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58109-970, Campina Grande - PB Brazil

e-mail: coalves@dme.ufcg.edu.br

Giovany M. Figueiredo

Universidade Federal do Pará, Faculdade de Matemática
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Abstract

In this paper we look for multiple weak solutions u : Ωλ → C for
the complex equation (−i∇− A( x

λ
))2u + u = f(|u|2)u in Ωλ = λΩ. The

set Ω ⊂ RN is a smooth bounded domain, λ > 0 is a parameter, A is
a regular magnetic field and f is a superlinear function with subcritical
growth. Our main result relates, for large values of λ, the number of
solutions with the topology of the set Ω. In the proof we apply minimax
methods and Ljusternick-Schnirelmann theory.
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1 Introduction

In this paper we establish the existence of multiple solutions for the following
complex equation(

−i∇−A
(x
λ

))2

u+ u = f(|u|2)u, x ∈ Ωλ, (Pλ)

where Ω ⊂ RN is a smooth bounded domain, N ≥ 3, i is the imaginary unit,
λ > 0 is a parameter and Ωλ := λΩ is an expanding domain. The magnetic field
A : Ω→ RN belongs to C1(Ω,RN ) and the nonlinearity f satisfies the following
conditions:

(f0) f ∈ C1(R,R);

(f1) f(s) = 0 for s < 0 and f(s) = o(1) at the origin;

(f2) there exists q ∈ (2, 2∗) such that

lim
s→∞

f(s)

s(q−2)/2
= 0,

where 2∗ := 2N/(N − 2);

(f3) there exists θ > 2 such that

0 <
θ

2
F (s) ≤ sf(s), for each s > 0,

where F (s) :=
∫ s

0
f(t)dt;

(f4) there exist σ ∈ (2, 2∗) and Cσ > 0 such that

f ′(s) ≥ Cσs
(σ−4)

2 , for each s > 0.

This class of problem is related with the existence of solitary waves, namely
solutions of the form ψ(x, t) := e−i

E
h tu(x), with E ∈ R, for the nonlinear

Schrödinger equation

ih
∂ψ

∂t
=

(
h

i
∇−A(z)

)2

ψ + U(z)ψ − f(|ψ|2)ψ, z ∈ Ω, (NLS)

where t > 0, N ≥ 2 and h is the Planck constant. The Schrödinger operator is
defined by(

h

i
∇−A(z)

)2

ψ := −h2∆ψ − 2h

i
A · ∇ψ + |D|2ψ − h

i
ψ divA.

In the 3-dimensional case the magnetic field B is exactly the curl of A, while
for higher dimensions N ≥ 4 it is the 2-form given by Bi,j := ∂jAk − ∂kAj .
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The function U(x) is a real electric potential and the nonlinear term f is a
superlinear function. A direct computation shows that ψ is a solitary wave for
(NLS) if, and only if, u is a solution of the following problem(

h

i
∇−A(z)

)2

u+ V (z)u = f(|u|2)u, in Ω, (1.1)

where V (z) = U(z) − E. It is important to investigate the existence and the
shape of such solutions in the semiclassical limit, namely, as h → 0+. The
importance of this study relies on the fact that the transition from Quantum
Mechanics to Classical Mechanics can be formally performed by sending the
Planck constant to zero.

There is a vast literature concerning the existence and multiplicity of bound
state solutions for (1.1) with no magnetic vector potential, namely A ≡ 0.
Since the seminal paper of Floer and Weinstein [18], many authors have applied
different techniques to obtain existence of solutions in this case (see [25, 28,
15, 4, 29] and references therein). Some of these works have dealt with the
asymptotic behavior of the solutions as h → 0+. Roughly speaking, these
solutions concentrate around critical points of the potential V . There are also
some papers relating the topology of the set of critical points of V with the
number of solutions of the problem (see [12, 24] for example).

If we now consider the magnetic case A 6≡ 0, it appears that the first result
was obtained by Esteban and Lions [17]. They have used the concentration-
compactness principle and minimization arguments to obtain solution for h > 0
fixed and dimensions N = 2 or N = 3. More recently, Kurata [21] proved that
the problem has a least energy solution for any h > 0 when a technical condition
relating V and A is assumed. Under this technical condition, he proved that
the associated functional satisfies the Palais-Smale compactness condition at
any level. We also would like to cite the papers [13, 14, 10, 27, 11, 3] for other
results related with the problem (1.1) in the presence of magnetic field.

