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Abstract. In this work we consider the following class nonlocal elliptic problems{
−∆u+ V (x)u = [Iα ∗ F (x, u)]f(x, u), x ∈ RN ,

u ∈ H1(RN ) ,

where N ≥ 3 and α ∈ (0, N). The Riesz potential is denoted by Iα and V : RN → R is a positive continuous

potential. The nonlinearity f is asymptotically linear at infinity and at the origin in suitable sense. Our main
results relies on the fact that nonlocal semilinear elliptic problems have nontrivial solutions whenever a kind o

crossing of eigenvalues is allowed. Here we also consider an eigenvalue elliptic problem with a nonlocal term

driven by the Choquard equation.

1. Introduction

In the present work we shall prove existence and multiplicity of solutions to the following class of nonlocal
elliptic problems: {

−∆u+ V (x)u = [Iα ∗ F (x, u)]f(x, u), x ∈ RN ,
u ∈ H1(RN ) ,

(P )

where N ≥ 3 and α ∈ (0, N). The Riesz potential is denoted by Iα and V : RN → R is a positive continuous
function. The nonlinearity f is asymptotically linear at infinity and at the origin in suitable sense.

Now, for the potential V : RN → R we consider the following assumptions:

(V1) There exists V0 > 0 such that V (x) ≥ V0, x ∈ RN ;

(V2) There holds 1/V ∈ L1(RN ), that is, we assume that∫
RN

1

V (x)
dx <∞.

In order to describe our main results we need to consider the following working space

X =

{
u : RN → R :

∫
RN

V (x)u2dx <∞
}
. (1.1)

It is well know that X is a Hilbert space endowed with the norm and inner product given as follows:

∥u∥ =

∫
RN

|∇u|2 + V (x)u2dx, u ∈ X; (1.2)

and

⟨u, v⟩ =
∫
RN

∇u∇v + V (x)uvdx, u, v ∈ X. (1.3)

It follows follows we consider an standard variational point of view finding weak solutions to the elliptic
Problem (P ). In fact, we ensure that critical points for the functional J : X → R given by

J(u) =
1

2
∥u∥2 − 1

2

∫
RN

[Iα ∗ F (x, u)]F (x, u)dx, u ∈ X, (1.4)
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are precisely the weak solutions to the elliptic Problem (P ). Recall also that F (x, t) =
∫ t

0
f(x, s)ds, x ∈ RN , t ∈ R.

It is important to stress that J is in C1 class. Furthermore, we observe that

J ′(u)v = ⟨u, v⟩+
∫
R
[Iα ∗ F (x, u)]f(x, u)vdx, u, ϕ ∈ X. (1.5)

Now, we shall consider some eigenvalues problems in order to control the behavior of the functional J at infinity
and at the origin. Namely, we consider the following minimization problems:

λ1 = inf
u∈X

{
∥u∥2,

∫
RN

[Iα ∗ u]udx = 1

}
(1.6)

and

λk = inf
u∈X

{
∥u∥2,

∫
RN

[Iα ∗ u]udx = 1, u ∈ span{ϕ, . . . , ϕk−1}⊥
}
, k ≥ 2. (1.7)

More specifically, we denote by (λk)k∈N the sequence of eigenvalues for the following nonlocal elliptic problem{
−∆u+ V (x)u = λ[Iα ∗ u]u, x ∈ RN ,
u ∈ H1(RN ).

(LP )

The sequence of eigenfunctions for (LP ) is denoted by (ϕk)k∈N. Later on, we shall prove that eigenvalue problem
(LP ) admits a sequence of eigenvalues (λk)k∈N in such way that λk → ∞ as k → ∞, see Proposition 2.5 ahead.

Throughout this work for the nonlinearity f we shall assume the following hypotheses:

(H1) f : RN × R → R is continuous;

(H2) there exist p ∈ (2α, 2
∗
α) and C > 0 such that

|f(x, t)| ≤ C(1 + |t|p−1), ∀ (x, t) ∈ RN × R,
where 2α := (N + α)/N and 2∗α := (N + α)/(N − 2);

(H3) there holds

lim
t→0

F (x, t)

|t|
< λ

1/2
1 < lim

|t|→+∞

F (x, t)

|t|
, unifmorly in x ∈ RN ;

(H4) there hold 0 ≤ F (x, t) ≤ tf(x, t), ∀x ∈ RN , t ∈ R,

lim
|t|→∞

[tf(x, t)− F (x, t)] = +∞, unifmorly in x ∈ RN .

Theorem 1.1. Suppose that V and f satisfy (V1)–(V2) and (H1)–(H4). Then problem (P ) has nontrivial weak
solution u ∈ X provided that one of the following conditions holds:

(AL) there exists C > 0 such that

F (x, t)

|t|
≤ C, ∀x ∈ RN , t ̸= 0;

(SL) if Fα(x, t) := [Iα ∗ F (x, t)] (tf(x, t)− F (x, t)), then there exists C > 0 such that

Fα(x, st) ≤ CFα(x, t), ∀x ∈ RN , t ∈ R, s ∈ [0, 1].

Now, we shall prove that J is bounded from below under some assumptions on F . Firstly, we shall assume
also that

(H5) there holds

lim
|t|→∞

F (x, t)

|t|
< λ

1/2
1 < lim

|t|→0

F (x, t)

|t|
, uniformly in x ∈ RN .

