Iλ is coercive over Mλ we obtain µ > γ > 0 such
that γ ≤ ∥u±n ∥ ≤ µ, for all n ∈ N.

We claim that there exists K = K(λ, γ, µ) > 0 such that ∥I ′λ(un)∥ ≤ K/n, for
all n ∈ N. If this is true we obtain I ′λ(un) → 0 and the result follows from (4.3).

In order to prove the claim, we fix n ∈ N and v ∈ X such that ∥v∥ ≤ 1 and
notice that, since (un − δv)± → u±n as δ → 0, then

ϕ±δ,n := (un − δv)± ̸= 0,

for any δ small. For simplicity, we drop the subscript n in what follows. The above
expression and a direct computation shows that,

zδ := t+δ ϕ
+
δ − t−δ ϕ

−
δ ∈ Mλ

where t±δ are given by

t±δ =

(
∥(u− δv)±∥2 − λ∥(u− δv)±∥22

(u− δv)± 2∗
2∗

)1/(2∗−2)

.

Setting g±(δ) := t±δ , we obtain from the above expression that g±(0) = 1 and

(2∗ − 2)g′±(0) =
−2(u±, v) + 2λ(u±, v)2 + 2∗

∫
RN−1 K(x′, 0)(u±)2∗−1v dx′

u± 2∗
2∗

,

where the inner products (·, ·) and (·, ·)2 were defined in (3.3). Since ∥u±∥ ≥ γ, we
have that

u± 2∗
2∗ = ∥u±∥2 − λ∥u±∥22 ≥ γ2

(
1− λ

λ1

)
and therefore, using ∥u±∥ ≤ µ and Hölder’s inequality we obtain

(4.4) |g′±(0)| ≤
2∥u±∥∥v∥+ 2λ∥u±∥2∥v∥2 + 2∗ u

± 2∗−1
2∗

v 2∗

(2∗ − 2)γ2(λ1 − λ)/λ1
≤ C1

for

C1 :=
2µ+ 2(λ/λ1)µ+ 2∗S

−2∗/2µ2∗−1

(2∗ − 2)γ2(λ1 − λ)/λ1
.

We now notice that

(4.5) zδ − u =
(
t+δ − 1

)
ϕ+δ −

(
t−δ − 1

)
ϕ−δ − δv,

and therefore

(4.6)
∥zδ − u∥

δ
= ∥g′+(0)u+ − g′−(0)u

− − v∥+ oδ(1),

as δ → 0+. Thus, we can use (4.3) to get

I ′λ(u)(zδ − u) + oδ(∥zδ − u∥) = Iλ(zδ)− Iλ(u) ≥ − 1

n
∥zδ − u∥.
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It follows from (4.5) and g±(0) = 1 that

I ′λ(u)v ≤
(
g+(δ)− g+(0)

δ

)
I ′λ(u)ϕ

+
δ −

(
g−(δ)− g−(0)

δ

)
I ′λ(u)ϕ

−
δ

+
1

n

∥zδ − u∥
δ

+
oδ(∥zδ − u∥)

δ
.

Passing to the limit, recalling that I ′λ(u)ϕ
±
δ = I ′λ(u)(u

± + oδ(1)) = oδ(1), using
(4.6), (4.4) and ∥u±∥ ≤ µ we conclude that

I ′λ(u)v ≤ 1

n
∥g′+(0)u+ − g′−(0)u

− − v∥ ≤ 1

n
(2C1µ+ 1) , ∀ v ∈ X, ∥v∥ ≤ 1.

and therefore ∥I ′λ(un)∥ ≤ K/n, for K = 2C1µ+ 1. The lemma is proved. □

As in the first case, the energy functional satisfies a local compactness condition.

Proposition 4.2. Suppose that (un) ⊂ Mλ satisfies

lim
n→+∞

Iλ(un) = d < cλ +
1

2(N − 1)
SN−1, lim

n→∞
I ′λ(un) = 0.

Then (un) has a convergent subsequence.