We come back now to the case A ≡ 0. If we suppose that V ≡ 1, a simple
calculation shows that u is a solution of (1.1) if, and only if, the function v(x) :=
u(hx) solves

−∆v + v = f(|v|2)v in Ωλ, u ∈ H1
0 (Ωλ), (1.2)

where λ = h−1. Notice that λ becomes large as h is small. Benci and Ce-
rami proved in [5] that, for homogeneous nonlinearities f(s) = s(q−2)/2 with
2 < q < 2∗, the number of positive is affected by the topology of Ω. More
specifically, they proved that (1.2) has at least catΩ(Ω) positive solutions when-
ever λ > λ∗ (these solutions take values in R). Here, catX(Y ) denotes the
Ljusternik-Schnirelmann category of Y in X, namely the least number of closed
and contractible sets in the topological space X which cover the closed set
Y ⊂ X. The results found in [5] were extended in several senses: nonho-
mogeneous or critical nonlinearities, p-Laplacian operators, exterior domains,
domains with symmetry, nodal solutions instead of positive ones, systems, etc.
We limit ourselves to citing the papers [26, 7, 9, 22, 16, 2, 8, 1, 19, 20] and the
references therein.
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In view of the results of Benci and Cerami [5], it is natural to ask if the same
kind of result holds for the problem with magnetic field. The main goal of this
paper is to present a positive answer to this question. So, we relate the number
of solution for (Pλ) with topology of the set Ω when the parameter λ is large.
We prove that, for largue values of λ, the magnetic field does not play any role
on the numbers of solutions of the equation (Pλ) and therefore a result in the
same spirit of [5] holds. More specifically, we shall prove the following.

Theorem 1.1 Suppose that A ∈ C1(Ω,RN ) is bounded and f satisfies (f1) −
(f4). Then there exists λ∗ > 0 such that, for each λ > λ∗, the problem (Pλ) has
at least catΩλ(Ωλ) nontrivial weak solutions.

In the proof we apply variational methods, Ljusternik-Schnirelmann theory
and the technique introduced by Benci and Cerami [5]. It consists in making
precise comparisons between the category of some sublevel sets of the associated
functional and the category of the set Ω. In order to get these comparisons we
need to make a carefull study of the behavior of some minimax levels related
to the equation in (Pλ) posed in appropriated subsets of RN . We follow an
argument which has already appeared in a previous paper of the first author
[1], where the non-magnetic case is handled. Is is worthwhile to mention that,
since we deal with different problems with scalar or complex solutions, the
calculations are more involved and, in some sense, surprising.

The paper is organized as follows. In the next section we present the varia-
tional setting of the problem. In Section 3 we study the various minimax levels
associated to the problem. In the final Section 4 we prove our main theorem.

2 Variational framework

From now on we will assume, without loss of generality, that 0 ∈ Ω. Let us fix
real numbers R > r > 0 such that Br(0) ⊂ Ω ⊂ BR(0) and the sets

Ω+ := {x ∈ RN : dist(x,Ω) ≤ r}, Ω− := {x ∈ Ω : dist(x, ∂Ω) ≥ r}

are homotopically equivalent to Ω.
For each λ > 0, we shall denote by EAλ the Hilbert space obtained by the

closure of C∞0 (Ωλ,C) under the scalar product

〈u, v〉Aλ := Re

(∫
Ωλ

∇Aλu∇Aλv + uv

)
,

where Re(w) denotes the real part of w ∈ C, w is its complex conjugated,
∇Aλu := (D1u,D2u, ...,DNu) and Dj := −i∂j − Aj(x/λ), for j = 1, . . . , N .
The norm induced by this inner product is given by

‖u‖Aλ :=

(∫
Ωλ

|∇Aλu|2 + |u|2
)1/2

.

4



As proved by Esteban and Lions in [17, Section II], for any u ∈ EAλ , there
holds the diamagnetic inequality, namely

|∇|u|(x)| =
∣∣∣∣Re

(
∇u u
|u|

)∣∣∣∣ =

∣∣∣∣Re

(
(∇u− iAλu)

u

|u|

)∣∣∣∣ ≤ |∇Aλu(x)|. (2.1)

Thus, if u ∈ EAλ , then |u| belongs to the usual Sobolev space H1
0 (Ωλ,R).