Theorem 1.2. Suppose that V and f satisfy (V1)–(V2), (H1)–(H2) and (H5). Then problem (P ) has a weak
nontrivial solution u ∈ X provided the following conditions holds:

(SBL) there exists q ∈ [2α/2, 1) such that

lim
|t|→0

F (x, t)

|t|q
< +∞, uniformly in x ∈ RN .
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For the next result we shall consider the function f interacting with higher eigenvalues. More precisely, we
consider the following assumption:

(H6) There exists λ ∈ (λk, λk+1) such that F (x, t) = λ1/2t+G(x, t), x ∈ RN , t ∈ R. Furthermore, we assume
that

lim
t→0

G(x, t)

t
= 0

holds uniformly in x ∈ RN .

Remark 1.3. It is worthwhile to mention that using hypothesis (H6) we obtain that

λ
1/2
k < lim

t→0

F (x, t)

t
< λ

1/2
k+1 (1.8)

holds uniformly in x ∈ RN .

In order to control the behavior of G at the infinity we also assume that

(H7) There holds

lim
|t|→∞

F (x, t)

|t|
< λ

1/2
1

holds uniformly in x ∈ RN .

Remark 1.4. Here we assume that

lim
|t|→∞

G(x, t)

|t|
< +∞ (1.9)

holds uniformly in x ∈ RN . Suppose also that G(x, t) ≥ 0 for each x ∈ RN , t ∈ R.

Under these conditions, we shall state the following main result:

Theorem 1.5. Suppose that the potential V satisfies hypotheses (V1) and (V2). Assume also that the function
f satisfies assumptions (H1)–(H2), (H6), (SBL) and (H7). Then Problem (P ) has at least two nontrivial weak
solution u ∈ X.

1.1. Outline. The remainder of this paper is organized as follows: In the forthcoming Section we consider some
preliminary results and the variational setting for our main problem. Section 3 is devoted to ensure that J has
a linking geometry. In Section 4 we prove some our main results taking into account the energy functional J
together with some compactness used in variational methods.

Throughout the paper we will use the following notation: C, C̃, C1, C2,... denote positive constants (possibly
different). The norm in Lp(RN ) and L∞(RN ), will be denoted respectively by ∥·∥p and ∥·∥∞ for each p ∈ [1,∞).

The norm inH1(RN ) is given by ∥u∥ = (∥∇u∥22+∥u∥22)1/2, u ∈ X. Furthermore, |·| denotes the Lebesgue measure
on RN .

2. Preliminaries and variational framework

In this section, we shall give some definitions and properties which will be used along this work. We start
recalling that, under conditions (V1)-(V2), we can define the space

X :=

{
u : RN → R :

∫
RN

V (x)u2dx <∞
}
,

which is a Hilber space if we consider the inner product

⟨u, v⟩ :=
∫
RN

[∇u · ∇ϕ+ V (x)uϕ] dx, u, v ∈ X,

and its induced norm

∥u∥ :=

(∫
RN

[
|∇u|2 + V (x)u2

]
dx

)1/2

, u ∈ X.

As proved in [5], we have the following Sobolev embeddings

Proposition 2.1. If (V1)–(V2) hold, then the embedding X ↪→ Ls(RN ) is continuous for each s ∈ [1, 2∗].
Furthermore, this embedding is compact for each s ∈ [1, 2∗).
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In order to properly define the energy functional associated to our problem, we need to prove that its nonlocal
part is well defined. Namely, we need to prove that∫

RN

[Iα ∗ F (x, u)]F (x, u) dx < +∞,

for any u ∈ X. At this point, we recall the well known the Hardy-Littlewood-Sobolev inequality [13], which can
be stated as follows:

Lemma 2.2. Let r, s > 1 and 0 < α < N be such that

1

r
+

1

s
+
N − α

N
= 2.

Then there exists C = C(N,α, r, s) > 0 such that∫
RN

[Iα ∗ ψ]ϕdx ≤ C∥ϕ∥r∥ψ∥s, ∀ϕ ∈ Lr(RN ), ψ ∈ Ls(RN ).

In view of (H1)-(H2), there exists C1 > 0 such that

|F (x, t)| ≤ C1(|t|+ |t|p), ∀x ∈ RN , t ∈ R. (2.1)

Hence, for any fixed u ∈ X, we have for a.e. x ∈ RN ,∣∣∣ [Iα ∗ F (x, u)]F (x, u)
∣∣∣ ≤ C1

(
[Iα ∗ |u|] |u|p + [Iα ∗ |u|] |u|+ [Iα ∗ |u|p] |u|p

)
and we shall verify that all terms of the righ-hand side above are integrable. Indeed, if we pick r = s =
2N/(N + α) ∈ (1, 2∗), then it follows from

N + α

N
< p <

N + α

N − 2

that 2 ≤ rp ≤ 2∗ and therefore we can use Lemma 2.2 and Proposition 2.1, to get∫
RN

[Iα ∗ |u|] |u|pdx ≤ C∥u∥r∥u∥prp ≤ C1∥u∥p+1. (2.2)

Analagously, ∫
RN

[Iα ∗ |u|] |u|dx ≤ C∥u∥r∥u∥r ≤ C2∥u∥2 (2.3)

and ∫
RN

[Iα ∗ |u|p] |u|pdx ≤ C∥u∥prp∥u∥prp ≤ C3∥u∥2p. (2.4)

Putting all these estimates together we can define the functional J : X → R as follows:

J(u) :=
1

2
∥u∥2 − 1

2

∫
RN

[Iα ∗ F (x, u)]F (x, u) dx, u ∈ X.

Moreover, by using some extra calculations we can prove that J ∈ C1(X,R), with the derivative given by

J ′(u)v = ⟨u, v⟩+
∫
RN

[Iα ∗ F (x, u)] f(x, u)v dx, ∀u, v ∈ X.

