Multiplicity of positive solutions for a class of elliptic equations in divergence form

Giovany M. Figueiredo ${ }^{\text {a }}$, Marcelo F. Furtado ${ }^{\text {b,*, }}$
${ }^{\text {a }}$ Departamento de Matemática, Universidade Federal do Pará, 66075-110 Belém-PA, Brazil
${ }^{\text {b }}$ IMECC-UNICAMP, Cx. Postal 6065, 13083-970 Campinas-SP, Brazil

Received 8 June 2005
Available online 26 September 2005
Submitted by P.J. McKenna

Abstract

We prove results concerning the existence and multiplicity of positive solutions for the quasilinear equation $$
-\operatorname{div}\left(a(\varepsilon x)|\nabla u|^{p-2} \nabla u\right)+|u|^{p-2} u=f(u) \quad \text { in } \mathbb{R}^{N}, \quad u \in W^{1, p}\left(\mathbb{R}^{N}\right)
$$ where $2 \leqslant p<N, a$ is a positive potential and f is a superlinear function. We relate the number of solutions with the topology of the set where a attains its minimum. The results are proved by using minimax theorems and Ljusternik-Schnirelmann theory. © 2005 Elsevier Inc. All rights reserved.

Keywords: Positive solutions; Ljusternik-Schnirelmann theory; Quasilinear problems

1. Introduction

The purpose of this article is to investigate the existence and multiplicity of solutions of the following quasilinear problem:

$$
\left\{\begin{array}{l}
-\operatorname{div}\left(a(\varepsilon x)|\nabla u|^{p-2} \nabla u\right)+|u|^{p-2} u=f(u) \text { in } \mathbb{R}^{N}, \\
u \in W^{1, p}\left(\mathbb{R}^{N}\right), \quad u(x)>0 \text { for all } x \in \mathbb{R}^{N},
\end{array}\right.
$$

[^0]where $\varepsilon>0,2 \leqslant p<N, f: \mathbb{R} \rightarrow \mathbb{R}$ is a C^{1}-function and the potential a satisfies
$\left(a_{1}\right) a: \mathbb{R}^{N} \rightarrow \mathbb{R}$ is continuous and
$$
0<a_{0}:=\inf _{x \in \mathbb{R}^{N}} a(x)<a_{\infty}:=\liminf _{|x| \rightarrow \infty} a(x)
$$

This kind of hypothesis was introduced by Rabinowitz [23] in the study of a nonlinear Schrödinger equation.

Since we are looking for positive solutions, we suppose that
$\left(f_{1}\right) f(s)=0$ for all $s<0$.
Moreover, we assume the following growth conditions at the origin and at infinity:
$\left(f_{2}\right) f(s)=o\left(s^{p-1}\right)$ as $s \rightarrow 0^{+}$,
(f_{3}) there exists $p<q<p^{*}=N p /(N-p)$ such that

$$
\lim _{s \rightarrow \infty} \frac{f(s)}{s^{q-1}}=0
$$

We call $u \in W^{1, p}\left(\mathbb{R}^{N}\right)$ a weak solution of the equation in $\left(P_{\varepsilon}\right)$ if it verifies

$$
\int_{\mathbb{R}^{N}}\left(a(\varepsilon x)|\nabla u|^{p-2} \nabla u \cdot \nabla \varphi+|u|^{p-2} u \varphi\right) \mathrm{d} x=\int_{\mathbb{R}^{N}} f(u) \varphi \mathrm{d} x
$$

for all $\varphi \in W^{1, p}\left(\mathbb{R}^{N}\right)$. If we denote by $F(t)=\int_{0}^{t} f(s) \mathrm{d} s$ the primitive of f, conditions $\left(f_{1}\right)-$ $\left(f_{3}\right)$ imply that the functional $I_{\varepsilon}: W^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ given by

$$
I_{\varepsilon}(u)=\frac{1}{p} \int_{\mathbb{R}^{N}}\left(a(\varepsilon x)|\nabla u|^{p}+|u|^{p}\right) \mathrm{d} x-\int_{\mathbb{R}^{N}} F(u) \mathrm{d} x
$$

is well defined. Moreover, $I_{\varepsilon} \in C^{2}\left(W^{1, p}\left(\mathbb{R}^{N}\right), \mathbb{R}\right)$ and the weak solutions of $\left(P_{\varepsilon}\right)$ are precisely the positive critical points of I_{ε}.