Proof. Since Iλ restricted to Nλ is coercive the sequence (un) is bounded in X. So,
up to a subsequence, we may assume that un ⇀ u weakly X, u±n ⇀ u± weakly in
X and u±n → u± strongly in L2

K(RN+ ), for some u ∈ X. Arguing as in the proof
of Proposition 2.6 we obtain I ′λ(u) = 0. Moreover, since (un) ⊂ Mλ, we have that
on(1) = I ′λ(u

+
n )u

+
n − I ′λ(u)u

+ and therefore the above convergences imply that

(4.7) lim
n→+∞

∥u+n − u+∥2 = l, lim
n→+∞

u+n − u+ 2∗
2∗

= l,

for some l ≥ 0.
We shall prove that l = 0 and therefore u+n → u+ in X. Suppose, by

contradiction, that l > 0. Passing the inequality ∥u+n − u+∥2 ≤ S−1 u+n − u+ 2
2∗

to the limit we get l ≥ SN−1. On the other hand, the convergences of (u+n ) just
mentioned and Brezis-Lieb’s lemma [4] implies that

(4.8) Iλ(u
+
n ) = Iλ(u

+
n − u+) + Iλ(u

+) + on(1).

However, by (4.7) and the strong convergence we get

Iλ(u
+
n − u+) =

1

2
∥u+n − u+∥2 − 1

2∗
u+n − u+ 2∗

2∗
+ on(1) =

1

2(N − 1)
l + on(1),

and therefore (4.8) implies that

Iλ(u
+
n ) =

1

2(N − 1)
l + Iλ(u

+) + on(1).

Recalling that u−n ∈ Nλ, we conclude that cλ ≤ Iλ(u
−
n ). Also, since I ′λ(u)u

+ = 0,
we have that Iλ(u

+) ≥ 0. So, we can use the above inequality and l ≥ SN−1 to get

d+ on(1) = Iλ(un) = Iλ(u
−
n ) + Iλ(u

+
n ) ≥ cλ +

1

2(N − 1)
SN−1 + on(1).

Passing to the limit we obtain a contradiction. Hence l = 0 and u+n → u+ strongly
in X. The same argument shows that u−n → u− strongly in X and the proposition
is proved. □
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5. Nodal solution for λ∗N < λ < λ1

Since we already have a Palais-Smale sequence at level dλ, we need only to show
that dλ belongs to the compactness range of the functional Iλ. We shall use the
following intersection property.

Lemma 5.1. There exists α∗, β∗ ∈ R such that (α∗u0 + β∗ψε) ∈ Mλ.

Proof. Define

J(u) :=
u 2∗

2∗

∥u∥2 − λ∥u∥22
, ∀u ∈ X \ {0},

and J(0) = 0. From λ < λ1 and the continuous embedding X ↪→ L2∗
K (RN−1) we

obtain 0 ≤ J(u) ≤ C0∥u∥2∗−2, and therefore J is continuous.
We now set

σ(r, s, t) := rt [(1− s)u0 − sψε] , ∀ r ≥ 0, s, t ∈ [0, 1].

and
Γ(r) := inf

s∈[0,1]
J(σ(r, s, 1)), ∀ r > 0.

If Γ(1) = 0, then there exists s0 ∈ [0, 1] such that J(σ(1, s0, 1)) = 0, that is,
(1 − s0)u0 − s0ψε

2∗
2∗

= 0. Since ψε is positive in BR(0) ∩ RN−1 and (4.1) holds,

we have that s0 ∈ (0, 1). Thus, recalling that ψε ≡ 0 outside B2R(0) ∩ RN−1, we
obtain

0 = (1− s0)u0 − s0ψε
2∗
2∗

≥ (1− s0)
2∗

∫
RN−1\B2R(0)

K(x′, 0)u2∗0 dx
′,

which contradicts (4.1). Hence, Γ(1) > 0 and we infer from J(σ(r, s, 1)) =
r2∗−2J(σ(1, s, 1)) ≥ r2∗−2Γ(1) that

lim
r→+∞

Γ(r) = +∞.

Let r0 > 0 be such that

(5.1) J(σ(r0, s, 1)) ≥ Γ(r0) > 2, ∀ s ∈ [0, 1],

and define the functions f, g : [0, 1]× [0, 1] → R as

f(s, t) := J(σ−(r0, s, t))− J(σ+(r0, s, t))

and
g(s, t) := J(σ+(r0, s, t)) + J(σ−(r0, s, t))− 2.

