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Abstract

We study a nonlinear Schrödinger equation in presence of a magnetic

field and relate the number of solutions with the topology of the set where

the potential attains its minimum value. In the proofs we apply variational

methods, penalization techniques and Ljusternik-Schnirelmann theory.

1 Introduction

In this paper we are concerned with the nonlinear Schrödinger equation

ih
∂ψ

∂t
=

(
h

i
∇−A(z)

)2

ψ + U(z)ψ − f(|ψ|2)ψ, z ∈ R
N ,

where t ∈ R, N ≥ 2, the function ψ takes values in C, h is the Planck constant
and i is the imaginary unit. The function A : RN → RN denotes a magnetic
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potential and the Schrödinger operator is defined by

(
h

i
∇−A(z)

)2

ψ := −h2∆ψ −
2h

i
A · ∇ψ + |A|2ψ −

h

i
ψ divA.

In the 3-dimensional case the magnetic field B is exactly the curl of A, while
for higher dimensions N ≥ 4, it is the 2-form given by Bi,j = ∂jAk − ∂kAj .
The function U(x) is a real electric potential and the nonlinear term f(t) is a
superlinear function.

We are particularly interested in the existence of solitary waves of the form
ψ(x, t) := e−iEh tu(x), with E ∈ R. It is important to investigate the existence
and the shape of such solutions in the semiclassical limit, namely, as h → 0.
The importance of this study relies on the fact that the transition to Quantum
Mechanics to Classical Mechanics can be formally performed by sending the
Planck constant to zero. If we put the solitary wave expression of ψ in the
above equation, we are lead to look for solutions of the following problem





(ε
i
∇−A(z)

)2
u+ V (z)u = f(|u|2)u, z ∈ RN ,

u ∈ H1(RN ,C)

(Pε)

where V (z) = U(z)− E and we replaced h by ε.
There is a vast literature concerning the existence and multiplicity of bound

state solutions for (Pε) with no magnetic vector potential, namely A ≡ 0. Since
the seminal paper of Floer and Weinstein [15], many authors have applied differ-
ent techniques to obtain existence of solutions in this case (see [21, 23, 13, 3, 24]
and references there in). In the most of these papers the authors also have
studied the asymptotic behavior of the solutions as ε → 0. Roughly speaking,
these solutions concentrate around critical points of the potential V . There are
also some papers relating the topology of the set of critical points of V with the
number of solutions of the problem (see [9, 20, 2] for example).

If we now consider the magnetic case, it appears that the first result was
obtained by Esteban and Lions [14]. In this paper the authors have used the
concentration-compactness principle and minimization arguments to obtain so-
lution for ε > 0 fixed and N = 2 and 3. More recently, Kurata [17] have proved
that the problem has a least energy solution for any ε > 0 when a technical con-
dition relating V (x) and A(x) is assumed. Under this technical condition, he
have proved that the associated functional satisfies the Palais-Smale compact-
ness condition at any level. We also would like to cite the papers [10, 11, 5, 22, 8]
for other results related with the problem (Pε).

The main motivation of our paper becomes from the aforementioned works,
the paper of Cingolani [6], Cingolani and Secchi [12] and the recent work of
Cingolani and Clapp [7]. In [6, 7] the authors have used Ljusternik-Schnirelmann
theory to obtain multiple solutions for (Pε). However, the conditions used in
[6, 7] are in some sense related with a global condition introduced by Rabinowitz
in [21], namely

0 < inf
z∈RN

V (z) < lim inf
|z|→∞

V (z).
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In [12], the authors have worked with local conditions on V . More precisely,
they have supposed that there are bounded sets Ω1, . . . ,Ωk ⊂ RN which are
mutually disjoint and such that

inf
Ωj

V (z) < inf
∂Ωj

V (z), j = 1, . . . , k.

By adapting some arguments found in [13], they have obtained the existence of
solution with k peaks for ε > 0 small enough.

The aim of this paper is to complement the studies made in [6, 7, 12].
We shall obtain multiple solution for the problem (Pε) by combining a local
assumption on V as above, the penalization scheme of del Pino and Felmer [13]
and the Ljusternik-Schnirelmann theory. It is worthwhile to mention that, in the
arguments developed in [13], one of the key points is the existence of estimates
involving the L∞-norm of the solutions of a modified problem. As pointed out
in [12], this kind of estimates are more delicated in the magnetic case because
A can be unbounded and there is no relation between the natural space to
deal with (Pε) and the limit space H1(RN ,C) as ε → 0. These problems are
overcame in [12] by the use of diamagnetic (see Section 2) and Kato’s inequalities
for magnetic fields. Here, we obtain the desired L∞ estimates by a different
approach, which is based on Moser’s iteration method (see [19]) instead of Kato’s
inequality. As far as we know, this is the first time that local Mountain Pass
and topological arguments are combined to get multiple solutions for (Pε). We
believe that the ideas contained here can be applied in other situations to deal
with local conditions on the potential V .

Before stating our main result, we need to present the hypotheses on the
potential V and the nonlinearity f . We shall assume that

(V1) V0 := infz∈RN V (z) > 0,

(V2) there exists an open bounded set Ω ⊂ RN such that

V0 < min
z∈∂Ω

V (z)

and M := {z ∈ Ω : V (z) = V0} 6= ∅.

We also suppose that f ∈ C1(R,R) satisfies

(f1) f(s) = 0 for each s ≤ 0;

(f2) lims→0+ f(s) = 0;

(f3) there exists q ∈ (2, 2∗) such that

lim
s→∞

f(s)

s(q−2)/2
= 0,

where 2∗ := 2N/(N − 2) if N ≥ 3, and 2∗ := ∞ if N = 2;
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(f4) there exists θ > 2 such that

0 <
θ

2
F (s) ≤ sf(s), for each s > 0,

where F (s) :=
∫ s

0
f(τ)dτ ;

(f5) there exist σ ∈ (2, 2∗) and Cσ > 0 such that

f ′(s) ≥ Cσs
(σ−4)/2, for each s > 0.

We shall establish a relation between the number of solutions of (Pε) and the
topology of the setM . In order to make a precise statement let us recall that, for
any closed subset Y of a topological space X , the Ljusternik-Schnirelmann cate-
gory of Y in X , catX(Y ), stands for the least number of closed and contractible
sets in X which cover Y .

We present below the main result of this paper.