Thus, critical points of J are precisely the weak solutions of Problem (P ).
The following convergence results is a consequence of the compact embedding giveb in Proposition 2.1.

Proposition 2.3. Suppose that V and f satisfy (V1)–(V2) and (H1)–(H2). If (uk) ⊂ X is such that uk ⇀ u
weakly in X, then

lim
k→+∞

∫
RN

[Iα ∗ F (x, uk)]F (x, uk) dx =

∫
RN

[Iα ∗ F (x, u)]F (x, u) dx, (2.5)

lim
k→+∞

∫
RN

[Iα ∗ F (x, uk)]f(x, uk)uk dx =

∫
RN

[Iα ∗ F (x, u)]f(x, u)u dx, (2.6)

and, for any ϕ ∈ X,

lim
k→+∞

∫
RN

[Iα ∗ F (x, uk)]f(x, uk)ϕdx =

∫
RN

[Iα ∗ F (x, u)]f(x, u)ϕdx. (2.7)
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Proof. According to Proposition 2.1, we may assume that
uk → u, strongly in Ls(RN ),

uk(x) → u(x), for a.e. x ∈ RN ,

|uk(x)| ≤ hs(x), for a.e. x ∈ RN ,

(2.8)

for any s ∈ [1, 2∗) and some hs ∈ Ls(RN ). By using (2.1), we get∣∣∣ [Iα ∗ F (x, uk)]F (x, uk)
∣∣∣ ≤ C1

(
D1,k +D2,k +D3,k

)
,

with
D1,k := [Iα ∗ |uk|] |uk|p, D2,k := [Iα ∗ |uk|] |uk|, D3,k := [Iα ∗ |uk|p] |uk|p.

Setting r := 2N/(N + α) ∈ (1, 2∗) and using (2.8), we obtain

D1,k ≤ [Iα ∗ hr]hprp.
Moreover, it follows from Lemma 2.2 that∫

RN

[Iα ∗ hr]hprp dx ≤ C∥hr∥r∥hrp∥prp < +∞,

where we have used 2 ≤ rp ≤ 2∗. The same argument show that D2,k and D3,k are bounded by integrable
functions. So, the convergence in (2.5) follows from (2.8) and Lebesgue’s theorem.

The proof of (2.6) can be done along the same lines but using the inequality

|f(x, t)t| ≤ C1(|t|+ |t|p), ∀x ∈ RN , t ∈ R.
instead of (2.1).

In order to prove (2.7), we first use (2.1), (H2) and the former argument to write∣∣∣ [Iα ∗ F (x, uk)] f(x, uk)ϕ
∣∣∣ ≤ C1

(
D4,k +D5,k +D6,k

)
,

where
D4,k := [Iα ∗ |uk|] |uk|p−1|ϕ|, D5,k := [Iα ∗ |uk|p] |uk|p−1|ϕ|,

and D6,k is bounded by an integrable function. We can bound D4,k as

D4,k ≤ [Iα ∗ |hr|] |hrp|p−1|ϕ|
and notice that ∫

RN

[Iα ∗ |hr|] |hrp|p−1|ϕ| dx ≤ C∥hr∥r
(∫

RN

|hr|r(p−1)|ϕ|r dx
)1/r

≤ C∥hr∥r∥hrp∥p−1∥ϕ∥rp < +∞,

where we have used Lemma 2.2 and Hölder’s inequality with exponents p/(p − 1) and p. The same kind of
calculation shows that D5,k is also bounded by an integrable function and therefore (2.7) is a consequence of
(2.8) and Lebesgue’s theorem. □

Lemma 2.4. If (V1) and (V2) hold, then the first eigenvalue

λ1 := inf
u∈X

{
∥u∥2 :

∫
RN

[Iα ∗ u]u dx = 1

}
> 0

is attained by a nonnegative function ϕ1 ∈ X. In particular,

λ1

∫
RN

[Iα ∗ u]u dx ≤ ∥u∥2, ∀u ∈ X. (2.9)

Proof. Let (uk) ∈ X be such that

lim
k→+∞

∥uk∥2 = λ1,

∫
RN

[Iα ∗ uk]uk dx = 1.

We first claim that uk can be assumed to be nonnegative. Indeed, if this is not the case, we may replace uk by

ũk :=
|uk|(∫

RN [Iα ∗ |uk|]|uk|dx
)1/2 ,
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which satisfies
∫
RN [Iα ∗ ũk]ũk dx = 1, ũk ≥ 0 a.e. in RN and

λ1 ≤ ∥ũk∥2 =
∥|uk|∥2∫

RN [Iα ∗ |uk|]|uk|dx
≤ ∥uk∥2∫

RN [Iα ∗ uk]ukdx
= ∥uk∥2 → λ1.

that is, (ũk) ⊂ X is nonnegative minizazing sequence.
Since (uk) is bounded, we may obtain ϕ1 ∈ X such that uk ⇀ ϕ1 weakly in X, strongly in Lr(RN ), for

r = 2N/(N + α) and uk(x) → ϕ1(x) ≥ 0 for a.e. x ∈ RN . Arguing as in the proof of Proposition 2.3, we get

1 = lim
k→+∞

∫
RN

[Iα ∗ uk]uk dx =

∫
RN

[Iα ∗ ϕ1]ϕ1 dx.

from which it follows that ϕ1 ̸= 0. Moreover, recalling that the norm is weakly lower semicontinuous, we also
have

λ1 ≤ ∥ϕ1∥2 ≤ lim inf
k→∞

∥uk∥2 = λ1.

