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Abstract. We consider the system

−∆u = λQ(|x|)f(u)− V (|x|)v, −∆v = V (|x|)u− V (|x|)v, in R2,

where λ > 0, the potentials V and Q are continuous functions which can be

singular at the origin, unbounded or decaying at infinity, and the nonlinearity
f has exponential growth. Under appropriate hypotheses, we establish the

existence, multiplicity and regularity of non-zero radial functions which solve

the system for large values of λ.

1. Introduction and main results

In this work, we analyze the existence, multiplicity, and regularity of solutions
to the following planar FitzHugh–Nagumo system:{

−∆u = λQ(|x|)f(u)− V (|x|)v, in R2,

−∆v = V (|x|)u− V (|x|)v, in R2,
(Sλ)

where λ > 0, the potentials V, Q : (0,∞) → R and f : R → R are continuous
functions meeting certain conditions specified later. This type of system, derived
from activator-inhibitor dynamics, is significant in neurobiology for modeling
nerve conduction and the transmission of electrical signals in neurons. Relevant
background and studies can be found in [8, 9, 12, 19].

More broadly, our problem examines the steady-state of FitzHugh–Nagumo
systems, which are described by the following ODE:

ut = u3 − v, τvt = u+ a− bv, (1.1)

initially proposed by Richard FitzHugh [8] and further developed by Jinichi Nagumo
and collaborators [12]. This system models nerve impulse propagation through
a simplified activator-inhibitor framework, capturing essential neurobiological
processes. Further details on the physical background are available in [19].

Authors in [6, 10] point out that system (1.1) belongs to a more general class of
reaction-diffusion systems, namely{

ut = D1∆u+ g(u)− v, in (0,∞)× Ω,

vt = D2∆v + ε(u− γv), in (0,∞)× Ω,
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where Ω is a bounded domain and D1, D2, ε and γ are positive constants. This
type of problem has motivated the study of the system{

ut = D1∆u+ g(u)− kv, in (0,∞)× RN ,

vt = D2∆v + u− γv, in (0,∞)× RN .

See, for example, [10, 13] for the one-dimensional case and more recently [7] for the
n-dimensional case, which has strongly influenced our investigation.

From a mathematical perspective, researchers have focused on problems
involving potentials and weights that may be either unbounded or vanish at infinity.
We especially emphasize the paper by Su, Wang, and Willem [17] (see also [1, 2, 3]),
which suppose, among other conditions, that V and Q satisfy the following:

(V ) V : (0,∞) → (0,∞) is continuous and there exists a > −2 such that

lim inf
r→∞

V (r)

ra
> 0;

(Q) Q : (0,∞) → (0,∞) is continuous and there exist b0, b > −2 such that

lim sup
r→0

Q(r)

rb0
< ∞, lim sup

r→∞

Q(r)

rb
< ∞.

In their paper, the authors consider the Schrödinger equation

−∆u+ V (|x|)u = Q(|x|)|u|p−2u, in RN ,

for N ≥ 2, with an additional condition concerning the behavior of V near the
origin. After establishing the appropriate functional framework involving radially
symmetric functions, they proved some existence and non-existence results for
solutions that approach zero at infinity.

Before presenting our main results, let us briefly outline our strategy for
addressing the system. For a fixed radial function u in an appropriate subspace
of W 1,2(RN ), we consider the linear problem

−∆v + V (|x|)v = V (|x|)u, in R2.

After finding a solution to this problem, we can return to system (Sλ) and replace
v with B[u] in the first equation. This substitution transforms the system into the
following problem:

−∆u+ V (|x|)B[u] = λQ(|x|)f(u), in R2,

in such a way that the solutions of this scalar equation provides solutions (u,B[u])
for system (Sλ).

The aim of this paper is twofold: we show how to adapt the abstract ideas
from [18] to address the system (Sλ), and we also consider the problem in the two-
dimensional case. In this setting, we expect to allow nonlinearities with exponential
growth. Specifically, we shall assume the following conditions:

(f1) f ∈ C(R,R) and there exists α0 > 0 such that

lim
|s|→∞

|f(s)|
eαs2

=

{
0, if α > α0,
∞, if α < α0;

(f2) f(s) = o(|s|γ−1), as s → 0, where

γ := max

{
2,

4(b− a)

(a+ 2)
+ 2

}
;
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(f3) there exists µ > γ such that

0 < µF (s) := µ

∫ s

0

f(t) dt ≤ f(s)s, ∀ s ̸= 0;

(f4) there exist C > 0 and ν > γ such that

F (s) ≥ C|s|ν , ∀ s ∈ R.

The main results of this paper are:

Theorem 1.1. Suppose that (V ), (Q) and (f1)-(f4) hold. Then there exists λ0 > 0
such that the system (Sλ) has a radial non-zero weak solution, provided λ ≥ λ0.
Moreover, if we call (u, v) this solution, the following hold:

(a) if there exists a0 > −2 such that

lim sup
r→0

V (r)

ra0
< ∞,

then u, v ∈ W 2,p
loc (R2) for any p > 1 such that pa0, pb0 > −2. In particular,

u, v are locally Hölder continuous;
(b) if V is locally Hölder continuous, then v ∈ C2,σ

loc (R2) for some σ ∈ (0, 1).