Theorem 1.1. Suppose that V satisfies (V1)− (V2) and f satisfies (f1)− (f5).
Then, for any δ > 0 such that

Mδ := {z ∈ R
N : dist(z,M) < δ} ⊂ Ω,

there exists εδ > 0 such that, for any ε ∈ (0, εδ), the problem (Pε) has at
least catMδ

(M) nonzero solutions. Moreover, if εn → 0+, uεn is one of these
solutions and ηεn ∈ RN is a global maximum point of |uεn |, we have that

lim
εn→0+

V (ηεn) = V0.

The proof will be done by variational techniques. Since we have no informa-
tion on the behavior of the potential V at the infinity we adapt the argument
introduced by del Pino and Felmer in [13]. It consists in making a suitable
modification on f , solving a modified problem and then check that, for ε small
enough, the solutions of the new problem are indeed solutions of the original
one. In order to obtain multiple solutions for the modified problem, we use a
technique introduced by Benci and Cerami in [4]. The main idea is to make
precise comparisons between the category of some sublevel sets of the modified
functional and the category of the set M .

The paper is organized as follows. In the next section we present the varia-
tional setting of the problem and we apply the penalization technique to obtain
compactness for the modified problem. In Section 3 we prove a version of The-
orem 1.1 for the modified problem. In the final Section 4 we prove our main
theorem.

2 Variational Framework

In this section we fix some notations and present the variational setting of our
problem. Throughout the paper we write only

∫
u instead of

∫
RN u(z) dz. For

any B ⊂ RN we denote by Bc := RN \B the complement of B.
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By the change of variables z 7→ εx we can see that (Pε) is equivalent to





(
1

i
∇−Aε(x)

)2

u+ Vε(x)u = f(|u|2)u, x ∈ RN ,

u ∈ H1(RN ,C),

(Dε)

with Aε(x) := A(εx) and Vε(x) := V (εx). We denote by Hε = Hε(R
N ,C) the

Hilbert space obtained by the closure of C∞
0 (RN ,C) under the scalar product

〈u, v〉ε := Re

(∫
∇εu∇εv + Vε(x)uv

)
,

where Re(w) denotes the real part of w ∈ C, w is its conjugated, ∇εu :=
(Dε

1u,D
ε
2u, ..., D

ε
Nu) and Dε

j := i−1∂j − Aj(εx), for j = 1, . . . , N . The norm
induced by this inner product is given by

‖u‖ε =

(∫
|∇εu|

2 + Vε(x)|u|
2

)1/2

.

As proved by Esteban and Lions in [14, Section II], for any u ∈ Hε there
holds

|∇|u|(x)| =

∣∣∣∣Re
(
∇u

u

|u|

)∣∣∣∣ =
∣∣∣∣Re
(
(∇u − iAεu)

u

|u|

)∣∣∣∣ ≤ |∇εu(x)|. (2.1)

The above expression is the so called diamagnetic inequality. It follows from it
that, if u ∈ Hε, then |u| ∈ H1(RN ,R). Moreover, the embedding
Hε →֒ Lq(RN ,R) is continuous for each 2 ≤ q ≤ 2∗ and, for each bounded
set Λ ⊂ RN and 2 ≤ q < 2∗, the embedding below is compact

Hε →֒ Lq(Λ,R). (2.2)

We say that a function u ∈ Hε is a weak solution of the problem (Pε) if

Re

(∫
∇εu∇εv + Vε(x)uv − f(|u|2)uv

)
= 0, for each v ∈ Hε.

In view of (f2) and (f3) we have that the associated functional Iε : Hε → R

given by

Iε(u) :=
1

2

∫
|∇εu|

2 +
1

2

∫
Vε(x)|u|

2 −
1

2

∫
F (|u|2)

is well defined. Moreover, Iε ∈ C1(Hε,R) with the following derivative

I ′ε(u)v = Re

(∫
∇εu∇εv + Vε(x)uv − f(|u|2)uv

)
.

Hence, the weak solutions of (Dε) are precisely the critical points of Iε.
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Since we are intending to apply critical point theory for the functional Iε, we
need to obtain some compactness property. However, since RN is unbounded,
we know that the usual Sobolev embeddings are not compact, and so Iε can
not verify the Palais-Smale condition. In order to overcome this problem we
make a slightly adaptation of the penalization method introduced by Del Pino
and Felmer in [13]( see also [2]). We choose k > θ/(θ − 2), where θ is given by
(f4), and take a > 0 to be the unique number such that f(a)/a = V0/k, with
V0 given by (V1). We set

f̂(s) :=





f(s), if s ≤ a,

V0
k
, if s > a.

Let 0 < ta < a < Ta and consider ϑ ∈ C∞
0 (R,R) such that

(ϑ1) ϑ(s) ≤ f̂(s) for all s ∈ [ta, Ta],

(ϑ2) ϑ(ta) = f̂(ta), ϑ(Ta) = f̂(Ta), ϑ
′(ta) = f̂ ′(ta) and ϑ

′(Ta) = f̂ ′(Ta),

(ϑ3) the map s 7→ ϑ(s) is increasing for all s ∈ [ta, Ta].

By using the above functions we can define f̃ ∈ C1(R,R) as follows

f̃(s) :=

{
f̂(s), if s 6∈ [ta, Ta],

ϑ(s), if s ∈ [ta, Ta].

If χΩ denotes the characteristic function of the set Ω, we introduce the penalized
nonlinearity g : RN × R → R by setting

g(x, s) := χΩ(x)f(s) + (1 − χΩ(x))f̃ (s). (2.3)

Now, we shall consider the modified problem





(
1

i
∇−Aε(x)

)2

u+ Vε(x)u = gε(x, |u|
2)u, x ∈ R

N ,

u ∈ Hε,

(D̃ε)a

where gε(x, u) := g(εx, u). Notice that, if

Ωε := {x ∈ R
N : εx ∈ Ω}

and u is a solution of the above problem such that |uε(x)| ≤ ta in Ωc
ε then, in

view of the definition of g, there holds g(εx, |u|2)u = f(|u|2)u for each x ∈ RN .
Thus, the function u is also a solution of the original problem (Dε).

In view of the above comment, we deal in the sequel with the modified
problem (D̃ε)a . We start the by noticing that, in view of (f1) − (f5) and
(ϑ1)− (ϑ3), we can check that g(x, s) is a Carathéodory function satisfying the
following properties uniformly in x ∈ RN :
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(g1) g(x, s) = 0 for each s ≤ 0;

(g2) lims→0+ g(x, s) = 0;

(g3) lims→∞
g(x, s)

s(q−2)/2
= 0;

(g4) (i) 0 ≤
θ

2
G(x, s) < g(x, s)s, for each x ∈ Ω, s > 0,

(ii) 0 ≤ G(x, s) ≤
V (x)

k
s and 0 ≤ g(x, s) ≤

V (x)

k
, for each x ∈ Ωc, s > 0;

(g5) the function s 7→ g(x, s) is increasing in (0,∞).