Therefore, λ1 = ∥ϕ1∥2 > 0 and
∫
RN [Iα ∗ ϕ1]ϕ1 dx = 1. The lemma is proved. □

At this stage we shall consider the sequence of eigenvalues (λk)k ∈ R for the eigenvalue problem (LP ). More
specifically, we consider the minimization problem;

λk = inf
u∈X

{
∥u∥2,

∫
RN

[Iα ∗ u]udx = 1, u ∈ span{ϕ, . . . , ϕk−1}⊥
}
, k ≥ 2. (2.10)

Proposition 2.5. Suppose (V1) and (V2). Then we obtain the following assertions:

i) λk is attained for each k ≥ 2, that is, there exists ϕk ∈ X such that

λk = ∥ϕk∥2,
∫
RN

[Iα ∗ ϕk]ϕkdx = 1. (2.11)

ii) The function ϕk ∈ X is a weak solution to the elliptic problem (LP ) with λ = λk. Furthermore, the
sequence (λk)k∈N satisfies 0 < λ1 < λ2 ≤ λ3 ≤ . . . ≤ λk → ∞ as k → ∞.

iii) For each u ∈ X there exists a sequence (aj) ∈ R such that

u =

∞∑
k=1

ajϕj . (2.12)

Furthermore, for each u ∈ X, we obtain that aj =
⟨u, ϕj⟩
⟨ϕj , ϕj⟩

with j ∈ R.

Proof. Let (un) ∈ X be a minimizer sequence for the minimization problem given in (2.10). In other words, we
have that

∥un∥2 → λk as n→ ∞, ⟨un, ϕj⟩ = 0, j ∈ {1, 2, . . . , k − 1} (2.13)

and ∫
RN

[Iα ∗ un]undx = 1 holds for each n ∈ N. (2.14)

Once again the sequence (un) is a bounded in X. Up to a subsequence there exists u ∈ X such that un ⇀ u in
X. Furthermore, by using Proposition 2.1, we infer that un → u in Ls(RN ) for each s ∈ [1, 2∗). Hence, un → u
a.e in RN and there exists hs ∈ Ls(RN ) in such way that |un| ≤ hs in RN . In particular, arguing as was done in
the proof of Proposition 2.3, it follows that ∫

RN

[Iα ∗ u]udx = 1. (2.15)

Moreover, by using the weak convergence un ⇀ u in X, we infer also that < u, ϕj >= 0 holds for each j ∈
{1, 2, . . . , k − 1}. Therefore, by using the weakly lower semicontinuity of the norm, we see that

λk ≤ ∥u∥2 ≤ lim inf
n→∞

∥un∥2 = λk. (2.16)

As a consequence, denoting ϕk = u, we obtain that ∥ϕk∥2 = λk,
∫
RN [Iα ∗ ϕk]ϕkdx = 1 and ⟨ϕk, ϕj⟩ = 0 for each

j ∈ {1, 2, . . . , k − 1}. This finishes the proof of item i).
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Now, we shall prove the item ii). Arguing as was done in the proof of Proposition 2.4 it follows that ϕk is a
weak solution for the eigenvalue problem (LP ). On the other hand, we mention that u ∈ X is a weak solution
for the eigenvalue problem (LP ) if and only if u verifies

⟨u, ϕ⟩ = λ

∫
RN

[Iα ∗ u]ϕdx, ϕ ∈ X. (2.17)

Furthermore, the map ϕ 7→
∫
RN [Iα ∗ u]ϕdx define a linear and bounded operator from X into R for each u ∈ X

fixed. Hence, by using the Riesz representation Theorem, there exists a linear operator T : X → X such that

⟨u, ϕ⟩ = λ⟨Tu, ϕ⟩, ϕ ∈ X. (2.18)

Under these conditions, u is a weak solution to the elliptic problem (LP ) if and only if 1/λ is an eigenvalue for
the linear operator T . Furthermore, T is a compact and self adjoint linear operator. The desired result follows
from the theory of compact and self adjoint operators, see for instance [6]. This ends the proof. □

It is worthwhile to mention that Proposition 2.4 implies that

∥u∥2 ≥ λ1

∫
RN

[Iα ∗ u]udx, u ∈ X. (2.19)

Similarly, by using Proposition 2.5, we obtain that

∥u∥2 ≥ λk+1

∫
RN

[Iα ∗ u]udx, u ∈ X2 = X⊥
1 . (2.20)

It is not hard to verify also that

∥u∥2 ≤ λk

∫
RN

[Iα ∗ u]udx, u ∈ X1 = span{ϕ1, ϕ2, . . . , ϕk}. (2.21)

Remark 2.6. Notice that the sequence (ϕk) ∈ X of eigenfunctions for the Problem (LP ) satisfies

⟨ϕi, ϕj⟩ = 0 for each i, j ∈ N, i ̸= j. (2.22)

As a product, we obtain that ∫
RN

[Iα ∗ ϕi]ϕjdx = 0, for each i, j ∈ N, i ̸= j. (2.23)

Furthermore, we know that

⟨ϕi, ϕi⟩ = λi,

∫
RN

[Iα ∗ ϕi]ϕidx = 1, for each i ∈ N. (2.24)

It is worthwhile to mention that Proposition 2.4 implies that

Proposition 2.7. Suppose V and f satisfy (V1)–(V2) and (H1)–(H3). Then, there exist ρ, α > 0 such that

J(u) ≥ α, ∀u ∈ X ∩ ∂Bρ(0).

