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Abstract. In this work, we investigate a stationary reaction-diffusion-

advection equation with a nonlinear term in the gradient, which entails several

technical challenges in the analysis. By combining the method of sub- and
supersolutions with bifurcation theory, we establish results on the existence

and multiplicity of positive solutions.
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1. Introduction

In this paper, we deal with the following stationary reaction-diffusion-advection
equation

(1.1)

{
−div(a(x)D1(u)∇u) +D2(u)[⃗b(x) · ∇u] = λu in Ω,

u = 0 on ∂Ω,
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where Ω ⊂ RN is a bounded regular domain, a ∈ C1,α(Ω, [a0,+∞)), for some a0 >

0, and b⃗ ∈ C0,α(Ω;RN ), α ∈ (0, 1). The functions D1, D2 ∈ C([0,+∞), [0,+∞))
satisfy

(d1) Di(s) > 0, for any s > 0 and i ∈ {1, 2},
(d2) D1(∞) := lims→+∞D1(s) > 0,

and suitable hypotheses at the origin and at infinity, which will be presented
subsequently.

This type of equation is of interest both from a mathematical standpoint and
from an applied perspective. For instance, it can be interpreted as a steady-state
model of a reaction-diffusion-advection equation in Population Dynamics, where
Ω represents the habitat of a species, and the population density at each point
x ∈ Ω is given by u(x). In this context, −div(a(x)D1(u)∇u) is referred to as the
diffusion term, which describes the spatial movement of the species. The function
d(x, u) := a(x)D1(u) represents the diffusion rate, meaning that the movement
speed depends on both the position x and the population density u(x), making the

model more realistic than in the semilinear case. On the other hand, D2(u)[⃗b(x)·∇u]
represents the advection term, which accounts for preferential movement of the
species. This movement may result from individual behaviors or physical transport
processes, such as wind or river currents. Finally, λu represents the reaction term,
which can be interpreted as the local reproduction rate of individuals. In this case,
we assume the reproduction rate is proportional to the population density. For
further details, see [9, 13, 23] and the references therein.

From a mathematical standpoint, this is a quasilinear elliptic equation, where
the nonlinear term in u appears both in the second derivatives and in the gradient
term. This introduces significant technical challenges in the analysis, particularly
due to the lack of sign information in the gradient term.

For instance, this problem does not possess a variational structure, which means
that classical methods used to prove the nonexistence of positive solutions are not
applicable here. Moreover, to the best of our knowledge, there are no existing a
priori bounds for this class of problems. Additionally, since we allow the functions
D1 and D2 to degenerate at the origin, this introduces further technical difficulties.

The case where D1 = D2 was studied in [19]. In that paper, the author applies
a change of variables and transforms problem (1.1) into an equivalent semilinear
equation. This transformation allows for the application of classical sub- and
supersolution methods to this class of problems.

In [3], the authors develop global bifurcation theorems for the case whereD2 ≡ 0.
Among other results, they study the following equation:

−div(A(x, u)∇u) = λu in Ω, u = 0 on ∂Ω,

where A(x, s) is a symmetric, positive-definite matrix whose coefficients are
bounded Carathéodory functions. The study of this problem with unbounded
coefficients was conducted in [10].

The logistic equation with a nonlinear diffusion term and linear advection was
studied in [8]. We also highlight the works [6, 7], where the authors study the
logistic equation with nonlinear diffusion in the absence of an advection term.

More recently, in [11], one of the authors examined the case where D1 ≡ 1 and
D2 = pup−1, with p > 1, in the presence of the classical logistic reaction term.
In that paper, the authors establish results on the existence and multiplicity of
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positive solutions, along with a novel uniqueness result for this class of problems.
Subsequently, the case where p < 1 was analyzed in [22].

To state our main results, we need to introduce some notation. Throughout this
work, we consider the function h : [0,+∞) → (0,+∞) defined by

(1.2) h(s) =
D2(s)

D1(s)
, if s > 0, h(0) := lim

s→0

D2(s)

D1(s)
,

and we assume that

(H1) The functions D1, D2 : [0,+∞) → (0,+∞) are of class C1.

We also define the quantities

h(∞) := lim
s→+∞

D2(s)

D1(s)
, Di(∞) := lim

s→+∞
Di(s), for i ∈ {1, 2}.

and the operators

L0 := −div(a(x)∇) + h(0)⃗b(x) · ∇
and, when h(∞) ∈ R,

L∞ := −div(a(x)∇) + h(∞)⃗b(x) · ∇.
Given a second-order elliptic operator L with Hölder continuous coefficients in

a regular bounded domain U ⊂ RN , we denote by

σU
1 [L]

the principal eigenvalue of L in U , under the homogeneous Dirichlet boundary
condition. For simplicity, we also adopt the following notation:

σ0
1 := σΩ

1 [L0], σ∞
1 := σΩ

1 [L∞].

In our first main theorems, we obtain the existence of a solution for the problem
when σ0

1D1(0) < σ∞
1 D1(∞). More specifically, the following results hold:

Theorem 1.1. Suppose that (H1) holds, h(∞) < +∞, and σ0
1D1(0) < σ∞

1 D1(∞).
Then, for any λ ∈ (σ0

1D1(0), σ
∞
1 D1(∞)), problem (1.1) has a positive classical

solution.

Theorem 1.2. Suppose that (H1) holds, h(∞) = +∞, and

(b1) There exists ψ ∈ C2(Ω) such that

[⃗b(x) · ∇ψ] > 0, for all x ∈ Ω.

Then, for any λ > σ0
1D1(0), problem (1.1) has a positive classical solution.

In the proof, we perform a known change of variables. However, since we do
not assume D1 = D2, the equivalent problem remains quasilinear. Nevertheless,
we prove that the sub- and supersolution methods can still be applied to obtain
solutions. We emphasize that, unlike previous papers, we allow for the cases where
D1(0) = 0 or D1(∞) = ∞.

Condition (b1) is used to construct a supersolution in the more delicate case

where h(∞) = +∞. If b⃗ is a regular conservative field, meaning b⃗ = ∇ψ for some

ψ ∈ C2(Ω), then [⃗b ·∇ψ] = |⃗b|2, and therefore (b1) holds as long as b⃗ does not vanish
in Ω.

To complement the results of the above theorems, we need to consider the case
where the inequality σ0

1D1(0) < σ∞
1 D1(∞) does not hold. To address this, we

apply bifurcation theory. In our first result, we present necessary conditions for
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bifurcation both from trivial solutions and from infinity. More specifically, we shall
prove the following:

Theorem 1.3. Suppose that D1(0) > 0.

(i) Then there exists an unbounded component C0 ⊂ R × C1
0 (Ω) of positive

solutions to (1.1) emanating from the trivial solution at (σ0
1D1(0), 0);

(ii) If additionally 0 < Di(∞) < +∞ for any i ∈ {1, 2}, then there exists an
unbounded component C∞ ⊂ R × C1

0 (Ω) of solutions to (1.1) which meets

(σ∞
1 D1(∞),∞). Moreover, if b⃗ ∈ C1(Ω;RN ) and assumption (H1) holds,

then C∞ consists of positive solutions to (1.1).