Theorem 1.2. Suppose that (V ), (Q) and (f1)-(f4) hold. If additionally f is odd
then, for any given m ∈ N, there exists λm > 0 such that the system (Sλ) has at
least 2m radial non-zero weak solutions, provided λ ≥ λm.

For the proof of the first theorem, we apply the classical Mountain Pass Theorem.
It is important to establish the variational framework to correctly define the energy
functional. In particular, we prove a Trudinger-Moser type inequality (see Theorem
2.4), which is interesting in itself (see Remark 2.5). Our abstract results actually
complement those of [15] and can be applied to other types of problems with
exponential growth. For the second theorem, we exploit the symmetry of the
functional to obtain multiple critical points. As the associated functional is even,
the strategy is to obtain m distinct non-zero critical points as the parameter λ
becomes large.

The paper is organized as follows: in the next section, we present the variational
setting to address our problem, including the proof of the Trudinger-Moser
inequality. In Section 3, we verify the required geometric and compactness
properties for the energy functional. The main results are proved in the final
Section 4.

2. Variational setting

Along all the paper, we assume that (V ) and (Q) hold.
Consider the set

E :=

{
u ∈ L2

loc(R2) : |∇u| ∈ L2(R2),

∫
R2

V (|x|)u2 dx < ∞
}
,

which is a Hilbert space when endowed with the scalar product

⟨u,w⟩E :=

∫
R2

(
∇u · ∇w + V (|x|)uw

)
dx, ∀u, w ∈ E,
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whose corresponding norm is ∥u∥E := ⟨u, u⟩1/2E . We also denote by Erad the
subspace of E consisted of the radial functions, that is,

Erad := {u ∈ E : u ◦ g = u, ∀ g ∈ O(2)} .

For any u ∈ E fixed, we define the linear functional Tu : Erad → R given by

Tu(φ) :=

∫
R2

V (|x|)uφdx.

Since |Tu(φ)| ≤ ∥u∥E∥φ∥E , we may invoke Riez’s Theorem to obtain B[u] ∈ Erad

such that Tu(φ) = ⟨B[u], φ⟩E . Hence, B[u] is a critical point of the C1 functional
Ju : E → R defined by

Ju(w) :=
1

2
∥w∥2E −

∫
R2

V (|x|)uw dx, ∀w ∈ E,

restricted to Erad.
Given an orthogonal map g ∈ O(2) and w ∈ E, we can define (gw)(x) :=

w(g−1x). Since V is radial, it is clear that ∥gw∥E = ∥w∥E . If additionaly u ∈ Erad,
then Ju(gw) = Ju(w). So, by the Principle of Symmetric Criticality (see [14]), we
conclude that B[u] is a radial weak solution of the linear problem

−∆v + V (|x|)v = V (|x|)u, in R2. (2.1)

Hence, if we come back to system (Sλ) and make the change of variable v := B[u]
in the first equation, we are lead consider the problem

−∆u+ V (|x|)B[u] = λQ(|x|)f(u), in R2. (2.2)

Actually, if u ∈ Erad is a solution of the above equation the couple (u,B[u]) of
radial functions solve the system (Sλ).

In order to address this last problem, we consider the bilinear form

⟨u,w⟩X :=

∫
R2

(
∇u · ∇w + V (|x|)uB[w]

)
dx.

Using equation (2.1), we obtain

⟨u, u⟩X = ∥B[u]∥2E +

∫
R2

|∇u|2 dx. (2.3)

Hence, it is straightforward to prove that ⟨·, ·⟩X defines a scalar product in E. From
now on, we denote by X the vector space formed by the set E endowed with the
norm induced by this inner product, that is

∥u∥X :=

[∫
R2

(
|∇u|2 + V (|x|)uB[u]

)
dx

]1/2
.

As before, we set

Xrad := {u ∈ X, u ◦ g = u, ∀ g ∈ O(2)}

the subspace of X consisting of radial functions.

Proposition 2.1. X is a Hilbert space.
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Proof. Let u ∈ X and v := B[u]. By picking u as a test function in (2.1) and using
Young’s inequality, we get∫

R2

V (|x|)u2 dx =

∫
R2

(∇v · ∇u) dx+

∫
R2

V (|x|)uv dx

≤ 1

2

∫
R2

|∇v|2 dx+
1

2

∫
R2

|∇u|2 dx+

∫
R2

V (|x|)uv dx

= −1

2

∫
R2

V (|x|)v2 dx+
1

2

∫
R2

|∇u|2 dx+
3

2

∫
R2

V (|x|)uv dx,

and therefore

∥u∥2E ≤ 3

2
∥u∥2X , ∀u ∈ X. (2.4)

Let (un) be a Cauchy sequence in X. From the above inequality we conclude
that (un) is also a Cauchy sequence in the norm ∥ · ∥E . Since E is a Hilbert space,
there exists u ∈ E such that ∥un − u∥E = on(1), where on(1) → 0 stands for
a quantity approaching zero as n → ∞. Denoting vn := B[un], we can use the
linearity of B and (2.3) to get

∥vn − vm∥2E = ∥un − um∥2X −
∫
R2

|∇(un − um)|2 dx ≤ ∥un − um∥2X ,

which shows that (vn) is a Cauchy sequence in the norm ∥ ·∥E . Since E is a Hilbert
space, there exists v ∈ E such that ∥vn − v∥E = on(1). We claim that v = B[u]. If
this is true, we can apply the above estimative to get

∥un − u∥2X =

∫
R2

|∇(un − u)|2 dx+

∫
R2

V (|x|) (un − u) (vn − v) dx

≤ ∥un − u∥2E +
1

2
∥vn − v∥2E = on(1),

and therefore un → u in X.
To prove that v = B[u] we notice that, for any φ ∈ E, one has

⟨vn, φ⟩E =

∫
R2

V (|x|)unφdx. (2.5)

Since vn → v in E, it follows that ⟨vn, φ⟩E = ⟨v, φ⟩E + on(1). Moreover, using
Hölder’s inequality, we obtain∣∣∣∣∫

R2

V (|x|)(un − u)φdx

∣∣∣∣ ≤ ∥un − u∥E∥φ∥E = on(1).