Assume also that F (x, t) ≥ 0 for each x ∈ RN , t ∈ R. Then there exists e ∈ X such that ∥e∥ > ρ and J(e) < 0.

Proof. Given ε > 0, it follows from (H1)–(H3) that

|F (x, t)| ≤ (λ1 − ε)1/2|t|+ C1|t|p, ∀x ∈ RN , t ∈ R. (2.25)

for some C1 = C1(ε) > 0. Hence,

J(u) ≥ 1

2
∥u∥2 − 1

2

∫
RN

[Iα ∗ ((λ1 − ϵ)1/2|u|+ C1|u|p)]((λ1 − ϵ)1/2|u|+ C1|u|p)dx

and therefore, we may use (2.19), (2.2) and (2.4), to get

J(u) ≥ 1

2
∥u∥2 − λ1 − ε

2

∫
RN

[Iα ∗ |u|] |u| dx

−C2

∫
RN

(
[Iα ∗ |u|] |u|p + [Iα ∗ |u|p] |u|p

)
dx

≥ ε

2λ1
∥u∥2 − C3

[
∥u∥p+1 + ∥u∥2p

]
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for constants C2, C3 > 0. Since p > 1, the term into brackets above is o(∥u∥2) as ∥u∥ → 0. This proves the first
statement of the proposition.

In order to finish the proof we pick ϕ1 ∈ X given by Lemma 2.4. Define the set Ω+ := {x ∈ RN : ϕ1(x) > 0}.
Once again we observe that F (x, t) ≥ 0 for each x ∈ RN , t ∈ R. It follows from (H3), (H4) and the Fatous’
Lemma that, for ε > 0 small, there holds

lim inf
t→+∞

[
Iα ∗ F (x, tϕ1)

tϕ1
ϕ1

]
F (x, tϕ1)

tϕ1
ϕ1 ≥ (λ1 + ε) [Iα ∗ ϕ1]ϕ1, ∀x ∈ Ω+.

Since F (x, 0) = 0, we have that

J(tϕ1)

t2
=

1

2
∥ϕ1∥2 −

1

2

∫
Ω+

[
Iα ∗ F (x, tϕ1)

tϕ1
ϕ1

]
F (x, tϕ1)

tϕ1
ϕ1dx.

In view of Fatou’s Lemma, (2.19) and the last identity we obtain that

lim sup
t→∞

J(tϕ1)

t2
≤ 1

2
∥ϕ1∥2 −

λ1 + ε

2

∫
RN

[Iα ∗ ϕ1]ϕ1 dx

=

(
1− λ1 + ε

λ1

)
∥ϕ1∥2 < 0.

Hence, the second statement of the proposition hold for e := tϕ1, with t > 0 sufficiently large. □

We now recall that (uk) ⊂ X is said to be a Cerami sequence at level c ∈ R if

lim
k→+∞

J(uk) = c, lim
k→+∞

(1 + ∥uk∥)∥J ′(uk)∥X′ = 0. (2.26)

We say that J satisfies the (Ce)c condition if any such sequence has a convergent subsequence. In the next result
we shall prove that our energy functional J satifies the (Ce)c condition for any c ∈ R. This can be done using
some hypotheses on V and f which control the behavior of J at infinity.

Proposition 2.8. Suppose V and f satisfy (V1)–(V2) and (H1)–(H4). If f also verifies (AL) or (SL), then J
satisfies the (Ce)c, for any level c ∈ R.

Proof. Let (uk) ∈ X be a Cerami sequence at level c ⊂ X. We first prove that (uk) is bounded. In order to
do that we suppose, by contradiction, that some subequence, still denoted (uk), is such that ∥uk∥ → ∞. If we
set the the normalized sequence vk := uk/∥uk∥ we can use Proposition 2.1 to obtain v ∈ X such that (up to a
subsequence) 

vk → v, strongly in Ls(RN ),

vk(x) → v(x), for a.e. x ∈ RN ,

|vk(x)| ≤ hs(x), for a.e. x ∈ RN ,

(2.27)

for any s ∈ [1, 2∗) and some hs ∈ Ls(RN ).
Suppose that Ω := {x ∈ RN : v(x) ̸= 0} has positive measure. In this set, we have that |uk(x)| =

|vk(x)|∥uk∥ → ∞, and therefore it follows from (H4) that
lim

k→+∞
[f(x, uk(x))− F (x, uk(x))] = +∞

lim
k→+∞

[Iα ∗ F (·, uk)] (x) = +∞
, ∀x ∈ Ω. (2.28)

esse segundo limite me parece correto. mas sera que precisamos detalhar isso? Nao precisa falar disso. Ja esta
bom assim.On the other hand, it follows from (2.26) that

C1 ≥ J(uk)− J ′(uk)uk =
1

2

∫
RN

[Iα ∗ F (x, uk][f(x, uk)uk − F (x, uk)]dx,

for some C1 > 0. Thus, by using (H4) again, Fatou’s lemma and (2.28), we obtain

C1 ≥ 1

2

∫
RN

lim inf
k→∞

[Iα ∗ F (x, uk)][f(x, uk)uk − F (x, uk)] dx = +∞,

which is a contradiction and proves that v = 0.
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We now split the proof in two cases. Suppose first that f satisfies (AL), in such a way that the ratio
|F (x, t)/t| ≤ C2, for any x ∈ RN and t ̸= 0. Setting Ωk := {x ∈ RN : uk(x) ̸= 0}, we have that

ok(1) =
J(uk)