As a matter of fact, we prove that bifurcation of positive solutions from the
trivial solution (resp., infinity) cannot occur at any point other than (σ0

1D1(0),∞)
(resp., (σ∞

1 D1(∞),∞)).
Moreover, under one of the following assumptions

(b2) There exists ξ ∈
(
H1

0 (Ω) ∩ L4(Ω)
)
\ {0} such that div(ξ2⃗b) has a constant

sign a.e. in Ω,

or

(d3) There exists C > 0 such that
∫∞
0
D2(t)t

−1dt < C,

we obtain a non-existence result of positive solutions of (1.1) for λ > 0 large (see
Proposition 3.4). Actually, if we define

λ := min{σ0
1D1(0), σ

∞
1 D1(∞)} and λ := max{σ0

1D1(0), σ
∞
1 D1(∞)},

we can establish the following existence result:

Theorem 1.4. Suppose that (H1) holds, D1(0) > 0, 0 < Di(∞) < +∞, for any

i ∈ {1, 2}, and b⃗ ∈ C1(Ω;RN ). Then, for any λ ∈ (λ, λ), problem (1.1) has a
positive classical solution. If additionally (b2) or (d3) is satisfied, then the continua
C0 and C∞ given by Theorem 1.3 coincide.

We also point out that, by the Divergence Theorem, condition (b2) implies that

div(ξ2⃗b(x)) = 0 a.e. in Ω
Finally, it is worth noting that we studied the bifurcation directions from both

the trivial solution and infinity (see Theorems 4.1, 4.2 and 4.3). This analysis
is particularly challenging due to the presence of the gradient term. Moreover,
as a byproduct of the classification discussed above, we are able to establish the
existence of at least two positive solutions to (1.1) under some suitable conditions
on the function D1 (see Theorem 4.4).

Remark 1.5. We emphasize that the condition D2(s) > 0 for s > 0 is not strictly
necessary. With minor adjustments, the same results can be obtained even if D2

changes sign. In fact, what truly matters in the analysis is whether D2(∞) is
finite or not. For instance, the assumption D2(∞) < +∞ can be replaced by
|D2(∞)| < +∞. Moreover, the case h(∞) = −∞ in Theorem 1.2 can also be

treated by replacing the inequality in (b1) with [⃗b(x) · ∇ψ] < 0 for all x ∈ Ω.

The rest of the paper is organized as follows: In Section 2, we introduce a change
of variables that will be used in the study of (1.1) and apply sub-supersolution
methods to prove Theorems 1.1 and 1.2. Section 3 is dedicated to investigating
the bifurcation from the curve of trivial solutions and from infinity. Theorems 1.3
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and 1.4 are proven in this section. Finally, in Section 4, we analyze the bifurcation
direction from the trivial solution and from infinity, and provide some results on
the multiplicity of solutions.

2. The sub-supersolution approach

We start this section performing a change of variables in the following way: define
the auxiliary function

g(s) :=

∫ s

0

D1(t)dt, s ∈ R+ := {s ∈ R : s ≥ 0}.

Since g′(s) = D1(s) > 0, for any s > 0, the function g is injective and belongs
to the class C1. Moreover, since

∫∞
0
D1(s)ds = ∞, thanks to hypothesis (d2), we

also have g(R+) = R+. So, the function g is invertible and, if we denote g−1 as its
inverse, it is well defined the map

q(s) :=

{
g−1(s) if s ≥ 0,

0 if s < 0.

A direct computation shows that u ∈ C2(Ω) ∩ C(Ω) is a positive solution of (1.1)
if, and only if, w = g(u) is a positive solution of

(2.1)

{
−div(a(x)∇w) + h(q(w))[⃗b(x) · ∇w] = λq(w) in Ω,

w = 0 on ∂Ω,

where h was defined in (1.2). The next result gathers some useful properties of q.

Lemma 2.1. The map q is an increasing C1 function, and it satisfies

(2.2) lim
s→0

q(s)

s
=

{
1

D1(0)
if D1(0) > 0,

+∞ if D1(0) = 0,

and

(2.3) lim
s→+∞

q(s)

s
=

{
1

D1(∞) if D1(∞) < +∞,

0 if D1(∞) = +∞.

Proof. Since q is the inverse function of g, it is of class C1 and

q′(s) =
1

g′(q(s))
> 0, ∀s > 0.

So, q is increasing. Moreover,

lim
s→0

q(s)

s
= lim

s→0
q′(s) = lim

s→0

1

g′(q(s))
= lim

s→0

1

D1(q(s))

and (2.2) follows from L’Hospital’s rule. The proof of (2.3) is analogous. □

Since we intend to apply the sub- and supersolution method, we present now the
following definitions:

Definition 2.2. We say that w ∈ C2(Ω) ∩ C(Ω) is a subsolution of (2.1) if{
−div(a(x)∇w) + h(q(w))[⃗b(x) · ∇w] ≤ λq(w) in Ω,

w ≤ 0 on ∂Ω.
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A function w ∈ C2(Ω) ∩ C(Ω) is called a supersolution of (2.1) if the above
expression hold with reverse inequalities. Furthermore, a pair w, w of sub-
supersolution is called ordered if w ≤ w.

Now we will show that the sub- and supersolution methods can be applied to
problem (2.1).

Theorem 2.3. Suppose (H1) and there exists an ordered pair w, w of sub-
supersolution of (2.1). Then the problem has a minimal solution w∗ and a maximal
solution w∗ in the order interval [w,w].

Proof. For any λ > 0, consider

fλ(x, s, η) := λq(s)− h(q(s))[⃗b(x) · η], (x, s, η) ∈ Ω× R+ × RN .

Since b⃗ ∈ C0,α(Ω;RN ), we have that fλ(·, s, η) ∈ C0,α(Ω) for every (s, η) ∈ R+×RN .
By (H1), the partial derivatives ∂fλ/∂η and ∂fλ/∂s are continuous. If we define

c(ρ) := λq(ρ) + ∥⃗b∥L∞(Ω) max
0≤s≤ρ

h(q(s)), ρ ≥ 0,

it is clear that, for any s ∈ [0, ρ], there holds

|fλ(x, s, η)| ≤ λq(s) + |⃗b(x)|h(q(s))|η| ≤ c(ρ)(1 + |η|2).
Thus, the result follows from [2, Theorem 1.1]. □

We aim now to obtain a ordered sub-supersolution pair of (2.1). We first establish
the existence of a subsolution.

Lemma 2.4. The problem (2.1) has a subsolution for any λ > σ0
1D1(0).

Proof. Pick m > 1 in such a way that λ > mσ0
1D1(0). Let φ0 > 0 be a principal

eigenfunction of L0 such that ∥φ0∥L∞(Ω) = 1. If we define, for ϵ > 0, the function
w := ϵφm

0 , we can use a direct computation of div(a(x)∇(φm
0 )) to conclude that w

is a subsolution of (2.1) if, and only if,(
λq(ϵφm

0 )

mϵφm
0

− σ0
1

)
φ0 ≥ (1−m)a(x)φ−1

0 |∇φ0|2 + (h(q(ϵφm
0 ))− h(0))[⃗b(x) · ∇φ0],

in Ω. Since m > 1, a(x) ≥ a0 > 0 in Ω and φ−1
0 ≥ ∥φ0∥−1

∞ = 1, the above inequality
is true if

(2.4)

(
λq(ϵφm

0 )

mϵφm
0

−σ0
1

)
φ0+(m−1)a0|∇φ0|2−∥⃗b·∇φ0∥L∞(Ω)|h(q(ϵφm

0 ))−h(0)| ≥ 0,

for any x ∈ Ω.
If D1(0) > 0, we can use q(0) = 0 and (2.2) to conclude that, uniformly in Ω,

the following holds

lim
ϵ→0+

|h(q(ϵφm
0 ))− h(0)| = 0

and

lim
ϵ→0+

(
λq(ϵφm

0 )

mϵφm
0

− σ0
1

)
= µ0 :=

(
λ

mD1(0)
− σ0

1

)
> 0.

