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Abstract
We consider the quasilinear problem

−εpdiv(|∇u|p−2∇u) + V (z)up−1 = f(u) + up
∗−1, u ∈W 1,p(RN ),

where ε > 0 is a small parameter, 1 < p < N , p∗ = Np/(N − p), V is a positive
potential and f is a superlinear function. Under a local condition for V we relate
the number of positive solutions with the topology of the set where V attains its
minimum. In the proof we apply Ljusternik-Schnirelmann theory.
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1 Introduction

The main purpose of this paper is to establish a multiplicity result for the following quasi-
linear critical problem

(Pε)

{
−εp∆pu+ V (z)up−1 = f(u) + up

∗−1 in RN ,

u ∈ C1,α
loc (RN) ∩W 1,p(RN), u(z) > 0 for all z ∈ RN ,

∗The authors were partially supported by CNPq/Brazil

1



where ε > 0, 1 < p < N , ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator, p∗ :=
Np/(N − p), 0 < α < 1 and V ∈ C(RN ,R) is such that

(V1) V0 := inf
x∈RN

V (x) > 0,

(V2) there exists an open bounded set Λ ⊂ RN such that

V0 < min
∂Λ

V

and M := {x ∈ Λ : V (x) = V0} 6= ∅.

We also suppose that f ∈ C1(R+,R) satisfies

(f1) f(s) = o(sp−1) as s→ 0+,

(f2) there exists p < q < p∗ such that f(s) = o(sq−1) as s→∞ ,

(f3) there exists p < θ < q such that

0 < θF (s) := θ

∫ s

0

f(τ)dτ ≤ sf(s) for all s > 0,

(f4) the function s 7→ f(s)/sp−1 is increasing,

(f5) f(s) ≥ λsq1−1 for all s > 0, with q1 ∈ (p, p∗) and λ satisfying

(f5a) λ > 0 if either N ≥ p2, or p < N < p2 and p∗ − p/(p− 1) < q1 < p∗,

(f5b) λ is sufficiently large if p < N < p2 and p < q1 ≤ p∗ − p/(p− 1).

We are interested in relating the number of positive solutions with the topology of the
set M . If Y is a closed set of a topological space X, we denote by catX(Y ) the Ljusternik-
Schnirelmann category of Y in X, namely the least number of closed and contractible sets
in X which cover Y . We shall prove the following result.

Theorem 1.1. Suppose that the potential V satisfies (V1)−(V2) and the function f satisfies
(f1)− (f5). Then, for any δ > 0 such that

Mδ := {x ∈ RN : dist(x,M) < δ} ⊂ Λ,

there exists εδ > 0 such that, for any ε ∈ (0, εδ), the problem (Pε) has at least catMδ
(M)

solutions.

In the proof we will apply critical point theory. Unfortunately, since we have no infor-
mation about the behavior of the potential V at the infinity, we are not able to show that
the functional associated to (Pε) satisfies any compactness condition. Hence, we follow an
argument introduced by del Pino and Felmer in [10], which consists in making a suitable
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modification on f , solve a modified problem and then check that, for ε small enough, the
solutions of the new problem are indeed solutions of the original one.

We notice that, even for the modified problem, it is not easy to obtain compactness
in view of the critical growth of the nonlinearity. To overcome this problem we use some
calculations from [19] (see also [18]), where the author used the ideas of the paper of Brezis
and Nirenberg [7]. We emphasize that, in [19], the author showed that the weak limit of
a Palais-Smale sequence is a nontrivial solution of the modified problem. Here, since we
want to apply Ljusternik-Schnirelmann theory, we need effectively check that the modified
functional satisfies Palais-Smale below a suitable level (see Section 3). The concentration-
compactness principle due to Lions [17] plays a fundamental role in this setting.

In order to obtain multiple solutions for the modified problem, we use a technique
introduced by Benci and Cerami in [5]. The main idea is to make precisely comparisons
between the category of some sublevel sets of the modified functional and the category of
the set M . This kind of argument for the Schrödinger equation has already appeared in [8]
(see also [2]), where subcritical problems were considered.

The main motivation for the study of (Pε) in the semilinear case p = 2 arise from seeking
standing waves solutions for the nonlinear Schrödinger equation

iε
∂ψ

∂t
= − ε2

2m
∆ψ + V (z)ψ − γ|ψ|r−2ψ in RN ,

namely solutions of the form ψ(z, t) = exp(−iε−1t)u(z), where ε,m and γ are positive
constants and r > 1. Indeed, this is equivalent to solve the semilinear elliptic equation

− ε2

2m
∆u+ V (z)u = γ|u|r−2u in RN . (1.1)

The case N = 1 and r = 3 was considered by Floer and Weinstein in [13], where the
authors used Lyapunov-Schmidt reduction to prove the existence of standing waves solutions
concentrating at each given nondegenerated critical point of the bounded potential V . Their
results were extend to higher dimension by Oh [20, 21] in the subcritical case 2 < r < 2∗.
The first author to apply critical point theory to this kind of problem was Rabinowitz in
[23]. He proved the existence of solutions for more general subcritical nonlinearities f(u)
by supposing

0 < inf
z∈RN

V (z) < lim inf
|z|→∞

V (z). (1.2)

Wang [25] complemented the work of Rabinowitz by obtaining the concentration behavior
of the solutions.