∥uk∥2
=

1

2
−

∫
Ωk

[
Iα ∗ F (x, uk)

uk
vk

]
F (x, uk)

uk
vk dx, (2.29)

where ok(1) stands for a quatity approaching zero as k → +∞. From (2.27), we obtain∣∣∣ [Iα ∗ F (x, uk)
uk

vk

]
F (x, uk)

uk
vk

∣∣∣ ≤ C2 [Iα ∗ |vk|] |vk| ≤ C2 [Iα ∗ hr]hr,

for r = 2N/(N + α). As in the proof of Proposition 2.3, we can check that the last function above is integrable.
Thus, recalling that vk(x) → 0 for a.e. x ∈ RN , we conclude that

lim
k→+∞

∫
Ωk

[
Iα ∗ F (x, uk)

uk
vk

]
F (x, uk)

uk
vk dx = 0,

which contradicts (2.29). So, we conclude that (uk) is bounded whenever condition (AL) holds.
We now assume that (SL) is verified. Consider, for each k ∈ N, the number tk ∈ [0, 1] such that

J(tkuk) = max
t∈[0,1]

J(tuk).

If tk ∈ (0, 1), then d
dtJ(tuk)|t=tk = 0. Therefore it follows from (SL) and (2.26) that

J(tkuk) = J(tkuk)− J ′(tkuk)(tkuk)

=
1

2

∫
RN

[Iα ∗ F (x, tkuk)] (tkukf(x, tkuk)− F (x, tkuk)) dx

≤ C3

∫
RN

[Iα ∗ F (x, uk)] (ukf(x, uk)− F (x, uk)) dx

= C3 [J(uk) + J ′(uk)uk] ≤ C4

for some C4 > 0 independent of k. It is clear that this same kind of bound holds if tk = 0 or tk = 1.
By using the above expression and the definition of vk and tk, we obtain

C4 ≥ J(tkuk) ≥ J(svk) =
s2

2
−

∫
RN

[Iα ∗ F (x, svk)]F (x, svk) dx, ∀ s ≤ ∥uk∥.

So, for any s > 0 fixed, we can use v = 0, Proposition 2.1 and Proposition 2.3 to obtain

C4 ≥ s2

2
− lim

k→∞

∫
RN

[Iα ∗ F (x, svk)]F (x, svk) dx =
s2

2
,

and we get a contradition by picking s >
√
C4. This proves that (uk) is bouded if condition (SL) holds.

Since (uk) is bounded, there exists u ∈ X such that uk ⇀ u weakly in X and uk → u stronly in Ls(RN ) for
any s ∈ [1, 2∗). We have that

J ′(uk)(uk − u) = ⟨uk, uk − u⟩ −
∫
RN

[Iα ∗ F (x, uk)] f(x, uk)(uk − u) dx (2.30)

Moreover, using (H2) and (2.1)∣∣∣ ∫
RN

[Iα ∗ F (x, uk)] f(x, uk)(uk − u) dx
∣∣∣ ≤ C5 (D1,k +D2,k +D3,k) ,

where

D1,k :=

∫
RN

[Iα ∗ |uk|] |uk − u| dx, D2,k :=

∫
RN

[Iα ∗ |u|p] |uk − u| dx

and

D3,k :=

∫
RN

[Iα ∗ |uk|p] |uk|p−1|uk − u| dx.

By using Lemma 2.2 with r = s = 2N/(N + α), Proposition 2.1 and the strong convergence in the Lebesgue
spaces, we obtain

D1,k ≤ C6∥uk∥rr∥uk − u∥rr ≤ C7∥uk − u∥r = ok(1)
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since (uk) is bounded and r ∈ (1, 2∗). The same argument shows that D2,k = ok(1), since rp ∈ (2, 2∗). The third
term can be estimated in the following way:

D3,k ≤ C6∥uk∥prp
(∫

RN

|uk|r(p−1)|uk − u| dx
)1/r

≤ C6∥uk∥2p−1
rp ∥uk∥rp = ok(1).

By replacing all the above expressions into (2.30) and recalling that J ′(uk) → 0, we conclude that ⟨uk, uk−u⟩ =
ok(1). Therefore ∥uk∥2 → ∥u∥2, as k → +∞. This and the weak convergence imply that uk → u strongly in X
and the proposition is proved. □

We are ready to prove our first theorems.

Proof of Theorem 1.1. According to Proposition 2.7, it is well defined

cMP := inf
γ∈Γ

sup
t∈[0,1]

J(γ(t)) ≥ α > 0, (2.31)

where Γ := {γ ∈ C0([0, 1], X) : γ(0) = 0, γ(1) = e}. It follows from the Mountain Pass Theorem that there
exists (uk) ⊂ X such that

lim
k→+∞

J(uk) = cMP , lim
k→+∞

(1 + ∥uk∥)∥J ′(uk)∥X′ = 0.

In particular, J ′(uk) → 0. Hence, we can use Proposition 2.8 to obtain uMP ∈ X such that uk → uMP stongly in
X. Thus, J ′(uMP ) = 0, J(uMP ) = cPM > 0 and therefore we have obtained a nonzero weak solution of (P ). □

Proof of Theorem 1.2. Given ε > 0, we can use (H1), (H2), (SBL) and argue as in the proof of Proposition 2.7
to get

J(u) ≥ 1

2
∥u∥2 − λ1 − ε

2

∫
RN

[Iα ∗ |u|] |u| dx

−C1

∫
RN

(
[Iα ∗ |u|] |u|q + [Iα ∗ |u|q] |u|q

)
dx

Since q ≥ 2α/2, we can use Lemma 2.2 and Proposition 2.1, to obtain∫
RN

(
[Iα ∗ |u|] |u|q + [Iα ∗ |u|q] |u|q

)
dx ≤ C2

(
∥u∥q+1 + ∥u∥2q

)
.