Moreover, the embedding EAλ ↪→ Lq(Ωλ,C) is continuous for each 1 ≤ q ≤ 2∗

and it is compact for 1 ≤ q < 2∗.
We say that a function u ∈ EAλ is a weak solution of the problem (Pλ) if

Re

(∫
Ωλ

∇Aλu∇Aλv + uv − f(|u|2)uv

)
= 0, for each v ∈ EAλ .

In view of (f0)− (f2), we have that the functional Iλ : EAλ → R given by

Iλ(u) :=
1

2

∫
Ωλ

|∇Aλu|2 +
1

2

∫
Ωλ

|u|2 − 1

2

∫
Ωλ

F (|u|2) (2.2)

is well defined. Moreover, Iλ ∈ C1(EAλ ,R) with the following derivative

I ′λ(u)v = Re

(∫
Ωλ

∇Aλu∇Aλv + uv − f(|u|2)uv

)
.

Thus the weak solutions of (Pλ) are precisely the critical points of Iλ.
Let E be a Banach space and J ∈ C1(E,R). We say that (un) ⊂ E is

a Palais-Smale sequence ((PS)-sequence for short) if supn∈N |J(un)| < ∞ and
J ′(un) → 0. We say that J satisfies the Palais-Smale condition if any (PS)-
sequence possesses a convergent subsequence.

In view of the subcritical growth of f and condition (f3), it is standard to
check that Iλ satisfies the Palais-Smale condition. Moreover, (f1)− (f3) imply
that Iλ has the mountain pass geometry. Hence, for each λ > 0, there exists
uλ ∈ EAλ such that Iλ(uλ) = bλ and I ′λ(uλ) = 0, where bλ denotes the mountain
pass level of the functional Iλ. By using (f4) and arguing as in [30], we can prove
that bλ can also be characterized as

bλ = inf
u∈Mλ

Iλ(u), (2.3)

where Mλ is the Nehari manifold associated to Iλ, namely

Mλ := {u ∈ EAλ\{0} : I ′λ(u)u = 0}. (2.4)

From (f1) and (f2), there exists r = r(λ) > 0 such that

‖u‖Aλ ≥ r > 0, (2.5)

for all u ∈Mλ.
Since we are intending to consider the functional Iλ constrained to Mλ, we

shall need the following result.
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Proposition 2.1 The functional Iλ constrained to Mλ satisfies the Palais-
Smale condition.

Proof. Let (un) be a (PS)-sequence for Iλ constrained toMλ. Then Iλ(un)→ d
and

I ′λ(vn) = µnG
′
λ(vn) + on(1), (2.6)

for some (µn) ⊂ R, where Gλ : EAλ → R is given by

Gλ(u) :=

∫
Ωλ

|∇Aλu|2 +

∫
Ωλ

|u|2 −
∫

Ωλ

f(|u|2)|u|2,

and on(1) denotes a quantity approaching zero as n→∞. Since un ∈ Mλ the
condition (f4) provides

G′λ(un)un = −2

∫
Ωλ

f ′(|un|2)|un|4 ≤ −2Cσ

∫
Ωλ

|un|σ. (2.7)

Standard arguments show that (un) is bounded. Thus, up to a subsequence,
G′λ(un)un → l ≤ 0. If l 6= 0, we infer from (2.6) that µn = on(1). In this case,
we can use (2.6) again to conclude that (un) is a (PS)d sequence for Iλ in EAλ
and therefore (un) has a strongly convergent subsequence.

If l = 0, it follows from (2.7) that un → 0 in Lσ(Ωλ,C). The boundedness
of (un) in EAλ and the interpolation inequality provides un → 0 in Ls(Ωλ,C)
for any 2 ≤ s < 2∗. On the other hand, by (f1) and (f2),

‖un‖2Aλ =

∫
Ωλ

f(|un|2)|un|2 ≤ c1
∫

Ωλ

|un|2 + c2

∫
Ωλ

|un|q,

which this contradicts (2.5), since the right-hand side above goes to zero as
n→∞. The proposition is proved. �

As a byproduct of the above arguments we obtain the following result.