Let G(x, s) :=
∫ τ

0 g(x, τ) dτ and Gε(x, s) := G(εx, s). By (g2) and (g3), the

functional associated to (D̃ε)a, namely

Jε(u) :=
1

2

∫
|∇εu|

2 +
1

2

∫
Vε(x)|u|

2 −
1

2

∫
Gε(x, |u|

2), u ∈ Hε

belongs to C1(Hε,R). Moreover, its critical points are the weak solutions of the

modified problem (D̃ε)a.
The main feature of the modified functional is that it satisfies the Palais-

Smale condition, as we can see from the next result.

Lemma 2.1. The functional Jε satisfies the (PS)d condition for any level d ∈ R.

Proof. We shall adapt the arguments presented in [13, Lemma 1.1]. Suppose
that (un) ⊂ Hε is a (PS)d sequence for Jε, that is, Jε(un) → d and J ′

ε(un) → 0.
We first prove that (un) is bounded in Hε. Indeed, by using (g4) we obtain

d+ on(1)‖un‖ε ≥ Jε(un)−
1

θ
J ′
ε(un)un

≥

(
1

2
−

1

θ

)
‖un‖

2
ε +

1

θ

∫

Ωc
ε

gε(x, |un|
2)|un|

2

−
1

2

∫

Ωc
ε

Gε(x, |un|
2)

≥
1

2

(
θ − 2

θ
−

1

k

)
‖un‖

2
ε,

where on(1) denotes a quantity approaching zero as n→ ∞. Since k > θ/(θ−2)
we conclude from the above inequality that (un) is bounded in Hε.

Claim. for any given ζ > 0 there exists R = R(ζ) > 0 such that Ωε ⊂ BR(0)
and

lim sup
n→∞

∫

BR(0)c
(|∇εun|

2 + Vε(x)|un|
2) ≤ ζ.

Assuming the claim we can conclude the proof as follows. By going to a
subsequence if necessary, we may suppose that un ⇀ u weakly in Hε. The local
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compactness given in (2.2) and the subcritical growth of g imply that J ′
ε(u) = 0,

and therefore

‖u‖2ε =

∫
gε(x, |u|

2)|u|2.

Since J ′
ε(un)un → 0, we also have that

‖un‖
2
ε =

∫
gε(x, |un|

2)|un|
2 + on(1).

By using the claim, the subcritical growth of g and the local compactness men-
tioned in (2.2), we can check that

lim
n→∞

∫
gε(x, |un|

2)|un|
2 =

∫
gε(x, |u|

2)|u|2.

All together, the above informations imply that ‖un‖ε → ‖u‖ε, and so un → u
in Hε.

In order to check the claim we consider ηR ∈ C∞(RN ,R) such that 0 ≤
ηR ≤ 1, ηR ≡ 0 in BR/2(0), ηR ≡ 1 in BR(0)

c and |∇ηR| ≤ C/R, where C > 0
is a constant independent of R. Since the sequence (ηRun) is bounded in Hε,
we have that J ′

ε(un)(ηRun) = on(1), that is,

Re

(∫
∇εun∇ε(unηR)

)
+

∫
Vε(x)|un|

2ηR =

∫
gε(x, |un|

2)|un|
2ηR + on(1).

Since ηR take values in R, a direct calculation shows that

∇ε(unηR) = iun∇ηR + ηR∇εun.

The two above equalities and (g4)(ii) imply that

∫ (
|∇εun|

2 + Vε(x)|un|
2
)
ηR ≤

1

k

∫
Vε(x)|un|

2ηR

+Re

(∫
−iun∇εun∇ηR

)
+ on(1).

By using the definition of ηR, Hölder’s inequality and the boundedness of (un)
we obtain
(
1−

1

k

)∫

BR(0)c

(
|∇εun|

2 + Vε(x)|un|
2
)

≤
C

R
‖un‖L2‖∇εun‖L2 + on(1)

≤
C1

R
+ on(1).

So, for any fixed ζ > 0, we can choose R > 0 large enough in such way that
Ωε ⊂ BR(0) and

lim sup
n→∞

∫

BR(0)c
(|∇εu|

2 + Vε(x)|un|
2) ≤ ζ.
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This finishes the proof.

Since we are looking for multiple critical points of the functional Jε, we shall
consider it constrained to an appropriated subset of Hε. More specifically, let
us denote by Nε the Nehari manifold of Jε, namely

Nε := {u ∈ Hε \ {0} : J ′
ε(u)u = 0} .

By using the growth conditions of g we can show that there exists r > 0, which
is independent of ε > 0, such that

‖u‖ε ≥ r > 0, for each u ∈ Nε. (2.4)

We state and prove below the main result of this section.

Proposition 2.2. The functional Jε restricted to Nε satisfies the (PS)d condi-
tion for any level d ∈ R.

Proof. Let (un) ⊂ Nε be a (PS)d sequence of Jε restricted to Nε. Then there
exists (λn) ⊂ R such that

J ′
ε(un) = λnφ

′
ε(un) + on(1), (2.5)

where φε : Hε → R is given by

φε(u) := J ′
ε(u)u =

∫ (
|∇εu|

2 + Vε(x)|u|
2 − gε(x, |u|

2)|u|2
)
.

For any fixed u ∈ Nε, since g(εx, |u|2) is constant on Ωc
ε ∩ {|u|2 > Ta}, we

can use the definition of g and the monotonicity of ϑ to get

φ′ε(u)u = 2‖u‖2ε − 2

∫
gε(x, |u|

2)|u|2 − 2

∫
g′ε(x, |u|

2)|u|4

= −2

∫
g′ε(x, |u|

2)|u|4 ≤

∫

Ωε∪{|u|2<ta}

f ′(|u|2)|u|4.

It follows from (f5) that

φ′ε(un)un ≤ −2Cσ

∫

Ωε∪{|un|2<ta}

|un|
σ ≤ −2Cσ

∫

Ωε

|un|
σ, (2.6)

with σ ∈ (2, 2∗).
By the boundedness of (un) we may assume that φ′ε(un)un → l ≤ 0. If l 6= 0

we infer from (2.5) that λn = on(1). In this case, we can use (2.5) again to
conclude that (un) is a (PS)d sequence for the unconstrained functional. So, we
can apply Proposition 2.1 to obtain a convergent subsequence.