In order to obtain such critical points, we use minimax theorems and Ljusternik-Schnirelmann theory. As it is known, this kind of theory is based on the existence of a linking structure and on deformation lemmas [6]. In general, to derive such deformation results, it is supposed that the functional I_{ε} satisfies some compactness condition. In this article, we use the classical PalaisSmale condition (see Section 2). Related with this condition we suppose that f verifies the wellknown Ambrosetti-Rabinowitz superlinear condition, that is,
$\left(f_{4}\right)$ there exists $\theta>p$ such that

$$
0<\theta F(s) \leqslant s f(s) \quad \text { for all } s>0 .
$$

Finally, in order to localize the minimax levels of the functional I_{ε}, we suppose the following monotonicity condition for f :
$\left(f_{5}\right)$ the function $s \mapsto f(s) / s^{p-1}$ is increasing for $s>0$.

We recall that a solution u_{0} of $\left(P_{\varepsilon}\right)$ is called ground state solution if it possesses minimum energy between all solutions, that is,

$$
I_{\varepsilon}\left(u_{0}\right)=\min \left\{I_{\varepsilon}(u): u \text { is a solution of }\left(P_{\varepsilon}\right)\right\}
$$

In our first result we obtain, for $\varepsilon>0$ small enough, the existence of a ground state solution of $\left(P_{\varepsilon}\right)$.

Theorem 1.1. Suppose that $2 \leqslant p<N$, a satisfies (a_{1}) and the function f satisfies $\left(f_{1}\right)-\left(f_{5}\right)$. Then there exists $\varepsilon_{0}>0$ such that, for any $\varepsilon \in\left(0, \varepsilon_{0}\right)$, the problem $\left(P_{\varepsilon}\right)$ has a ground state solution.

In the paper we also relate the number of solutions of $\left(P_{\varepsilon}\right)$ with the topology of the set of minima of the potential a. In order to present our result, we introduce the set of global minima of a, given by

$$
M=\left\{x \in \mathbb{R}^{N}: a(x)=a_{0}\right\} .
$$

Note that, in view of $\left(a_{1}\right)$, the set M is compact. For any $\delta>0$, let us denote by $M_{\delta}=$ $\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, M) \leqslant \delta\right\}$ the closed δ-neighborhood of M.

We recall that, if Y is a closed set of a topological space X, cat $_{X}(Y)$ is the LjusternikSchnirelmann category of Y in X, namely the least number of closed and contractible sets in X which cover Y. In our multiplicity result we assume a condition stronger than $\left(f_{5}\right)$ and prove the following theorem.

Theorem 1.2. Suppose that $2 \leqslant p<N$, a satisfies $\left(a_{1}\right)$, the function f satisfies $\left(f_{1}\right)-\left(f_{4}\right)$ and
($\widehat{f_{5}}$) there exist $\sigma \in\left(p, p^{*}\right)$ and $C_{\sigma}>0$ such that

$$
f^{\prime}(s) s-(p-1) f(s) \geqslant C_{\sigma} s^{\sigma-1} \quad \text { for all } s>0
$$

Then, for any $\delta>0$ given, there exists $\varepsilon_{\delta}>0$ such that, for any $\varepsilon \in\left(0, \varepsilon_{\delta}\right)$, the problem $\left(P_{\varepsilon}\right)$ has at least $\operatorname{cat}_{M_{\delta}}(M)$ solutions.

In the proof of Theorem 1.2 we apply a technique which was introduced by Benci and Cerami in [8]. It consists in making a comparison between the category of some sublevel sets of the energy functional I_{ε}, constrained on some appropriated manifold, and the category of the set M.

Several physical phenomena related to equilibrium of continuous media are modeled by the problem

$$
\begin{equation*}
-\operatorname{div}(c(x) \nabla u)=g(x, u) \quad \text { in } \Omega, \quad u=0 \quad \text { on } \partial \Omega, \tag{1.1}
\end{equation*}
$$

where Ω is a domain of \mathbb{R}^{N}, g is a regular function and c is a nonnegative weight. In order to be able to deal with media which possibly are somewhere "perfect" insulators or "perfect" conductors (see [16]) the coefficient c is allowed to vanish somewhere or to be unbounded.

There is a quite extensive literature about the regularity and spectral theory of the above problem when $g(x, u) \equiv g(u)$ is a linear function (see $[5,7,10,15,20]$ and references therein). Concerning the nonlinear problem we can cite the papers [11,12,21,22,25].