Note that the above condition for V is stronger than (V2). The local condition (V2)
was first considered by del Pino and Felmer in [10], where the authors also dealt with
a subcritical nonlinearity f(u) and introduced the local mountain pass argument which
is used here. The result in [10] is related with existence and concentration behavior of
solutions. It was complemented in [3] to the critical case. Recently, this last result was
extended to the quasilinear case 1 < p < N in a paper of do Ó [19].
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There is also a quite extensive literature about multiplicity of solutions for the Schrödinger
equation. We cite here some works which are closely related with our result. We begin by
quoting the paper of Cingolani and Lazzo [8], which related the topology of the set of
minima of V with the number of positive solutions of (1.1) by assuming that V satisfies
(1.2). In [2] Alves and Figueiredo extended this last result to the quasilinear case with
nonhomogeneous subcritical nonlinearity f(u) under the local condition (V2). The critical
case was considered by Figueiredo in [12]. We also would like to cite the papers [9, 4, 15, 22]
where similar results were obtained for some related semilinear equations.

In view of the existence results presented in [3], it is natural to ask if we can obtain
multiplicity results for the quasilinear problem under the local condition (V2). In this paper,
we present a positive answer for this question. Our result extend those presented in [2, 12]
and complement those of [8, 3, 19]. Finally we emphasize that, although we deal with
quasilinear case, our result seem to be new even in the semilinear case p = 2.

The paper is organized as follows: in Section 2 we modify the original problem. The
Palais-Smale condition for the modified functional is proved in Section 3. In Section 4, we
obtain a multiplicity result for the modified problem. Theorem 1.1 is proved in Section 5.

2 The modified functional

Throughout the paper the conditions (V1)− (V2) and (f1)− (f5) will be assumed. For save
notation, we write only

∫
u instead of

∫
RN u(x)dx.

In order to overcome the lack of compactness of the problem (Pε) we make a slightly
adaptation of the penalization method introduced by del Pino and Felmer in [10]. So, we
choose k > θ(θ − p)−1, where θ is given by (f3), and set

f̂(s) :=


0 if s < 0,

f(s) + sp
∗−1 if 0 ≤ s ≤ a,

V0
k
sp−1 if s > a,

where a > 0 is such that f(a)+ap
∗−1 = k−1V0a

p−1. Let 0 < ta < a < Ta and take a function
η ∈ C∞0 (R,R) such that

(η1) η(s) ≤ f̂(s) for all s ∈ [ta, Ta],

(η2) η(ta) = f̂(ta), η(Ta) = f̂(Ta), η
′(ta) = f̂ ′(ta) and η′(Ta) = f̂ ′(Ta),

(η3) the map s 7→ η(s)/sp−1 is increasing for all s ∈ [ta, Ta].

By using the above functions we can define f̃ ∈ C1(R,R) as follows

f̃(s) :=

{
f̂(s) if s 6∈ [ta, Ta],

η(s) if s ∈ [ta, Ta].
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If χΛ denotes the characteristic function of the set Λ, we introduce the penalized nonlinearity
g : RN × R→ R by setting

g(z, s) := χΛ(z)(f(s) + sp
∗−1) + (1− χΛ(z))f̃(s). (2.1)

Conditions (f1)− (f4) and (η1)− (η3) imply that g(z, s) satisfies

(g1) g(z, s) = o(sp−1) as s→ 0, uniformly in z ∈ RN ,

(g2) g(z, s) ≤ f(s) + sp
∗−1 for all z ∈ RN , s > 0,

(g3) for θ ∈ (p, q) given by (f3) there hold

(i) 0 < θG(z, s) := θ
∫ s

0
g(z, τ)dτ < g(z, s)s for all z ∈ Λ, s > 0,

(ii) 0 ≤ pG(z, s) ≤ g(z, s)s ≤ 1
k
V (z)sp for all z ∈ RN \ Λ, s > 0,

(g4) the function s 7→ g(z, s)/sp−1 is increasing for all z ∈ Λ, s > 0.