Denoting the left-hand side of (2.4) by Γϵ, we have that

(2.5) Γϵ(x) = (µ0 + oϵ(1))φ0(x) + (m− 1)a0|∇φ0(x)|2 + oϵ(1), x ∈ Ω,

where oϵ(1) stands for a quantity which uniformly approaches to 0 as ϵ→ 0+.
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We are going to obtain ϵ > 0 and m > 1 such that Γϵ is non-negative in Ω, which
clearly implies (2.4). In order to do that, we first notice that L0 has no term of
order zero, and therefore we may apply the Strong Maximum Principle to conclude
that φ0 > 0 in Ω and ∂φ0

∂ν < 0 on ∂Ω. Then, given r > 0 small and setting

Ωr := {x ∈ Ω : dist(x, ∂Ω) < r} ,
we obtain c1 = c1(r) > 0 such that

φ0 ≥ c1 > 0 in Ω \ Ωr, |∇φ0|2 ≥ c1 > 0, in Ωr.

In the set Ω \Ωr, we can use (2.5), the first inequality above, m > 1 and µ0 > 0,
to obtain

Γϵ(x) ≥ (µ0 + oϵ(1))c1 + oϵ(1) ≥ 0, ∀ 0 < ϵ ≤ ϵ1.

Analogously, since φ0 > 0, in the set Ωr we have that

Γϵ(x) ≥ (m− 1)a0c
2
1 + oϵ(1) ≥ 0, ∀ 0 < ϵ ≤ ϵ2.

Consequently, if we fix ϵ := min{ϵ1, ϵ2}, we conclude that (2.4) is verified and
therefore w = ϵφm

0 is a subsolution of (2.1).
When D1(0) = 0, it follows from (2.2) that q(s)/s → +∞, as s → 0. Thus, for

any µ0 > 0 we have that

Γϵ(x) ≥ (µ0 + oϵ(1))φ0(x) + (m− 1)a0|∇φ0(x)|2 + oϵ(1), x ∈ Ω,

and we can repeat the above argument. We omit the details. □

In the construction of the supersolution, we consider two distinct cases depending
on h(∞). First, we will address the case where h(∞) is finite.

Lemma 2.5. If h(∞) ∈ [0,+∞), then problem (2.1) has a supersolution for any
λ < σ∞

1 D1(∞).

Proof. We first assume that D1(∞) < ∞. Let U ⊂ RN be a regular domain such

that Ω ⊂ U , and let ã, b̃ : U → R be smooth extensions of a and b⃗ in U , with
ã ≥ a0/2 > 0. We may then consider the operator L∞ acting on functions defined
in U . Since λ < σ∞

1 D1(∞), we can use the continuity of the principal eigenvalue
with respect to both the coefficients and the domain to choose U such that

λ < σU
1 [L∞]D1(∞) ≤ σ∞

1 D1(∞).

Let φ̃∞ > 0 be an eigenfunction of L∞ associated with σU
1 [L∞] and such that

∥φ̃∞∥L∞(U) = 1. If we define, for K > 0, the function w := Kφ̃∞, a direct
computation shows that w is a supersolution of (2.1) if, and only if,

(2.6)

(
λq(Kφ̃∞)

Kφ̃∞
− σU

1 [L∞]

)
φ̃∞ ≤ (h(q(Kφ̃∞))− h(∞)) [⃗b(x) · ∇φ̃∞] in Ω.

We conclude from (2.3) that q(s) → +∞, as s → +∞. Since φ̃∞ is positive, it
follows from (2.3) again that

µ∞ := lim
K→+∞

(
λq(Kφ̃∞)

Kφ̃∞
− σU

1 [L∞]

)
=

λ

D1(∞)
− σU

1 [L∞] < 0.

By construction, there exists c1 > 0 such that φ̃∞ ≥ c1 > 0 in Ω. Hence, for K > 0
large, we have that(

λq(Kφ̃∞)

Kφ̃∞
− σU

1 [L∞]

)
φ̃∞ = (µ∞ + oK(1)) φ̃∞ ≤ µ∞

2
c1 < 0,
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in Ω. The inequality in (2.6) is a consequence of the above bound and the fact that

lim
K→+∞

(h(q(Kφ̃∞))− h(∞)) = 0,

uniformly in Ω.
If D1(∞) = +∞, we can repeat the argument noticing that µ∞ = −σU

1 [L∞] < 0.
We omit the details. □

The case h(∞) = ∞ is more delicate and requires the geometric condition (b1).
More specifically, we have the following:

Lemma 2.6. If h(∞) = ∞ and b⃗ satisfies (b1), then problem (2.1) has a
supersolution for any λ > 0.

Proof. Let ψ ∈ C2(Ω) be given by (b1) and M > 0 such that ψ +M > 0 in Ω.
Define w = K(ψ + M), where K > 0 is a constant to be chosen. By a direct
calculation we see that w is a supersolution of (2.1) if, and only if,

(2.7)
λq(K(ψ +M))

K(ψ +M)
(ψ+M)+div(a(x)∇ψ) ≤ h(q(K(ψ+M)))[⃗b(x) ·∇ψ] in Ω.

Since h(∞) = ∞ and [⃗b(x) · ∇ψ] > 0, it follows from (2.3) that

lim
K→+∞

h(q(K(ψ +M)))[⃗b(x) · ∇ψ] = +∞

and

lim
K→+∞

λq(K(ψ +M))

K(ψ +M)
=

{
λ

D1(∞) if D1(∞) < +∞,

0 if D1(∞) = +∞.

uniformly in Ω. Since div(a(x)∇ψ(x)) is bounded, the above expressions imply
that (2.7) holds for any K > 0 large. □

We are now in position to prove our first existence results for (1.1).

Proof of Theorem 1.1. Let λ ∈ (σ1
0D1(0), σ

∞
1 D1(∞)) be fixed. From Lemmas 2.4

and 2.5 we obtain a pair of sub-supersolutions w = ϵφm
0 , w = Kφ̃∞ for (2.1). Since

φ̃∞ ≥ c1 > 0 in Ω, we can take K > 0 large in such a way that w ≤ w in Ω. It
follows from Theorem 2.3 that problem (2.1) has at least one solution w in [w,w].
Since φ0 > 0 in Ω, this solution is positive. Therefore, taking u = q(w), we obtain
a positive solution for (1.1). □

Proof of Theorem 1.2. The proof is analogous to that presented to Theorem 1.1,
just using Lemma 2.6 instead of Lemma 2.5. We omit the details. □

3. The Bifurcation approach

This section is dedicated to the study of bifurcation points of positive solutions,
as well as to prove Theorem 1.4. Before proving our results let us recall some basic
facts and some abstract result of Bifurcation Theory. We refer to [12, 15, 17, 20, 21]
for more details.