In [13], Chabrowski studied the problem

$$
\begin{equation*}
-\operatorname{div}(c(x) \nabla u)+\lambda u=K(x)|u|^{q-2} u \quad \text { in } \mathbb{R}^{N} \tag{1.2}
\end{equation*}
$$

with $\lambda>0,2<q<2^{*}$ and $c \in C\left(\mathbb{R}^{N}\right) \cap L^{\infty}\left(\mathbb{R}^{N}\right)$ satisfying

$$
0 \leqslant c(x) \leqslant \lim _{|x| \rightarrow \infty} c(x)
$$

and being positive in the exterior of some ball $B_{R}(0)$. By using minimization arguments he obtained a nonzero solution of (1.2) belonging in some appropriated Sobolev space. In his result, it was also supposed an integrability condition for $c(x)$ and that $K \in L^{\infty}\left(\mathbb{R}^{N}\right)$ verifies either $K(x) \geqslant \lim _{|x| \rightarrow \infty} K(x)$ or K is periodic.

More recently, Lazzo [17] considered Eq. (1.2) with $K \equiv 1$ and the function c satisfying the condition (a_{1}) with $a(x)$ replaced by $c(x)$. She proved that, for any $\delta>0$ given, there exists $\lambda_{\delta}>0$ such that (1.2) possesses at least cat $M_{\delta}(M)$ positive solutions for any $\lambda>\lambda_{\delta}$.

The results of this paper extend those of [17] in two senses: first because we deal with $2 \leqslant p<N$ instead of $p=2$, and second because, in general, our nonlinearity f is not a power. The main problem in considering $2<p<N$ is that we need to work in a Sobolev space without Hilbertian structure. Thus, some calculations that involve the Brezis-Lieb lemma are more difficult. Since $f(u)$ may be different from $|u|^{q-2} u$, we cannot use the same arguments developed in [17]. Thus, we adapt some ideas from [3,4] and make a detailed study of the behavior of the functional I_{ε} restricted to its Nehari manifold. However, we would like to emphasize that our results seem to be new even in the semilinear case $p=2$.

It is worthwhile to mention that our last result is closely related to those presented by Pomponio and Secchi in [22]. There, the authors studied positive solutions for the problem

$$
-\operatorname{div}(J(\varepsilon x) \nabla u)+V(\varepsilon x) u=f(u) \quad \text { in } \mathbb{R}^{N},
$$

where $\varepsilon>0, J$ is a symmetric uniformly elliptic matrix and V is a positive potential. They proved some multiplicity results in the same spirit of Theorem 1.2 (see [22, Section 6]). We finally mention the paper of Cingolani and Lazzo [14], where the authors considered positive solutions for the Schrödinger equation

$$
-\Delta u+a(\varepsilon x) u=|u|^{q-2} u \quad \text { in } \mathbb{R}^{N}
$$

with $\varepsilon>0,2<q<2^{*}$ and a satisfying $\left(a_{1}\right)$, and obtained a multiplicity result similar to Theorem 1.2.

The paper is organized as follows. In Section 2 we present the abstract framework of the problem as well as some results about the autonomous problem. In Section 3 we obtain some compactness properties of the functional I_{ε}. Theorem 1.1 is proved in Section 4 and the final Section 5 is devoted to the proof of Theorem 1.2.

2. The variational framework

Throughout the paper we suppose that the functions a and f satisfy the conditions (a_{1}) and $\left(f_{1}\right)-\left(f_{4}\right)$, respectively. Since $\left(\widehat{f}_{5}\right)$ implies $\left(f_{5}\right)$, we also assume hereafter that the function $s \mapsto$ $f(s) / s^{p-1}$ is increasing for $s>0$. We write only $\int u$ instead of $\int_{\mathbb{R}^{N}} u(x) \mathrm{d} x$.

For any $\varepsilon>0$, let X_{ε} be the Sobolev space $W^{1, p}\left(\mathbb{R}^{N}\right)$ endowed with the norm

$$
\|u\|_{\varepsilon}=\left\{\int\left(a(\varepsilon x)|\nabla u|^{p}+|u|^{p}\right)\right\}^{1 / p}
$$

Since the potential a is bounded and positive, the above norm is equivalent to the standard norm of $W^{1, p}\left(\mathbb{R}^{N}\right)$.