Corollary 2.2 If u is a critical point of Iλ constrained to Mλ, then u is a
nontrivial critical point of Iλ on EAλ .

We introduce now some kind of limiting functional associated to Iλ. This
limiting functional turns out to be defined in the space H1(RN ,R). More specif-
ically, we define J∞(v) : H1(RN ,R)→ R by setting

J∞(v) :=
1

2

∫
RN
|∇v|2 +

1

2

∫
RN
|v|2 − 1

2

∫
RN

F (|v|2),

with Nehari manifold and mountains pass level given by

N∞ := {v ∈ H1(RN ,R) \ {0} : J ′∞(v)v = 0}, c∞ := inf
v∈N∞

J∞(v).

The following compactness property will be crucial in our arguments. Its proof
can be done arguing along the same lines of the proof found in [1, Theorem 3.1].
We omit the details.
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Proposition 2.3 Suppose that (vn) ⊂ N∞ is such that J∞(vn) → c∞ and
vn ⇀ v weakly in H1(RN ,R). Then we have either

(i) v 6= 0 and vn → v strongly in H1(RN ,R) with v > 0 almost everywhere in
RN , J∞(v) = c∞ and J ′∞(v) = 0;

or

(ii) there exists (yn) ⊂ RN with |yn| → ∞ such that the sequence ṽn :=
vn(·+yn) weakly converges to ṽ 6= 0 in H1(RN ,R). Moreover, the function
ṽ has the same properties of the function v of the item (i) above.

3 The behavior of the minimax levels

In the proof of Theorem 1.1, we need to consider the asymptotic behavior of bλ
and other related minimax levels. In what follows we introduce these related
minimax. We start by considering the functional Jλ : H1

0 (Ωλ,R)→ R given by

Jλ(v) :=
1

2

∫
Ωλ

|∇v|2 +
1

2

∫
Ωλ

|v|2 − 1

2

∫
Ωλ

F (|v|2). (3.1)

We also define
cλ := inf

v∈Nλ
Jλ(v), (3.2)

where Nλ is the Nehari manifold associated to Jλ, that is

Nλ := {v ∈ H1
0 (Ωλ,R)\{0} : J ′λ(v)v = 0}. (3.3)

We recall that Bλr(0) ⊂ Ωλ and define the triples (Iλ,r, bλ,r,Mλ,r) and
(Jλ,r, cλ,r, Nλ,r) in a similar way, just replacing Ωλ by Bλr(0) in (2.2)-(2.4)
and (3.1)-(3.3), respectively.

In our first result, we present the asymptotic behavior of the minimax bλ,r
and cλ,r as λ→∞.

Lemma 3.1 We have that

lim
λ→∞

cλ,r = c∞, lim
λ→∞

bλ,r = c∞.

Proof. The first equality is proved in [1, Proposition 4.2]. In order to check the
second one we notice that, by the diamagnetic inequality, cλ,r ≤ bλ,r. Thus

c∞ = lim inf
λ→∞

cλ,r ≤ lim inf
λ→∞

bλ,r. (3.4)

Let (λn) ⊂ R be such that λn ↗ ∞. Since cλn,r is achieved there exists
vn ∈ Nλn,r such that Jλn,r(vn) = cλn,r and J ′λn,r(vn) = 0. By using the
Schwartz symmetrization process and well known arguments (see [1, Proposition
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4.4]) we can prove that the function vn can be taken radial. If we set vn(x) = 0
for a.e. x ∈ RN \Bλnr(0) and recall that cλn,r → c∞, we obtain

lim
n→∞

J∞(vn) = c∞, J ′∞(vn)vn = 0 and J∞(tvn) ≤ J∞(vn) = cλn,r, (3.5)

for any t ≥ 0. A standard calculation shows that (vn) is bounded and therefore
vn ⇀ v weakly in H1(RN ,R).

Claim 1.: the weak limit v is nonzero.

