ON A HARDY-SOBOLEV TYPE INEQUALITY AND APPLICATIONS

JONISON L. CARVALHO, MARCELO F. FURTADO, AND EVERALDO S. MEDEIROS

Abstract

In this paper, we prove a new Friedrich-type inequality. As an application, we derive some existence and nonexistence results to the quasilinear elliptic problem with Robin boundary condition $$
\left\{\begin{aligned} -\operatorname{div}\left(|\nabla u|^{N-2} \nabla u\right)+h(x)|u|^{q-2} u & =\lambda k(x)|u|^{p-2} u, & & \text { in } \Omega \\ |\nabla u|^{N-2}(\nabla u \cdot \nu)+|u|^{N-2} u & =0, & & \text { on } \partial \Omega \end{aligned}\right.
$$ where $\Omega \subset \mathbb{R}^{N}$ is an exterior domain such that $0 \notin \bar{\Omega}$.

1. Introduction and main Results

Let $\Omega \subset \mathbb{R}^{N}$ be an exterior domain, that is, an open set such that $\mathbb{R}^{N} \backslash \Omega$ is bounded, and consider the quasilinear problem

$$
\left\{\begin{align*}
-\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right) & =f(x, u), & & \text { in } \Omega \tag{1.1}\\
|\nabla u|^{m-2}(\nabla u \cdot \nu)+a(x)|u|^{m-2} u & =0, & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $1<m<N, N \geq 2$ and ν is the unit outward normal vector on $\partial \Omega$. Existence, non-existence and multiplicity of solutions for the above problem have been extensively investigated under different conditions on the weight a and the nonlinearity f, see for instance $[3,4,6,8,10,11,12,13]$. This kind of problem is important because it arises in the study of nonlinear diffusion equations, in particular, in the mathematical modeling of non-Newtonian fluids. For a physical background, we refer the reader to [7, 12] and references therein.

A common aspect in most of the early papers is the use of a Friedrich type inequality proved by K. Pflüger in [12]. In order to present it, we suppose that, for contants $C_{1}, C_{2}>0$,

$$
\frac{C_{1}}{(1+|x|)^{m-1}} \leq l(x) \leq \frac{C_{2}}{(1+|x|)^{m-1}}, \quad \text { for a.e. } x \in \Omega
$$

[^0]and call H the completion of the $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$-functions restricted to Ω with respect to the norm
$$
\|u\|_{H}=\left(\int_{\Omega}|\nabla u|^{m} d x+\int_{\Omega} \frac{|u|^{m}}{(1+|x|)^{m}} d x\right)^{1 / m}
$$

In this setting, there holds (see [9, 12])

$$
\begin{equation*}
\int_{\Omega} \frac{|u|^{m}}{(1+|x|)^{m}} d x \leq C\left(\int_{\Omega}|\nabla u|^{m} d x+\int_{\partial \Omega} \frac{|\nu \cdot x|}{(1+|x|)^{m}}|u|^{m} d \sigma\right) \tag{1.2}
\end{equation*}
$$

where $C>0$ is a positive constant. Using this inequality, it can be shown that the norm $\|\cdot\|_{H}$ is equivalent to

$$
\|u\|_{H, \partial}=\left(\int_{\Omega}|\nabla u|^{m}+\int_{\partial \Omega} a(x)|u|^{m} d \sigma\right)^{1 / m}
$$

As an application, some results of existence, non-existence and multiplicity to problem (1.1) were obtained.

It is natural to ask if (1.2) holds in the borderline case $m=N$. In the first part of this paper, after proving an interesting inequality for compacted supported functions (see Proposition 2.1), we give a negative answer for this question. More specifically, we denote by $C_{\delta}^{\infty}(\Omega)$ the space of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$-functions restricted to Ω and prove the following:

Theorem 1.1. Suppose that $0 \notin \bar{\Omega}$ and $\gamma>N$. Then, for any $u \in C_{\delta}^{\infty}(\Omega)$, there holds

$$
\begin{equation*}
\int_{\Omega} \frac{|u|^{N}}{(1+|x|)^{\gamma}} d x \leq C(\gamma, N, \Omega)\left(\int_{\Omega}|\nabla u|^{N} d x+\int_{\partial \Omega}|u|^{N} d \sigma\right) \tag{1.3}
\end{equation*}
$$

where

$$
C(\gamma, N, \Omega):=\max \left\{d_{\Omega}^{-\gamma+1}, d_{\Omega}^{-\gamma+N}\right\} \cdot \begin{cases}\left(\frac{N}{\gamma-N}\right)^{N}, & \text { if } N<\gamma<2 N \\ \frac{1}{\gamma-2 N+1}, & \text { if } \gamma \geq 2 N\end{cases}
$$

and $d_{\Omega}:=\operatorname{dist}(0, \partial \Omega)>0$. Moreover, if $\Omega=\left\{x \in \mathbb{R}^{N}:|x|>1\right\}$ and $\gamma \leq N$, the inequality in (1.3) is false for any constant $C(\gamma, N)>0$, and therefore (1.2) does not hold with $m=N$.

It is worth noticing that, although the answer for the general question is negative, the abstract framework developed here permits us to consider a variation of problem (1.1) in the case $m=N$. To be more precise, in the second part of this paper, we study the quasilinear problem

$$
\left\{\begin{align*}
-\operatorname{div}\left(|\nabla u|^{N-2} \nabla u\right)+h(x)|u|^{q-2} u & =\lambda k(x)|u|^{p-2} u, & & \text { in } \Omega, \\
|\nabla u|^{N-2}(\nabla u \cdot \nu)+|u|^{N-2} u & =0, & & \text { on } \partial \Omega
\end{align*}\right.
$$

where λ is a real parameter, $0 \notin \bar{\Omega}$ and the weight functions k, h satisfy
$\left(k_{1}\right) k: \Omega \rightarrow \mathbb{R}$ is a measurable function, and there exist $k_{0}>0, \beta>N$, such that

$$
0<k(x) \leq \frac{k_{0}}{(1+|x|)^{\beta}}, \quad \text { for a.e. } x \in \Omega
$$

$\left(h_{1}\right) h: \Omega \rightarrow \mathbb{R}$ is a positive measurable function;
$\left(h_{2}\right)$ there holds

$$
\int_{\Omega} \frac{k(x)^{q /(q-p)}}{h(x)^{p /(q-p)}} d x<\infty
$$

We are going to consider problem $\left(P_{\lambda}\right)$ in two different settings, depending on the values of q, p and $\lambda>0$. Our results can be stated as follows:

Theorem 1.2. Suppose that $\left(k_{1}\right),\left(h_{1}\right)-\left(h_{2}\right)$ and $p<q$ hold. Then,
(i) if $N \leq p$, there exists $\lambda_{*}>0$ such that problem $\left(P_{\lambda}\right)$ has only the zero solution, for any $\lambda<\lambda_{*}$,
(ii) if $\min \{2, N\}<p$, there exists $\lambda^{*}>\lambda_{*}$ such that problem $\left(P_{\lambda}\right)$ has at least a non-negative non-zero weak solution, for any $\lambda>\lambda^{*}$.