Since σ(r0, 0, t) = r0tu0 ≥ 0 and σ(r0, 1, t) = −r0tψε ≤ 0, it follows that

f(0, t) = −J(σ−(r0, 1, t)) ≤ 0, f(1, t) = J(σ+(r0, 0, t)) ≥ 0,

for any t ∈ [0, 1]. Moreover, for any s ∈ [0, 1],

g(s, 0) = −2 ≤ 0, g(s, 1) = J(σ+(r0, s, 1)) + J(σ−(r0, s, 1))− 2 ≥ 0,

where we have used J(u+) + J(u−) ≥ J(u) and (5.1) in the last inequality.
Using the above inequalities and Miranda’s Theorem [28] we obtain s0, t0 ∈ [0, 1]

such that f(s0, t0) = 0 = g(s0, t0) and so

J(σ+(r0, s0, t0)) = 1 = J(σ−(r0, s0, t0)).

Consequently, I ′λ(σ
±(r0, s0, t0))σ

±(r0, s0, t0) = 0. Since J(0) = 0, we also have
that σ±(r0, s0, t0) ̸= 0, and therefore the lemma holds for α∗ := r0t0(1 − s0) and
β∗ := r0t0s0. □
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The two next results are of technical nature and it will be useful to estimate dλ.

Lemma 5.2. If τ1, τ2 > 1, then there exists A1 = A1(u0, R, τ1, τ2) > 0 such that∣∣∣ αu0 + βψε
2∗
2∗

− αu0
2∗
2∗

− βψε
2∗
2∗

∣∣∣ ≤ A1

(
|α|2∗−1 βψε τ1 + |α| βψε 2∗−1

(2∗−1)τ2

)
,

for any α, β ∈ R.

Proof. For simplicity, we write only K to denote K(x′, 0). If we call Ψ(α, β) the
term into modulus in the inequality above, we have that

Ψ(α, β) =

∫
RN−1

K

(∫ 1

0

d

ds

[
|sαu0 + βψε|2∗ − |sαu0|2∗

]
ds

)
dx′

= 2∗

∫
RN−1

K

(∫ 1

0

[g(1)− g(0)]αu0 ds

)
dx′

for g(t) := |sαu0 + tβψε|2∗−2(sαu0 + tβψε). From the Mean Value Theorem we
obtain θ(x, s) ∈ (0, 1) such that

Ψ(α, β) = 2∗(2∗ − 1)

∫
RN−1

K

(∫ 1

0

[
|sαu0 + θβψε|2∗−2αu0βψε

]
ds

)
dx′.

Since s, θ ∈ [0, 1], we obtain

(5.2) |Ψ(α, β)| ≤ C1

∫
RN−1

K|αu0|2∗−1|βψε| dx′ + C1

∫
RN−1

K|αu0||βψε|2∗−1 dx′.

We now notice that the positive solution u0 ∈ X of problem (Pλ) given in
[21, Theorem 1.5] belongs to C2(RN+ ). Although regularity up to the boundary
is a more complicated issue, we can adapt the proof of Brezis-Kato’s theorem [6]
presented by Struwe [32, Lemma B.3] (see also [1, Lemma 4.1] for the normal
derivative version) to conclude that u0 ∈ Lτloc(RN−1), for any τ ≥ 1. So, if we set
Ω := {x′ ∈ RN−1 : |x′| < 2R} and recall that ψε vanishes outside B2R(0), we can
use Hölder’s inequality to get∫

RN−1

K|αu0|2∗−1|βψε| dx′ ≤ |α|2∗−1|β| u0 2∗−1

L
(2∗−1)τ′

1
K (Ω)

ψε τ1

and ∫
RN−1

K|αu0||βψε|2∗−1 dx′ ≤ |α||β|2∗−1 u0
τ ′
2

L
τ′
2

K (Ω)
ψε

2∗−1
(2∗−1)τ2

,

where u0 Lr
K(Ω) :=

(∫
Ω
K(x′, 0)|u0|rdx′

)1/r
, for r > 1. So, it is sufficient to define

A1 := C1

(
u0

2∗−1

L
(2∗−1)τ′

1
K (Ω)

+ u0
τ ′
2

L
τ′
2

K (Ω)

)
and use the two above inequalities together with (5.2). □

Lemma 5.3. If τ1, τ2 > 1, then there exists Ai = Ai(u0, R, τ1, τ2, N) > 0, i = 2, 3,
such that