We now note that, if uε is a positive solution of the equation

−εp∆pu+ V (z)up−1 = g(z, u) in RN

such that uε(z) ≤ ta for all z ∈ RN \ Λ, then g(z, uε) = f(uε) + up
∗−1
ε and therefore uε is

also a solution of (Pε). Hence, we deal in the sequel with the penalized problem

(P̃ε)

{
−∆pu+ V (εx)up−1 = g(εx, u) in RN ,

u ∈ C1,α
loc (RN) ∩W 1,p(RN), u(x) > 0 for all x ∈ RN ,

and we will look for solutions uε of (P̃ε) verifying

uε(x) ≤ ta for all x ∈ RN \ Λε, (2.2)

where
Λε := {x ∈ RN : εx ∈ Λ}.

For any ε > 0, let us consider the Banach space

Xε :=

{
u ∈ W 1,p(RN) :

∫
V (εx)|u|p <∞

}
endowed with the norm

‖u‖ε :=

{∫
(|∇u|p + V (εx)|u|p)

}1/p

.

The weak solutions of (P̃ε) are the positive critical points of the C1-functional Iε : Xε → R
given by

Iε(u) :=
1

p

∫
(|∇u|p + V (εx)|u|p)−

∫
G(εx, u).
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We denote by Nε the Nehari manifold of Iε, that is,

Nε := {u ∈ Xε \ {0} : 〈I ′ε(u), u〉 = 0}

and define the number bε by setting

bε := inf
u∈Nε

Iε(u).

Note that, for any given ξ > 0, we can use (g2), (f1) and (f2) to obtain Cξ > 0 verifying

|g(εx, s)| ≤ ξ|s|p−1 + Cξ|s|q−1 + |s|p∗−1 for all x ∈ RN , s ∈ R. (2.3)

This, (2.1) and (g3) provide rε > 0 such that

‖u‖ε ≥ rε > 0 for all u ∈ Nε. (2.4)

In what follows, suppu denotes the support of a function u ∈ Xε.

Lemma 2.1. Let u ∈ Xε be a nonnegative function such that suppu ∩ Λε has positive
measure. Then there exists a unique tu > 0 such that tuu ∈ Nε.

Proof. If ψ(t) := Iε(tu) for t ≥ 0, inequality (2.3) and the Sobolev embeddings imply that
ψ is positive near the t = 0. Moreover,

ψ(t) ≤ tp

p
‖u‖pε −

∫
Λε

G(εx, tu).

Since the set {x ∈ Λε : u(x) > 0} has positive measure, the above expression and (g3)(i)
imply that ψ(t)→ −∞ as t→∞. Hence, there exists tu > 0 such that ψ′(tu) = 0, namely
the point where ψ attains its maximum. A direct computation shows that tuu ∈ Nε. The
uniqueness follows from the monotonicity condition (g4).

Remark 2.2. If u ∈ Nε, then the last inequality in (g3)(ii) implies that suppu ∩ Λε has
positive measure. Thus, we can argue as above to conclude that Iε(tu) ≤ Iε(u) for all t ≥ 0.

3 The Palais-Smale condition

Let V be a Banach space, V be a C1-manifold of V and I : V → R a C1-functional. We
say that I restricted to V satisfies the Palais-Smale condition at level c if any sequence
(un) ⊂ V such that I(un)→ c and ‖I ′(un)‖∗ → 0 contains a convergent subsequence. Here,
we are denoting by ‖I ′(u)‖∗ the norm of the derivative of I restricted to V at the point u
(see [26, Section 5.3]).

From now on we denote by S the best constant of the Sobolev embedding W 1,p(RN) ↪→
Lp
∗
(RN), namely

S := inf

{∫
RN
|∇u|p : u ∈ W 1,p(RN),

∫
|u|p∗ = 1

}
. (3.1)

The objective of this section is to establish the following local compactness result for Iε.
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Proposition 3.1. The functional Iε restricted to Nε satisfies the Palais-Smale condition
at any level c < 1

N
SN/p.

For the proof, we need first to consider the unconstrained functional.

Lemma 3.2. The functional Iε satisfies the Palais-Smale condition at any level c < 1
N
SN/p.

Proof. Let (un) ⊂ Xε be such that Iε(un) → c < 1
N
SN/p and I ′ε(un) → 0. Standard

calculations show that (un) is bounded in Xε (see [19, Assertion 2.2]). Hence 〈I ′ε(un), un〉 →
0 and we have that

‖un‖pε =

∫
g(εx, un)un + on(1), (3.2)

where on(1) denotes a quantity approaching zero as n→∞. Up to a subsequence, we may
suppose that

un ⇀ u weakly in Xε,

un → u strongly in Lsloc(RN) for any p ≤ s < p∗,

un(x)→ u(x) for a.e. x ∈ RN .