Theorem 1.3. Suppose that $\left(k_{1}\right), N \leq q<p$ and
$\left(\widetilde{h_{1}}\right) h: \Omega \rightarrow \mathbb{R}$ is a non-negative measurable function
hold. Then problem $\left(P_{\lambda}\right)$ has a non-negative non-zero weak solution, for any $\lambda>0$.
Our interest in the study of problem $\left(P_{\lambda}\right)$ comes from the works of Alama-Tarantello [1] (where the integral condition $\left(h_{2}\right)$ has appeared), Filippucci-Pucci-Radulescu [8], Lyberopoulos [10], Perera [11], Pflüger [12], and others. With our abstract results at hand, we are able to perform a variational approach and prove Theorems 1.2 and 1.3. For the first one, we check that the associated energy functional is coercive and has negative energy for λ large, and therefore we can use minimization techniques. In the case $p>q$, we apply the classical Moutain Pass theorem. We want to remark that the main feature of this class of problem is that we are dealing with an indefinite nonlinearity and the weight functions k and h are not radial. Thus, we also face the difficulty to establish new Sobolev embeddings in our setting. Our results concerning problem $\left(P_{\lambda}\right)$ generalize and/or complement the aforementioned works.

The remainder of the paper is organized as follows. In Section 2, we establish some weighted Sobolev embedding and prove Theorem 1.1. The two further sections are devoted to the proof of Theorems 1.2 and 1.3, respectively.

2. Variational framework

In this section, beside proves Theorem 1.1, we present the variational framework to deal with problem $\left(P_{\lambda}\right)$. The basic condition $\left(k_{1}\right)$ will be assumed along all the paper. For any $R>0$, we denote by B_{R} the open ball $\left\{x \in \mathbb{R}^{N}:|x|<R\right\}$. The complement of a set $\Gamma \subset \mathbb{R}^{N}$ is denoted by Γ^{c}. Finally, we denote by C_{1}, C_{2}, \ldots, positive constants (possibly different).
2.1. A Friedrich type inequality. Our goal in this subsection is to establish the proof of our first main theorem. We recall that $C_{\delta}^{\infty}(\Omega)$ is the space of $C_{0}^{\infty}\left(\mathbb{R}^{N}\right)$-functions restricted to Ω. The next auxiliary result is a key point.

Proposition 2.1. Suppose that $1<p<\infty$ and let $\alpha \in \mathbb{R}$ be such that $\alpha \neq-N$. Then, there exists $C_{0}>0$ such that

$$
\begin{equation*}
\int_{\Omega}|x|^{\alpha}|u|^{p} d x \leq C_{0}\left(\int_{\Omega}|x|^{\alpha+p}|\nabla u|^{p} d x+\int_{\partial \Omega}|x|^{\alpha+1}|u|^{p} d \sigma\right) \tag{2.1}
\end{equation*}
$$

for any $u \in C_{\delta}^{\infty}(\Omega)$.
Proof. Let w, v be regular functions. By applying the Divergence Theorem, we get

$$
\int_{\Omega} w_{x_{i}} v d x=-\int_{\Omega} w v_{x_{i}} d x+\int_{\partial \Omega} w v \nu_{i} d \sigma .
$$

Since $\left(|x|^{\alpha}\right)_{x_{i}}=\alpha|x|^{\alpha-2} x_{i}$, for $x \neq 0$ and $i=1, \ldots, N$, we can choose $w=|x|^{\alpha}$, $v=x_{i}|u|^{p}$ and sum for $i=1, \ldots, N$, to obtain

$$
(\alpha+N) \int_{\Omega}|x|^{\alpha}|u|^{p} d x=-p \int_{\Omega}|x|^{\alpha}|u|^{p-2} u(x \cdot \nabla u) d x+\int_{\partial \Omega}|x|^{\alpha}|u|^{p}(x \cdot \nu) d \sigma
$$

which implies that

$$
\begin{equation*}
|\alpha+N| \int_{\Omega}|x|^{\alpha}|u|^{p} d x \leq p \int_{\Omega}|x|^{\alpha+1}|u|^{p-1}|\nabla u| d x+\int_{\partial \Omega}|x|^{\alpha+1}|u|^{p} d \sigma \tag{2.2}
\end{equation*}
$$

For any $\varepsilon>0$, we can use Young's inequality to get

$$
\begin{aligned}
p \int_{\Omega}|x|^{\alpha+1}|u|^{p-1}|\nabla u| d x & =p \int_{\Omega}\left(|x|^{\alpha(p-1) / p}|u|^{p-1}\right)|x|^{[\alpha+1-\alpha(p-1) / p]}|\nabla u| d x \\
& \leq(p-1) \varepsilon \int_{\Omega}|x|^{\alpha}|u|^{p} d x+\frac{1}{\varepsilon^{p-1}} \int_{\Omega}|x|^{\alpha+p}|\nabla u|^{p} d x
\end{aligned}
$$

If $\varepsilon<1$, we can use the above inequality and (2.2) to obtain

$$
(|\alpha+N|-(p-1) \varepsilon) \int_{\Omega}|x|^{\alpha}|u|^{p} d x \leq \frac{1}{\varepsilon^{p-1}}\left(\int_{\Omega}|x|^{\alpha+p}|\nabla u|^{p} d x+\int_{\partial \Omega}|x|^{\alpha+1}|u|^{p} d \sigma\right) .
$$

Recalling that $\alpha \neq-N$ and picking

$$
0<\varepsilon<\min \left\{1, \frac{|\alpha+N|}{(p-1)}\right\}
$$

one has

$$
\int_{\Omega}|x|^{\alpha}|u|^{p} d x \leq C_{0}\left(\int_{\Omega}|x|^{\alpha+p}|\nabla u|^{p} d x+\int_{\partial \Omega}|x|^{\alpha+1}|u|^{p} d \sigma\right),
$$

where

$$
C_{0}:=[|\alpha+N|-(p-1) \varepsilon]^{-1} \varepsilon^{1-p}
$$

and the lemma is proved.
Remark 2.2. It is worth noticing that, when considered only for $C_{0}^{\infty}(\Omega)$ functions, expression (2.1) is a Hardy type inequality (see [5, Theorem 1]).

Our first main theorem is a consequence of this last proposition.

Proof of Theorem 1.1. We are going to use the proof of Proposition 2.1 with $p=N$ and $\alpha=-\gamma$. Define the function

$$
g(\varepsilon)=\frac{1}{[\gamma-N-(N-1) \varepsilon] \varepsilon^{N-1}}, \quad \varepsilon \in\left(0, \frac{\gamma-N}{N-1}\right) .
$$

It achieves its minimum value at

$$
\varepsilon_{0}:=\frac{\gamma-N}{N}<\frac{\gamma-N}{N-1}
$$

with $g\left(\varepsilon_{0}\right)=[N /(\gamma-N)]^{N}$. If $N<\gamma<2 N$, then $\varepsilon_{0}<1$. On the other hand, if $\gamma \geq 2 N$, then $g(1) \leq g(\varepsilon)$, for any $0<\varepsilon<1$. Since $|x| \geq d_{\Omega}$, for any $x \in \Omega$, inequality (1.3) is now a direct consequence of Proposition 2.1 and the definition of g.