In order to prove the claim we first verify that, for some sequence (yn) ⊂ RN
and constants L, µ > 0, there holds

lim inf
n→∞

∫
BL(yn)

|vn|2 ≥ µ > 0. (3.6)

Indeed, if this is not true, if follows from [23, Lemma I.1] that vn → 0 in
Ls(RN ,R) for any 2 < s < 2∗. Given δ > 0, we can use (f1) and (f2) to get

0 ≤
∣∣∣∣∫ f(|vn|2)v2

n

∣∣∣∣ ≤ δ ∫ |vn|2 + Cδ

∫
|un|q,

for some constant Cδ > 0. Since (vn) is bounded in L2(RN ,R), vn → 0 in
Lq(RN ,R) and δ > 0 is arbitrary, we conclude that

lim
n→∞

‖vn‖2H1(RN ,R) = lim
n→∞

∫
f(|vn|2)|vn|2 = 0,

which contradicts J∞(vn) → c∞ > 0. Thus (3.6) holds. Since each vn is a
radial function we conclude that the sequence (yn) is bounded in RN . Hence,
the inequality (3.6) combined with the strong convergence of (vn) in L2

loc(RN ,R)
gives v 6= 0.

In view of (3.5) and Claim 1, we can use Proposition 2.3 to conclude that
vn → v strongly in H1(RN ,R). Moreover, this convergence also holds almost ev-
erywhere in RN and strongly in L2(RN ,R). Hence, there exists ψ2 ∈ L2(RN ,R)
such that |vn(x)| ≤ ψ2(x) for a.e. point in RN .

Let tn > 0 be such that

un := tneiτ(x)vn ∈Mλn,r,

where τ(x) :=
∑N
j=1Aj(0)xj . Since DA

j = i−1∂ji− Aj(x/λ), a straightforward
calculation provides

DA
j (eiτ(x)vn) =

((
Aj(0)−Aj

(
x

λn

))
vn + i∂jvn

)
eiτ(x),

from where it follows that

‖eiτ(x)vn‖2Aλn = ‖vn‖2H1(RN ,R) +

∫
(A(0)−A(x/λn))|vn|2. (3.7)
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Thus, recalling that |eiτ(x)| = 1 and un ∈Mλn,r, we obtain

bλn,r ≤ Iλn,r(tneiτ(x)vn)

=
t2n
2
‖eiτ(x)vn‖2Aλn −

1

2

∫
Bλnr(0)

F (t2n|vn|2)

= Jλn,r(tnvn) +
t2n
2

∫
Bλnr(0)

|A(0)−A(x/λn)||vn|2

≤ cλn,r +
t2n
2

∫
Bλnr(0)

|A(0)−A(x/λn)||vn|2.

(3.8)

Notice that, for almost everywhere x ∈ Ωλn , we have that

|A(0)−A(x/λn)||vn|2 ≤ 2|ψ2(x)|2 sup
x∈Ω
|A(x)|,

and therefore we can use the Lebesgue’s Theorem to conclude that

lim
n→∞

∫
Bλnr(0)

|A(0)−A(x/λn)||vn|2 = 0. (3.9)

In view of the above equation, it suffices to prove that (tn) is bounded. If
this is true, we can use the above equation and (3.8) to get

lim sup
n→∞

bλn,r ≤ lim sup
n→∞

cλn,r = c∞.

This and (3.4) complete the proof.
It remains to check that (tn) ⊂ R is bounded. Arguing by contradiction, we

suppose that some subsequence of (tn), still denoted by (tn), goes to infinity as
n→∞. Recalling that

‖tneiτ(x)vn‖2Aλn =

∫
Bλnr(0)

f(tn|vn|2)t2n|vn|2

and using (3.7), we obtain∫
B1(0)

f(t2n|vn|2)|vn|2 ≤
∫
Bλnr(0)

f(t2n|vn|2)|vn|2

= ‖eiτ(x)vn‖2Aλn

= ‖vn‖2H1(RN ,R) +

∫
Bλnr(0)

(A(0)−A(x/λn))|vn|2.

The boundedness of (vn) in H1(RN ,R) and (3.9) imply that the right-hand
side above is also bounded. On the other hand, the condition (f3) implies that

lim
s→+∞

f(s2) = +∞. Since vn → v > 0 strongly in H1(RN ,R), we obtain a

9



contradiction taking n→∞ in the above expression and using Fatou’s Lemma.
This finishes the proof. �

For each x ∈ RN , let us denote by Σλ,x the following set

Σλ,x := BλR(x) \Bλr(x)

and define the functional Ĵλ,x : H1
0 (Σλ,x,R)→ R by

Ĵλ,x(v) :=
1

2

∫
Σλ,x

|∇v|2 +
1

2

∫
Σλ,x

|v|2 −
∫

Σλ,x

F (|v|2). (3.10)

as well as its Nehari manifold

N̂λ,x := {v ∈ H1
0 (Σλ,x,R)\{0} : Ĵ ′λ,x(v)v = 0}.