These convergences combined with (2.5) imply that∫
R2

∇v · ∇φdx+

∫
R2

V (|x|)vφdx =

∫
R2

V (|x|)uφdx, ∀φ ∈ E,

and therefore v = B[u]. □

Remark 2.2. It follows from (2.4) that the embedding X ↪→ E is continuous. As
quoted in [3, Remark 2.3], we also have E continuously immersed in H1

loc(R2). So,
we have the continuous embedding X ↪→ Lq(BR), for any R > 0 and q ≥ 1.

Next we define, for each 1 ≤ p < ∞, the space

Lp
Q(R

2) :=

{
u : R2 → R measurable :

∫
R2

Q(|x|)|u|p dx < ∞
}
,
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which is Banach space when endowed with the norm

∥u∥Lp
Q
:=

(∫
R2

Q(|x|)|u|p dx
)1/p

.

We notice that a version of the classical Radial Lemma of Strauss [16] holds in
Xrad. In fact, it is proved in [17, Lemma 1] that there exist constants Cr > 0 and
R0 > 0 such that, for any u ∈ Xrad, the following holds:

|u(x)| ≤ Cr|x|−(2+a)/4∥u∥E , for a.e. |x| ≥ R0. (2.6)

By taking advantage of this fact, we can obtain a range of compactness for the
embedding of Xrad into the above weighted Lebesgue spaces. More specifically, the
following holds:

Lemma 2.3. If γ is given by (f2), then the embedding Xrad ↪→ Lp
Q(R2) is

continuous, for any γ ≤ p < ∞. Moreover, it is compact if p > γ.

Proof. From (2.4), we have that Xrad ↪→ Erad. On other hand, it is proved in [17,
Theorem 2] that the embedding Erad ↪→ Lp

Q(R2) is continuous, for any γ ≤ p < ∞
and compact, whenever γ < p < ∞. The result is proved. □

We study now the embedding of the space Xrad into weighted Orlicz spaces. So,
we pick α > 0 and define the Young function

Φα(s) := eαs
2

−
j0−1∑
j=0

αj

j!
s2j , ∀ s ∈ R,

where j0 := inf {j ∈ N : j ≥ γ/2} and γ > 0 was defined in (f2). We have that

Φα(s) = Φαr2

(s
r

)
, (Φα(s))

t ≤ Φtα(s), ∀ s, r > 0, t ≥ 1. (2.7)

Indeed, the first expression above is a direct consequence of the definition of Φα as
well as the second one was proved in [21, Lemma 2.1].

The following Trudinger-Moser type inequality complements the abstract results
of [17]:

Theorem 2.4. For each u ∈ Xrad and α > 0, we have that Q(| · |)Φα(u) ∈ L1(R2).
Furthermore,

sup
{u∈Xrad : ∥u∥X≤1}

∫
R2

Q(|x|)Φα(u) dx < ∞,

whenever 0 < α < 4π(b0/2 + 1).

Proof. Let R0 > 0 be as in (2.6). We fix a number R > R0 and divide the proof
into three steps:

First step: for any α > 0 and u ∈ Xrad, we have that Q(| · |)Φα(u) ∈ L1(BR).

Following [15] (see also [5]), we consider the function

v(|x|) := β−1/2u(|x|β), x ∈ R2,

with β := 2/(b0 +2) > 0. We claim that v ∈ H1(BR1/β ). In fact, a straightforward
computation shows that∫

B
R1/β

|∇v|2 dx = 2π

∫ R1/β

0

|v′(s)|2sds = 2πβ

∫ R1/β

0

|u′(sβ)|2s2β−1 ds
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and therefore the change of variables t = sβ yelds∫
B

R1/β

|∇v|2 dx = 2π

∫ R

0

|u′(t)|2tdt =
∫
BR

|∇u|2 dx < ∞. (2.8)

On the other hand,∫
B

R1/β

v2 dx = 2πβ−1

∫ R1/β

0

u2(sβ)sds = 2πβ−2

∫ R

0

t2(1−β)/βu2(t)tdt,

where we have used the change of variables t = sβ again. It follows from
2(1− β)/β = b0 that ∫

B
R1/β

v2 dx = β−2

∫
BR

|x|b0u2 dx. (2.9)

We now recall that
∫
BR

|x|t dx < ∞, whenever t > −2. Since the parameter

b0 in (Q) verifies b0 > −2, we can pick t1 > 1 close to 1 in such a way that
|x|t1b0 ∈ L1(BR). Thus, we may use Hölder’s inequality and Remark 2.2 to obtain∫

B
R1/β

v2 dx ≤ β−2

(∫
BR

|x|t1b0 dx
)1/t1 (∫

BR

|u|2t2 dx
)1/t2

< ∞,

where 1/t1 + 1/t2 = 1. This and (2.8) prove that v ∈ H1(BR1/β ), as claimed.
From the first statement in (Q), we obtain C1 > 0 such that

Q(r) ≤ C1r
b0 , ∀ r ∈ (0, R].