It remains to prove that l 6= 0. Suppose, by contradiction, that l = 0. It
follows from (2.6) that un → 0 in Lσ(Ωε). Hence, we can use J ′

ε(un)un = 0, the
subcritical growth of g and (g4)(ii) to conclude that

‖un‖
2
ε =

∫

Ωc
ε

gε(x, |un|
2)|un|

2 + on(1) ≤
1

k

∫

Ωc
ε

Vε(x)|un|
2 + on(1).
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The above expression implies that ‖un‖2ε → 0, which leads to a contradiction
with (2.4). This contradiction concludes the proof.

3 Multiple solutions for the modified problem

Ini this section we shall prove a multiplicity result for the problem (D̃ε)a. Along
all the section we will assume that δ > 0 is small in such way that Mδ ⊂ Ω.

We start by considering the limiting problem associated to (Dε), namely the
scalar problem {

−∆w + V0w = f(w2)w, in R
N ,

w ∈ H1(RN ,R)
(A0)

which has the following associated functional

E0(w) :=
1

2

∫
|∇w|2 +

1

2

∫
V0|w|

2 −
1

2

∫
F (w2), w ∈ H1(RN ,R).

We also consider

M0 :=
{
w ∈ H1(RN ,R) \ {0} : E′

0(w)w = 0
}

and
c0 := inf

w∈M0

E0(w),

or, equivalently,
c0 = inf

wH1(RN ,R)\{0}
max
t≥0

E0(tw) > 0. (3.7)

By using the hypothesis on f we can prove that problem (A0) has a positive
ground state solution. The next lemma can be found in [1, Theorem 3.1].

Lemma 3.1. Let (wn) ⊂ M0 be such that E0(un) → c0 and wn ⇀ w weakly in
H1(RN ,R). Then there exists a sequence (ỹn) ⊂ RN such that wn(·+ỹn) → w ∈
M0 with E0(w) = c0. Moreover, if w 6= 0, then (ỹn) can be taken identically
zero and therefore, in this case, wn → w strongly in H1(RN ,R).

By using the above lemma, a result due to Lions [18, Lemma I.1] and the
invariance of R

N under translations, we can obtain a positive ground state
solution of (A0), that is, a positive function ω ∈ H1(RN ,R) such thatE0(ω) = c0
and E′

0(ω) = 0. From now on we will denote by ω such solution.
Let ψ ∈ C∞(R+, [0, 1]) be such that ψ ≡ 1 in [0, δ/2] and ψ ≡ 0 in [δ,∞).

We define for each y ∈M the function

Ψε,y(x) := ψ(|εx− y|)ω

(
εx− y

ε

)
exp

(
iτy

(
εx− y

ε

))
,

where τy(x) :=
∑N

j=1 Aj(x)xj . Let tε > 0 be the unique positive number such
that

max
t≥0

Jε(tΨε,y) = Jε(tεΨε,y).
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By noticing that tεΨε,y ∈ Nε, we can now define Φε :M → Nε as

Φε(y) := tεΨε,y.

The energy of the above functions has the following behavior as ε becomes
small.

Lemma 3.2. Uniformly for y ∈M , we have

lim
ε→0+

Jε(Φε(y)) = c0.

Proof. Arguing by contradiction, we suppose that there exist γ > 0, (yn) ⊂ M
and εn → 0+ such that

|Jεn(Φεn(yn))− c0| ≥ γ > 0. (3.8)

In order to simplify the notation, we write only Φn, Ψn and tn to denote Φεn(yn),
Ψεn,yn and tεn , respectively.

We begin observing that, arguing as in [6, Lemma 3.2], we can check that

‖Ψn‖
2
εn →

∫
(|∇ω|2 + V0|ω|

2), (3.9)

On the other hand, since J ′
εn(tnΨn)(tnΨn) = 0, the change of variables z :=

(εnx− yn)/εn provides

‖tnΨn‖
2
εn =

∫
g
(
εnx, |tnΨn(x)|

2
)
|tnΨn(x)|

2 dx

=

∫
g
(
εnz + yn, |tnψ(|εnz|)ω(z)|

2
)
|tnψ(|εnz|)ω(z)|

2 dz.

If z ∈ Bδ/εn(0), then εnz + yn ∈ Bδ(yn) ⊂ Mδ ⊂ Ω. Thus, since g(x, s) = f(s)
for any x ∈ Ω and ψ(s) = 0 for s ≥ δ, the above expression yields

‖Ψn‖
2
εn =

∫
f(|tnψ(|εnz|)ω(z)|

2) |ψ(|εnz|)ω(z)|
2
dz. (3.10)

Let α := min{w(z) : |z| ≤ δ/2}. If n0 ∈ N is such that Bδ/2(0) ⊂ Bδ/(2εn)(0)
for all n ≥ n0, we obtain

‖Ψn‖
2
εn ≥

∫

Bδ/2(0)

f(|tnω(z)|
2)|ω(z)|2 dz ≥ f(|tnα|

2)

∫

Bδ/2(0)

|ω(z)|2 dz. (3.11)

for all n ≥ n0, where we have used that f is increasing.
If |tn| → ∞, we can use (3.11) and (f3) to conclude that ‖Ψn‖

2
εn → +∞,

contradicting (3.9). Thus, up to a subsequence, tn → t0 ≥ 0.
Since g has subcritical growth and tnΨn ∈ Nεn , it follows that t0 > 0. Thus,

we can take the limit in (3.10) to obtain
∫

|∇(t0ω)|
2 + |(t0ω)|

2 =

∫
f(|t0ω|

2)|t0ω|
2,

11



from which follows that t0ω ∈ M0. Since ω also belongs to M0, we conclude
that t0 = 1. This and Lebesgue’s theorem imply that

∫
F (|tnΨn|

2) →

∫
F (|ω|2).

Hence, letting n→ ∞ in

Jεn(Φn) =
t2n
2
‖Ψn‖

2
ε −

1

2

∫
F (|tnΨn|

2)

and using (3.9), we conclude that

lim
n→∞

Jεn(Φεn(yn)) = E0(ω) = c0,

which contradicts (3.8) and proves the lemma.

Let us consider ρ = ρδ > 0 in such way that Mδ ⊂ Bρ(0) and define Υ :
RN → RN by setting Υ(x) := x for |x| < ρ and Υ(x) := ρx/|x| for |x| ≥ ρ. We
also consider the barycenter map βε : Nε → RN given by

βε(u) :=

∫
Υ(εx)|u(x)|2 dx
∫

|u(x)|2 dx

.