As stated in the introduction, we will look for critical points of the C^{2}-functional $I_{\varepsilon}: X_{\varepsilon} \rightarrow \mathbb{R}$ given by

$$
I_{\varepsilon}(u)=\frac{1}{p} \int\left(a(\varepsilon x)|\nabla u|^{p}+|u|^{p}\right)-\int F(u)
$$

where $F(t)=\int_{0}^{s} f(s) \mathrm{d} s$. We introduce the Nehari manifold of I_{ε} by setting

$$
\mathcal{N}_{\varepsilon}=\left\{u \in X_{\varepsilon} \backslash\{0\}:\left\langle I_{\varepsilon}^{\prime}(u), u\right\rangle=0\right\}=\left\{u \in X_{\varepsilon} \backslash\{0\}:\|u\|_{\varepsilon}^{p}=\int f(u) u\right\}
$$

and consider the following minimization problem:

$$
c_{\varepsilon}=\inf _{u \in \mathcal{N}_{\varepsilon}} I_{\varepsilon}(u)
$$

We present now some properties of c_{ε} and $\mathcal{N}_{\varepsilon}$. For the proofs we refer to [27, Chapter 4]. First we observe that, for any $u \in X_{\varepsilon} \backslash\{0\}$ there exists a unique $t_{u}>0$ such that $t_{u} u \in \mathcal{N}_{\varepsilon}$. The maximum of the function $t \mapsto I_{\varepsilon}(t u)$ for $t \geqslant 0$ is achieved at $t=t_{u}$ and the function $u \mapsto t_{u}$ is continuous from $X_{\varepsilon} \backslash\{0\}$ to $(0, \infty)$. Given $\delta>0$, we can use $\left(f_{1}\right)-\left(f_{3}\right)$ to obtain $C_{\delta}>0$ such that

$$
\begin{equation*}
|f(s)| \leqslant \delta|s|^{p-1}+C_{\delta}|s|^{q-1} \quad \text { for all } s \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

Since $q>p$, the above estimate and standard calculations imply that 0 is a local minimum of I_{ε}. Moreover, by $\left(f_{1}\right)$ and $\left(f_{4}\right)$, we have that

$$
\begin{equation*}
F(s) \geqslant C|s|^{\theta} \quad \text { for all } s \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

and some $C>0$. Hence,

$$
I_{\varepsilon}(t u) \leqslant \frac{t^{p}}{p}\|u\|_{\varepsilon}^{p}-C t^{\theta} \int|u|^{\theta},
$$

and we conclude that $I_{\varepsilon}(t u) \rightarrow-\infty$ as $t \rightarrow \infty$, for any $u \in X_{\varepsilon} \backslash\{0\}$.
The above considerations show that I_{ε} satisfies the geometry of the mountain pass theorem. By using (f_{5}) and arguing as in [27, Theorem 4.2], we can prove that c_{ε} is positive, it coincides with the mountain pass level of I_{ε} and satisfies

$$
\begin{equation*}
c_{\varepsilon}=\inf _{\gamma \in \Gamma_{\varepsilon}} \max _{t \in[0,1]} I_{\varepsilon}(\gamma(t))=\inf _{u \in X_{\varepsilon} \backslash\{0\}} \max _{t \geqslant 0} I_{\varepsilon}(t u)>0, \tag{2.3}
\end{equation*}
$$

where $\Gamma_{\varepsilon}=\left\{\gamma \in C\left([0,1], X_{\varepsilon}\right): \gamma(0)=0, I_{\varepsilon}(\gamma(1))<0\right\}$.
As we will see, it is important to compare c_{ε} with the minimax level of the autonomous problem

$$
\left\{\begin{array}{l}
-\mu \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+|u|^{p-2} u=f(u) \quad \text { in } \mathbb{R}^{N} \\
u \in W^{1, p}\left(\mathbb{R}^{N}\right), \quad u(x)>0 \quad \text { for all } x \in \mathbb{R}^{N}
\end{array}\right.
$$

Denote by $\|\cdot\|_{W_{\mu}}$ the following norm in $W^{1, p}\left(\mathbb{R}^{N}\right)$:

$$
\|u\|_{W_{\mu}}=\left\{\int\left(\mu|\nabla u|^{p}+|u|^{p}\right)\right\}^{1 / p}
$$