Hence, arguing as in the proof of (2.9), we get∫
BR

Q(|x|)Φα(u) dx ≤ C1

∫
BR

|x|b0eαu
2

dx = C1β

∫
B

1/β
R

eαβv
2

dx. (2.10)

We now define ṽ ∈ H1
0 (BR1/β ) as

ṽ(|x|) :=

{
v(|x|)− v(R1/β), if |x| ≤ R1/β ,

0, if |x| ≥ R1/β .

For any ε > 0, Young’s inequality provides

v(|x|)2 = ṽ(|x|)2 + v(R1/β)2 + 2ṽ(|x|)v(R1/β) ≤ (1 + ε)ṽ(|x|)2 + C(ε)v(R1/β)2,

with C(ε) := (ε + 1)/ε. This inequality, (2.10) and the classical Trudinger-Moser
inequality (see [11, 20]) imply that∫

BR

Q(|x|)Φα(u) dx ≤ C2e
αβC(ε)v(R1/β)2

∫
B

R1/β

eαβ(1+ε)ṽ2

dx < ∞, (2.11)

where C2 := C1β. The first step is proved.

Second step: if 0 < α < 4π(b0/2 + 1), then

sup
{u∈Xrad:∥u∥X≤1}

∫
BR

Q(|x|)Φα(u) dx < ∞.

Let 0 < α < 4π(b0/2 + 1) and u ∈ Xrad, with ∥u∥X ≤ 1. Take ε > 0 such that
α(1 + ε) < 4π(b0/2 + 1). Recalling that β = 2/(b0 + 2), we get

αβ(1 + ε) < 4π. (2.12)
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Moreover, by (2.6) and (2.4), one deduces

αβC(ε)v(R1/β)2 = αC(ε)u(R)2 ≤ 3

2
αC(ε)C2

rR
−(2+a)/2∥u∥2X ≤ C3R

−(2+a)/2.

This and (2.11) imply that∫
BR

Q(|x|)Φα(u) dx ≤ C2e
C3R

−(2+a)/2

∫
B

R1/β

eαβ(1+ε)ṽ2

dx. (2.13)

From the definition of ṽ and (2.8), we get∫
B

R1/β

|∇ṽ|2 dx =

∫
B

R1/β

|∇v|2 dx =

∫
BR

|∇u|2 dx ≤ 1.

Since ṽ ∈ H1
0 (B

1/β
R ) and ∥∇ṽ∥L2(B

R1/β ) ≤ 1, we may use (2.12)-(2.13) and the

classical Trudinger-Moser inequality to obtain

sup
{u∈Xrad:∥u∥X≤1}

∫
BR

Q(|x|)Φα(u) dx < ∞.

The second step is finalized.

Third step: for any α > 0, we have that

sup
{u∈Xrad:∥u∥X≤1}

∫
R2\BR

Q(|x|)Φα(u) dx < ∞.

Given u ∈ Xrad, we first prove that Q(| · |)Φα(u) ∈ L1(R2 \BR). To do this, we
notice that∫

R2\BR

Q(|x|)Φα(u) dx =

∞∑
j=j0

αj

j!

∫
R2\BR

Q(|x|)|u|2j−γ |u|γ dx.

Since R ≥ R0, it follows from (2.6) and (2.4) that

|u(x)|2j−γ ≤ C2j−γ
3 |x|−(2j−γ)(2+a)/4∥u∥2j−γ

X ,

with C3 :=
√
3/2Cr. Thus∫

R2\BR

Q(|x|)Φα(u) dx ≤
(

C3

R(2+a)/4

)−γ ∞∑
j=j0

(
αC2

3R
−(2+a)/2∥u∥2E

)j
j!

(
∥u∥Lγ

Q

∥u∥X

)γ

where we have used j ≥ j0 ≥ γ/2. This, together with Lemma 2.3 and (2.4),
provides C4, C5 > 0 such that∫

R2\BR

Q(|x|)Φα(u) dx ≤ C4e
αC2

3R
−(2+a)/2∥u∥2

X = C4e
αC5∥u∥2

X < ∞.

Moreover,

sup
{u∈Xrad : ∥u∥X≤1}

∫
R2\BR

Q(|x|)Φα(u) dx ≤ C4e
αC5 ,

and the proof is finished. □
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Remark 2.5. Let α∗ := 4π(b0/2 + 1). As shown in [2, Proposition 2.5], we have

sup
{u∈Erad : ∥u∥E≤1}

∫
R2

Q(|x|)Φα(u) dx < ∞,

for 0 < α < α∗. While this inequality, combined with (2.4), could yield the
conclusion of Theorem 2.4 for 0 < α < 2α∗/3, we provide a different proof to
encompass the entire range (0, α∗).

We are currently unable to determine whether the exponent α∗ is optimal or
whether it can actually be attained. Actually, we believe that the question is both
interesting and challenging.