(3.3)

As proved in [19, Theorem 2.4], u is a critical point of Iε, and therefore

‖u‖pε =

∫
g(εx, u)u. (3.4)

Claim 1. lim
n→∞

∫
g(εx, un)un =

∫
g(εx, u)u.

This claim, (3.2) and (3.4) imply that ‖un‖pε → ‖u‖pε, from which follows that un → u in
Xε.

In order to prove Claim 1 we first note that, arguing as in [2, Lemma 3.3], we can show
that, for any ζ > 0 given, there exists R > 0 such that

lim sup
n→∞

∫
RN\BR(0)

(|∇un|p + V (εx)|un|p) < ζ.

This inequality, (g2), (f1), (f2) and the Sobolev embeddings imply that, for n large enough,
there holds ∫

RN\BR(0)

g(εx, un)un ≤ C1

∫
RN\BR(0)

(
|un|p + |un|q + |un|p

∗)
≤ C2(ζ + ζq/p + ζp

∗/p)

(3.5)

where C1, C2 are positive constants. On the other hand, taking R large enough, we can
suppose that ∫

RN\BR(0)

g(εx, u)u < ζ.
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Hence we can use this inequality and (3.5) to conclude that

lim
n→∞

∫
RN\BR(0)

g(εx, un)un =

∫
RN\BR(0)

g(εx, u)u. (3.6)

Now we note that, in view of the definition of g, there holds

g(εx, un)un ≤ f(un)un + ap
∗

+
V0

k
|un|p for any x ∈ RN \ Λε.

Since the set BR(0)∩ (RN \Λε) is bounded, we can use the above estimate, (f1), (f2), (3.3)
and Lebesgue’s theorem to conclude that

lim
n→∞

∫
BR(0)∩(RN\Λε)

g(εx, un)un =

∫
BR(0)∩(RN\Λε)

g(εx, u)u. (3.7)

Claim 2. un → u in Lp
∗
(Λε).

By using the above claim, (g2), (f1), (f2), (3.3) and Lebesgue’s theorem again, we conclude
that

lim
n→∞

∫
BR(0)∩Λε

g(εx, un)un =

∫
BR(0)∩Λε

g(εx, u)u.

Claim 1 is now a direct consequence of the above expression, (3.6) and (3.7).
It remains to prove the Claim 2. We may suppose that

|∇un|p ⇀ µ and |un|p
∗
⇀ ν (weak∗-sense of measures).

Using the concentration compactness principle (cf. [17, Lemma 1.2]) we obtain an at most
countable index set Γ, sequences (xi) ⊂ RN , (µi), (νi) ⊂ (0,∞), such that

µ ≥ |∇u|p +
∑
i∈Γ

µiδxi , ν = |u|p∗ +
∑
i∈Γ

νiδxi and Sν
p/p∗

i ≤ µi, (3.8)

for all i ∈ Γ, where δxi is the Dirac mass at xi ∈ RN .
It suffices to show that {xi}i∈Γ ∩ Λε = ∅. Suppose, by contradiction, that xi ∈ Λε for

some i ∈ Γ. Define, for % > 0, the function ψ%(x) := ψ((x−xi)/%) where ψ ∈ C∞0 (RN , [0, 1])
is such that ψ ≡ 1 on B1(0), ψ ≡ 0 on RN \ B2(0) and |∇ψ|∞ ≤ 2. We suppose that % is
chosen in such way that the support of ψ% is contained in Λε.

Since (ψ%un) is bounded, 〈I ′ε(un), ψ%un〉 → 0, and therefore∫
ψ%|∇un|p ≤ −

∫
|∇un|p−2un(∇un · ∇ψ%)

+

∫
f(un)ψ%un +

∫
ψ%|un|p

∗
+ on(1).

Since f has subcritical growth and ψ% has compact support, we can let n→∞ and %→ 0
to conclude that νi ≥ µi. It follows from the last statement in (3.8) that

νi ≥ SN/p,
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and therefore we can use (g3) and (f4) to compute

c = Iε(un)− 1

p
〈I ′ε(un), un〉+ on(1)

=

∫
RN\Λε

(
1

p
g(εx, un)un −G(εx, un)

)
+

+

∫
Λε

(
1

p
f(un)un − F (un)

)
+

1

N

∫
Λε

|un|p
∗

+ on(1)

≥ 1

N

∫
Λε

|un|p
∗

+ on(1) ≥ 1

N

∫
Λε

ψ%|un|p
∗

+ on(1).

Hence, taking the limit and using (3.8) we get

c ≥ 1

N

∑
{i∈Γ:xi∈Λε}

ψ%(xi)νi =
1

N

∑
{i∈Γ:xi∈Λε}

νi ≥
1

N
SN/p,

which does not make sense. This concludes the proof of Claim 2 and therefore the lemma
is proved.