Since M ⊂ Bρ(0), the definition of Υ and Lebesgue’s theorem imply that

lim
ε→0

βε(Φε(y)) = y uniformly for y ∈M. (3.12)

We now consider the following subset of the Nehari manifold

Ñε := {u ∈ Nε : Jε(u) ≤ c0 + h(ε)}, (3.13)

where h : R+ → R+ is such that h(ε) → 0 as ε → 0+. Given y ∈ M , we can
use Lemma 3.2 to conclude that h(ε) = |Jε(Φε(y)) − c0| is such that h(ε) → 0

as ε→ 0+. Thus, Φε(y) ∈ Ñε and therefore Ñε 6= ∅ for any ε > 0.

We present below an interesting relation between Ñε and the barycenter
map.

Proposition 3.3. For any δ > 0 we have that

lim
ε→0+

sup
u∈Ñε

dist(βε(u),Mδ) = 0.

The above result is a version of [6, Lemma 4.1]. Since here we deal with
nonhomogeneous nonlinearities, the arguments used there does not apply in our
situation. Hence, we need another approach. We are going to use the following
compactness result.

12



Lemma 3.4. Let εn → 0+ and (un) ⊂ Nεn be such that Jεn(un) → c0. Then
there exists a sequence (ỹn) ⊂ RN such that vn := |un|(·+ ỹn) has a convergent
subsequence in H1(RN ,R). Moreover, up to a subsequence, εnỹn → y0 ∈M .

By assuming the above result we can prove Proposition 3.3 as follows.

Proof of Proposition 3.3. Let (εn) ⊂ R be such that εn → 0+. By definition,

there exists (un) ⊂ Ñεn such that

dist(βεn(un),Mδ) = sup
u∈Ñεn

dist(βεn(u),Mδ) + on(1).

Thus, it suffices to find a sequence (yn) ⊂Mδ such that

|βεn(un)− yn| = on(1). (3.14)

It follows from the diamagnetic inequality (2.1) that E0(tun) ≤ Jεn(tun).

Thus, recalling that (un) ⊂ Ñεn ⊂ Nεn , we can use (3.7) to obtain

c0 ≤ max
t≥0

E0(tun) ≤ max
t≥0

Jεn(tun) = Jεn(un) ≤ c0 + h(εn),

from which follows that Jεn(un) → c0. Thus, we may invoke Lemma 3.4 to
obtain a sequence (ỹn) ⊂ RN such that (yn) := (εnỹn) ⊂ Mδ, for n large. The
strong convergence of |un|(·+ ỹn) implies that

βεn(un) =

∫
Υ(εnx)|un|

2dx
∫

|un|
2dx

=

∫
Υ(εnz + yn)|un(z + ỹn)|

2dz
∫

|un(z + ỹn)|
2dz

= yn +

∫
(Υ(εnz + yn)− yn) |un(z + ỹn)|

2dz
∫

|un(z + ỹn)|
2dz

.

Since εnz+ yn → y0 ∈M , we have that βεn(un) = yn + on(1) and therefore the
sequence (yn) satisfies (3.14). The lemma is proved.

We proceed now with the proof of Lemma 3.4.

Proof of Lemma 3.4. As in Lemma 2.1 we have that (un) is bounded in Hε. We
start by proving that there exists a sequence (ỹn) ⊂ RN and constants R, γ > 0
such that

lim inf
n→∞

∫

BR(ỹn)

|un|
2 ≥ γ > 0. (3.15)

Indeed, if this is not true, then the boundedness of (|un|) in H1(RN ,R) and
a lemma due to Lions [18, Lemma I.1] imply that |un| → 0 in Ls(RN ) for all
2 < s < 2∗. Given ξ > 0, we can use (g2), (g3) and un ∈ Nεn to get

‖un‖
2
εn =

∫
g(εx, |un|

2)|un|
2 ≤ ξ

∫
|un|

2 + Cξ

∫
|un|

q.

13



Since un → 0 in Lq(RN ) and ξ is arbitrary, we conclude that ‖un‖εn → 0. More-
over, since

∫
g(εx, |un|2)|un|2 → 0, it follows from (g4) that

∫
G(εx, |un|2) → 0.

Hence, Jεn(un) → 0, contradicting c0 > 0. Thus, (3.15) holds and, along a
subsequence,

vn := |un|(·+ ỹn)⇀ v 6= 0 weakly in H1(RN ,R).

We now consider tn > 0 such that wn := tnvn ∈ M0. It follows from the
diamagnetic inequality (2.1) that

c0 ≤ E0(wn) ≤ max
t≥0

Jεn(tvn) = Jεn(un) = c0 + on(1). (3.16)

Hence E0(wn) → c0 from which follows that wn 6→ 0 in H1(RN ,R).
Since (vn) and (wn) are bounded in H1(RN ,R) and vn 6→ 0 in H1(RN ,R),

the sequence (tn) is bounded. Thus, up to a subsequence, tn → t0 ≥ 0. If t0 = 0
then ‖wn‖H1(RN ,R) → 0, which does not occurs. Hence t0 > 0, and therefore
the sequence (wn) satisfies

E0(wn) → c0, wn ⇀ w := t0v 6= 0 weakly in H1(RN ,R).

It follows from Lemma 3.1 that wn → w, or equivalently, vn → v in H1(RN ,R).
This proves the first part of the lemma.

In order to finish the proof we set yn := εnỹn and claim that (yn) has a
bounded subsequence. Indeed, if this is not the case, then |yn| → ∞. Consider
R > 0 such that Ω ⊂ BR(0). Since we may suppose that |yn| > 2R we have
that for any z ∈ BR/εn(0)

|εnz + yn| ≥ |yn| − |εnz| > R.

If we now set Γn := BR/εn(0), we can use (un) ⊂ Nεn , (V1), (2.1), the change
of variables x 7→ z + ỹn, the above expression and (2.3) to get
∫

|∇vn|
2 + V0

∫
|vn|

2 ≤

∫
g(εnz + yn, |vn|

2)|vn|
2 dz

=

∫

Γn

f̃(|vn|
2)|vn|

2 +

∫

Γc
n

g(εnz + yn, |vn|
2)|vn|

2 dz

≤

∫

Γn

f̃(|vn|
2)|vn|

2 +

∫

Γc
n

f(|vn|
2)|vn|

2

Since vn → v in H1(RN ,R) and f̃(s) ≤ V0/k, we obtain

min

{
1, V0

(
1−

1

k

)}(∫
|∇vn|

2 + |vn|
2

)
= on(1),

which contradicts v 6≡ 0. This contradiction shows that (yn) has a bounded
subsequence. Thus, up to a subsequence, we have that

yn → y0 ∈ R
N .
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If y0 6∈ Ω we can proceed as above and conclude that vn → 0. Thus, we have
that y0 ∈ Ω.