Leu U be a Banach space and F : R×U → U be a continuous function such that
F(λ, 0) = 0, for any λ ∈ R. We say that (λ0, 0) is a bifurcation point of equation
F(λ, u) = 0 from the curve of trivial solutions (λ, 0) if there exists a sequence
(λn, un) ⊂ R×U \{0} such that F(λn, un) = 0, λn → λ0 and un → 0, as n→ +∞.
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In the proof of Theorem 1.3, we are going to use the following abstract result
which is a compiled of the results in [17, Proposition 6.5.2, Lemma 6.5.3, Lemma
6.5.4 and Theorem 6.5.5]:

Theorem 3.1. Let U be an ordered Banach space whose positive cone PU is normal
and has nonempty interior. Let K : U → U be linear, continuous, compact and such
that K(PU \ {0}) ⊂ int(PU ). Let G : R×U → U be a continuous operator, which is
compact on bounded sets and such that, for any compact set Λ ⊂ R,

lim
∥u∥U→0

G(λ, u)
∥u∥U

= 0, uniformly for λ ∈ Λ.

Finally, assume that the operator

F(λ, u) := u− λKu− G(λ, u),
satisfies the strong maximum principle, in the sense that

(λ, u) ∈ R× (PU \ {0})
F(λ, u) = 0

}
=⇒ u ∈ int(PU ).

Then there exists an unbounded component C ⊂ R × int(PU ) of solutions of
F(λ, u) = 0 emanating from (λ0, 0), where λ0 is the inverse of the spectral radius
of K. Moreover, this is the unique bifurcation point of positive solutions from the
curve of trivial solutions.

We now recall that (λ0,∞), with λ0 ∈ R, is a bifurcation point from infinity for
F(λ, u) = 0 if there exists a sequence (λn, un) ⊂ R × U such that F(λn, un) = 0,
λn → λ0 and ∥un∥U → +∞, as n→ +∞.

In order to present the abstract result, we shall need to prove the second part
of Theorem 1.3, we consider a uniformly elliptic operator L, a continuous function
κ : Ω → R such that κ(x) ≥ κ0 > 0 in Ω and denote by µ1 the principal eigenvalue
of

Lu = λκ(x)u in Ω, u = 0 on ∂Ω.

With these notation, we can state the following particular case of [21, Theorem
2.28 and Corollary 2.37]:

Theorem 3.2. If G ∈ C(Ω× R× RN × R) satisfies

(3.1) lim
(s,|ξ|)→(+∞,+∞)

|G(x, s, ξ, λ)|
(s2 + |ξ|2)1/2

= 0,

uniformly for x ∈ Ω and λ ∈ Λ a compact set, then the equation

Lu = λκ(x)u+ G(x, u,Du, λ) in Ω, u = 0 on ∂Ω,

has a continuum C∞ ⊂ R × C1
0 (Ω) of solutions which meets (µ1,∞). Moreover,

there exists a neighborhood M of (µ1,∞) such that either

(i) C∞ \M is bounded in R× C1
0 (Ω) and meets R× {0} or

(ii) C∞ \M is unbounded.

If, additionally, G is continuously differentiable and

(3.2) G(x, s, ξ, λ) = G1(x, s, ξ, λ)s+

N∑
j=1

(G2)j(x, s, ξ, λ)ξj ,

with G1, G2 continuous at (s, ξ) = (0, 0), then the solutions can be assumed positive.
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We devote the rest of this section for the study of the bifurcation from the curve
of trivial solutions and from infinity.

3.1. Bifurcation from the trivial solution. Our goal now is to obtain the
existence of an unbounded continuum C0 ⊂ R×C1

0 (Ω) of positive solutions of (1.1)
emanating from the point (σ0

1D1(0), 0). This is exactly the statement of Theorem
1.3, whose proof we present in what follows.

Proof of Theorem 1.3 item (i). The first step is to rewrite problem (2.1) is such
a way we can apply Theorem 3.1. Since L0 has no terms of order zero, we may
consider the map K = L−1

0 : C(Ω) → C1
0 (Ω), which is the resolvent operator

associated with the linear problem{
L0u = f in Ω,

u = 0 on ∂Ω,

for each f ∈ C(Ω). It is easy to prove that K is linear and continuous. Elliptic
regularity combined with the compact embedding W 2,p(Ω) ↪→ C1

0 (Ω), for p > N ,
show that K is compact. Since L0 satisfies the Strong Maximum Principle, we have
that K is strongly positive. Moreover, since K = L−1

0 , the inverse of the spectral
radius of the operator K is exactly σ0

1 .
Notice that w ∈ C2(Ω) ∩ C(Ω) is a classical solution of (2.1) if, and only if,{

L0w = λq(w) + (h(0)− h(q(w))) [⃗b(x) · ∇w] in Ω,

w = 0 on ∂Ω.

Since D1(0) > 0, the above problem is equivalent to

F (λ,w) := w − λ
1

D1(0)
Kw −G(λ,w) = 0,

where G : R× C1
0 (Ω) → C1

0 (Ω) is defined by

G(λ,w) = λK

(
q(w)− w

D1(0)

)
+K

(
(h(0)− h(q(w))) [⃗b(x) · ∇w]

)
.

We observe that G is continuous and compact. Moreover, for any w ̸= 0, we may
use that K is a linear continuous operator to get

∥G(λ,w)∥C1
0 (Ω)

∥w∥C1
0 (Ω)

≤ C1|λ|
∥w∥C1

0 (Ω)

∥∥∥∥q(w)− w

D1(0)

∥∥∥∥
C(Ω)

+ C2∥h(q(w))− h(0)∥C(Ω)

≤ C1|λ|
∥∥∥∥q(w)w

− 1

D1(0)

∥∥∥∥
C(Ω)

+ C2∥h(q(w))− h(0)∥C(Ω)

with C1 = C1(T ) > 0 and C2 = C2(⃗b) > 0. Thus, recalling that q(0) = 0 and using
(2.2), we conclude that, for any compact set Λ ⊂ R, there holds

lim
∥w∥

C1
0(Ω)

→0

∥G(λ,w)∥C1
0 (Ω)

∥w∥C1
0 (Ω)

= 0, uniformly in λ ∈ Λ.

We finally recall that the positive cone P of the ordered Banach space C1
0 (Ω)

verifies

int(P) =

{
u ∈ C1

0 (Ω) : u(x) > 0, x ∈ Ω and
∂u

∂ν
(x) < 0 x ∈ ∂Ω

}
,
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where ν = ν(x) stands for the outward unit normal to Ω at x ∈ ∂Ω. Suppose that
λ ∈ R and w ∈ P \ {0} are such that F (λ,w) = 0. Then w is a non-negative and a
non-zero solution of (2.1). Thus, for

L̃ := −div(a(x)∇) + h(q(w(x)))⃗b(x) · ∇

we have that {
L̃w = λq(w) in Ω,

w = 0 on ∂Ω.

If λ ≤ 0, it follows from the Strong Maximum Principle that w ≤ 0, which is a
contradiction. Hence, λ > 0 and we can use the Strong Maximum Principle again
to conclude that w ∈ int(P).