Suppose now that $\Omega=B_{1}^{c}$ and $\gamma \leq N$. Considering the sequence of functions in $C_{\delta}^{\infty}(\Omega)$ defined by

$$
u_{n}(x):= \begin{cases}n-\log |x|, & \text { if } 1 \leq|x| \leq e^{n} \\ 0, & \text { if }|x| \geq e^{n}\end{cases}
$$

we see that

$$
\int_{B_{1}^{c}}\left|\nabla u_{n}\right|^{N} d x=\int_{B_{e^{n} \backslash B_{1}}}|x|^{-N} d x=\omega_{N-1} \int_{1}^{e^{n}} r^{-N} r^{N-1} d r=n \omega_{N-1},
$$

where ω_{N-1} is the measure of the unit sphere in \mathbb{R}^{N}. We may assume, with no loss of generality, that $0 \leq \gamma \leq N$. Hence, since $(1+|x|) \leq 2|x|$ in B_{1}^{c}, one has

$$
\int_{B_{1}^{c}} \frac{\left|u_{n}\right|^{N}}{(1+|x|)^{\gamma}} d x \geq \int_{B_{1}^{c}} \frac{\left|u_{n}\right|^{N}}{2^{\gamma}|x|^{\gamma}} d x=\frac{\omega_{N-1}}{2^{\gamma}} \int_{1}^{e^{n}} \frac{(n-\log r)^{N}}{r^{N}} r^{N-1} d r .
$$

Considering the change of variables $t=n-\log r$, we obtain

$$
\int_{B_{1}^{c}} \frac{\left|u_{n}\right|^{N}}{(1+|x|)^{\gamma}} d x \geq \frac{\omega_{N-1}}{2^{\gamma}} \int_{0}^{n} t^{N} d t=\frac{\omega_{N-1}}{2^{\gamma}} n^{N+1}
$$

Moreover,

$$
\int_{\partial B_{1}^{c}}\left|u_{n}\right|^{N} d \sigma=n^{N} \int_{\partial B_{1}^{c}} d \sigma=\omega_{N-1} n^{N} .
$$

Using the above inequalities we see that, if (1.3) holds, then

$$
n^{N+1} \leq C_{1}\left(n+n^{N}\right)
$$

for all $n \in \mathbb{N}$ and some $C_{1}>0$, which is impossible.
2.2. Sobolev embeddings. With Theorem 1.1 at hand we are prepared to introduce the variational framework to deal with $\left(P_{\lambda}\right)$. Given a positive function $\omega \in L_{l o c}^{1}(\Omega)$ and $s \geq 1$, we denote by L_{ω}^{s} the weighted Lebesgue space

$$
L_{\omega}^{s}:=L^{s}(\Omega, \omega)=\left\{u: \Omega \rightarrow \mathbb{R}:\|u\|_{L_{\omega}^{s}}:=\left(\int_{\Omega} \omega(x)|u|^{s} d x\right)^{1 / s}<+\infty\right\}
$$

For each $\gamma \in \mathbb{R}$, we denote by $E^{1, \gamma}$ the space obtained as the completion of $C_{\delta}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{E^{1, \gamma}}:=\left(\int_{\Omega}\left[|\nabla u|^{N}+\frac{|u|^{N}}{(1+|x|)^{\gamma}}\right] d x\right)^{1 / N}
$$

For simplicity, we write E instead of $E^{1, \gamma}$ from now on.
In our first results we establish some embedding of E into suitable weighted Lebesgue spaces.

Proposition 2.3. Suppose that $N<\gamma \leq \beta$ and $N \leq p \leq N(\beta-N) /(\gamma-N)$. Then we have the continuous embedding $E \hookrightarrow L_{(1+|x|)^{-\beta}}^{p}$. Moreover, the embedding is compact if $N<\gamma<\beta$ and $N \leq p<N(\beta-N) /(\gamma-N)$.

Proof. For the first statement, we need to obtain $C_{0}>0$, such that

$$
\begin{equation*}
\int_{\Omega} \frac{|u|^{p}}{(1+|x|)^{\beta}} d x \leq C_{0}\left(\int_{\Omega}\left[|\nabla u|^{N}+\frac{|u|^{N}}{(1+|x|)^{\gamma}}\right] d x\right)^{p / N}, \quad \forall u \in E \tag{2.3}
\end{equation*}
$$

Let $j_{0} \in \mathbb{N}$ be such that $\Omega^{c} \subset B_{2^{j_{0}}}$. Setting $\Omega_{j_{0}}:=\Omega \cap B_{2^{j_{0}}}$, we have that $\Omega=\Omega_{j_{0}} \cup B_{2^{j_{0}}}^{c}$. Given $u \in E \subset W_{l o c}^{1, N}(\Omega)$, from the Sobolev embedding $W^{1, N}\left(\Omega_{j_{0}}\right) \hookrightarrow L^{p}\left(\Omega_{j_{0}}\right)$, we get

$$
\int_{\Omega_{j_{0}}} \frac{|u|^{p}}{(1+|x|)^{\beta}} d x<\int_{\Omega_{j_{0}}}|u|^{p} d x \leq C_{1}\left(\int_{\Omega_{j_{0}}}\left[|\nabla u|^{N}+|u|^{N}\right] d x\right)^{p / N}
$$

Hence, since $(1+|x|)^{\gamma} \leq\left(1+2^{j_{0}}\right)^{\gamma}$ in $\Omega_{j_{0}}$, there exists $C_{2}=C_{2}\left(N, j_{0}, \gamma, p\right)>0$ such that

$$
\begin{equation*}
\int_{\Omega_{j_{0}}} \frac{|u|^{p}}{(1+|x|)^{\beta}} d x \leq C_{2}\left(\int_{\Omega_{j_{0}}}\left[|\nabla u|^{N}+\frac{|u|^{N}}{(1+|x|)^{\gamma}}\right] d x\right)^{p / N} \tag{2.4}
\end{equation*}
$$

On the other hand, if we define $A_{j}:=\left\{z \in \mathbb{R}^{N}: 2^{j_{0}} \cdot 2^{j}<|z|<2^{j_{0}} \cdot 2^{j+1}\right\}$, for any given $j \in \mathbb{N} \cup\{0\}$, the change of variables $y:=2^{-j} x$ provides

$$
\int_{A_{j}} \frac{|u|^{p}}{(1+|x|)^{\beta}} d x \leq 2^{-\beta j} \int_{A_{j}}|u|^{p} d x=2^{(N-\beta) j} \int_{A_{0}}\left|u_{j}(y)\right|^{p} d y
$$

where $u_{j}(y):=u\left(2^{j} y\right)$. Using the Sobolev embedding $W^{1, N}\left(A_{0}\right) \hookrightarrow L^{p}\left(A_{0}\right)$ we obtain $C_{3}=C_{3}\left(N, j_{0}\right)>0$, such that

$$
\begin{aligned}
\int_{A_{0}}\left|u_{j}(y)\right|^{p} d y & \leq C_{3}\left(\int_{A_{0}}\left[\left|\nabla u_{j}(y)\right|^{N}+\left|u_{j}(y)\right|^{N}\right] d y\right)^{p / N} \\
& =C_{3}\left(\int_{A_{j}}\left[|\nabla u(x)|^{N}+2^{-N j}|u(x)|^{N}\right] d x\right)^{p / N}
\end{aligned}
$$