Let E be a real Banach space and I ∈ C1(E ,R). Given c ∈ R, we recall that a
sequence (un) ⊂ E is called (PS)c sequence for I if

lim
n→∞

I(un) = c, lim
n→∞

I ′(un) = 0.

We say that I satisfies the (PS)c condition at level c if any such sequence has a
convergent subsequence.

We finish this section presenting a version of the Symmetric Mountain Pass
Theorem (see [4]). It will be used later in the proof of Theorem 1.2.

Theorem 2.6. Let E be a real Banach space and I ∈ C1(E ,R) be an even functional
satisfying I(0) = 0 and

(I1) there are constants ρ, τ > 0 such that I(u) ≥ τ , whenever ∥u∥E = ρ;
(I2) there are κ > 0 and a m-dimensional subspace V of E such that

max
u∈V

I(u) ≤ κ.

If the functional I satisfies the (PS)d condition for any 0 < d < κ, then it
possesses at least m pairs of non-zero critical points.

3. Some auxiliary results

Using the abstract results of the former section, we are able to define the Euler-
Lagrange functional associated to equation (2.2). The first step is proving that
Q(| · |)F (u) ∈ L1(R2), for any u ∈ Xrad. By (f1) and (f2), given ε > 0, α > α0,
and q ≥ 1, there exists Cf > 0 such that, for any s > 0,{

|f(s)| ≤ ε|s|γ−1 + Cf |s|q−1Φα(s),

|F (s)| ≤ ε|s|γ + Cf |s|qΦα(s).
(3.1)

Given u ∈ Xrad, it follows from the above estimate with q ≥ γ, Hölder’s
inequality, Lemma 2.3, Theorem 2.4 and (2.7), that∫

R2

Q(|x|)F (u) dx ≤ ε∥u∥γ
Lγ

Q
+ Cf∥u∥q

L
t1q

Q

(∫
R2

Q(|x|)Φt2α(u) dx

)1/t2

< ∞, (3.2)

where 1/t1 + 1/t2 = 1. Hence, it is well defined the functional

Iλ(u) :=
1

2
∥u∥2X − λ

∫
R2

Q(|x|)F (u) dx, u ∈ Xrad.
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Moreover, by standard arguments one may conclude that Iλ ∈ C1 (Xrad,R) with
Gateaux derivative

I ′λ(u)φ = ⟨u, φ⟩X − λ

∫
R2

Q(|x|)f(u)φdx, ∀u, φ ∈ Xrad. (3.3)

Since the functional Iλ is not defined in the whole space X, we cannot directly
apply Principle of Symmetric Criticality to conclude that critical points of Iλ
weakly solves the first equation in (Sλ). However, an indirect argument proves
the following:

Proposition 3.1. Suppose that (f1)-(f2) hold. If u ∈ Xrad is a critical point of
Iλ, then u is a weak solution of (2.2).

Proof. Let u ∈ Xrad be such that I ′λ(u) = 0 and consider the linear functional

Tu(w) := ⟨u,w⟩X − λ

∫
R2

Q(|x|)f(u)w dx, ∀w ∈ X.

We claim that Tu is continuous. If this is true, we may apply Riesz Representation
Theorem to obtain a unique ũ ∈ X such that

Tu(w) = ⟨ũ, w⟩X , ∀w ∈ X. (3.4)

It is clear that, for any orthogonal transformation g ∈ O(2), there holds gu = u.
Since g−1R2 = R2, we can argue as in the beginning of Section 2 to conclude that
Tu(gũ) = Tu(ũ) and ∥gũ∥X = ∥ũ∥X . This implies,

∥gũ− ũ∥2X = 2∥ũ∥2X − 2Tu(gũ) = 2∥ũ∥2X − 2Tu(ũ) = 0

and therefore gũ = ũ. Since g ∈ O(2) is arbitrary, we conclude that ũ ∈ Xrad.
Hence, 0 = I ′λ(u)ũ = Tu(ũ) = ∥ũ∥2X and it follows from (3.4) that

I ′λ(u)w = Tu(w) = ⟨0, w⟩X = 0, ∀w ∈ X.

In order to prove the continuity of Tu, we first pick ε = 1 and q = γ + 1 in (3.1)
to get ∣∣∣∣∫

R2

Q(|x|)f(u)w dx

∣∣∣∣ ≤ ∫
R2

Q(|x|)|u|γ−1|w|dx

+ Cf

∫
R2

Q(|x|)|u|γΦα(u)|w|dx.
(3.5)

In view of (Q) and (V ), there exists C1 > 0 and R ≥ R0 > 0 such that{
Q(|x|) ≤ C1|x|b0 , if |x| ≤ R,

Q(|x|) ≤ C1|x|b, V (|x|) ≥ C2|x|a, if |x| ≥ R.
(3.6)

By picking a t1 > 1 such that t1b0 > −2, it follows that |x|t1b0 ∈ L1(BR). So, we
can use the above expression, Hölder’s inequality and Remark 2.2, to get∫

BR

Q(|x|)|u|γ−1|w|dx ≤ C1

(∫
BR

|x|t1b0 dx
)1/t1

∥u∥γ−1

Lt2(γ−1)(BR)
∥w∥Lt3 (BR)

and therefore ∫
BR

Q(|x|)|u|γ−1|w|dx ≤ C3∥w∥X , (3.7)
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where 1/t1 + 1/t2 + 1/t3 = 1. Moreover, using (3.6) and (2.6) we obtain∫
R2\BR

Q(|x|)|u|γ−1|w|dx ≤ C1C
γ−2
r ∥u∥γ−2

E

∫
R2\BR

|x|λ1 |x|a|u||w|dx,

where

λ1 := (b− a)− (γ − 2)

(
a+ 2

4

)
.