All together, the above considerations show that we can apply Theorem 3.1 to
obtain the continuum of positive solutions C0 stated in item (i) of Theorem 1.3. □

3.2. Bifurcation from infinity. In this subsection, we will obtain results on
bifurcation from infinity for problem (1.1), complementing the study above. We
begin by proving the second part of Theorem 1.3:

Proof of Theorem 1.3 item (ii). Since Di(∞) ∈ (0,+∞), for i = 1, 2, we have that
h(∞) < +∞. Hence, we can rewrite (2.1) in the following way:

(3.3)

 L∞w = λ
1

D1(∞)
w +G(x,w,∇w, λ) in Ω,

u = 0 on ∂Ω,

where

G(x, s, ξ, λ) := λ

(
q(s)− s

D1(∞)

)
+ (h(∞)− h(q(s))) [⃗b(x) · ξ],

for any (x, s, ξ, λ) ∈ Ω × R × RN × R. It is clear that the decomposition in (3.2)
holds with

G1(x, s, ξ, λ) :=


λ
(

q(s)
s − 1

D1(∞)

)
if s ̸= 0,

λ
(

1
D1(0)

− 1
D1(∞)

)
if s = 0,

and (G2)j(x, s, ξ, λ) := (h(∞)− h(q(s))) bj(x), for any j = 1, . . . , N .
Suppose that Λ ⊂ R is a compact set and notice that, for any λ ∈ Λ,

lim
(s,|ξ|)→(+∞,+∞)

∣∣∣λ(q(s)− s

D1(∞)

) ∣∣∣
(s2 + |ξ|2)1/2

≤ c1 lim
(s,|ξ|)→(+∞,+∞)

∣∣∣∣q(s)s − 1

D1(∞)

∣∣∣∣ = 0.

Moreover, ∣∣∣(h(∞)− h(q(s))) [⃗b(x) · ξ]
∣∣∣

(s2 + |ξ|2)1/2
≤ |h(∞)− h(q(s))|∥ b⃗∥L∞(Ω),

and therefore

lim
(s,|ξ|)→(+∞,+∞)

∣∣∣(h(∞)− h(q(s))) [⃗b(x) · ξ]
∣∣∣

(s2 + |ξ|2)1/2
= 0.
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Since the two above limits are uniform for x ∈ Ω and λ ∈ Λ, we conclude that

lim
(s,|ξ|)→(+∞,+∞)

|G(x, s, ξ, λ)|
(s2 + |ξ|2)1/2

= 0, uniformly for x ∈ Ω, λ ∈ Λ,

and therefore (3.1) holds. Thus, we can apply Theorem 3.2 for problem (3.3) and
use the definition of σ∞

1 to get the conclusions of Therem 1.3 item (ii). □

It is interesting to note that our problem has no other bifurcation points from
infinity, as we can see from the next result:

Proposition 3.3. Suppose that D1(0) > 0 and Di(∞) ∈ (0,+∞), for i = 1, 2. If
λ > 0 is a bifurcation point from infinity of (2.1) for positive solutions in R×C1

0 (Ω),
then λ = σ∞

1 D1(∞).

Proof. Let λ > 0 be such that there exists (λn, wn) ⊂ R × C1
0 (Ω) a sequence of

solutions of (2.1) such that wn ≥ 0 in Ω and

(λn, ∥wn∥C1
0 (Ω)) → (λ,+∞).

By the Strong Maximum Principle one has wn(x) > 0 for all x ∈ Ω. Moreover, in
view of the standard elliptic regularity, (λn, wn) is a classical solution of (2.1) and

∥wn∥L2(Ω) → +∞.

Setting vn := wn/∥wn∥L2(Ω) and using that (λn, wn) is a solution of (2.1), we obtain

(3.4)

∫
Ω

a(x)[∇vn · ∇ϕ] +
∫
Ω

h(q(wn))[⃗b(x) · ∇vn]ϕ = λn

∫
Ω

q(wn)

∥wn∥L2(Ω)
ϕ,

for any ϕ ∈ H1
0 (Ω).

If we choose ϕ = vn, we get

(3.5)

∫
Ω

a(x)|∇vn|2 +
∫
Ω

h(q(wn))[⃗b(x) · ∇vn]vn = λn

∫
Ω

q(wn)

∥wn∥L2(Ω)
vn.

In what follows, we consider b⃗ ̸= 0. The case b⃗ ≡ 0 is similar. It follows from
D1(∞) ∈ (0,+∞), D1(0) > 0, (2.2) and (2.3) that

q(s) ≤ c1s ∀s ≥ 0,

for some c1 > 0. Using D1(0) > 0 again together with Di(∞) ∈ (0,+∞), we obtain
c2 > 0 such that

|h(s)| ≤ c2 ∀s ≥ 0.

Moreover, there exists c3 > 0 such that |λn| ≤ c3, for all n ≥ 1. Given ϵ > 0, we
can apply these bounds in (3.5) to get

a0∥vn∥2H1
0 (Ω) ≤ c1c3

∫
Ω

v2n + c2∥⃗b∥L∞(Ω)

∫
Ω

|∇vn||vn|

≤ c1c3

∫
Ω

v2n + c2∥⃗b∥L∞(Ω)

(
ϵ∥vn∥2H1

0 (Ω) +
1

4ϵ
∥vn∥2L2(Ω)

)
,

where we also have used Young’s inequality in the last line. If we choose ϵ =

a0/2c2∥⃗b∥L∞(Ω) > 0 and recall that ∥vn∥L2(Ω) = 1, we obtain

a0
2
∥vn∥2H1

0 (Ω) ≤ c1c3 +
c22∥⃗b∥2∞
2a0
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and therefore (vn) is bounded in H1
0 (Ω). Up to a subsequence, we have that

(3.6) vn ⇀ v in H1
0 (Ω), vn → v in L2(Ω). vn(x) → v(x) a.e. in Ω,

for some v ∈ H1
0 (Ω). Using ϕ = (vn − v) as test function in (3.4) yields

(3.7)

∫
Ω

a(x)[∇vn · ∇(vn − v)] = Γ1,2 − Γ2,n

where

Γ1,n := λn

∫
Ω

q(wn)

∥wn∥L2(Ω)
(vn − v) and Γ2,n :=

∫
Ω

h(q(wn))(vn − v)[⃗b(x) · ∇vn].

From Hölder’s inequality, we obtain

|Γ1,n| ≤ c1c3

∫
Ω

|vn||vn − v| ≤ c1c3∥vn∥2L2(Ω)∥vn − v∥2L2(Ω),

and

|Γ2,n| ≤ c2∥⃗b∥L∞(Ω)

∫
Ω

|∇vn||vn − v| ≤ c2∥⃗b∥L∞(Ω)∥vn∥2H1
0 (Ω)∥vn − v∥2L2(Ω).

It follows from (3.6) that both Γ1,n and Γ2,n goes to 0, as n→ +∞. Thus, we may
use (3.7), (3.6) and a(x) ≥ a0 to get

lim
n→+∞

∥vn∥2H1
0 (Ω) = ∥v∥2H1

0 (Ω).

This and the weak convergence of (vn) imply that vn → v strongly in H1
0 (Ω).

Now, let us analyse the limit of each term in (3.4). Firstly, the weak convergence
of (vn) yields

lim
n→+∞

∫
Ω

a(x)[∇vn · ∇ϕ] =
∫
Ω

a(x)[∇v · ∇ϕ],

Since vn > 0, we have that v ≥ 0. Moreover, v ̸= 0, because ∥v∥L2(Ω) = 1. Thus,
the set

Ω+ = {x ∈ Ω : v(x) > 0}
has positive measure. It is clear that wn(x) = vn(x)∥wn∥L2(Ω) → +∞ a.e. Ω+ and
therefore

lim
n→+∞

h(q(wn(x))) = h(∞),

lim
n→+∞

q(wn)

∥wn∥L2(Ω)
= lim

n→+∞

q(wn)

wn
vn =

1

D1(∞)
v,

for a.e. x ∈ Ω+. It follows from (3.6) and Lebesgue’s Theorem that

lim
n→+∞

∫
Ω+

h(q(wn))[⃗b(x) · ∇vn]ϕ =

∫
Ω+

h(∞)[⃗b(x) · ∇v]ϕ,

and

lim
n→+∞

∫
Ω+

q(wn)

∥wn∥L2(Ω)
ϕ =

∫
Ω+

1

D1(∞)
vϕ.