In order to prove that V (y0) = V0 we suppose, by contradiction, that
V (y0) > V0. We can use (2.1), the strong convergence of wn in H1(RN ,R),
Fatou’s lemma and the invariance of RN by translations, to obtain

c0 = E0(w) <
1

2

∫ (
|∇w|2 + V (y0)|w|

2
)
−

1

2
F (|w|2)

≤ lim inf
n→∞

[1
2

∫ (
|∇wn|

2 + V (εnz + ỹn)|wn|
2
)
−

1

2

∫
F (|wn|

2)
]

≤ lim inf
n→∞

[1
2

∫ (
|∇|wn||

2 + V (εnz + ỹn)|wn|
2
)
−

1

2

∫
F (|wn|

2)
]
.

By diamagnetic inequality (2.1) we conclude

c0 < lim inf
n→∞

[1
2

∫ (
|∇εnwn|

2 + V (εnz + ỹn)|wn|
2
)
−

1

2

∫
F (|wn|

2)
]
.

≤ lim inf
n→∞

Jεn(tnun) ≤ lim inf
n→∞

Jεn(un) = c0,

which does not make sense. Hence V (y0) = V0 and y0 ∈ Ω. The condition (V2)
implies that y0 6∈ ∂Ω, that is, y0 ∈M . The proof is finished.

Corollary 3.5. Assume the same hypotheses of Lemma 3.4. Then, for any
given γ > 0, there exists R > 0 and n0 ∈ N such that

∫

BR(ỹn)c

(
|∇|un||

2 + |un|
2
)
< γ, for all n ≥ n0.

Proof. By using the same notation of the proof of Lemma 3.4, we have for any
R > 0

∫

BR(ỹn)c

(
|∇|un||

2 + |un|
2
)

=

∫

BR(0)c
(|∇vn|

2 + |vn|
2).

Since vn strongly converges in H1(RN ,R) the result follows.

We finalize the section presenting a relation between the topology of M and
the number of solutions of the modified problem (D̃ε)a.

Theorem 3.6. For any δ > 0 verifying Mδ ⊂ Ω, there exists ε̂δ > 0 such
that, for any 0 < ε < ε̂δ, the problem (D̃ε)a has at least catMδ

(M) nontrivial
solutions.

Proof. Given δ > 0 such that Mδ ⊂ Ω, we can use (3.12), Lemma 3.2, Propo-
sition 3.3, and argue as in [9, Section 6] to obtain ε̂δ > 0 such that, for any
ε ∈ (0, ε̂δ), the diagram

M
Φε−→ Ñε

βε
−→Mδ
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is well defined and βε ◦ Φε is homotopically equivalent to the embedding ι :
M →Mδ. Thus

catÑε
(Ñε) ≥ catMδ

(M).

It follows from Proposition 2.2 and standard Ljusternik-Schnirelmann theory
that Jε possesses at least catÑε

(Ñε) critical points on Nε. The same argument
employed in the proof of Proposition 2.2 shows that each of these critical points
is also a critical point of the unconstrained functional Jε. Thus, we obtain
catMδ

(M) nontrivial solutions for (D̃ε)a.

4 Proof of Theorem 1.1

In this section we prove our main theorem. The idea is to show that the solutions
obtained in Theorem 3.6 verify the following estimate |uǫ(x) ≤ ta ∀x ∈ Ωc

ǫ as ǫ
is small enough. This fact implies that these solutions are in fact solutions of the
original problem (Dε). The key ingredient is the following result, whose proof
uses an adaptation of the arguments found in [5] and [16], which are related
with the Moser iteration method [19] .

Lemma 4.1. Let εn → 0+ and un ∈ Ñεn be a solution of (D̃εn)a. Then
Jεn(un) → c0 and |un| ∈ L∞(RN ). Moreover, for any given γ > 0, there exists
R > 0 and n0 ∈ N such that

‖un‖L∞(BR(ỹn)c) < γ, for all n ≥ n0, (4.17)

where ỹn is given by Lemma 3.4.

Proof. Since Jεn(un) ≤ c0 + h(εn) with limn→∞ h(εn) = 0, we can argue as
in the proof of equation (3.16) to conclude that Jεn(un) → c0. Thus, we may
invoke Lemma 3.4 to obtain a sequence (ỹn) ⊂ RN satisfying the conclusions of
that lemma.

Fix R > 1 and consider ηR ∈ C∞(RN ,R) such that 0 ≤ ηR ≤ 1, ηR ≡ 0 in
BR/2(0), ηR ≡ 1 in BR(0)

c and |∇ηR| ≤ C/R. For each n ∈ N and L > 0, we
define ηn(x) := ηR(x − ỹn), uL,n ∈ H1(RN ,R) and zL,n ∈ Hε by setting

uL,n(x) := min{|un(x)|, L}, zL,n := η2nu
2(β−1)
L,n un,

with β > 1 to be determined later.
By using the calculation performed in [5, equation (2.2)] and the diamagnetic

inequality we obtain

Re
(
∇εun∇εzL,n

)
≥ η2nu

2(β−1)
L,n |∇εun|

2 + 2ηn|un|u
2(β−1)
L,n ∇ηn · ∇|un|

≥ η2nu
2(β−1)
L,n ||∇|un||

2 + 2ηn|un|u
2(β−1)
L,n ∇ηn · ∇|un|.
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This inequality, the definition of zL,n and J ′
εn(un)zL,n = 0 imply that

∫
η2nu

2(β−1)
L,n |∇|un||

2 + 2

∫
ηn|un|u

2(β−1)
L,n ∇ηn · ∇|un|

≤

∫ (
gεn(x, |un|

2)− Vεn(x)
)
η2n|un|

2u
2(β−1)
L,n .

(4.18)

In view of (g2) and (g3) we can obtain C1 > 0 such that

g(x, s) ≤
V0
2

+ C1|s|
(2∗−2)/2, for any (x, s) ∈ R

N × R.

This, (4.18) and Vε(x) ≥ V0 provide
∫
η2nu

2(β−1)
L,n |∇|un||

2 ≤ 2

∫
ηn|un|u

2(β−1)
L,n |∇ηn ||∇|un||

+

∫ (
V0
2

+ C1|un|
2∗−2 − Vεn(x)

)
η2n|un|

2u
2(β−1)
L,n

≤ 2

∫
ηn|un|u

2(β−1)
L,n |∇ηn||∇|un||+ C1

∫
η2n|un|

2∗u
2(β−1)
L,n .