We are now ready to present the proof of Proposition 3.1.

Proof of Proposition 3.1. Let (un) ⊂ Nε be such that Iε(un)→ c < 1
N
SN/p and ‖I ′ε(un)‖∗ →

0. Then there exists (λn) ⊂ R such that

I ′ε(un) = λnJ
′
ε(un) + on(1), (3.9)

where Jε : Xε → R is given by

Jε(u) :=

∫
|∇u|p +

∫
V (εx)|u|p −

∫
g(εx, u)u.

Since (un) ⊂ Nε, we can use (2.1), (η3) and (f4) to get

〈J ′ε(un), un〉 =

∫ {
(p− 1)g(εx, un)un − g′(εx, un)u2

n

}
=

∫
Λε∪{un<ta}

{
(p− 1)f(un)un − f ′(un)u2

n

}
−
∫

Λε∪{un<ta}
(p∗ − p)|un|p

∗

+

∫
(RN\Λε)∩{ta≤un≤Ta}

{
(p− 1)η(un)un − η′(un)u2

n

}
≤ −(p∗ − p)

∫
Λε

|un|p
∗
,
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where g′(x, s) means the derivative with respect to the second variable and the numbers ta
and Ta were fixed at the beginning of Section 2.

By the above expression, we may suppose that 〈J ′ε(un), un〉 → l ≤ 0. We claim that
l < 0. If this is the case, it follows from

0 = 〈I ′ε(un), un〉 = λn〈J ′ε(un), un〉+ on(1)

that λn → 0. Hence, use can use (3.9) to conclude that I ′ε(un)→ 0 in the dual space of Xε.
We may now invoke Lemma 3.2 to obtain a convergent subsequence of (un).

It remains to prove that l < 0. Suppose, by contradiction, that l = 0. Then |〈J ′ε(un), un〉| ≥
(p∗− p)

∫
Λε
|un|p

∗
and therefore un → 0 in Lp

∗
(Λε). By interpolation, un → 0 in Lp(Λε) and

Lq(Λε). It follows from (2.3) that
∫

Λε
g(εx, un)un = on(1). This and (g3)(ii) provide

‖un‖pε =

∫
RN\Λε

g(εx, un)un +

∫
Λε

g(εx, un)un ≤
1

k

∫
RN\Λε

|un|p + on(1),

and therefore (
1− 1

k

)
‖un‖pε = on(1),

which contradicts (2.4) and proves the lemma.

4 Multiplicity of solutions for (P̃ε)

In this section we present a multiplicity result for the penalized problem. More specifically,
we shall prove the next result.

Theorem 4.1. For any δ > 0 such that Mδ ⊂ Λ, there exists εδ > 0 such that, for any
ε ∈ (0, εδ), the problem (P̃ε) has at least catMδ

(M) solutions.

The proof will be done by applying an abstract result of Ljusternik-Schnirelmann type
for the functional Iε constrained to Nε. In order to do this, we need perform suitable
estimates in the minimax level bε. As we will see, it is important to compare it with the
minimax level of the limit problem{

−∆pu+ V0u
p−1 = f(u) + up

∗−1 in RN ,

u ∈ C1,α
loc (RN) ∩W 1,p(RN), u(x) > 0 for all x ∈ RN ,

(4.1)

whose solutions are the positive critical points of the C1-functional I0 : W 1,p(RN) → R
given by

I0(u) :=
1

p
‖u‖pX −

∫
F (u)− 1

p∗

∫
|u|p∗ ,

where

‖u‖X :=

{∫
(|∇u|p + V0|u|p)

}1/p

for all u ∈ X := W 1,p(RN).
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LetM0 := {u ∈ X \ {0} : 〈I0(u), u〉 = 0} be the Nehari manifold of I0 and consider the
minimization problem

c0 := inf
u∈M0

I0(u) = inf
u∈X\{0}

sup
t≥0

I0(tu). (4.2)

It can be proved (see [26, Chapter 4]) that c0 is positive and that, for any u ∈ X \ {0},
there exists a unique tu > 0 such that tuu ∈M0. The maximum of the function t 7→ I0(tu)
for t ≥ 0 is achieved at t = tu. Moreover, as proved in [19, Lemma 3.4], we have that

lim
ε→0+

bε = c0 <
1

N
SN/p. (4.3)

The proof of the following result is similar to that presented in [1, Theorem 3.1] and it
will be omitted.

Lemma 4.2. Let (wn) ⊂ M0 be such that I0(wn) → c0 and wn ⇀ w weakly in X. Then
there exists a sequence (yn) ⊂ RN such that vn := wn(· + yn) → v ∈ M0 with I0(v) = c0.
Moreover, if the weak limit w is nonzero, then (yn) can be taken identically zero and therefore
wn → w in X.