On the other hand,∣∣∣ ∫
Ω\Ω+

h(q(wn))[⃗b(x) · ∇vn]ϕ
∣∣∣ ≤ c2∥⃗b∥L∞(Ω)

∫
Ω\Ω+

|∇vn||ϕ|

and ∣∣∣ ∫
Ω\Ω+

q(wn)

∥wn∥L2(Ω)
ϕ
∣∣∣ ≤ c1

∫
Ω\Ω+

|vn||ϕ|
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Since v ≡ 0 in Ω \ Ω+, we can argue as before to conclude that

lim
n→+∞

∫
Ω\Ω+

h(q(wn))[⃗b(x) · ∇vn]ϕ = lim
n→+∞

∫
Ω\Ω+

q(wn)

∥wn∥L2(Ω)
= 0.

By combining the aforementioned convergences and letting n → ∞ in equation
(3.4), we conclude that∫

Ω

a(x)[∇v · ∇ϕ] +
∫
Ω

h(∞)[⃗b(x) · ∇v]ϕ =
λ

D1(∞)

∫
Ω

vϕ, ∀ϕ ∈ H1
0 (Ω).

Thus, v weakly satisfies L∞v =
λ

D1(∞)
v in Ω,

v = 0 on ∂Ω.

Since v ̸= 0 and v ≥ 0, it must be an eigenfunction associated with the principal
eigenvalue of L∞. Thus, λ = σ∞

1 D1(∞) and the proof is complete. □

3.3. Proof of Theorem 1.4. This subsection is dedicated to presenting the proof
of Theorem 1.4. First, we present a result concerning the non-existence of solutions,
which will be used to complement the study of the continua previously obtained.
This result is also of independent interest.

Proposition 3.4. Suppose that D1(∞) < +∞ and let u ∈ H1
0 (Ω) \ {0} be a weak

non-negative solution of (1.1).

(i) If D2 satisfies (d3), then
(3.8)

λ ≤ ∥D1∥L∞(R)

∫
Ω
a(x)|∇ψ|2∫

Ω
ψ2

+ C

∫
Ω

|div(ψ2⃗b(x))| ∀ψ ∈ [H1
0 (Ω) ∩ L4(Ω)] \ {0}.

(ii) If b⃗ satisfies (b2), then

(3.9) λ ≤ ∥D1∥L∞(R)

∫
Ω
a(x)|∇ξ|2∫

Ω
ξ2

.

Proof. Let u ∈ H1
0 (Ω) \ {0} be a weak non-negative solution of (1.1) and ψ ∈

H1
0 (Ω) ∩ L4(Ω). Given ϵ > 0, we can use ψ2/(u+ ϵ) ∈ H1

0 (Ω) as a test function to
get

(3.10)

λ

∫
Ω

u

u+ ϵ
ψ2 =

∫
Ω

D2(u)

u+ ϵ
ψ2 [⃗b(x) · ∇u]

−
∫
Ω

a(x)D1(u)∇u ·
[

ψ2

(u+ ϵ)2
∇u− 2ψ

u+ ϵ
∇ψ

]
.

Let fϵ : R+ → R+ be the C1-function given by

fϵ(s) :=

∫ s

0

D2(t)

t+ ϵ
dt, s ∈ R+.
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Integrating by parts we find that∫
Ω

D2(u)

u+ ϵ
ψ2 [⃗b(x) · ∇u] =

∫
Ω

ψ2 [⃗b(x) · ∇(fϵ(u))]

=

∫
∂Ω

fϵ(u)ψ
2 [⃗b(x) · ν⃗(x)]dσ −

∫
Ω

fϵ(u)div(ψ
2⃗b(x))

= −
∫
Ω

fϵ(u)div(ψ
2⃗b(x)),

Thus, returning to equation (3.10), it becomes aparent that

λ

∫
Ω

u

u+ ϵ
ψ2 = −

∫
Ω

a(x)D1(u)∇u ·
[

ψ2

(u+ ϵ)2
∇u− 2ψ

u+ ϵ
∇ψ

]
−

∫
Ω

fϵ(u)div(ψ
2⃗b(x))

= −
∫
Ω

a(x)D1(u)

∣∣∣∣∇ψ − ψ

u+ ϵ
∇u

∣∣∣∣2 + ∫
Ω

a(x)D1(u)|∇ψ|2 −
∫
Ω

fϵ(u)div(ψ
2⃗b(x))

≤ ∥D1∥L∞(R)

∫
Ω

a(x)|∇ψ|2 +
∫
Ω

|fϵ(u)div(ψ2⃗b(x))|.

Letting ϵ→ 0+ and using Lebesgue Theorem we obtain

λ

∫
Ω

ψ2 ≤ ∥D1∥L∞(R)

∫
Ω

a(x)|∇ψ|2 +
∫
Ω

|f(u)div(ψ2⃗b(x))|.

The above inequality combined with the hypothesis implies the result. □

Remark 3.5. If div(⃗b(x)) = 0 for all x ∈ Ω and, for some nonzero function

ψ ∈ H1
0 (Ω) ∩ L4(Ω), we have that [⃗b · ∇ψ] = 0 a.e. in Ω, then div(ψ2⃗b(x)) = 0

a.e. in Ω and therefore (b2) holds. This condition on the inner product means that

ψ is the first integral of the vector field b⃗. It appears in several problems involving
large advection. For instance, in [4, Th. 0.3], the existence of a first integral is
a necessary and sufficient condition for determining the asymptotic behavior of an
eigenvalue problem. See also [1, 5].

We are able to prove our second main theorem concerning of existence of
solutions.

Proof of Theorem 1.4. First, we notice that Theorem 1.3 provides the existence of
the continua C0 and C∞, bifurcating from the origin at σ0

1D1(0) and from infinity
at σ∞

1 D1(∞), respectively. Moreover, by Theorem 3.1 and Proposition 3.3, these
are the only bifurcation points for positive solutions of (1.1). Furthermore, by
the Strong Maximum Principle, (1.1) does not possess positive solution for λ = 0.
Thus,

ProjRC0,ProjRC∞ ⊂ (0,∞).

If C0 = C∞, then (λ, λ) ⊂ ProjRC0, which implies the result.
Now suppose that C0 ̸= C∞. Since C0 is unbounded and σ∞

1 D1(∞) is the unique
bifurcation point from infinity, it follows that (σ0

1D1(0),∞) ⊂ ProjRC0. In a similar
way, we have that (σ∞

1 D(∞),∞) ⊂ ProjRC∞. Consequently, the result follows.
Finally, if we assume (b2) or (d3), we can apply Proposition 3.4 to conclude that

problem (1.1) does not admit a positive solution for large λ > 0 and therefore the
first coordinates of C0 and C∞ are bounded. It follows from the global nature of
these continua that C0 = C∞.

□



16 J. CARMONA, W. CINTRA, M. FURTADO, AND R. F. OLIVEIRA

Figure 1 illustrates the admissible bifurcation diagrams provided by Theorem
1.4. In part (a), we show a possible configuration when C0 ̸= C∞, and in part
(b), a possibility when they are equal. For simplicity, we write λ0 = σ0

1D1(0) and
λ∞ = σ∞

1 D1(∞)

λ0λ∞
λ

∥ · ∥C1
0 (Ω)

(a)

C0

λ0λ∞
λ

∥ · ∥C1
0 (Ω)

C∞

(b)

C0 = C∞

Figure 1. Possible bifurcation diagrams.