αu0 + βψε
2∗
2∗

≥ 1

3
|α|2∗ u0 2∗

2∗
+ |β|2∗

(
ψε

2∗
2∗

−A2 ψε
2∗
τ1 −A3 ψε

2∗
(2∗−1)τ2

)
,

for any α, β ∈ R.
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Proof. According to last result, we have that

(5.3) αu0 + βψε
2∗
2∗

≥ 1

3
|α|2∗ u0 2∗

2∗
+ |β|2∗ ψε 2∗

2∗
+ f(|α|) + g(|α|),

for f, g : [0,+∞) → R given by

f(s) :=
1

3
u0

2∗
2∗
s2∗ −A1 βψε τ1s

2∗−1,

and

g(s) :=
1

3
u0

2∗
2∗
s2∗ −A1 βψε

2∗−1
(2∗−1)τ2

s.

The function f attains its minimum at the point

s0 :=
3(2∗ − 1)

2∗

A1

u0
2∗
2∗

βψε τ1 ,

and therefore
f(|α|) ≥ f(s0) = −A2|β|2∗ ψε 2∗

τ1 , ∀α ∈ R,
with A2 := A2(u0, R, τ1, τ2, N) > 0. Analogously, there exists A3 > 0 such that

g(|α|) ≥ −A3|β|2∗ ψε 2∗
(2∗−1)τ2

, ∀α ∈ R.

The lemma follows from the two above inequalities and (5.3). □

We are ready to prove our second main theorem.

Proof of Theorem 1.2. Let λ∗N < λ < λ1. Invoking Lemma 4.1 we obtain (un) ⊂
Mλ such that Iλ(un) → dλ and I ′λ(un) → 0, as n→ +∞. We claim that

(5.4) dλ < cλ +
1

2(N − 1)
SN−1.

If this is true, it follows from Proposition 4.2 that, along a subsequence, un → u
strongly in X. Since Mλ is closed, we have that u ∈ Mλ, from which we conclude
that u± ̸= 0. Moreover, recalling that Mλ ⊂ Nλ, we conclude that I ′λ(u) = 0 and
therefore u ∈ X is a sign-changing solution for (Pλ).

For proving (5.4) we first notice that, according to Lemma 5.1, there exists
α∗, β∗ ∈ R such that (α∗u0 + β∗ψε) ∈ Mλ. So, it is sufficient to show that, for
some ε > 0,

sup
α,β∈R

Iλ(αu0 + βψε) < cλ +
1

2(N − 1)
SN−1.

Arguing as in the proof of Lemma 5.1, we can check that W := span{u0, ψε} is a
2-dimensional subspace. Moreover, using (4.1) and the compact support of ψε, we
conclude that αu0 + βψε 2∗ = 0 if, and only if, (α, β) = (0, 0). So, the function
(α, β) 7→ αu0+βψε 2∗ defines a norm in W . From the equivalence between norms
in finite-dimensional subspaces, we get

lim
(|α|+|β|)→+∞

Iλ(αu0 + βψε) = −∞,

and therefore we can restrict our attention to points (α, β) ∈ R2 such that

αu0 + βψε
2∗
2∗

≤ C1,

for some C1 > 0 large enough.
Using Lemma 5.3, we get

(5.5) C1 ≥ 1

3
|α|2∗ u0 2∗

2∗
+ |β|2∗

(
ψε

2∗
2∗

−A2 ψε
2∗
τ1 −A3 ψε

2∗
(2∗−1)τ2

)
,
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If we pick (N − 1)/(N − 2) < τ1 < 2(N − 1)/(N + 2), it follows from (3.4) that

(5.6) ψε τ1 = O(ε2+ν1), ν1 :=
2(N − 1)− τ1(N + 2)

2τ1
> 0,

as ε→ 0+. Moreover, for

N − 1

N
< 1 < τ2 <

2(N − 1)

N + 4
<

2(N − 1)

N
< 2∗,

we can apply (3.4) with τ = (2∗ − 1)τ2 to get

(5.7) ψε
2∗−1
(2∗−1)τ2

= O(ε2+ν2), ν2 :=
2(N − 1)− τ2(N + 4)

2τ2
> 0.