We consider δ > 0 such that Mδ ⊂ Λ and choose ψ ∈ C∞0 (R+, [0, 1]) satisfying ψ(s) = 1
if 0 ≤ s ≤ δ/2 and ψ(s) = 0 if s ≥ δ. For each y ∈M , we define the function Ψε,y : RN → R
by setting

Ψε,y(x) := ψ(|εx− y|)ω
(
εx− y
ε

)
where ω is a solution of (4.1) such that I0(ω) = c0. Note that the existence of ω is assured
by the above lemma.

Let Φε : M → Nε be given by

Φε(y) := tεΨε,y,

where tε > 0 is the unique number such that tεΨε,y ∈ Nε. Since for any x ∈ Bδ/2ε(y/ε) we
have Ψε,y(x) = ω((εx− y)/ε) and y/ε ∈ Λε, Lemma 2.1 shows that Φε is well defined.

Lemma 4.3. Uniformly for y ∈M , we have

lim
ε→0+

Iε(Φε(y)) = c0.

Proof. Suppose that the result is false. Then there exist γ > 0, (yn) ⊂ M and εn → 0+

such that
|Iεn(Φεn(yn))− c0| ≥ γ > 0. (4.4)

By using the change of variables z := (εnx− yn)/εn we can write

Iεn(Φεn(yn)) =
tpn
p

∫
(|∇(ψ(|εnz|)ω(z))|p + V (εnz + yn)|ψ(|εnz|)ω(z)|p) dz

−
∫
F (tnψ(|εnz|)ω(z))dz − tp

∗
n

p∗

∫
|ψ(|εnz|)ω(z)|p∗dz.
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Arguing as in [19, Assertion 3.1] we can check that, up to a subsequence, tn → 1. Thus,
letting n→∞ in the above equality and using Lebesgue’s theorem we conclude that

lim
n→∞

Iεn(Φεn(yn)) = I0(ω) = c0,

which contradicts (4.4) and proves the lemma.

For any δ > 0, let ρ = ρ(δ) > 0 be such that Mδ ⊂ Bρ(0). Let Υ : RN → RN be
defined as Υ(x) := x for |x| < ρ and Υ(x) := ρx/|x| for |x| ≥ ρ. Finally, let us consider the
barycenter map βε : Nε → RN given by

βε(u) :=

∫
Υ(εx)|u(x)|p dx∫
|u(x)|p dx

.

Since M ⊂ Bρ(0), we can use the definition of Υ and Lebesgue’s theorem to conclude that

lim
ε→0+

βε(Φε(y)) = y uniformly for y ∈M. (4.5)

As in [8], we introduce a subset Σε of Nε by taking a function h : [0,∞)→ [0,∞) such
that h(ε)→ 0 as ε→ 0+, and setting

Σε := {u ∈ Nε : Iε(u) ≤ c0 + h(ε)}.

Given y ∈ M , we can use Lemma 4.3 to conclude that h(ε) = |Iε(Φε,y) − c0| is such that
h(ε)→ 0 as ε→ 0+. Thus, Φε,y ∈ Σε and therefore Σε 6= ∅ for any ε > 0.

Lemma 4.4. For any δ > 0 we have that

lim
ε→0+

sup
u∈Σε

dist(βε(u),Mδ) = 0.

Proof. If (εn) ⊂ R+ satisfies εn → 0, then there exists (un) ⊂ Σεn such that

dist(βεn(un),Mδ) = sup
u∈Σεn

dist(βεn(u),Mδ) + on(1).

Thus, it suffices to find a sequence (yn) ⊂Mδ such that

|βεn(un)− yn| = on(1). (4.6)

In order to obtain such sequence, we recall that (un) ⊂ Σεn ⊂ Nεn , and therefore we
can use (4.2) and the definition of Σεn to get

c0 ≤ max
t≥0

I0(tun) ≤ max
t≥0

Iεn(tun) = Iεn(un) ≤ c0 + h(εn),

12



from which follows that Iεn(un)→ c0. Arguing as in [19, Lemma 3.2] we can check that

lim inf
n→∞

∫
BR(ỹn)

|un|p ≥ γ > 0, (4.7)

where (ỹn) ⊂ RN and R, γ > 0 are positive constants. At this point we notice that, although
vε in [19, Lemma 3.2] be a solution of the modified problem, the author in that paper have
used only the fact that vε belongs to the Nehari manifold. By this same reason, we can
argue as in [19, Lemma 3.3] to conclude that (εnỹn) is bounded in RN .

Claim. Up to a subsequence, εnỹn → y ∈M .