For any γ̃ > 0 we can use Young’s inequality to obtain
∫
η2nu

2(β−1)
L,n |∇|un||

2 ≤ 2

∫ (
γ̃η2n|∇|un||

2 + Cγ̃ |un|
2|∇ηn|

2
)
u
2(β−1)
L,n

+C1

∫
η2n|un|

2∗u
2(β−1)
L,n .

By choosing γ̃ ≤ 1/4 we get

∫
η2nu

2(β−1)
L,n |∇|un||

2 ≤ C2

(∫
|un|

2u
2(β−1)
L,n |∇ηn|

2 + η2n|un|
2∗u

2(β−1)
L,n

)
. (4.19)

Let S be the best constant of the embedding D1,2(RN ,R) →֒ L2∗(RN ,R)

and define ûL,n := ηn|un|u
β−1
L,n . We have that

S−1‖ûL,n‖
2
L2∗ ≤

∫ ∣∣∣∇
(
ηn|un|u

β−1
L,n

)∣∣∣
2

≤ 2

∫
|un|

2u
2(β−1)
L,n |∇ηn|

2 + 2

∫
η2n

∣∣∣∇
(
|un|u

β−1
L,n

)∣∣∣
2

.

But
∫
η2n

∣∣∣∇
(
|un|u

β−1
L,n

)∣∣∣
2

=

∫

{|un|≤L}

η2n

∣∣∣∇
(
|un|u

β−1
L,n

)∣∣∣
2

+

∫

{|un|>L}

η2n

∣∣∣∇
(
|un|u

β−1
L,n

)∣∣∣
2

=

∫

{|un|≤L}

η2n
∣∣∇|un|

β
∣∣2 +

∫

{|un|>L}

η2nL
2(β−1) |∇|un||

2

≤ β2

∫
η2nu

2(β−1)
L,n |∇|un||

2,
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and therefore

‖ûL,n‖
2
L2∗ ≤ C3β

2

(∫
|un|

2u
2(β−1)
L,n |∇ηn|

2 +

∫
η2nu

2(β−1)
L,n |∇|un||

2

)
.

This and (4.19) provide

‖ûL,n‖
2
L2∗ ≤ C4β

2

(∫
|un|

2u
2(β−1)
L,n |∇ηn|

2 +

∫
η2n|un|

2∗u
2(β−1)
L,n

)
, (4.20)

for all β > 1. The above expression, the properties of ηn and uL,n ≤ |un|, imply
that

‖ûL,n‖
2
L2∗ ≤ C4β

2

∫

BR/2(ỹn)c

(
|un|

2β |∇ηn|
2 + |un|

2∗−2|un|
2β
)
. (4.21)

If we now set

t :=
2∗2∗

2(2∗ − 2)
> 1, α :=

2t

t− 1
< 2∗, (4.22)

we can apply Hölder’s inequality with exponents t/(t− 1) and t in (4.21), to get

‖ûL,n‖2L2∗ ≤ C4β
2‖un‖

2β
Lβα(BR/2(ỹn)c)

(∫

BR/2(ỹn)c
|∇ηn|

2t

)1/t

.

+C4β
2‖un‖

2β
Lβα(BR/2(ỹn)c)

(∫

BR/2(ỹn)c
|un|

2∗(2∗/2)

)1/t

.

(4.23)
Since ηn is constant on BR/2(ỹn)∪BR(ỹn)

c and |∇ηn| ≤ C/R, we have that
∫

BR/2(ỹn)c
|∇ηn|

2t =

∫

R/2≤|x−ỹn|≤R

|∇ηn|
2t ≤

C5

R2t−N
≤ C5, (4.24)

where we have used R > 1 and 2t = 2∗

2 N > N in the last inequality.

Claim. There exists n0 ∈ N and K > 0 such that , for any n ≥ n0, there holds
∫

BR/2(ỹn)c
|un|

2∗(2∗/2) ≤ K.

Assuming the claim, we can use (4.23) and (4.24) to conclude that

‖ûL,n‖
2
L2∗ ≤ C6β

2‖un‖
2β
Lβα(BR/2(ỹn)c)

.

Since

‖uL,n‖
2β
Lβ2∗(BR(ỹn)c)

=

(∫

BR(ỹn)c
uβ2

∗

L,n

)2/2∗

≤

(∫
η2

∗

n |un|
2∗u

2∗(β−1)
L,n

)2/2∗

= ‖ûL,n‖
2
L2∗ ≤ C6β

2‖un‖
2β
Lβα(BR/2(ỹn)c)

,
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we can apply Fatou’s lemma in the variable L to obtain

‖|un|‖Lβ2∗(BR(ỹn)c) ≤ C
1/β
7 β1/β‖|un|‖Lβα(BR/2(ỹn)c),

whenever ‖|un|‖βα ∈ L1(BR/2(ỹn)
c).

We now set β := 2∗/α > 1 and note that, since |un| ∈ L2∗(RN ), the above
inequality holds for this choice of β. Moreover, since β2α = β2∗, it follows that
the inequality also holds with β replaced by β2. Hence,

‖|un|‖Lβ22∗ (BR(ỹn)c)
≤ C

1/β2

7 β2/β2

‖|un|‖Lβ2α(BR/2(ỹn)c)
.

By iterating this process and recalling that βα = 2∗ we obtain, for k ∈ N,

‖|un|‖Lβk2∗ (BR(ỹn)c)
≤ C

∑k
i=1

β−i

7 β
∑m

i=1
iβ−i

‖|un|‖L2∗(BR/2(ỹn)c).

Since β > 1 we can take the limit as k → ∞ to get

‖|un|‖L∞(BR(ỹn)c) ≤ C8‖|un|‖L2∗(BR/2(ỹn)c).

By using the change of variables z 7→ x− ỹn we obtain

‖|un|‖L∞(BR(ỹn)c) ≤ C8

(∫

BR/2(0)c
|un(z + ỹn)|

2∗dz
) 1

2∗

= C8

( ∫

BR/2(0)c
|vn|

2∗
) 1

2∗

,

where vn(x) = |un|(x+ ỹn). By Lemma 3.4 we have that vn strongly converges
in L2∗(RN ). Thus, for R > 0 sufficiently large, there holds

‖|un|‖L∞(BR(ỹn)c) < γ,

for large n. This establishes (4.17).
It remains to prove the claim. For that purpose we consider a new cut-off

function given by η̃n(x) := ηn(2x), in such way that η̃n ≡ 0 on BR/4(ỹn) and

η̃n ≡ 1 on BR/2(ỹn)
c. If ũL,n := η̃n|un|u

β−1
L,n , we can proceed as before to prove

the following version of (4.20)

‖ũL,n‖
2
L2∗ ≤ C9β

2

(∫
|un|

2u
2(β−1)
L,n |∇η̃n|

2 +

∫
η̃2n|un|

2∗u
2(β−1)
L,n

)
, (4.25)

We set β := 2∗/2 to obtain

‖ũL,n‖
2
L2∗ ≤ C10

(∫
|un|

2u
(2∗−2)
L,n |∇η̃n|

2 +

∫

BR/4(ỹn)c
η̃2n|un|

2u
(2∗−2)
L,n |un|

(2∗−2)

)
.