4. Bifurcation direction and multiplicity results

In this section, we study the bifurcation direction of positive solutions from
both the origin and infinity. This analysis will allow us to obtain results on the
multiplicity of positive solutions in certain cases.

In what follows we will analyze the bifurcation direction from the trivial solution.

Theorem 4.1. Suppose that D1 ∈ C2(R+), D2 ∈ C1(R+) and D1(0) > 0. Then
(σ0

1D1(0), 0) is a bifurcation point of (1.1) from the curve of trivial solutions (λ, 0).
Moreover, if we denote by φ∗

0 a principal positive eigenfunction of the adjoint
operator L∗

0, this bifurcation point is subcritical if

(4.1) I := D′
1(0)

∫
Ω

a(x)φ0 [∇φ0 · ∇φ∗
0] +D′

2(0)

∫
Ω

φ0φ
∗
0

[⃗
b(x) · ∇φ0

]
< 0,

and supercritical if I > 0.

Proof. Let F : R× C2
0 (Ω) → C(Ω) be given by

F (λ, u) := −div(a(x)D1(u)∇u)−D2(u)[⃗b(x) · ∇u]− λu.

It is clear that F is of class C1 and the solutions of F (λ, u) = 0 are solutions of
(1.1). Moreover, by a direct calculation,

L(λ) := DuF (λ, 0) = D1(0)L0 − λI.

Since σ0
1 is a simple eigenvalue of L0, we have that

ker
[
L(σ0

1D1(0))
]
= span{φ0}.

On the other hand, by classical elliptic results (see, for instance, [?, Ch. 6]) it follows
that D1(0)L0 +M : C2

0 (Ω) → C(Ω) is an isomorphism, for M > 0 large enough.
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Moreover, by compact embeddings, we have that (σ0
1D1(0) + M)I : C2

0 (Ω) →
C(Ω) is a compact operator. Consequently, by [?, Th. 5.26], we conclude that
L(σ0

1D1(0)) = D1(0)L0 +MI − (σ0
1D1(0) +M)I is a Fredholm operator of index

zero. In particular, we have codimRg
[
L(σ0

1D1(0))
]
= dimker

[
L(σ0

1D1(0))
]
= 1.

We claim that

(4.2) L′(σ0
1D1(0))φ0 /∈ R[L(σ0

1D1(0))],

where L′ := DλL. Indeed, if this is not the case, we may use L′(σ0
1D1(0)) = −I to

obtain ξ ∈ C2
0 (Ω) such that

−φ0 = L(σ0
1D1(0))ξ = D1(0)

[
L0ξ − σ0

1ξ
]
.

Multiplying this equality by φ∗
0 and integrating over Ω, we obtain

0 >

∫
Ω

−φ0φ
∗
0 = D1(0)

∫
Ω

[
L0ξ − σ0

1ξ
]
φ∗
0

= D1(0)

∫
Ω

[
L∗
0φ

∗
0 − σ0

1φ
∗
0

]
ξ = 0,

which is a contradiction. This proves (4.2).
By using the Crandall-Rabinowitz Theorem [12, Theorem 1.7] we conclude that

(σ0
1D1(0), 0) is a bifurcation point of F (λ, u) = 0 from the curve of trivial solutions.

Moreover, if we denote by Z the topological complement of ker
[
L(σ0

1D1(0))
]
in

C2
0 (Ω), there exist ϵ > 0 and continuous functions

λ : (−ϵ, ϵ) → R, ψ : (−ϵ, ϵ) → Z

such that λ(0) = 0, ψ(0) = 0 and the non-trivial solutions of F (λ, u) = 0 in a
neighborhood of (σ0

1D1(0), 0) are given by

(µ(s), u(s)) :=
(
σ0
1D1(0) + λ(s), s(φ0 + ψ(s))

)
s ∈ (−ϵ, ϵ), s ̸= 0.

Since φ0 ∈ int(P), then u(s) ∈ int(P) for s > 0 small enough, where P stands
for the positive cone of C1

0 (Ω). This implies that the unique positive solutions in
a neighborhood (σ0

1D1(0), 0) are given by (µ(s), u(s)), for s > 0 small. Once that
F (µ(s), u(s)) = 0, we can take φ∗

0 as test function to get

(4.3)

∫
Ω

[
σ0
1D1(0) + λ(s)

]
u(s)φ∗

0 =

∫
Ω

a(x)D1(u(s))[∇u(s) · ∇φ∗
0]

+

∫
Ω

D2(u(s))[⃗b(x) · ∇u(s)]φ∗
0.

Moreover,

D1(0)

∫
Ω

φ∗
0L0u(s) = D1(0)

∫
Ω

u(s)L∗
0φ

∗
0 = σ0

1D1(0)

∫
Ω

u(s)φ∗
0,

that is,

(4.4) D1(0)

∫
Ω

a(x)[∇u(s) ·∇φ∗
0]+D2(0)

∫
Ω

[⃗b(x) ·∇u(s)]φ∗
0 = σ0

1D1(0)

∫
Ω

u(s)φ∗
0.

On the other hand, Taylor’s expansion yields, for each i = 1, 2,

Di(u(s)) = Di(0) + sD′
i(0)u

′(0) + o(s) = Di(0) + sD′
i(0)φ0 + o(s),

as s → 0. Replacing the above equation in (4.3), using (4.4) and recalling that
u(s)/s = (φ0 + ψ(s)), we get
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λ(s)

s

∫
Ω

(φ0 + ψ(s))φ∗
0 =

∫
Ω

a(x)

(
D′

1(0)φ0 +
o(s)

s

)
[∇φ∗

0 · ∇ (φ0 + ψ(s))]

+

∫
Ω

(
D′

2(0)φ0 +
o(s)

s

)
[⃗b(x) · ∇ (φ0 + ψ(s))]φ∗

0

Letting s → 0+, we obtain λ′+(0)
∫
Ω
φ0φ

∗
0 = I, that is, the sign of λ′+(0) is given

by the sign of I. This finishes the proof. □

As a consequence of this theorem, it is possible to show that the bifurcation
direction of positive solutions from (λ, 0) is determined by the sign of D′

1(0),

assuming an appropriate hypothesis on b⃗. Specifically, we have the following result:

Theorem 4.2. Suppose that D1 ∈ C2(R+), D2 ∈ C1(R+), D1(0) > 0 and define

L′
0 := −div(a(x)D1(0)∇·).

Suppose that b⃗ ∈ C1(Ω;RN ) satisfies div(⃗b(x)) = 0 and b⃗(x) · ∇z0 = 0 a.e. in
Ω, where z0 > 0 is the principal eigenfunction associated with σΩ

1 [L
′
0]. Then the

bifurcation of positive solutions from (σ0
1D1(0), 0) is subcritical if D′

1(0) < 0, and
supercritical if D′

1(0) > 0.

Proof. Denote by simplicity λ′ = σΩ
1 [L

′
0]. Since b⃗(x) · ∇z0 = 0 for a.e. x ∈ Ω, then

L0z0 =
λ′

D1(0)
z0 in Ω, z0 = 0 on ∂Ω.