For v ∈ H1(RN ,C) with compact support, we consider the barycenter map

β(v) :=

∫
RN

x|v|2∫
RN
|v|2

.

and introduce the following quantity

aλ,x := inf
{
Ĵλ,x(v) : v ∈ N̂λ,x and β(v) = x

}
.

We present below an important property of the asymptotic behavior of the
numbers aλ,0.

Lemma 3.2 The following holds

c∞ < lim inf
λ→∞

aλ,0.

Proof. Since c∞ ≤ aλ,0 for any λ > 0, we have that c∞ ≤ lim infλ→∞ aλ,0. Sup-
pose, by contradiction, that for some sequence λn ↗ ∞ we have that aλn,0 →
c∞. Then, since the infimum aλn,0 is achieved, we can obtain vn ∈ N̂λn,0 ⊂ N∞
satisfying Ĵλn,0(vn) = J∞(vn) → c∞ and β(vn) = 0, where we are understand-
ing that the function vn is extended to the whole space by setting vn(x) := 0
for a.e. x ∈ RN \ Σλn,0.

Since the support of vn is contained in BλnR(0) \ Bλnr(0) we have that
vn ⇀ 0 weakly in H1(RN ,R). Recalling that c∞ > 0, we have that (vn) is not
strongly convergent. Thus, it follows from item (ii) of Proposition 2.3 that

vn(x) = wn(x− yn) + ṽ(x− yn) (3.11)

with (wn) ⊂ H1(RN ,R) satisfying wn → 0 strongly in H1(RN ,R), (yn) ⊂ RN
being such that |yn| → ∞, and ṽ ∈ H1(RN ,R) verifying

J∞(ṽ) = c∞, J ′∞(ṽ) = 0. (3.12)
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The functional J∞ is rotationally invariant. Thus we may assume that yn =
(y1
n, 0, . . . , 0) and its first coordinates satisfies y1

n < 0.
Recalling that supp vn ⊂ Σλn,0, we can use (3.11), wn → 0 and the Lebesgue’s

Theorem to get

lim
n→∞

∫
Σλn,0∩Bλnr/2(yn)

|vn|p = lim
n→∞

∫
Bλnr/2(yn)

|vn|p

= lim
n→∞

∫
Bλnr/2(0)

|wn − ṽ|p

=

∫
RN
|ṽ|p = M > 0.

(3.13)

Moreover, the invariance of the Lebesgue measure, (3.11) and the Lebesgue’s
Theorem again provide

lim
n→∞

∫
Σλn,0

|vn|p = lim
n→∞

∫
RN
|vn|p = lim

n→∞

∫
RN
|wn − ṽ|p = M.

This and (3.13) imply that

lim
n→∞

∫
Σλn,0\Bλnr/2(yn)

|vn|p = 0. (3.14)

We now claim that∫
Σλn,0∩Bλnr/2(yn)

x1|vn|pdx ≤ −
λnr

2
(M + on(1)).

Assuming the claim, we obtain

0 = β(vn) =

∫
Σλn,0∩Bλnr/2(yn)

x1|vn|p +

∫
Σλn,0\Bλnr/2(yn)

x1|vn|p

≤ −λnr
2

(M + on(1)) + λnR

∫
Σλn,0\Bλnr/2(yn)

|vn|p,

and therefore ∫
Σλn,0\Bλnr/2(yn)

|vn|p ≥
r

2R
(M + on(1)),

which contradicts (3.14).
It remains to prove the claim. Given x = (x1, . . . , xN ) ∈ Σλn,0 ∩Bλnr/2(yn)

it suffices to check that x1 < −λnr/2. Since |x − yn| ≤ λnr/2 and yn =
(y1
n, 0, . . . , 0) we have that

|x1 − y1
n| ≤

λnr

2
,

N∑
j=2

|xj |2 ≤
(
λnr

2

)2

. (3.15)
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On the other hand,

|x1|2 +

N∑
j=2

|xj |2 = |x|2 ≥ (λnr)
2

and therefore it follows from the second inequality in (3.15) that |x1| > λnr/2.
This, the first inequality in (3.15) and y1

n < 0 imply that x1 < −λnr/2, as
claimed. This finishes the proof. �

4 Proof of Theorem 1.1

Let us denote by uλ,r ∈ Nλ,r a positive and radial function satisfying Jλ,r(uλ,r) =
cλ,r. We define the map Ψλ : Ω−λ →Mλ as