Assuming the claim, we can prove the lemma as follows. Since y ∈ M , we have that
yn := εnỹn ∈Mδ for n sufficiently large. Hence,

βεn(un) =

∫
Υ(εnx)|un|p dx∫
|un|p dx

=

∫
Υ(εnz + yn)|un(z + ỹn)|p dz∫

|un(z + ỹn)|p dz

= yn +

∫
(Υ(εnz + yn)− yn) |un(z + ỹn)|p dz∫

|un(z + ỹn)|p dz
.

It follows from εnz + yn → y ∈ M that βεn(un) = yn + on(1), and therefore the sequence
(yn) satisfies (4.6).

It remains to check the claim. By the boundedness of (εnỹn) we may suppose that
εnỹn → y. We need only to check that y ∈M . We start by setting vn(x) := un(x+ ỹn). The
expression (4.7) and the boundedness of (un) imply that, along a subsequence, vn ⇀ v 6= 0
weakly in X. By taking (tn) ⊂ R+ such that wn := tnvn ∈M0, we get

c0 ≤ I0(wn) =
tpn
p

∫
(|∇vn|p + V0|vn|p)−

∫
F (tnvn)

≤ tpn
p

∫
(|∇un|p + V (εnx)|un|p)−

∫
G(εnx, tnun)

= Iεn(tnun) ≤ Iεn(un) ≤ c0 + h(εn).

Hence, I0(wn) → c0 and therefore wn 6→ 0 in X. Since (wn) and (vn) are bounded in X
and vn 6→ 0 in X, the sequence (tn) is bounded. Thus, we may suppose that tn → t0 ≥ 0.
If t0 = 0 then ‖wn‖X → 0, which does not make sense. Hence t0 > 0, and therefore the
sequence (wn) satisfies I0(wn) → c0 and wn ⇀ w := t0v 6= 0 weakly in X. It follows from
Lemma 4.2 that wn → w in X.

We now suppose, by contradiction, that y 6∈ M . Then V (y) > V0 and we can use the
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convergente of wn and Fatou’s lemma to get

c0 = I0(w) <
1

p

∫
(|∇w|p + V (y)|w|p)−

∫
F (w)− 1

p∗

∫
|w|p∗

≤ lim inf
n→∞

{
1

p

∫
(|∇wn|p + V (εnz + yn)|wn|p) dz −

∫
G(εnz + yn, wn)dz

}
= lim inf

n→∞
Iεn(tnun) ≤ lim inf

n→∞
Iεn(un) = c0,

(4.8)

which does not make sense. The lemma is proved.

We are now ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1. Given δ > 0 we can use (4.5), Lemmas 4.3 and 4.4, and argue as in
[8, Section 6] to obtain εδ > 0 such that, for any ε ∈ (0, εδ), the diagram

M
Φε−→ Σε

βε−→Mδ

is well defined and βε ◦Φε is homotopically equivalent to the embedding ι : M →Mδ. Since
c0 < (1/N)SN/p, we can use the definition of Σε and Proposition 3.1 to guarantee that
Iε satisfies the Palais-Smale condition in Σε (taking εδ smaller if necessary). Ljusternik-
Schnirelmann theory for C1 functionals (see [14, Corollary 4.17]) provides at least catΣε(Σε)
critical points ui of Iε restricted to Nε. Arguing along the same lines of the proof of
Proposition 3.1 we can check that ui is a critical point of the unconstrained functional Iε.

By using the same ideas contained in the proof of [6, Lemma 4.3] we can check that
catΣε(Σε) ≥ catMδ

(M). In order to show that u := ui is positive, we set u− := max{−u, 0}
and compute

0 = 〈I ′ε(u), u−〉 = ‖u−‖pε −
∫
g(εx, u)u− = ‖u−‖pε.

Thus u ≥ 0 in RN and we can adapt arguments from [16, Theorem 1.11] to conclude that
u ∈ L∞(RN)∩C1,α

loc (RN) for some 0 < α < 1. It follows from Harnack’s inequality [24] that
u is positive in RN . The theorem is proved.

5 Proof of Theorem 1.1

In order to prove Theorem 1.1 we need only to verify that, for ε > 0 small enough, the
solutions given by Theorem 4.1 satisfy the estimate in (2.2). As in [10], the key step is the
following result.

Proposition 5.1. There exists ε∗ > 0 such that, if ε ∈ (0, ε∗) and uε ∈ Σε is a solution of

(P̃ε), then
max
∂Λε

uε < ta.
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Before proving this proposition, let us see how Theorem 1.1 follows from it.