Since $\left(1+2^{j_{0}} \cdot 2^{j+1}\right)<2^{1+j_{0}} \cdot 2^{j+1}$ and $\gamma>0$, we have that

$$
\begin{aligned}
\int_{A_{j}} 2^{-N j}|u(x)|^{N} d x & \leq 2^{-N j}\left(1+2^{j_{0}} \cdot 2^{j+1}\right)^{\gamma} \int_{A_{j}} \frac{|u(x)|^{N}}{(1+|x|)^{\gamma}} d x \\
& \leq 2^{\left(2+j_{0}\right) \gamma} 2^{(\gamma-N) j} \int_{A_{j}} \frac{|u(x)|^{N}}{(1+|x|)^{\gamma}} d x .
\end{aligned}
$$

So,

$$
\int_{A_{j}} \frac{|u|^{p}}{(1+|x|)^{\beta}} d x \leq 2^{(N-\beta) j} C_{3}\left(\int_{A_{j}}\left[|\nabla u(x)|^{N}+C_{4} 2^{(\gamma-N) j} \frac{|u(x)|^{N}}{(1+|x|)^{\gamma}}\right] d x\right)^{p / N},
$$

with $C_{4}:=2^{\left(2+j_{0}\right) \gamma} \geq 1$. Thus,

$$
\begin{equation*}
\int_{A_{j}} \frac{|u|^{p}}{(1+|x|)^{\beta}} d x \leq C_{5} 2^{\mu_{j}}\left(\int_{A_{j}}\left[|\nabla u|^{N}+\frac{|u|^{N}}{(1+|x|)^{\gamma}}\right] d x\right)^{p / N} \tag{2.5}
\end{equation*}
$$

with $C_{5}=C_{3} \cdot C_{4}^{p / N}>0$ and

$$
\mu_{j}:=\left[N-\beta+\frac{(\gamma-N) p}{N}\right] j .
$$

Since $p \leq N(\beta-N) /(\gamma-N)$, one has $\mu_{j} \leq 0$, and therefore

$$
\int_{A_{j}} \frac{|u|^{p}}{(1+|x|)^{\beta}} d x \leq C_{5}\left(\int_{A_{j}}\left[|\nabla u|^{N}+\frac{|u|^{N}}{(1+|x|)^{\gamma}}\right] d x\right)^{p / N}
$$

Thus, recalling that the function $s \mapsto s^{p / N}$ is super-additive for $p \geq N$, we conclude that

$$
\begin{aligned}
\sum_{j=0}^{\infty} \int_{A_{j}} \frac{|u|^{p}}{(1+|x|)^{\beta}} d x & \leq C_{5} \sum_{j=0}^{\infty}\left(\int_{A_{j}}\left[|\nabla u|^{N}+\frac{|u|^{N}}{(1+|x|)^{\gamma}}\right] d x\right)^{p / N} \\
& \leq C_{5}\left(\int_{B_{2^{j} 0}^{c}}\left[|\nabla u|^{N}+\frac{|u|^{N}}{(1+|x|)^{\gamma}}\right] d x\right)^{p / N}
\end{aligned}
$$

Combining the above estimate with (2.4), we obtain

$$
\int_{\Omega} \frac{|u|^{p}}{(1+|x|)^{\beta}} d x \leq\left(C_{2}+C_{5}\right)\|u\|_{E}^{p}
$$

which proves (2.3).
For the compactness, we consider a sequence $\left(u_{n}\right) \subset E$ such that $u_{n} \rightharpoonup 0$ weakly in E. Given $\varepsilon>0$, we can use $p<N(\beta-N) /(\gamma-N)$ to obtain $j_{1} \in \mathbb{N}$ such that $2^{\mu_{j}}<\varepsilon$, for all $j>j_{1}$. Thus, from (2.5), we get

$$
\int_{A_{j}} \frac{\left|u_{n}\right|^{p}}{(1+|x|)^{\beta}} d x<C_{5} \varepsilon\left(\int_{A_{j}}\left[\left|\nabla u_{n}\right|^{N}+\frac{\left|u_{n}\right|^{N}}{(1+|x|)^{\gamma}}\right] d x\right)^{p / N}
$$

for any $j \geq j_{1}$. On the other hand, the compact embedding $W^{1, N}\left(\Omega_{j_{0}}\right) \hookrightarrow L^{p}\left(\Omega_{j_{0}}\right)$ and $W^{1, N}\left(A_{j}\right) \hookrightarrow L^{p}\left(A_{j}\right)$ for $j \in\left\{0,1, \ldots, j_{1}\right\}$, imply that

$$
\begin{aligned}
\int_{\Omega} \frac{\left|u_{n}\right|^{p}}{(1+|x|)^{\beta}} d x & \leq \int_{\Omega_{j_{0}}} \frac{\left|u_{n}\right|^{p}}{(1+|x|)^{\beta}} d x+\sum_{j=0}^{j_{1}} \int_{A_{j}} \frac{\left|u_{n}\right|^{p}}{(1+|x|)^{\beta}} d x+C_{5} \varepsilon\left\|u_{n}\right\|_{E}^{p} \\
& =o_{n}(1)+C_{5} \varepsilon\left\|u_{n}\right\|_{E}^{p}
\end{aligned}
$$

where $o_{n}(1)$ stands for a quantity approaching zero as $n \rightarrow+\infty$. Since $\varepsilon>0$ is arbitrary, the above expression implies that $u_{n} \rightarrow 0$ strongly in $L_{(1+|x|)^{-\beta}}^{p}$ and the theorem is proved.

As a consequence of this last result together with Theorem 1.1, we get the following:
Corollary 2.4. If $\gamma>N$, then the norms

$$
\|u\|_{\partial}:=\left(\int_{\Omega}|\nabla u|^{N} d x+\int_{\partial \Omega}|u|^{N} d \sigma\right)^{1 / N}
$$

and $\|\cdot\|_{E}$ are equivalent in E.
Proof. It follows from (1.3) that

$$
\|u\|_{E}^{N} \leq \int_{\Omega}|\nabla u|^{N} d x+C_{1}\left(\int_{\Omega}|\nabla u|^{N} d x+\int_{\partial \Omega}|u|^{N} d \sigma\right) \leq C_{2}\|u\|_{\partial}^{N} .
$$

On the other hand, taking into account that $\partial \Omega$ is bounded, we can choose $R>0$ sufficiently large such that the trace embedding $W^{1, N}\left(\Omega \cap B_{R}\right) \hookrightarrow L^{N}\left(\partial \Omega \cup \partial B_{R}\right)$ is continuous. Therefore, there exists $C_{3}=C_{3}(R, \Omega)>0$, such that

$$
\int_{\partial \Omega}|u|^{N} d \sigma \leq C_{3} \int_{\Omega \cap B_{R}}\left(|\nabla u|^{N}+|u|^{N}\right) d x \leq C_{4}\left(\int_{\Omega}|\nabla u|^{N} d x+\int_{\Omega} \frac{|u|^{N}}{(1+|x|)^{\gamma}} d x\right)
$$

where $C_{4}=C_{3}(1+R)^{\gamma}$. Consequently,

$$
\|u\|_{\partial}^{N} \leq \int_{\Omega}|\nabla u|^{N} d x+C_{4} \int_{\Omega}\left[|\nabla u|^{N}+\frac{|u|^{N}}{(1+|x|)^{\gamma}}\right] d x \leq C_{5}\|u\|_{E}^{N}
$$

and this yields the desired result.