(Ψλ(y))(x) :=

{
tλ,yeiτ(x)uλ,r(|x− y|), if x ∈ Bλr(y),

0, otherwise,

where tλ,y ∈ (0,+∞) is such that tλ,yeiτ(x)uλ,r(·−y) ∈Mλ,r ⊂Mλ. Since uλ,r
is radial, it follows that

β(Ψλ(y)) = y for any y ∈ Ω−λ .

Moreover, the function Ψλ has the following property.

Lemma 4.1 Uniformly for y ∈ Ω−λ , there holds

lim
λ→+∞

Iλ(Ψλ(y)) = c∞.

Proof. Given a sequence (λn) ⊂ R such that λn →∞ and (yn) ⊂ Ω−λn , we shall
prove that Iλn(Ψλn(yn))→ c∞.

Let vn ∈ N∞ be defined as vn(x) := uλn,r(x− yn) if x ∈ Bλnr(yn), vn(x) :=
0 otherwise. Since uλn,r is such that Jλn,r(uλn,r) = cλn,r, we can use the
invariance of the Lebesgue measure and Lemma 3.1 to conclude that

lim
n→∞

J∞(vn) = c∞, J ′∞(vn)vn = 0 and J∞(tvn) ≤ J∞(vn) = cλn,r, (4.1)

for any t ≥ 0. Arguing as in the proof of Lemma 3.1 we conclude that, for some
function v 6= 0, there holds vn ⇀ v weakly in H1(RN ,R). The first equality in
(4.1) and Proposition 2.3 imply that vn → v strongly in H1(RN ,R). Moreover,
this convergence also holds almost everywhere in RN and strongly in L2(RN ,R).

Let tn := tλn,yn be as in the definition of Ψλ. Repeating the arguments of
Lemma 3.1 we get

bλn,r ≤ Iλn,r(Ψλn(yn))

≤ cλn,r +
t2n
2

∫
Bλnr(0)

|A(0)−A(x/λn)||vn|2

= cλn,r + on(1).
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Since Iλn(Ψλn(yn)) = Iλn,r(Ψλn(yn)), it suffices to take the limit in the above
expression and recall that limn→∞ bλn,r = limn→∞ cλn,r = c∞. The lemma is
proved. �

Given y ∈ Ω−λ , we have that Ψλ(y) ∈Mλ. Moreover, if we set

g(λ) := |Iλ(Ψλ(y))− c∞|, (4.2)

we have that Iλ(Ψλ(y))− c∞ ≤ g(λ). Hence, the set

Oλ := {u ∈Mλ : Iλ(u) ≤ c∞ + g(λ)}

contains the function Ψλ(y), from which it follows that Oλ 6= ∅.
Before presenting our next result we notice that, for any given u ∈ Mλ,

there exists tu > 0 such that tu|u| ∈ Nλ. By the diamagnetic inequality,

‖|u|‖2H1(RN ,R) ≤ ‖u‖
2
Aλ

=

∫
Ωλ

f(|u|2)|u|2.

Let us define, for t > 0, the function hu(t) := Jλ(tu), for t > 0. Since tuu ∈ Nλ,
we have that h′u(tu) = 0. The above inequality implies that h′u(1) ≤ 0 and
therefore it follows from (f4) that tu ∈ [0, 1].

The following result is the key point in the comparison of the category of Ω
with that of the sublevel sets of the functional Iλ.

Proposition 4.2 There exists λ̂ > 0 such that β(u) ∈ Ω+
λ , whenever u ∈ Oλ

and λ ≥ λ̂.