It is well defined and it is equivalent to the standard norm of $W^{1, p}\left(\mathbb{R}^{N}\right)$. The solutions of $\left(A P_{\mu}\right)$ are precisely the positive critical points of the functional $E_{\mu}: W^{1, p}\left(\mathbb{R}^{N}\right) \rightarrow \mathbb{R}$ given by

$$
E_{\mu}(u)=\frac{1}{p} \int\left(\mu|\nabla u|^{p}+|u|^{p}\right)-\int F(u) .
$$

Let \mathcal{M}_{μ} be the Nehari manifold of E_{μ} given by

$$
\mathcal{M}_{\mu}=\left\{u \in W^{1, p}\left(\mathbb{R}^{N}\right) \backslash\{0\}:\left\langle E_{\mu}^{\prime}(u), u\right\rangle=0\right\}
$$

and define $m(\mu)$ by setting

$$
m(\mu)=\inf _{u \in \mathcal{M}_{\mu}} E_{\mu}(u)
$$

The number $m(\mu)$ and the manifold \mathcal{M}_{μ} have properties similar to those of c_{ε} and $\mathcal{N}_{\varepsilon}$. We devote the rest of this section to show that $m(\mu)$ is attained by a positive function.

We start by recalling the definition of the Palais-Smale condition. So, let V be a Banach space, \mathcal{V} be a C^{1}-manifold of V and $I: V \rightarrow \mathbb{R}$ a C^{1}-functional. We say that $\left.I\right|_{\mathcal{V}}$ satisfies the Palais-Smale condition at level $c\left((\mathrm{PS})_{c}\right.$ for short) if any sequence $\left(u_{n}\right) \subset \mathcal{V}$ such that $I\left(u_{n}\right) \rightarrow c$ and $\left\|I^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0$ contains a convergent subsequence. Here, we are denoting by $\left\|I^{\prime}(u)\right\|_{*}$ the norm of the derivative of I restricted to \mathcal{V} at the point u (see [27, Section 5.3]).

Lemma 2.1. Let $\left(u_{n}\right) \subset W^{1, p}\left(\mathbb{R}^{N}\right)$ be a $(\mathrm{PS})_{c}$ sequence for E_{μ}. Then we have either
(i) $\left\|u_{n}\right\|_{W_{\mu}} \rightarrow 0$, or
(ii) there exist a sequence $\left(y_{n}\right) \subset \mathbb{R}^{N}$ and constants $R, \gamma>0$ such that

$$
\liminf _{n \rightarrow \infty} \int_{B_{R}\left(y_{n}\right)}\left|u_{n}\right|^{p} \geqslant \gamma>0
$$

Proof. Suppose that (ii) does not occur. Condition $\left(f_{4}\right)$ and standard calculations show that $\left(u_{n}\right)$ is bounded in $W^{1, p}\left(\mathbb{R}^{N}\right)$. Thus, it follows from a result of P.L. Lions [19, Lemma I.1] that $u_{n} \rightarrow 0$ in $L^{s}\left(\mathbb{R}^{N}\right)$ for all $p<s<p^{*}$. Given $\delta>0$, we can use (2.1) to get

$$
0 \leqslant\left|\int f\left(u_{n}\right) u_{n}\right| \leqslant \delta \int\left|u_{n}\right|^{p}+C_{\delta} \int\left|u_{n}\right|^{q}
$$

Since $\left(u_{n}\right)$ is bounded in $L^{p}\left(\mathbb{R}^{N}\right), u_{n} \rightarrow 0$ in $L^{q}\left(\mathbb{R}^{N}\right)$ and δ is arbitrary, we conclude that $\int f\left(u_{n}\right) u_{n} \rightarrow 0$. Recalling that $\left\langle E_{\mu}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \rightarrow 0$, we get

$$
\left\|u_{n}\right\|_{W_{\mu}}^{p}=\int f\left(u_{n}\right) u_{n}+o_{n}(1) \rightarrow 0
$$

Hence (i) holds and the lemma is proved.
Proposition 2.2. Suppose that $2 \leqslant p<N$, a satisfies (a_{1}) and the function f satisfies $\left(f_{1}\right)-\left(f_{5}\right)$. Then, for any $\mu>0$, the problem $\left(A P_{\mu}\right)$ has a ground state solution.