3. The case $p<q$

In this section we prove Theorem 1.2. Since $\beta>N$, we can choose γ sufficiently close to N in such way that

$$
\begin{equation*}
N<\gamma<\beta, \quad N \leq p<\frac{N(\beta-N)}{(\gamma-N)} \tag{3.1}
\end{equation*}
$$

We are going to look for solutions of problem $\left(P_{\lambda}\right)$ in the subspace of E defined by

$$
\begin{equation*}
E^{q}:=\left\{u \in E: \int_{\Omega} h(x)|u|^{q} d x<\infty\right\} . \tag{3.2}
\end{equation*}
$$

This is a reflexive Banach space when endowed with the norm

$$
\|u\|_{E^{q}}:=\left(\|u\|_{\partial}^{N}+\|u\|_{L_{h}^{q}}^{N}\right)^{1 / N}
$$

where $\|\cdot\|_{\partial}$ was defined in Corollary 2.4. Using this same corollary, (3.1) and Proposition 2.3, we conclude that the embedding $E^{q} \hookrightarrow L_{k}^{p}$ is compact.

Notice that one weak solution of problem $\left(P_{\lambda}\right)$ is exactly a function $u \in E^{q}$ such that

$$
\int_{\Omega}|\nabla u|^{N-2} \nabla u \cdot \nabla \varphi d x+\int_{\partial \Omega}|u|^{N-2} u \varphi d \sigma=\lambda \int_{\Omega}\left(\lambda k(x)|u|^{p-2} u-h(x)|u|^{q-2} u\right) \varphi d x
$$

for any $\varphi \in C_{\delta}^{\infty}(\Omega)$. So, the weak solutions are precisely the critical points of the functional $I_{\lambda}: E^{q} \rightarrow \mathbb{R}$ given by

$$
I_{\lambda}(u):=\frac{1}{N}\|u\|_{\partial}^{N}+\frac{1}{q} \int_{\Omega} h(x)|u|^{q} d x-\frac{\lambda}{p} \int_{\Omega} k(x)|u|^{p} d x .
$$

Using the abstract results of the previous section and standard arguments we can prove that $I_{\lambda} \in C^{1}\left(E^{q}, \mathbb{R}\right)$.

In our first result we check that non-zero solutions do not exist if λ is close to 0 .
Lemma 3.1. Suppose that $\left(h_{1}\right)-\left(h_{2}\right)$ and $N \leq p<q$ hold. Then, there exists $\lambda_{*}>0$ such that problem $\left(P_{\lambda}\right)$ has no non-zero weak solution if $\lambda<\lambda_{*}$.

Proof. If $u \in E$ is a non-zero solution, we have that

$$
\begin{equation*}
\|u\|_{\partial}^{N}=\lambda \int_{\Omega} k(x)|u|^{p} d x-\int_{\Omega} h(x)|u|^{q} d x \tag{3.3}
\end{equation*}
$$

and therefore it is clear that $\lambda>0$. Using Young's inequality with exponents $s=q /(q-p)$ and $s^{\prime}=q / p$, we obtain

$$
\lambda k(x)|s|^{p}=\frac{\lambda k(x)}{h(x)^{p / q}}\left(h(x)^{p / q}|s|^{p}\right) \leq \frac{q-p}{q} \lambda^{q /(q-p)} \frac{k(x)^{q /(q-p)}}{h(x)^{p /(q-p)}}+\frac{p}{q} h(x)|s|^{q},
$$

for any $x \in \Omega, s \in \mathbb{R}$. The above inequality, (3.3) and $\left(h_{1}\right)-\left(h_{2}\right)$ provide

$$
\begin{equation*}
\|u\|_{\partial}^{N} \leq C_{1} \lambda^{q /(q-p)}+\frac{p-q}{q} \int_{\Omega} h(x)|u|^{q} d x \leq C_{1} \lambda^{q /(q-p)}, \tag{3.4}
\end{equation*}
$$

with $C_{1}:=q /(q-p) \int_{\Omega} k(x)^{q /(q-p)} h(x)^{-p /(q-p)} d x$.
On the other hand, using (2.3), (3.3), (k_{1}) and (h_{1}) again, we get

$$
C_{2}\left(\int_{\Omega} k(x)|u|^{p} d x\right)^{N / p} \leq\|u\|_{\partial}^{N} \leq \lambda \int_{\Omega} k(x)|u|^{p} d x
$$

with $C_{2}:=C_{0} k_{0}^{-N / p}>0$. If $p=N$, we conclude that $\lambda \geq \lambda_{*}:=C_{2}$. Otherwise, this last inequality and (3.4) imply that

$$
\left(C_{2} \lambda^{-1}\right)^{p /(p-N)} \leq \int_{\Omega} k(x)|u|^{p} d x \leq C_{2}^{-p / N}\|u\|_{\partial}^{p} \leq C_{2}^{-p / N} C_{1}^{p / N} \lambda^{q p /[N(q-p)]}
$$

and a straightforward computation shows that

$$
\lambda \geq \lambda_{*}:=\left[\frac{C_{2}^{p /(p-N)} C_{2}^{p / N}}{C_{1}^{p / N}}\right]^{q p /[N(q-p)]+p /(p-N)} .
$$

So, we conclude that $\left(P_{\lambda}\right)$ does not have non-zero solution if $\lambda<\lambda_{*}$.
For the existence result, we need an elementary inequality. Let $A, B>0$ and $q>p>0$. A straightforward calculation shows that $f(s):=A s^{p}-B s^{q}$, for $s \geq 0$, achieves its maximum at $s_{0}:=[(p A) /(q B)]^{1 /(q-p)}$. Hence, for any $s \in \mathbb{R}$,

$$
\begin{equation*}
A|s|^{p}-B|s|^{q}=f(|s|) \leq f\left(s_{0}\right) \leq A s_{0}^{p} \leq A\left(\frac{A}{B}\right)^{p /(q-p)}=\frac{A^{q /(q-p)}}{B^{p /(q-p)}} \tag{3.5}
\end{equation*}
$$

The next lemma shows that we can deal with our problem via minimization arguments.