Proof. Suppose, by contradiction, that the result is false. Then there exist λn ↗
∞ and un ∈Mλn such that Iλn(un) ≤ c∞+g(λn), but xn := β(un) 6∈ Ω+

λn
. Let

tn ∈ [0, 1] such that vn := tn|un| ∈ Nλn . It follows from diamagnetic inequality
and un ∈ Oλn that

Jλn(tn|un|) ≤ Iλn(tnun) ≤ Iλn(un) ≤ c∞ + g(λn).

Hence, the sequence (vn) has the following properties

vn ∈ Nλn , β(vn) = xn 6∈ Ω+
λn
, Jλn(vn) ≤ c∞ + g(λn).

Claim. Ωλn ⊂ Σλn,xn

Assuming the claim we have that vn ∈ H1
0 (Σλn,xn ,R) and we can prove the

proposition as follows. Since β(vn) = xn we have that

aλn,0 = aλn,xn ≤ Ĵλn,xn(vn) = Jλn(vn) ≤ c∞ + g(λn).

The definition of g (see (4.2)) and Lemma 4.1 imply that limλ→∞ g(λ) = 0.
Thus, we can use the above expression to get

lim sup
n→∞

aλn,0 ≤ lim sup
n→∞

(c∞ + g(λn)) = c∞,

13



which contradicts Lemma 3.2.
It remains to prove the claim. So, we fix x ∈ Ωλn and recall that xn 6∈ Ω+

λn
.

Thus, λ−1
n x ∈ Ω and λ−1

n xn 6∈ Ω+. It follows from the definition of Ω+ that
|λ−1
n x− λ−1

n xn| > r, or equivalently,

|x− xn| > λnr. (4.3)

On the other hand, since x = λny for some y ∈ Ω, we have that

|x− xn| =

∣∣∣∣∣x−
∫

Ωλn
z|vn|2dz∫

Ωλn
|vn|2

∣∣∣∣∣
=

∣∣∣∣∣
∫

Ωλn
(λny − z)|vn|2dz∫

Ωλn
|vn|2

∣∣∣∣∣ = λn

∣∣∣∣∣∣
∫

Ωλn

(
y − z

λn

)
|vn|2dz∫

Ωλn
|vn|2

∣∣∣∣∣∣ .
But y ∈ Ω and λ−1

n z ∈ Ω for any z ∈ Ωλn . Thus, the above expression implies
that

|x− xn| ≤ λn diam(Ω) < λnR.

This and (4.3) provides x ∈ BλnR(xn) \Bλnr(xn) = Σλn,xn and the proposition
is proved. �

Proposition 4.3 If λ̂ > 0 is given by Proposition 4.2 then, for each λ ≥ λ̂,
there holds

catOλOλ ≥ catΩλ(Ωλ).

Proof. Suppose that
Oλ = Υ1 ∪ ... ∪Υn,

where Υj , j = 1, . . . , n, is closed and contractible in Oλ. This means that there
exists hj ∈ C([0, 1]×Υj ,Oλ) such that

hj(0, u) = u, hj(1, u) = uj , for each u ∈ Υj ,

and some uj ∈ Υj fixed. Consider the sets Bj := Ψ−1
λ (Υj), j = 1, . . . , n, which

are closed in Ω−λ and satisfy

Ω−λ = B1 ∪ · · · ∪Bn.

By using Proposition 4.2 we conclude that the maps gj : [0, 1]×Bj → Ω+
λ given

by
gj(t, y) = β(hj(t,Ψr(y)))

are well defined. A standard calculation show that these maps are contractions
of the sets Bj in Ω+

λ . Hence that

catΩλ(Ωλ) = catΩ+
λ

(Ω−λ ) ≤ n,
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and the proposition is proved. �

We are now ready to prove our main result.

Proof of Theorem 1.1. Let λ̂ > 0 be given by Proposition 4.2 and suppose that
λ ≥ λ̂. By using condition (f3) and arguing as in the proof of Proposition 2.1,
we can check that Iλ satisfies the Palais-Smale condition on Oλ. Thus, we can
apply standard Ljusternik-Scrnirelmann theory and Proposition 4.3 to obtain
catOλOλ ≥ catΩλ(Ωλ) critical points of Iλ restricted to Oλ. As in Corollary 2.2,
each of these critical points is a critical point of the unconstrained functional
Iλ, and therefore a nonzero weak solution of the problem (Pλ). �
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