Proof of Theorem 1.1. Given δ > 0 such that Mδ ⊂ Λ, we can invoke Theorem 4.1 to
obtain, for any ε ∈ (0, εδ) fixed, catMδ

(M) solution of (P̃ε). Taking εδ smaller if necessary,
we can use Proposition 5.1 to guarantee that, if uε is one of these solutions, then

uε(x) < ta for all ∈ ∂Λε. (5.1)

The proof now can be done as in [10]. We sketch it for completeness. Let vε be defined
as vε(x) := max{uε − ta, 0} if x ∈ RN \ Λε, vε(x) := 0 otherwise. In view of (5.1), we can
take vε as a test function for Iε to get∫

RN\Λε
|∇vε|p + c(x)v2

ε + tac(x)vε = 0, (5.2)

where

c(x) := V (εx)|uε(x)|p−2 − g(εx, uε(x))

uε(x)
.

Condition (g3)(ii) implies that c(x) ≥ 0 in RN \Λε, and therefore it follows from (5.2) that
vε ≡ 0. Thus, (2.2) holds and uε is a solution of (Pε). The theorem is proved.

It remains to prove Proposition 5.1.

Proof of Proposition 5.1. Suppose, by contradiction, that the result is false. Then there
exist εn → 0+, uεn ∈ Σεn solution of (P̃εn) such that uεn(xn) ≥ ta, for some point xn ∈ ∂Λεn .
Setting vn := uεn(·+ xn), we claim that vn → v in C0

loc(RN). Indeed, the same calculations
performed in [19, Proposition 3.6] provide C > 0 such that

‖vn‖L∞(RN ) ≤ C.

If Ω ⊂ RN is a bounded domain and ξ > 0, the above inequality and (2.3) imply that

|V (εx+ εnxn)vp−1
n − g(εx+ εnxn, vn)| ≤ (CΩ + ξ)Cp−1 + CξC

q−1 + Cp∗−1. (5.3)

Since vn satisfies
−∆pvn + V (εx+ εnxn)vp−1

n = g(εx+ εnxn, vn),

we can use (5.3) and a result of Di Benedetto [11, Theorem 2] to conclude that, for any com-
pact set K ⊂ Ω, there exists a constant CK,Ω depending only of C,Cξ, N, p and dist(K, ∂Ω)
such that

‖vn‖C0,α(Ω) ≤ CK,Ω,

for some 0 < α < 1. It follows from the Schauder embedding theorem that vn possesses a
convergent subsequence in C0

loc(RN).
We now observe that, as in the proof of Lemma 4.4, we have that Iεn(un)→ c0. Along

a subsequence, vn ⇀ v weakly in X. Since vn(0) = uεn(xn) ≥ ta > 0, the convergence in
C0
loc(RN) implies that v 6= 0. If tn > 0 is such that wn = tnvn ∈M0 we can argue as in the
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proof of Lemma 4.4 to conclude that I0(wn)→ c0. It follows from Lemma 4.2 that wn → w
in X and I0(w) = c0.

Since ∂Λ is compact, we may suppose that εnxn → x̄ ∈ ∂Λ. In view of (V2), we have that
V (x̄) > V0. We can now repeat the calculations made in (4.8) and obtain a contradiction.
This concludes the proof os the proposition.

We end the paper by making some comments concerning the concentration behavior of
the solutions obtained in Theorem 1.1. If 1 < p ≤ 2 and ε > 0 is sufficiently small, then
the same arguments employed in [19] show that the solution uε possesses at most one local
(hence global) maximum point zε in RN , which is inside Λ, such that

lim
ε→0+

V (zε) = V0 (5.4)

and there are positive constants C, α such that

uε(z) ≤ C exp

(
−α
∣∣∣∣z − zεε

∣∣∣∣) for all z ∈ RN .

In the proof presented in [19], the restriction 1 < p ≤ 2 is necessary in order to guarantee
that the ground-state solution ω of the autonomous problem (4.1) is radially symmetric
about some point in RN and the corresponding function ω(r) obeys ω′(r) < 0 for all r > 0.

The complementary case 2 < p < N was not considered in [19]. However, by adapting
the arguments contained in [12] we can obtain a parcial concentration result also in this
case. Indeed, by using [12, Lemmas 4.4 and 4.5] and arguing as in the last part of proof
of Theorem 1.1 in [12] we can prove that, if 2 < p < N and ε > 0 is sufficiently small,
then the solutions uε have maximum points zε contained in a fixed ball BR(0) ⊂ RN and,
moreover, the maximum points also satisfy (5.4).

References

[1] C.O. Alves, Existence and multiplicity of solutions for a class of quasilinear equations,
Adv. Non. Studies 5 (2005), 73–87.

[2] C.O. Alves and G.M. Figueiredo, Multiplicity of positive solutions for a quasilinear
problem in RN via penalization method, Adv. Non. Studies 5 (2005), 551–572.
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