Lemma 3.2. Suppose that $\left(h_{1}\right)-\left(h_{2}\right)$ and $p<q$ hold. Then I_{λ} is coercive and

$$
\begin{equation*}
\lambda^{*}:=\inf _{u \in E^{q}}\left\{\frac{1}{N}\|u\|_{\partial}^{N}+\frac{1}{q} \int_{\Omega} h(x)|u|^{q} d x: \int_{\Omega} k(x)|u|^{p} d x=p\right\}>0 . \tag{3.6}
\end{equation*}
$$

Proof. Since $p<q$, it follows from (3.5) and $\left(h_{2}\right)$ that

$$
\frac{\lambda}{p} \int_{\Omega} k(x)|u|^{p} d x-\frac{1}{2 q} \int_{\Omega} h(x)|u|^{q} d x \leq C_{1} \int_{\Omega} \frac{k(x)^{q /(q-p)}}{h(x)^{p /(q-p)}} d x=C_{2}
$$

Thus, since we can write

$$
I_{\lambda}(u)=\frac{1}{N}\|u\|_{\partial}^{N}+\frac{1}{2 q} \int_{\Omega} h(x)|u|^{q} d x-\frac{\lambda}{p} \int_{\Omega} k(x)|u|^{p} d x+\frac{1}{2 q} \int_{\Omega} h(x)|u|^{q} d x
$$

we conclude that

$$
I_{\lambda}(u) \geq \frac{1}{N}\|u\|_{\partial}^{N}+\frac{1}{2 q} \int_{\Omega} h(x)|u|^{q} d x-C_{2} .
$$

This and the definition of $\|\cdot\|_{E^{q}}$ show that $I_{\lambda}(u) \rightarrow+\infty$, as $\|u\|_{E^{q}} \rightarrow+\infty$.
We now prove that $\lambda^{*}>0$. Suppose, by contradiction, that $\lambda^{*}=0$. Then there exists $\left(u_{n}\right) \subset E^{q}$ such that

$$
\frac{1}{N}\left\|u_{n}\right\|_{\partial}^{N}+\frac{1}{q} \int_{\Omega} h(x)\left|u_{n}\right|^{q} d x=o_{n}(1), \quad \int_{\Omega} k(x)\left|u_{n}\right|^{p} d x=p
$$

where $o_{n}(1)$ stands for a quantity approaching zero as $n \rightarrow+\infty$. Hölder's inequality with exponents $s=q / p, s^{\prime}=q /(q-p)$ and the integrability condition $\left(h_{2}\right)$ provide

$$
\begin{aligned}
p=\int_{\Omega} h(x)\left|u_{n}\right|^{p} \frac{k(x)}{h(x)} d x & \leq\left(\int_{\Omega} h(x)\left|u_{n}\right|^{q} d x\right)^{p / q}\left(\int_{\Omega} \frac{k(x)^{q /(q-p)}}{h(x)^{p /(q-p)}} d x\right)^{(p-q) / q} \\
& =o_{n}(1)
\end{aligned}
$$

which is a contradiction.
We are ready to present the proof of our first application.

Proof of Theorem 1.2. We focus on item (ii), since the non-existence part is exactly Lemma 3.1. Let $\lambda^{*}>0$ be given by (3.6) and $\lambda>\lambda^{*}$. From the embedding $E^{q} \hookrightarrow L_{k}^{p}$, we conclude that I_{λ} maps bouded sets into bounded sets. So, recalling that I_{λ} is coercive, we conclude that

$$
c_{\lambda}:=\inf _{u \in E^{q}} I_{\lambda}(u)>-\infty
$$

We claim that, if $\lambda>\lambda^{*}$, then $c_{\lambda}<0$. Indeed, using the definition of λ^{*} we obtain $u_{\lambda} \in E^{q}$ such that $\int_{\Omega} k(x)\left|u_{\lambda}\right|^{p} d x=p$ and

$$
\lambda>\frac{1}{N}\left\|u_{\lambda}\right\|_{\partial}^{N}+\frac{1}{q} \int_{\Omega} h(x)\left|u_{\lambda}\right|^{q} d x
$$

This implies that $I_{\lambda}\left(u_{\lambda}\right)<0$, and therefore $c_{\lambda}<0$. Once we have proved that

$$
J(u):=\int_{\Omega} F(x, u) d x=\int_{\Omega}\left[\frac{\lambda k(x)|u|^{p}}{p}-\frac{h(x)|u|^{q}}{q}\right] d x,
$$

is weakly continuous, the direct method of calculus of variations (cf. [15, Theorem 1.2]) shows that I_{λ} has a global minimum u_{λ}. Since $I_{\lambda}\left(u_{\lambda}\right)=c_{\lambda}<0$, we have that $u_{\lambda} \neq 0$. Noticing that $I_{\lambda}\left(u_{\lambda}\right)=I_{\lambda}\left(\left|u_{\lambda}\right|\right)$, we may assume that $u_{\lambda} \geq 0$ and the theorem is proved.

It remains to prove the claimed regularity for J. For simplicity, we will assume $\lambda=1$. Let $\left(u_{n}\right) \subset E^{q}$ be such that $u_{n} \rightharpoonup u_{0}$ weakly in E^{q}. Using the Fundamental Theorem of Calculus, we obtain

$$
\begin{aligned}
F\left(x, u_{n}\right)-F\left(x, u_{0}\right)= & \int_{0}^{1} \int_{0}^{t} F_{s s}\left(x, u_{0}+\tau\left(u_{n}-u_{0}\right)\right)\left(u_{n}-u_{0}\right)^{2} d \tau d t \\
& +F_{s}\left(x, u_{0}\right)\left(u_{n}-u_{0}\right)
\end{aligned}
$$

A standard computation shows that $F_{s}(x, s)=k(x)|s|^{p-2} s-h(x)|s|^{q-2} s$ and $F_{s s}(x, s)=$ $(p-1) k(x)|s|^{p-2}-(q-1) h(x)|s|^{q-2}$. This, the above equality and (3.5) (with $p-2$ instead of p and $q-2$ instead of q) imply that

$$
\left|F_{s s}\left(x, u_{0}+\tau\left(u_{n}-u_{0}\right)\right)\left(u_{n}-u_{0}\right)^{2}\right| \leq C_{1} k(x)\left(\frac{k(x)}{h(x)}\right)^{(p-2) /(q-p)}\left(u_{n}-u_{0}\right)^{2}
$$

Therefore,

$$
\left|\int_{\Omega}\left[F\left(x, u_{n}\right)-F\left(x, u_{0}\right)\right] d x\right| \leq C_{1} I_{n}^{1}+I_{n}^{2}
$$

with

$$
I_{n}^{1}:=\int_{\Omega} k(x)\left(\frac{k(x)}{h(x)}\right)^{(p-2) /(q-p)}\left(u_{n}-u_{0}\right)^{2} d x, \quad I_{n}^{2}:=\left|\int_{\Omega} F_{u}\left(x, u_{0}\right)\left(u_{n}-u_{0}\right) d x\right|
$$

and therefore it sufficent to show that $I_{n}^{1}=o_{n}(1)$ and $I_{n}^{2}=o_{n}(1)$.
For the first one, we use Hölder's inequality with exponents $s=p /(p-2), s^{\prime}=p / 2$, hypothesis $\left(k_{2}\right)$ and the compactness of $E \hookrightarrow L_{k}^{p}$ to get

$$
I_{n}^{1}=\left(\int_{\Omega} \frac{k(x)^{q /(q-p)}}{h(x)^{p /(q-p)}} d x\right)^{(p-2) / p}\left\|u_{n}-u_{0}\right\|_{L_{k}^{p}}^{2}=o_{n}(1)
$$