Proof. Conditions $\left(f_{1}\right)-\left(f_{4}\right)$ imply that E_{μ} satisfies the mountain pass geometry. Thus, there exists a sequence $\left(u_{n}\right) \subset W^{1, p}\left(\mathbb{R}^{N}\right)$ such that

$$
E_{\mu}\left(u_{n}\right) \rightarrow m(\mu) \quad \text { and } \quad E_{\mu}^{\prime}\left(u_{n}\right) \rightarrow 0
$$

Since $\left(u_{n}\right)$ is bounded, up to a subsequence, $u_{n} \rightharpoonup u$ weakly in $W^{1, p}\left(\mathbb{R}^{N}\right)$ and $u_{n}(x) \rightarrow u(x)$ a.e. in \mathbb{R}^{N}. By adapting standard calculations [28] (see also [24, Corollary 3.7]), we can obtain a subsequence, still denoted by $\left(u_{n}\right)$, such that

$$
\begin{aligned}
& \nabla u_{n}(x) \rightarrow \nabla u(x) \quad \text { a.e. } x \in \mathbb{R}^{N}, \\
& \left|\nabla u_{n}\right|^{p-2} \frac{\partial u_{n}}{\partial x_{i}} \rightharpoonup|\nabla u|^{p-2} \frac{\partial u}{\partial x_{i}} \quad \text { weakly in }\left(L^{p}\left(\mathbb{R}^{N}\right)\right)^{*}, \quad 1 \leqslant i \leqslant N .
\end{aligned}
$$

The weak convergence of $\left(u_{n}\right)$, the above expression and the subcritical growth of f imply that $E_{\mu}^{\prime}(u)=0$.

Suppose that $u \neq 0$. Then $u \in \mathcal{M}_{\mu}$ and, if we denote by $u^{ \pm}=\max \{ \pm u, 0\}$ the positive (negative) part of u, we get

$$
0=\left\langle E_{\mu}^{\prime}(u), u^{-}\right\rangle=\left\|u^{-}\right\|_{W_{\mu}}^{p}-\int f(u) u^{-}=\left\|u^{-}\right\|_{W_{\mu}}^{p}
$$

and therefore $u \geqslant 0$ in \mathbb{R}^{N}. Adapting arguments from [18, Theorem 1.11], we conclude that $u \in L^{\infty}\left(\mathbb{R}^{N}\right) \cap C_{\text {loc }}^{1, \alpha}\left(\mathbb{R}^{N}\right)$ for some $0<\alpha<1$, and therefore it follows from Harnack's inequality [26] that $u(x)>0$ for all $x \in \mathbb{R}^{N}$.

In order to prove that $E_{\mu}(u)=m(\mu)$, it suffices to recall that $u \in \mathcal{M}_{\mu}$ and apply Fatou's lemma to get

$$
\begin{aligned}
m(\mu) & \leqslant E_{\mu}(u)=E_{\mu}(u)-\frac{1}{p}\left\langle E_{\mu}^{\prime}(u), u\right\rangle=\int\left(\frac{1}{p} f(u)-F(u)\right) \\
& \leqslant \liminf _{n \rightarrow \infty} \int\left(\frac{1}{p} f\left(u_{n}\right)-F\left(u_{n}\right)\right) \\
& =\liminf _{n \rightarrow \infty}\left(E_{\mu}\left(u_{n}\right)-\frac{1}{p}\left\langle E_{\mu}^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right)=m(\mu) .
\end{aligned}
$$

We now consider the case $u=0$. Since $m(\mu)>0$ and E_{μ} is continuous, we cannot have $\left\|u_{n}\right\|_{W_{\mu}} \rightarrow 0$. Thus, we obtain from Lemma 2.1 a sequence $\left(y_{n}\right) \subset \mathbb{R}^{N}$ and constants $R, \gamma>0$ such that

$$
\liminf _{n \rightarrow \infty} \int_{B_{R}\left(y_{n}\right)}\left|u_{n}\right|^{p} \geqslant \gamma>0
$$

If we define $v_{n}(x)=u_{n}\left(x+y_{n}\right)$ we can use the invariance of \mathbb{R}^{N} by translations to conclude that $E_{\mu}\left(v_{n}\right) \rightarrow m(\mu)$ and $E_{\mu}^{\prime}\left(v_{n}\right) \rightarrow 0$. Moreover, up to a subsequence, $v_{n} \rightharpoonup v$ weakly in $W^{1, p}\left(\mathbb{R}^{N}\right)$ and $v_{n} \rightarrow v$ in $L^{p}\left(B_{R}(0)\right)$, with v being a critical point of E_{μ}. Since

$$
\int_{B_{R}(0)}|v|^{p}=\liminf _{n \rightarrow \infty} \int_{B_{R}(0)}\left|v_{n}\right|^{p}=\liminf _{n \rightarrow \infty} \int_{B_{R}\left(y_{n}\right)}\left|u_{n}\right|^{p} \geqslant \gamma>0,
$$

we conclude that $v \neq 0$, and the lemma follows as in the first part of the proof.
Remark 2.3. The above proposition and the same argument employed in [4, Lemma 10] show that the function $\mu \mapsto m(\mu)$ is increasing for $\mu>0$.