From the above inequalities we conclude that ψε
2∗
τ1 = o(1) and ψε

2∗
(2∗−1)τ2

= o(1),

and therefore it follows from (5.5) and (3.1) that

C1 ≥ 1

3
|α|2∗ u0 2∗

2∗
+ |β|2∗

(
B

2∗/2
N + o(1)

)
.

Since BN > 0, we conclude that α = O(1) and β = O(1). It is worth mentioning
that the above choices for τ1 and τ2 are possible because N ≥ 7.

Notice that, since I ′λ(u0)ψε = 0, then∫
RN

+

K(x) (∇u0 · ∇ψε) dx− λ

∫
RN

+

K(x)u0ψεdx =

∫
RN−1

K(x′, 0)u2∗−1
0 ψεdx

′.

Thus,

(5.8) Iλ(αu0 + βψε) ≤ Iλ(αu0) +
β2

2

(
∥ψε∥2 − λ∥ψε∥22

)
− |β|2∗

2∗
ψε

2∗
2∗

+Φ(ε, α, β)

with

Φ(ε, α, β) := A1O(1)
(
ψε τ1 + ψε

2∗−1
(2∗−1)τ2

)
+ αβ

∫
RN−1

K(x′, 0)u2∗−1
0 ψε dx

′,

with the number A1 > 0 given by Lemma 5.2 and we have used that α and β
remain bounded as ε → 0+. Arguing as in the proof of Lemma 5.2 and recalling
that α = O(1) and β = O(1) as ε→ 0+, we get

αβ

∫
RN−1

K(x′, 0)u2∗−1
0 ψε dx

′ ≤ C2 u0
2∗−1

L
(2∗−1)τ′

1
K (Ω)

ψε τ1 = O(ε2+ν1),

and therefore we can use (5.6), (5.7) and ν1, ν2 > 0 to conclude that

(5.9) Φ(ε, α, β) = O(ε2+ν1) +O(ε2+ν2) = o(ε2).

Since λ > λ1, a straightforward computation shows that the function

f(β) :=
β2

2

(
∥ψε∥2 − λ∥ψε∥22

)
− |β|2∗

2∗
ψε

2∗
2∗
, ∀β ∈ R,

is such that

f(β) ≤ 1

2(N − 1)

[
∥ψε∥2 − λ∥ψε∥22

ψε 2
2∗

]N−1

=
1

2(N − 1)
Qλ(ψε)

N−1,
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for any β ∈ R. Moreover, using (3.2) and the Mean Value Theorem, we obtain
θ ∈ (0, 1) such that

Qλ(ψε)
N−1 ≤

[
S + ε2(−EN + o(1))

]N−1

= SN−1 + (N − 1)ε2 [−EN + o(1)]
[
S + θε2(−EN + o(1))

]N−2

and therefore

f(β) ≤ 1

2(N − 1)
SN−1 + ε2

[
−ENS

2
+ o(1)

]
,

as ε → 0+. Since Iλ(αu0) ≤ Iλ(u0) = cλ, for any α ∈ R, and EN > 0, we can
replace the above inequality and (5.9) in (5.8) to get

sup
α, β∈R

Iλ(αu0 + βψε) ≤ cλ +
1

2(N − 1)
SN−1 + ε2

[
−ENS

2
+ o(1)

]
< cλ +

1

2(N − 1)
SN−1,

for any ε > 0 small. This finishes the proof of the second case of Theorem 1.2. □

References

[1] E.A.M. Abreu, P.C. Carrião and O.H. Miyagaki, Multiplicity of solutions for a convex-concave
problem with a nonlinear boundary condition, Adv. Nonlinear Stud. 6 (2006), 133–148.

[2] D.G. Aronson and H.F. Weinberger, Multidimensional nonlinear diffusion arising in

population genetics, Adv. Math. 30 (1978) 33—76.
[3] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality,

Ann. of Math. 138 (1993), 213–242.
[4] H. Brezis and H. Lieb, A relation between pointwise convergence of functions and convergence

of functionals, Proc. Amer. Math. Soc. 88 (1983), 486–490.

[5] H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical
Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437–477.

[6] H. Brezis and T. Kato, Remarks on the Schrödinger operator with singular complex potentials,

J. Math. Pures. Appl. 58 (1979), 137–151.
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