From the definition of γ (see (f2)), we deduce that λ1 ≤ 0. Thus, we can use the
last estimate, Hölder’s inequality, (3.6) and (2.4) to obtain∫
R2\BR

Q(|x|)|u|γ−1|w|dx ≤C4

(∫
R2\BR

|x|au2 dx

)1/2(∫
R2\BR

|x|aw2 dx

)1/2

≤C5

(∫
R2\BR

V (|x|)u2 dx

)1/2(∫
R2\BR

V (|x|)w2 dx

)1/2

≤C6∥w∥X .

This inequality, combined with (3.5) and (3.7), imply that∣∣∣∣∫
R2

Q(|x|)f(u)w dx

∣∣∣∣ ≤ (C3 + C6) ∥w∥X + Cf

∫
R2

Q(|x|)|u|γΦα(u)|w|dx. (3.8)

We now proceed with the estimation of the last integral above. First, we apply
Hölder’s inequality, the second statement in (2.7), Lemma 2.3, and Theorem 2.4 to
obtain∫

BR

Q(|x|)|u|γΦα(u)|w|dx ≤∥u∥γ
L

t1γ

Q (BR)

(∫
BR

Q(|x|)Φt2α(u) dx

)1/t2

∥w∥
L

t3
Q (BR)

≤C7∥w∥Lt3
Q (BR)

.

By choosing t4 > 1 such that |x|t4b0 ∈ L1(BR), we can combine Hölder’s inequality
and (3.6) to obtain∫

BR

Q(|x|)|w|t3 dx ≤ C1

(∫
BR

|x|t4b0 dx
)1/t4

∥w∥t3Lt5t3 (BR).

These last two estimates and Remark 2.2 again imply that∫
BR

Q(|x|)|u|γΦα(u)|w|dx ≤ C8∥w∥X . (3.9)

From Hölder’s inequality, (2.7) and Theorem 2.4, we get∫
R2\BR

Q(|x|)|u|γΦα(u)|w|dx ≤ C9

(∫
R2\BR

Q(|x|)|u|2γw2 dx

)1/2

,

where

C9 :=

(∫
R2\BR

Q(|x|)Φ2α(u) dx

)1/2

.

Once again, using (2.6) and (3.6), we can conclude that∫
R2\BR

Q(|x|)|u|γΦα(u)|w|dx ≤ C10

(∫
R2\BR

|x|λ2 |x|aw2 dx

)1/2

,
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where

λ2 := (b− a)− γ

(
a+ 2

2

)
.

The definition of γ (see (f2)) and a > −2, yields λ2 ≤ 0. So, we may argue as
before to conclude that∫

R2\BR

Q(|x|)|u|γΦα(u)|w|dx ≤ C11∥w∥X .

This, (3.8), (3.9) and the fact that λ > 0 imply that Tu is continuous on X. □

We prove in the sequel a local compactness result for our energy functional.

Lemma 3.2. Suppose that (f1)-(f3) hold. Then, Iλ satisfies (PS)c condition at
any level

0 < c <
(µ− 2)

2µ

4π(b0/2 + 1)

α0
.

Proof. Let (un) ⊂ Xrad be a (PS)c sequence. From condition (f3), we get

c+ on(1)(1 + ∥un∥X) = Iλ(un)−
1

µ
I ′λ(un)un ≥

(
1

2
− 1

µ

)
∥un∥2X (3.10)

and therefore we may use µ > 2 to conclude that (un) is bounded in Xrad. Thus,
up to a subsequence, un ⇀ u weakly in Xrad.

We claim that ∫
R2

Q(|x|)f(un)(un − u) dx = on(1). (3.11)

If this is true, it follows that

on(1) = I ′λ(un)(un − u) = ∥un∥2X − ∥u∥2X + on(1)

and therefore ∥un∥X → ∥u∥X . This, together with the weak convergence, implies
that un → u strongly in X.

For proving (3.11), we first use (3.1) with q = 1 to get∣∣∣∣∫
R2

Q(|x|)f(un)(un − u) dx

∣∣∣∣ ≤ εAn + CfDn,

where

An :=

∫
R2

Q(|x|)|un|γ−1|un − u|dx, Dn :=

∫
R2

Q(|x|)Φα(un)|un − u|dx.

Taking the limit in (3.10), we conclude that

lim sup
n→∞

∥un∥2X ≤ 2µ

(µ− 2)
c <

4π(b0/2 + 1)

α0
.

Let 1 < t1 < γ/(γ − 1) and α > α0 be such that t1α∥un∥2X < 4π(b0/2 + 1), for any
n ≥ n0. Using Hölder’s inequality, (2.7) and Theorem 2.4, we obtain

Dn ≤
(∫

R2

Q(|x|)Φt1α (un) dx

)1/t1

∥un − u∥
L

t2
Q

=

(∫
R2

Q(|x|)Φt1α∥un∥2
X

(
un

∥un∥X

)
dx

)1/t1

∥un − u∥
L

t2
Q

≤ C1∥un − u∥
L

t2
Q
,

where 1/t1 + 1/t2 = 1, with t2 > γ. This expression and the compactness of the
embedding Xrad ↪→ Lt2

Q(R2) (see Lemma 2.3) proves that Dn = on(1).
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From Hölder’s inequality and Lemma 2.3, it follows that

An ≤ ∥un∥γ−1
Lγ

Q
∥un − u∥Lγ

Q
≤ C2∥un∥γ−1

X ∥un − u∥X .