We now estimate I_{n}^{2} observing that the linear functional

$$
\Psi(v):=\int_{\Omega} F_{s}\left(x, u_{0}\right) v d x=\int_{\Omega}\left(k(x)\left|u_{0}\right|^{p-2} u_{0}-h(x)\left|u_{0}\right|^{q-2} u_{0}\right) v d x, \quad v \in E^{q},
$$

is such that

$$
|\Psi(v)| \leq\left\|u_{0}\right\|_{L_{k}^{p}}^{p-1}\|v\|_{L_{k}^{p}}+\left\|u_{0}\right\|_{L_{h}^{q}}^{q-1}\|v\|_{L_{h}^{q}} \leq C_{2}\|v\|_{E^{q}} .
$$

Hence, Ψ is continuous and the weak convergence of $\left(u_{n}\right)$ implies that $I_{n}^{2}=\mid \Psi\left(u_{n}-\right.$ $\left.u_{0}\right) \mid=o_{n}(1)$, finishing the proof.

4. The case $p>q$

This section is devoted to the proof of Theorem 1.3. As in the last section, we pick $\gamma>N$ such that

$$
N<\gamma<\beta, \quad N \leq q<p<\frac{N(\beta-N)}{(\gamma-N)}
$$

and consider E^{q} defined in (3.2). In order to find non-negative solutions for $\left(P_{\lambda}\right)$, we consider now the energy functional given by

$$
I_{\lambda}(u):=\frac{1}{N}\|u\|_{\partial}^{N}+\frac{1}{q} \int_{\Omega} h(x)|u|^{q} d x-\frac{\lambda}{p} \int_{\Omega} k(x)\left(u^{+}\right)^{p} d x
$$

where $u^{+}(x):=\max \{u(x), 0\}$.
We prove in the sequel that the functional I_{λ} satisfies the hypotheses of the Mountain Pass Theorem.

Lemma 4.1. Suppose that $\left(\widetilde{h_{1}}\right)$ holds. Then, for each $\lambda>0$,
(i) there exist $\xi, \rho>0$ such that $I_{\lambda}(u) \geq \xi$, for any $u \in E^{q},\|u\|_{E q}=\rho$;
(ii) there exists $e \in E^{q}$ such that $\|e\|_{E^{q}}>\rho$ and $I_{\lambda}(e)<0$.

Proof. If $u \in E^{q}$ is such that $\|u\|_{E^{q}} \leq 1$, we can use $N \leq q$ to obtain $\|u\|_{\partial}^{q} \leq\|u\|_{\partial}^{N}$. Hence,

$$
I_{\lambda}(u) \geq \frac{1}{q}\left(\|u\|_{\partial}^{q}+\|u\|_{L_{h}^{q}}^{q}\right)-\frac{\lambda}{p} \int_{\Omega} k(x)|u|^{p} d x .
$$

So, using the inequality $\left(a^{N}+b^{N}\right)^{q / N} \leq 2^{(q-N) / N}\left(a^{q}+b^{q}\right)$, Proposition 2.3 and Corollary 2.4 , one has

$$
I_{\lambda}(u) \geq C_{1}\|u\|_{E^{q}}^{q}-\lambda C_{2}\|u\|_{E^{q}}^{p}=\|u\|_{E^{q}}^{q}\left(C_{1}-\lambda C_{2}\|u\|_{E^{q}}^{p-q}\right),
$$

for constants $C_{1}, C_{2}>0$. Then, item (i) holds for $\rho:=\min \left\{1,\left[C_{1} /\left(2 \lambda C_{2}\right)\right]^{1 /(p-q)}\right\}$ and $\xi:=C_{1} \rho^{q} / 2$.

For proving (ii), we pick $u \in E^{q} \backslash\{0\}$ such that $u \geq 0$ a.e. in \mathbb{R}^{N}. Using $N \leq q<p$ and $k>0$, we conclude that

$$
I_{\lambda}(s u)=\frac{s^{N}}{N}\|u\|_{\partial}^{N}+\frac{s^{q}}{q} \int_{\Omega} h(x)|u|^{q} d x-\frac{\lambda s^{p}}{p} \int_{\Omega} k(x)\left(u^{+}\right)^{p} d x \rightarrow-\infty
$$

as $s \rightarrow+\infty$. So, the result follows for $e=s_{0} u$, with $s_{0}>0$ sufficiently large.

We say that I_{λ} satisfies the Palais-Smale condition if any sequence $\left(u_{n}\right) \subset E^{q}$ such that

$$
\begin{equation*}
I_{\lambda}\left(u_{n}\right) \rightarrow c \in \mathbb{R}, \quad I_{\lambda}^{\prime}\left(u_{n}\right) \rightarrow 0 \tag{4.1}
\end{equation*}
$$

has a convergent subsequence. In the next result we see that, in the setting of Theorem 1.3 , this property is verified.

Lemma 4.2. Suppose that $\left(\widetilde{h_{1}}\right)$ holds. Then, for each $\lambda>0$, the functional I_{λ} satisfies the Palais-Smale condition.

Proof. Let $\left(u_{n}\right) \subset E^{q}$ be such that (4.1) holds. Computing $I_{\lambda}\left(u_{n}\right)-(1 / p) I_{\lambda}^{\prime}\left(u_{n}\right) u_{n}$, we obtain $C_{1}, C_{2}>0$ such that

$$
\left(\frac{1}{N}-\frac{1}{p}\right)\left\|u_{n}\right\|_{\partial}^{N}+\left(\frac{1}{q}-\frac{1}{p}\right)\left\|u_{n}\right\|_{L_{h}^{q}}^{q} \leq C_{1}+C_{2}\left\|u_{n}\right\|_{E^{q}} .
$$

From $N \leq q<p$, we conclude that $\left(u_{n}\right)$ is bounded in E^{q}. Hence, up to a subsequence, we have that $u_{n} \rightharpoonup u$ weakly in E^{q}. As in the last section, we may also assume that $u_{n} \rightarrow u$ strongly in L_{k}^{p}. Using Hölder's inequality with exponents $s=p /(p-1)$ and $s^{\prime}=p$, we get

$$
\left|\int_{\Omega} k(x)\left(u_{n}^{+}\right)^{p-1}\left(u_{n}-u\right) d x\right| \leq\left\|u_{n}^{+}\right\|_{L_{k}^{p}}^{p-1}\left\|u_{n}-u\right\|_{L_{k}^{p}}^{p}=o_{n}(1) .
$$