We finish this section by noting that $I_{\varepsilon}(u) \geqslant E_{a_{0}}(u)$ for all $u \in W^{1, p}\left(\mathbb{R}^{N}\right)$. Hence, the characterization of c_{ε} (and of $m\left(a_{0}\right)$) given by (2.3) implies that $c_{\varepsilon} \geqslant m\left(a_{0}\right)>0$ for any $\varepsilon>0$. Thus, we can easily conclude that there exists $r>0$, independent of ε, such that

$$
\begin{equation*}
\|u\|_{\varepsilon} \geqslant r>0 \quad \text { for any } \varepsilon>0, u \in \mathcal{N}_{\varepsilon} \tag{2.4}
\end{equation*}
$$

3. A compactness condition

In this section we obtain some compactness properties of the functional I_{ε}. We start by noting that, if $\left(u_{n}\right)$ is a (PS) c_{c} sequence for I_{ε} then it is bounded in X_{ε}. In view of $\left(f_{1}\right)$ we have

$$
\left\langle I_{\varepsilon}^{\prime}\left(u_{n}\right), u_{n}^{-}\right\rangle=\left\|u_{n}^{-}\right\|_{\varepsilon}^{p}-\int f\left(u_{n}\right) u_{n}^{-}=\left\|u_{n}^{-}\right\|_{\varepsilon}^{p}
$$

The boundedness of $\left(u_{n}^{-}\right)$and the above expression imply that $\left\|u_{n}^{-}\right\|_{\varepsilon} \rightarrow 0$. Thus, we can easily compute

$$
I_{\varepsilon}\left(u_{n}\right)=I_{\varepsilon}\left(u_{n}^{+}\right)+o_{n}(1) \quad \text { and } \quad I_{\varepsilon}^{\prime}\left(u_{n}\right)=I_{\varepsilon}^{\prime}\left(u_{n}^{+}\right)+o_{n}(1)
$$

where $o_{n}(1)$ denotes a quantity that goes to 0 as $n \rightarrow \infty$. This shows that $\left(u_{n}^{+}\right)$is also a (PS) c_{c} sequence. Since we are always interested in the existence of convergent subsequence, we will assume hereafter that u_{n} is nonnegative. The same will be done for the autonomous functional E_{μ}.

Lemma 3.1. Let $\left(v_{n}\right) \subset X_{\varepsilon}$ be a $(\mathrm{PS})_{d}$ sequence for I_{ε} such that $v_{n} \rightharpoonup 0$ weakly in X_{ε}. Then,

$$
\limsup _{n \rightarrow \infty} \int\left(s_{n} a_{\infty}-a(\varepsilon x)\right)\left|\nabla v_{n}\right|^{p} \leqslant 0
$$

for any sequence $\left(s_{n}\right) \subset \mathbb{R}$ satisfying $s_{n} \rightarrow 1$.
Proof. Let $C>0$ be such that $\int\left|\nabla v_{n}\right|^{p} \leqslant C$. Since $s_{n} \rightarrow 1$ and

$$
\int\left(s_{n} a_{\infty}-a(\varepsilon x)\right)\left|\nabla v_{n}\right|^{p}=\int\left(a_{\infty}-a(\varepsilon x)\right)\left|\nabla v_{n}\right|^{p}+a_{\infty}\left(s_{n}-1\right) \int\left|\nabla v_{n}\right|^{p},
$$

it suffices to consider the case $s_{n} \equiv 1$.
Given $\delta>0$, we can use condition (a_{1}) to obtain $R=R(\delta)>0$ such that $a(\varepsilon x) \geqslant a_{\infty}-\delta$ for any $|x| \geqslant R$. We claim that $\int_{B_{R}(0)}\left|\nabla v_{n}\right|^{p} \rightarrow 0$ as $n \rightarrow \infty$. Assuming the claim, we get