It follows from (2.19) that

J(u) ≥ ε

2λ1
∥u∥2 − C2

(
∥u∥q+1 + ∥u∥2q

)
.

Recalling that q < 1, we conclude that J(u) → +∞, as ∥u∥ → +∞. confiram essa conta ai, porque na versao
inicial tinha umas coisa bem complicadas mas acho que esse argumento simples funciona. contas conferidas prof.
Ficou show. Aqui destaco a necessidade grande das imersoes comecarem em s = 1. Por isso tivemos que colocar
a hipotese de 1/V ser integravel. Em varios momentos usamos isso.

At this point, we consider the following minimization problem

c0 := inf
u∈X

J(u).

By applying Ekland’s Variacional Principle [7], we obtain (uk) ∈ X such that

lim
k→+∞

J(uk) = c0, lim
k→+∞

J ′(un) = 0.

Since J is coercive, the sequence (uk) is a bounded. Now we may assume that there exists u0 ∈ X such that
un ⇀ u0 in X. By computing J ′(uk)(uk − u) and arguing as in the proof of Proposition 2.8, we conclude that
uk → u strongly in X. Therefore J ′(u0) = 0.

Up to now, we have that u0 ∈ X is a critical point such that J(u0) = c0. In order to conclude that u0 ̸= 0, we
shall prove that c0 < 0. Indeed, first notice that

J(tϕ1) = t2
{
1

2
∥ϕ1∥2 −

1

2

∫
RN

[
Iα ∗ F (x, tϕ1)

tϕ1
ϕ1

]
F (x, tϕ1)

tϕ1
ϕ1 dx.

}
.
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Given ε > 0 small, we can use (H5) and the Fatou’s Lemma to get

lim sup
t→0

J(tϕ1)

t2
≤ 1

2
∥ϕ1∥2 −

1

2

∫
RN

lim inf
t→∞

[
Iα ∗ F (x, tϕ1)

tϕ1
ϕ1

]
F (x, tϕ1)

tϕ1
ϕ1 dx

≤ 1

2
∥ϕ1∥2 −

λ1 + ε

2

∫
RN

[Iα ∗ ϕ1]ϕ1 dx

=
1

2

(
1− λ1 + ε

λ1

)
∥ϕ1∥2 < 0.

Under these conditions, for t > 0 small, there holds c0 ≤ J(tϕ1) < 0. This concludes the proof. □

3. The high energy

In the present section we shall consider the Problem (P ) using the Local Linking Theorem [8]. On this
subject we refer the reader also to [20]. For the geometry conditions we write X = X1

⊕
X2 where X1 =

span{ϕ1, . . . , ϕj}, X2 = X⊥
1 . The function ϕk denote the eigenfunction corresponding to the eigenvalue λk for

each k ∈ N. It is important to recall that the functional J admits a Local Linking at the origin with respect to
X1 and X2 if, some ρ > 0, there holds

J(u) ≤ 0, u ∈ X1 and ∥u∥ ≤ ρ,

J(u) ≥ 0, u ∈ X2 and ∥u∥ ≤ ρ.

Hence, we shall use the Local Linking Theorem provided by [8] as follows

Theorem 3.1 (Willem, Li [8]). Let X be a Banach where X = X1

⊕
X2. Suppose that J ∈ C1(X,R) satisfies

the following assumptions:

(A1) J has a local linking at the origin.
(A2) J satisfies the Cerami condition.
(A3) J maps bounded sets into bounded sets.
(A4) J is bounded from below and infX J < 0.

Then the functional J admits at least two nontrivial critical points.

From now on, we shall consider the local linking geometry for the functional J . In order to do that we
consider X = X1 ⊕X2 where X1 = span{ϕ1, ϕ2, . . . , ϕk−1} and X2 = X⊥

1 , k ≥ 2. More specifically, we consider
the following result:

Proposition 3.2. Assume that V satisfies (V1) and (V2). Suppose also that f verifies (H1)–(H2), (H6) and
(H7) are satisfied. Then we obtain the following assertions:

i) There exist ρ1 > 0 and α > 0 in such way that

J(u) ≥ α, u ∈ X2, ∥u∥ = ρ1.

ii) There exists ρ2 such that

J(u) ≤ 0, u ∈ X1, ∥u∥ = ρ2.

Proof. It follows from (H1), (H2) and (H6) that for each ϵ > 0 there exists Cϵ > 0 such that

|G(x, t)| ≤ ϵ|t|+ Cϵ|t|p, x ∈ RN , t ∈ R. (3.1)

Recall also that F (x, t) = λ1/2t+G(x, t), x ∈ R, t ∈ R. Therefore, we obtain that

J(u) ≥ 1

2
∥u∥2 − λ

2

∫
RN

[Iα ∗ u]udx− ϵλ1/2
∫
RN

[Iα ∗ u]G(x, u)dx− cϵ

∫
RN

[Iα ∗G(x, u)]G(x, u)dx

≥ 1

2
∥u∥2 − λ

2

∫
RN

[Iα ∗ u]udx− ϵλ

2

∫
RN

[Iα ∗ |u|]|u|dx

− cϵ

∫
RN

[Iα ∗ |u|]|u|pdx− cϵ

∫
RN

[Iα ∗ |u|p]|u|pdx (3.2)

holds for some cϵ > 0 and for any u ∈ X. Now, by using the last estimate and (2.20), we obtain that