This and $I_{\lambda}^{\prime}\left(u_{n}\right)\left(u_{n}-u\right)=o_{n}(1)$ imply that

$$
\begin{aligned}
\int_{\Omega}\left|\nabla u_{n}\right|^{N-2}\left[\nabla u_{n} \cdot \nabla\left(u_{n}-u\right)\right] d x & +\int_{\Omega} h(x)\left|u_{n}\right|^{q-2} u_{n}\left(u_{n}-u\right) d x \\
& +\int_{\partial \Omega}\left|u_{n}\right|^{N-2} u_{n}\left(u_{n}-u\right) d \sigma=o_{n}(1) .
\end{aligned}
$$

On the other hand, using that $u_{n} \rightharpoonup u$ weakly in E^{q} and arguing as in the final part of the proof of Theorem 1.2, ones has

$$
\begin{aligned}
\int_{\Omega}|\nabla u|^{N-2}\left[\nabla u \cdot \nabla\left(u_{n}-u\right)\right] d x & +\int_{\Omega} h(x)|u|^{q-2} u\left(u_{n}-u\right) d x \\
& +\int_{\partial \Omega}|u|^{N-2} u\left(u_{n}-u\right) d \sigma=o_{n}(1) .
\end{aligned}
$$

For any $k \in \mathbb{N}$ and $r \geq 2$, we set

$$
T_{k, r}\left(y_{1}, y_{2}\right):=\left(\left|y_{1}\right|^{r-2} y_{1}-\left|y_{2}\right|^{r-2} y_{2}\right), \quad y_{1}, y_{2} \in \mathbb{R}^{k} .
$$

We deduce from the two above convergences that

$$
\begin{aligned}
\int_{\Omega} T_{N, N}\left(\nabla u_{n}, \nabla u\right) \cdot \nabla\left(u_{n}-u\right) d x & +\int_{\Omega} h(x) T_{1, q}\left(u_{n}, u\right)\left(u_{n}-u\right) d x \\
& +\int_{\partial \Omega} T_{1, N}\left(u_{n}, u\right)\left(u_{n}-u\right) d \sigma=o_{n}(1)
\end{aligned}
$$

But we know that, for any $k \in \mathbb{N}$ and $r \geq 2$, there holds (see [14, inequality (2.2)])

$$
T_{k, r}\left(y_{1}, y_{2}\right) \cdot\left(y_{1}-y_{2}\right) \geq C(k, r)\left|y_{1}-y_{2}\right|^{k}, \quad \forall y_{1}, y_{2} \in \mathbb{R}^{k}
$$

and therefore we infer from the last convergence that

$$
\left\|u_{n}-u\right\|_{\partial}^{N}+\left\|u_{n}-u\right\|_{L_{h}^{q}}^{q}=o_{n}(1)
$$

which implies that $u_{n} \rightarrow u$ strongly in E^{q} and completes the proof.

We can now finish the paper proving our second existence result.

Proof of Theorem 1.3. Using Lemmas 4.1 and 4.2 together with the Mountain Pass Theorem [2], we obtain a non-zero critical point of I_{λ}. If $u^{-}:=u^{+}-u$, a straightforward computation shows that $0=I_{\lambda}(u) u^{-}=-\left\|u^{-}\right\|_{E^{q}}^{N}$, and therefore $u_{\lambda} \geq 0$ a.e. in \mathbb{R}^{N}. Hence $u_{\lambda} \neq 0$ is a non-negative solution of $\left(P_{\lambda}\right)$ and the theorem is proved.

References

[1] S. Alama, G. Tarantello.: Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal. 141, (1996) 159-215. 3
[2] A. Ambrosetti, P.H. Rabinowitz.:Dual variational methods in critical point theory and applications. J. Functional Analysis 14 (1973), 349-381. 14
[3] G. Autuori; P. Pucci.: Existence of entire solutions for a class of quasilinear elliptic equations NoDEA Nonlinear Differential Equations Appl. 20, (2013) 977-1009. 1
[4] G. Autuori, P. Pucci, C. Varga.: Existence theorems for quasilinear elliptic eigenvalue problems in unbounded domains, Adv. Differential Equations. 18, (2013) 1-48. 1
[5] N.P. Các.: On an inequality of Hardy's type. Chinese J. Math. 13, (1985) 203--208. 4
[6] J. Chabrowski.: Elliptic variational problems with indefinite nonlinearities, Topological Meth. Nonlinear Anal. 9, (1997) 221-231. 1
[7] J. I. Diaz.: Nonlinear partial differential equations and free boundaries, Elliptic equations, Pitman Adv. Publ. Boston etc. (1986). 1
[8] R. Filippucci, P. Pucci, V. Rădulescu.: Existence and non-existence results for quasilinear elliptic exterior problems with nonlinear boundary conditions, Comm. P.D.E. 33, (2008) 706-717. 1, 3
[9] R. Janssen.: Elliptic problems on unbounded domains, SIAM J. Math. Anal. 17 (1986), 1370--1389. 2
[10] A. N. Lyberopoulos.: Existence and Liouville-type theorems for some indefinite quasilinear elliptic problems with potentials vanishing at infinity, J. Funct. Anal. 14, (2009) 3593-3616. 1, 3
[11] K. Perera; P. Pucci; C. Varga.: An existence result for a class of quasilinear elliptic eigenvalue problems in unbounded domains, NoDEA Nonlinear Differential Equations Appl. 21, (2014) $441-$ 451. 1, 3
[12] K. Pflüger.: Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electronic J. Differential Equations. 10, (1998) 1-13. 1, 2, 3
[13] P. Pucci, V. Rădulescu.: Combined effects in quasilinear elliptic problems with lack of compactness, Rend. Lincei Mat. Appl. 22 (2011), 189-205. 1
[14] J. Simon.: Regularité de la Solution D'Une Equation Non Lineaire Dans \mathbb{R}^{N}, Lecture Notes in Math, vol. 665, Springer, Heidelberg, 1978. 13
[15] M. Struwe.: Variational Methods - Applications in Nonlinear Partial Differential Equations and Hamiltonian Systems, A Series of Modern Surveys in Mathematics, vol. 34, Springer, Heidelberg, 2008. 11

Universidade Federal da Paraíba, Departamento de Matemática, 58051-900 João Pessoa-PB, Brazil

Email address: jonison.mat@gmail.com
Universidade de Brasília, Departamento de Matemática, 70910-900 Brasília-DF, Brazil

Email address: mfurtado@unb.br
Universidade Federal da Paraíba, Departamento de Matemática, 58051-900 João Pessoa-PB, Brazil

Email address: everaldo@mat.ufpb.br

[^0]: 2010 Mathematics Subject Classification. 35J66.
 Key words and phrases. Weighted Sobolev embedding; Hardy type inequality; Robin boundary condition; Neumann boundary condition.

 The first author was supported by CAPES/Brazil.
 The second author was partially supported by CNPq/Brazil and FAPDF/Brazil.
 The third author was supported by CNPq/Brazil and by Grant 2019/2014 Paraíba State Research Foundation (FAPESQ).