Thus, there exists C3 > 0 such that |An| ≤ C3, for any n ∈ N. Hence, we can use
Dn → 0 to conclude that

lim sup
n→∞

∣∣∣∣∫
R2

Q(|x|)f(un)(un − u) dx

∣∣∣∣ ≤ εC3.

Since ε > 0 is arbitrary, it follows that (3.11) holds. □

We now verify that Iλ satisfies the geometry of the Mountain Pass Theorem.

Lemma 3.3. Suppose that (f1)-(f3) hold. Then,

(i) there exist τ, ρ > 0 such that Iλ(u) ≥ τ , whenever ∥u∥X = ρ;

(ii) there exists e ∈ Xrad such that ∥e∥X > ρ and Iλ(e) < 0.

Proof. Let ε > 0, q > γ and t1, t2 > 1 be such that 1/t1 + 1/t2 = 1. Using (3.2)
and Lemma 2.3, we obtain∫

R2

Q(|x|)F (u) dx ≤ εC1∥u∥γX + C1∥u∥qX
(∫

R2

Q(|x|)Φt2α(u) dx

)1/t2

.

If ρ1 > 0 is small in such a way that t2αρ
2
1 < 4π(b0/2 + 1), we can use (2.7) and

Theorem 2.4 to get∫
R2

Q(|x|)Φt2α(u) dx =

∫
R2

Q(|x|)Φt2α∥u∥2
X

(
u

∥u∥X

)
dx ≤ C2, ∀ ∥u∥X ≤ ρ1,

where we also have used that Φs(t) is increasing in s > 0. If ∥u∥X ≤ ρ1 and
ε = 1/(4λC1), we obtain

Iλ(u) ≥ ∥u∥2X
(
1

2
− 1

4
∥u∥γ−2

X − C3∥u∥q−2
X

)
.

Since q > γ ≥ 2, the term into the parentheses above goes 1/2, as ∥u∥X → 0. This
shows that (i) holds.

Now, let K ⊂ R2 the support of φ ∈ C∞
0,rad(R2). By (f3), there exist C4, C5 > 0

such that F (s) ≥ C4|s|µ − C5, for any s ∈ R. Consequently, for t > 0,

Iλ(tφ) ≤
t2

2
∥φ∥2X − C4t

µ

∫
K

Q(|x|)|φ|µ dx+ C5

∫
K

Q(|x|) dx.

Since µ > γ ≥ 2, item (ii) holds for e := t0φ, with t0 > 0 large enough. □

4. Proof of the main theorems

We start this section by presenting the proof of our existence (and regularity)
result.

Proof of Theorem 1.1. In view of Lemma 3.3, we can define the minimax level

cλMP := inf
g∈G

max
t∈[0,1]

Iλ(g(t)) ≥ τ > 0,

where G := {g ∈ C ([0, 1], Xrad) : g(0) = 0, Iλ(g(1)) < 0}. By using the Mountain
Pass Theorem [4] we obtain a sequence (un) ⊂ Xrad such that

lim
n→∞

Iλ(un) = cλMP , lim
n→∞

I ′λ(un) = 0.
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We claim that, for λ > 0 large,

cλMP <
(µ− 2)

2µ

4π(b0/2 + 1)

α0
.

If this is true, it follows from Lemma 3.2 that, along a subsequence, un → u strongly
in X. From the regularity of Iλ we obtain I ′λ(u) = 0 and Iλ(u) ≥ τ > 0, and
therefore it follows from Proposition 3.1 that u ̸= 0 is a weak solution of problem
(2.2).

For proving the existence of solution, it remains to prove the upper bound on
cλMP . In order to do that, we consider ν > γ given by (f4). A standard minimization
argument together with the compactness of the embedding Xrad ↪→ Lν

Q(R2)
provides w0 ∈ Xrad such that

∥w0∥2X = Sν := inf

{
∥u∥2X : u ∈ Xrad,

∫
R2

Q(|x|)|u|ν dx = 1

}
.

It follows from (f4) that

Iλ(w0) ≤
1

2
∥w0∥2X − λC

∫
R2

Q(|x|)|w0|ν dx =
1

2
Sν − λC < 0,

whenever λ > Sν/2C. This shows that the curve g0(t) := tw0 belongs to G.
Therefore

cλMP ≤ max
t∈[0,1]

Iλ(g0(t)) ≤ max
t≥0

{
t2

2
Sν − λ

∫
R2

Q(|x|)F (tw0) dx

}
.

By (f4), we have that F (tw0) ≥ Ctν |w0|ν , for any t ≥ 0. Thus,

cλMP ≤ max
t≥0

{
t2

2
Sν − λCtν

}
= h(λ) :=

ν

(λC)2/(ν−2)

(
Sν

ν

)ν/(ν−2)(
ν − 2

2ν

)
.