J(u) ≥ 1

2

(
1− λ

λk+1

)
∥u∥2− ϵλ

2

∫
RN

[Iα ∗ |u|]|u|dx−cϵ
∫
RN

[Iα ∗ |u|]|u|pdx−cϵ
∫
RN

[Iα ∗ |u|p]|u|pdx, u ∈ X2. (3.3)
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Now, using the estimates given in (2.2), (2.3) and (2.4), we obtain that there exists C > 0 such that

J(u) ≥ 1

2

(
1− λ

λk+1
− ϵC

)
∥u∥2 − Cϵ∥u∥p+1 − Cϵ∥u∥2p, u ∈ X2. (3.4)

As a product, we see that

J(u) ≥ (λk+1 − λ)

4λk+1
∥u∥2 − Cϵ∥u∥p+1 − Cϵ∥u∥2p, u ∈ X2. (3.5)

Hence,

J(u) ≥ (λk+1 − λ)

8λk+1
∥u∥2, ∥u∥ = ρϵ, u ∈ X2. (3.6)

Here was used the fact that ρe > 0 is small enough. This finishes the proof of item i) with ρ = ρϵ and
α = ϵρ2ϵ/(8λk+1) where ϵ > 0 is small enough. This ends the proof of item i).

Now we shall prove the item ii). Since F (x, t) = λ1/2t+G(x, t), x ∈ RN , t ∈ R and taking into account (3.1)
we deduce that

J(u) =
1

2
∥u∥2 − λ

2

∫
RN

[Iα ∗ u]udx− λ1/2
∫
RN

[Iα ∗ u]G(x, u)dx− 1

2

∫
RN

[Iα ∗G(x, u)]G(x, u)dx

≤ 1

2
∥u∥2 − λ

2

∫
RN

[Iα ∗ u]udx+
ϵλ

2

∫
RN

[Iα ∗ |u|]|u|dx

+ cϵ

∫
RN

[Iα ∗ |u|]|u|pdx+ cϵ

∫
RN

[Iα ∗ |u|p]|u|pdx, u ∈ X. (3.7)

As a consequence, by using (2.21) and λ ∈ (λk, λk+1) together with the estimates (2.2), (2.3) and (2.4), we
deduce that

J(u) ≤ 1

2

(
1− λ

λk
+ ϵC

)
∥u∥2 + Cϵ∥u∥p+1 + Cϵ∥u∥2p, u ∈ X1. (3.8)

In view of the last estimate we infer that

J(u) ≤ 1

4

(
1− λ

λk

)
∥u∥2 + Cϵ∥u∥p+1 + Cϵ∥u∥2p, u ∈ X1 (3.9)

holds for each ϵ > 0 small enough. Therefore, taking ∥u∥ = ρ2 > 0 where ρ2 > 0 is also small enough, we see
that

J(u) ≤ 1

8

(λk − λ)

λk
∥u∥2 =

1

8

(λk − λ)

λk
ρ22 < 0, u ∈ X1. (3.10)

This finishes the proof. □

Hence, we can state the following result:

Proposition 3.3. Assume that V satisfies (V1) and (V2). Suppose also that f verifies (H1)–(H2), (H6), (SBL)
and (H7) are satisfied. Let (un) ∈ X be a (Ce)c sequence for the functional J . Then (un) is a bounded sequence
in X.

Proof. Firstly, using the same ideas discussed in the proof of Theorem 1.2, we infer that the functional J is
coecive. In fact, given ϵ > 0, we obtain that

J(u) ≥ ε

2λ1
∥u∥2 − C2

(
∥u∥q+1 + ∥u∥2q

)
where 2α/2 < q < 1. Here was used the hypothesis (SBL) together with the same ideas employed in the proof
of Theorem 1.2. Hence, any (Ce)c sequence is bounded in X. We omit the details. □

Proposition 3.4. Assume that V satisfies (V1) and (V2). Suppose also that f verifies (H1)–(H2) and (H6) are
satisfied. Then the functional J satisfies the Cerami condition.

Proof. The proof for this result follows arguing as was done in the proof of Proposition 2.8. We omit the
details. □
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Proof of Theorem 1.5. According to Proposition 3.4 the functional J satisfies the (Ce)c condition for each c ∈
R. Furthermore, the functional J maps bounded sets into bounded sets which is proved using the continuous
embedding of X into the Lebesgue spaces Lr(RN ), r ∈ [2, 2∗s]. Notice also that the the functional J has the local
linking geometry, see for instance Proposition 3.2. Furthermore, by using the same ideas discussed in the proof
of Theorem 1.2, we know that c = infw∈X J(w) = J(u) < 0 where u ∈ X. In particular, by using the Ekeland
variational Principle, we obtain that J ′(u)ϕ = 0 holds true for each ϕ ∈ X. Hence, u ∈ X is a nontrivial weak
solution to the elliptic problem (P ). Now, by using the Local Linking Theoreom, see for instance Theorem 3.1,
we obtain a second nontrivial critical point v ∈ X for the energy functional J . Hence, v is a nontrivial weak
solution for the Problem (P ). This finishes the proof.

□

References

[1] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Func. Anal. 14 (1973)

349–381
[2] C. O. Alves. Jianfu Yang, Existence and regularity of solutions for a Choquard equation with zero mass, Milan J. Math. Vol.

86 (2018) 329–342.

[3] V. Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Inst. Henri Poincaré. Anal. non linieaire
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