From z0 > 0, we conclude that λ′ = σ0
1D1(0) and z0 = φ0, where φ0 is a positive

eigenfunction associated with σ0
1 . Furthermore, since b⃗ is divergence-free vector

field, L0 is a self-adjoint elliptic operator. In particular, φ∗
0 = φ0 and we can use

Divergence Theorem to get

3

∫
Ω

φ0φ
∗
0

[⃗
b(x) · ∇φ0

]
=

∫
Ω

b⃗(x) · ∇(φ3
0)

= −
∫
Ω

div(⃗b(x))φ3
0 +

∫
∂Ω

φ3
0

[⃗
b(x) · η

]
dσx = 0.

Thus,

I = D′
1(0)

∫
Ω

a(x)φ0 [∇φ0 · ∇φ∗
0] = D′

1(0)

∫
Ω

a(x)φ0|∇φ0|2

has the same sign of D′
1(0). □

The same kind of result can be obtained when we are concerned with bifurcation
from infinity, as we can see from:

Theorem 4.3. Suppose that D1(0) > 0, Di(∞) ∈ (0,+∞), for i = 1, 2, and define

L′
∞ := −div(a(x)D1(∞)∇·).

Suppose that b⃗ ∈ C1(Ω;RN ) satisfies div(⃗b(x)) = 0 and b⃗(x) · ∇z∞(x) = 0 a.e. in
Ω, where z∞ > 0 is a principal eigenfunction associated with σΩ

1 [L
′
∞]. Then the

bifurcation of positive solutions from infinity in λ = σ∞
1 D1(∞) is

(i) subcritical, if D1(s) ≤ D1(∞) for every s > 0.

(ii) supercritical, if D1(s) > D1(∞) for every s > 0.
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Proof. Arguing as in the proof of Theorem 4.2 we obtainL∞z∞ =
σΩ
1 [L

′
∞]

D1(∞)
z∞ in Ω,

z∞ = 0 on ∂Ω,

and therefore σΩ
1 [L

′
∞] = σ∞

1 D1(∞) and z∞ = φ∞. So, it follows from Proposition
3.4 and Remark 3.5 that, if (λ, u) ∈ R×H1

0 (Ω) is a positive weak solution of (1.1),
then

0 < λ ≤ ∥D1∥L∞(R)

∫
Ω
a(x)|∇φ∞|2∫

Ω
φ2
∞

= ∥D1∥L∞(R)σ
∞
1 .

If D1(s) ≤ D1(∞) < +∞, then ∥D1∥L∞(R) ≤ D1(∞), and hence

λ ≤ σ∞
1 D1(∞),

which implies that the bifurcation at infinity of positive solutions is subcritical.
This proves item (i).

To prove (ii), we proceed by contradiction. Suppose that D1(s) > D1(∞) for
every s > 0 and assume that exists a sequence (λn, un) of classical solutions of (1.1)
such that

(λn, ∥un∥C1
0 (Ω)) → (σ∞

1 D1(∞),+∞)

and λn ≤ σ∞
1 D1(∞), for any n ∈ N. Since φ∞ ∈ int(P), we can take u2n/φ∞ as

the test function in the equation satisfied by φ∞ to get

(4.5)

∫
Ω

a(x)D1(∞)∇φ∞ ·
[
2un
φ∞

∇un − u2n
φ2
∞
∇φ∞

]
= σ∞

1 D1(∞)

∫
Ω

u2n,

where we have used b⃗(x) · φ∞ = 0. Since (λn, un) verifies (1.1), we may pick un as
test function in that equation and use λn ≤ σ∞

1 D1(∞) to obtain

(4.6)

∫
Ω

a(x)D1(un)|∇un|2 +
∫
Ω

D2(un)[⃗b(x) · ∇un]un ≤ σ∞
1 D1(∞)

∫
Ω

u2n.

Setting f(s) :=
∫ s

0
D2(t)tdt, using div(⃗b(x)) = 0 in Ω and integrating by parts, we

obtain∫
Ω

D2(un)[⃗b(x) · ∇un]un =

∫
∂Ω

f(un)[⃗b(x) · ν⃗(x)]dσx −
∫
Ω

f(un)div(⃗b(x)) = 0.

Thus, it follows from (4.5) and (4.6) that∫
Ω

a(x)D1(∞)∇φ∞ ·
[
2un
φ∞

∇un − u2n
φ2
∞
∇φ∞

]
≥

∫
Ω

a(x)D1(un)|∇un|2.

Hence, we may use D1(s) > D1(∞) to get

0 <

∫
Ω

a(x)|∇un|2[D1(un)−D1(∞)]

≤ −
∫
Ω

a(x)D1(∞)

∣∣∣∣∇un − un
φ∞

∇φ∞

∣∣∣∣2 ≤ 0

which is a contradiction. □

Finally, we can combine Theorem 4.1 and 4.3 to establish a multiplicity result
for some cases.
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Theorem 4.4. Suppose that all conditions of Theorems 4.1 and 4.3 hold and let I
be the real number given by (4.1).

(i) If σ0
1D1(0) > σ∞

1 D1(∞), I > 0, and D1(s) > D1(∞) for every s > 0, then
there exists λ∗ > σ0

1D1(0) such that problem (1.1) has at least two positive
classical solutions for any λ ∈ (σ0

1D1(0), λ
∗).

(ii) If σ0
1D1(0) < σ∞

1 D1(∞), I < 0, and D1(s) < D1(∞) for every s > 0,
then there exists 0 < λ∗ < σ0

1D1(0) such that problem (1.1) has at least two
positive classical solutions for any λ ∈ (λ∗, σ0

1D1(0)).

Proof. We consider first item (i). Since I > 0 and D1(s) > D1(∞) for every
s > 0, by Theorems 4.1 and 4.3, we have that both bifurcations (at the origin
and at infinity) are supercritical. Thus, using that σ0

1D1(0) > σ∞
1 D1(∞), we

obtain λ∗ > σ0
1D1(0) such that (1.1) has two positive classical solutions for each

λ ∈ (σ0
1D1(0), λ

∗). The proof of part (ii) is analogous. □

In Figure 2, we illustrate the possible behaviors of the continuum C0 = C∞ under
the hypotheses of Theorem 4.4 (i) and (ii). For simplicity, we denote λ0 = σ0

1D1(0)
and λ∞ = σ∞

1 D1(∞).

Remark 4.5. Note that all the hypotheses of Theorem 4.4 are satisfied if the
following conditions occur: assume D1(s) = D2(s) = D(s). In this case, h ≡ 1

and σ0
1 = σ∞

1 . Moreover, suppose that div(⃗b(x)) = 0 and that b⃗ · ∇φa = 0
a.e. in Ω, where φa > 0 stands for the principal eigenfunction of the operator
−div(a(x)∇·). Thus, if D(s) > D(∞) > 0 for every s > 0 and D′(0) > 0, we
can apply item (i) to obtain two solutions for λ in a specific range. The function

D(s) := e−(s−1)2e−(s−1) + 1, s ≥ 0, satisfies all the above conditions. Similarly, if
0 < D(s) < D(∞) for every s ≥ 0 and D′(0) < 0, all the conditions stated in item
(ii) holds.

λ∞ λ0 λ∗
λ

(a)

∥ · ∥C1
0 (Ω)

λ∗ λ0 λ∞
λ

∥ · ∥C1
0 (Ω)

(b)

C0 = C∞C0 = C∞

Figure 2. Possible bifurcation diagrams.

Remark 4.6. Two interesting questions remain open:

(i) To complement the description of positive solutions of (1.1) when h(∞) =
∞, without hypothesis (b1);
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(ii) Obtaining results regarding the existence or non-existence of positive
solutions to (1.1) for large λ without assuming hypotheses (b2) or (d3).
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