By Hölder’s inequality with exponents 2∗/2 and 2∗/(2∗ − 2) we get

‖ũL,n‖
2
L2∗ ≤ C10

∫
|un|

2u
(2∗−2)
L,n |∇η̃n|

2

+ C10

(∫

BR/4(ỹn)c

(
η̃n|un|u

(2∗−2)/2
L,n

)2∗
)2/2∗

‖un‖
2∗−2
L2∗(BR(ỹn)c)

.
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From Corollary 3.5 we obtain n0 ∈ N and R > 1 such that

∫

BR(ỹn)c
|un|

2∗ ≤

(
1

2C10

)2∗/(2∗−2)

,

for all n ≥ n0. Thus, recalling that η̃n|un|u
(2∗−2)/2
L,n = ũL,n, uL,n ≤ |un| and

∇ηn is bounded, we obtain

‖ũL,n‖
2
L2∗ ≤ C11

∫
|un|

2u
(2∗−2)
L,n |∇η̃n|

2 ≤ C11

∫
|un|

2∗ ≤ C12.

The definition of η̃n and the above inequality imply that

(∫

BR/2(ỹn)c
|un|

2∗u
2∗(2∗−2)/2
L,n

)2/2∗

≤ ‖ũL,n‖
2
L2∗ ≤ C12,

for all n ≥ n0. Using Fatou’s lemma in the variable L, we have
∫

BR/2(ỹn)c
|un|

2∗(2∗/2) ≤ K := C
2∗/2
12 ,

for all n ≥ n0, and therefore the claim holds.

We are now ready to prove the main result of the paper.

Proof of Theorem 1.1. Suppose that δ > 0 is such that Mδ ⊂ Ω. We first claim
that there exists ε̃δ > 0 such that, for any 0 < ε < ε̃δ and any solution solution
u ∈ Ñε of the problem (D̃ε)a, there holds

‖u‖L∞(RN\Ωε) < ta. (4.26)

In order to prove the claim we argue by contradiction. So, suppose that for
some sequence εn → 0+ we can obtain un ∈ Ñεn such that J ′

εn(un) = 0 and

‖un‖L∞(RN\Ωεn ) ≥ ta. (4.27)

As in Lemma 4.1, we have that Jεn(un) → c0 and therefore we can use Lemma
3.4 to obtain a sequence (ỹn) ⊂ RN such that εnỹn → y0 ∈M .

If we take r > 0 such that Br(y0) ⊂ B2r(y0) ⊂ Ω we have that

Br/εn(y0/εn) =
1

εn
Br(y0) ⊂ Ωεn .

Moreover, for any z ∈ Br/εn(ỹn), there holds
∣∣∣∣z −

y0
εn

∣∣∣∣ ≤ |z − ỹn|+

∣∣∣∣ỹn −
y0
εn

∣∣∣∣ <
1

εn
(r + on(1)) <

2r

εn
,

for n large. For this values of n we have that Br/εn(ỹn) ⊂ Ωεn or, equivalently,
RN \Ωεn ⊂ RN \Br/εn(ỹn). On the other hand, it follows from Lemma 4.1 with
γ = ta that, for any n ≥ n0 such that r/εn > R, there holds

‖un‖L∞(RN\Ωεn ) ≤ ‖un‖L∞(RN\Br/εn (ỹn)) ≤ ‖un‖L∞(RN\BR(ỹn)) < ta,
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which contradicts (4.27) and proves the claim.
Let ε̂δ > 0 given by Theorem 3.6 and set εδ := min{ε̂δ, ε̃δ}. We shall prove

the theorem for this choice of εδ. Let 0 < ε < εδ be fixed. By applying Theorem
3.6 we obtain catMδ

(M) nontrivial solutions of the problem (D̃ε)a. If u ∈ Hε

is one of these solutions we have that u ∈ Ñε, and therefore we can use (4.26)
and the definition of g to conclude that gε(·, |u|2) ≡ f(|u|2). Hence, u is also a
solution of the problem (Dε). An easy calculation shows that û(x) := u(x/ε)
is a solution of the original problem (Pε). Then, (Pε) has at least catMδ

(M)
nontrivial solutions.

We now consider εn → 0+ and take a sequence un ∈ Hεn of solutions of the
problem (Dεn) as above. In order to study the behavior of the maximum points
of |un|, we first notice that, by (g2), there exists γ > 0 such that

g(εx, s2)s2 ≤
V0
2
s2, for all x ∈ R

N , |s| ≤ γ. (4.28)

By applying Lemma 4.1 we obtain R > 0 and (ỹn) ⊂ RN such that

‖un‖L∞(BR(ỹn))c < γ, (4.29)

Up to a subsequence, we may also assume that

‖un‖L∞(BR(ỹn)) ≥ γ. (4.30)

Indeed, if this is not the case, we have ‖un‖L∞(RN ) < γ, and therefore it follows
from J ′

εn(un) = 0, (4.28) and the diamagnetic inequality that

∫
|∇|un||

2 + V0|un|
2 ≤ ‖un‖

2
εn =

∫
gεn(x, |un|

2)|un|
2 ≤

V0
2

∫
|un|

2.

The above expression implies that ‖|un|‖H1(RN ,R) = 0, which does not make
sense. Thus, (4.30) holds.

By using (4.29) and (4.30) we conclude that the maximum point pn ∈ R
N of

|un| belongs toBR(ỹn). Hence pn = ỹn+qn, for some qn ∈ BR(0). Recalling that
the associated solution of (Pεn) is of the form ûn(x) = un(x/εn), we conclude
that the maximum point ηn of |ûn| is ηn := εnỹn + εnqn. Since (qn) ⊂ BR(0) is
bounded and εnỹn → y0 ∈M (according to Lemma 3.4), we obtain

lim
n→∞

V (ηεn) = V (y0) = V0,

which concludes the proof of the theorem.
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