Since ν > γ ≥ 2, we have that h(λ) → 0, as λ → ∞, and the claim is proved.
In order to obtain the regularity result, we call (u, v) ∈ Xrad×Xrad the solution

given by the former argument and fix p > 1. For a fixed R > 0, define the function
ṽ(|x|) := v(|x|) − v(R). From Remark 2.2, we can infer that ṽ ∈ H1

0 (BR) weakly
solves

−∆ṽ = h, in BR, ṽ = 0, on ∂BR, (4.1)

where h(x) := V (|x|)u(|x|)−V (|x|)v(|x|). We shall prove that h ∈ Lp(BR). Indeed,
using that lim supr→0 V (r)/ra0 < ∞, we obtain C1 > 0 such that∫

BR

|h(x)|p dx ≤ C1

∫
BR

|x|pa0 |u|p dx+ C1

∫
BR

|x|pa0 |v|p dx.

Since pa0 > −2, we can pick t1 > 1 such that |x|t1pa0 ∈ L1(BR). This, together
with Hölder’s inequality and Remark 2.2, yield∫

BR

|h(x)|p dx ≤ C1

(∫
BR

|x|t1pa0 dx

)1/t1 (
∥u∥t2Lt2p(BR) + ∥v∥t2Lt2p(BR)

)
< ∞,

where 1/t1 + 1/t2 = 1, proving the claim. Therefore, by classical elliptic regularity
theory we conclude that v = ṽ + v(R) ∈ W 2,p(BR).

Now, considering ũ(|x|) := u(|x|) − u(R), then ũ ∈ H1
0 (BR) is a solution of

problem

−∆ũ = g, in BR, ũ = 0, on ∂BR,
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where g(x) := λQ(|x|)f(u(|x|))−V (|x|)v(|x|). Arguing as above, we can prove that
V (| · |)v ∈ Lp(BR). Moreover, from (3.1) with q = 1 and (2.7), we obtain∫

BR

|Q(|x|)f(u)|p dx ≤ C2

∫
BR

|Q(|x|)|p|u|p(γ−1) dx

+ C2

∫
BR

|Q(|x|)|pΦpα(u) dx.

(4.2)

Using (3.6), Hölder’s inequality and Remark 2.2, we get∫
BR

|Q(|x|)|p|u|p(γ−1) dx ≤ C3

∫
BR

|x|pb0 |u|p(γ−1) dx

≤ C3

(∫
BR

|x|t3pb0 dx
)1/t3

∥u∥p(γ−1)

Lt4p(γ−1)(BR)
< ∞,

(4.3)

where 1/t3 + 1/t4 = 1 and t3pb0 > −2. On other hand, Young’s inequality yields

u(|x|)2 ≤ 2ũ(|x|)2 + 2u(R)2.

So, we can use (3.6), Hölder’s inequality and the classical Trudinger-Moser
inequality to obtain∫

BR

|Q(|x|)|pΦpα(u) dx ≤ C4e
2pαu(R)2

∫
BR

|x|pb0e2pαũ
2

dx

≤ C5

(∫
BR

e2t4pαũ
2

dx

)1/t4

< ∞.

The above estimate, (4.2) and (4.3), show that Q(| · |)f(u) ∈ Lp(BR). Hence, we
conclude as before that u ∈ W 2,p(BR). Since the embedding W 2,p(BR) ↪→ Cσ(BR)
is continuous, for some σ ∈ (0, 1), then u, v are locally Hölder continuous.

Suppose now that V is locally Hölder continuous. By the former proof the
functions u, v are locally Hölder continuous, and hence h(x) := V (|x|)u(|x|) −
V (|x|)v(|x|) belongs to Cσ(BR), for some σ ∈ (0, 1). Since ṽ solves (4.1), by
classical elliptic regularity theory v = ṽ + v(R) ∈ C2,σ(BR). □

We prove in the sequel our multiplicity result.

Proof of Theorem 1.2. We are intending to apply Theorem 2.6 for the functional Iλ.
It is clear that Iλ(0) = 0 and Iλ is even, since we are supposing f odd. Moreover,
condition (I1) is a consequence of the first statement in Lemma 3.3.

Given m ∈ N, consider

Vm := span{φ1, ..., φm},

where {φi}mi=1 ⊂ C∞
0 (R2) have disjoint supports. Since all norms are equivalent in

Vm, we obtain a positive constant C1 = C1(m) > 0 such that

∥u∥νX ≤ C1∥u∥νLν
Q
, ∀u ∈ Vm.

Hence, it follows from (f4) that

Iλ(u) ≤
1

2
∥u∥2X − λC∥u∥νLν

Q
≤ 1

2
∥u∥2X − λ

C2

ν
∥u∥νX , ∀u ∈ Vm,

where C2 = C1C.
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We now consider the function

g(t) :=
t2

2
− λ

C2

ν
tν , t ≥ 0.

Since ν > 2, it attains its maximum value at the point t∗ = (λC2)
−1/(ν−2)

, which
implies

Iλ(u) ≤ Am,λ := g(t∗) =

(
1

2
− 1

ν

)(
1

λC2

)2/(ν−2)

, ∀u ∈ Vm.

Since Am,λ → 0, as λ → ∞, we can find λm > 0 such that

0 < Am,λ <
(µ− 2)

2µ

4π(b0/2 + 1)

α0
,

for any λ > λm. It follows from Lemma 3.2 and Theorem 2.6 that Iλ has at lest m
pairs of non-zero critical points. □
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