$$
\int\left(a_{\infty}-a(\varepsilon x)\right)\left|\nabla v_{n}\right|^{p} \leqslant \int_{B_{R}(0)}\left(a_{\infty}-a(\varepsilon x)\right)\left|\nabla v_{n}\right|^{p}+\delta C=o_{n}(1)+\delta C
$$

for any $\delta>0$, and the lemma follows.
In order to prove the claim, we take $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ such that $\psi \equiv 1$ in $B_{R}(0)$ and $\operatorname{supp} \psi \subset B_{2 R}(0)$. By using condition $\left(a_{1}\right)$ and the definition of I_{ε} and ψ, we get

$$
\begin{equation*}
a_{0} \int_{B_{R}(0)}\left|\nabla v_{n}\right|^{p} \leqslant \int_{B_{R}(0)} a(\varepsilon x)\left|\nabla v_{n}\right|^{p} \psi \leqslant \int a(\varepsilon x)\left|\nabla v_{n}\right|^{p} \psi=A_{n}+B_{n} \tag{3.1}
\end{equation*}
$$

where

$$
A_{n}=-\int a(\varepsilon x)\left|\nabla v_{n}\right|^{p-2} v_{n}\left(\nabla v_{n} \cdot \nabla \psi\right)
$$

and

$$
B_{n}=\left\langle I_{\varepsilon}^{\prime}\left(v_{n}\right), v_{n} \psi\right\rangle-\int\left|v_{n}\right|^{p} \psi+\int f\left(v_{n}\right) v_{n} \psi
$$

The boundedness of a and Hölder's inequality imply that

$$
\left|A_{n}\right| \leqslant C_{1}\left(\int\left|\nabla v_{n}\right|^{p}\right)^{(p-1) / p}\left(\int\left|v_{n}\right|^{p}|\nabla \psi|^{p}\right)^{1 / p} \leqslant C_{2}\left(\int_{B_{2 R}(0)}\left|v_{n}\right|^{p}|\nabla \psi|^{p}\right)^{1 / p}
$$

Since $v_{n} \rightarrow 0$ in $L_{\text {loc }}^{p}\left(\mathbb{R}^{N}\right)$ and ψ is regular, we conclude that $A_{n} \rightarrow 0$. Recalling that (v_{n}) is a Palais-Smale sequence, we can use the boundedness of $\left(v_{n} \psi\right)$, the convergence of v_{n} in $L_{\text {loc }}^{p}\left(\mathbb{R}^{N}\right)$ and (2.1) as in the proof of Lemma 2.1 to conclude that $B_{n} \rightarrow 0$. It follows from (3.1) that $\int_{B_{R}(0)}\left|\nabla v_{n}\right|^{p} \rightarrow 0$.

Lemma 3.2. Let $\left(v_{n}\right) \subset X_{\varepsilon}$ be a $(\mathrm{PS})_{d}$ sequence for I_{ε} such that $v_{n} \rightharpoonup 0$ weakly in X_{ε}. If $v_{n} \nrightarrow 0$ in X_{ε}, then $d \geqslant m\left(a_{\infty}\right)$.

Proof. Let $\left(t_{n}\right) \subset(0,+\infty)$ be such that $\left(t_{n} v_{n}\right) \subset \mathcal{M}_{a_{\infty}}$. We start by proving that

$$
t_{0}=\limsup _{n \rightarrow \infty} t_{n} \leqslant 1
$$

Arguing by contradiction, we suppose that there exist $\delta>0$ and a subsequence, which we also denote by $\left(t_{n}\right)$, such that

$$
\begin{equation*}
t_{n} \geqslant 1+\delta \quad \text { for all } n \in \mathbb{N} \tag{3.2}
\end{equation*}
$$

Since $\left(v_{n}\right)$ is bounded in $X_{\varepsilon},\left\langle I_{\varepsilon}^{\prime}\left(v_{n}\right), v_{n}\right\rangle \rightarrow 0$, that is,

$$
\int\left(a(\varepsilon x)\left|\nabla v_{n}\right|^{p}+\left|v_{n}\right|^{p}\right)=\int f\left(v_{n}\right) v_{n}+o_{n}(1)
$$

Moreover, recalling that $\left(t_{n} v_{n}\right) \subset \mathcal{M}_{a_{\infty}}$, we get

$$
t_{n}^{p} \int\left(a_{\infty}\left|\nabla v_{n}\right|^{p}+\left|v_{n}\right|^{p}\right)=\int f\left(t_{n} v_{n}\right)\left(t_{n} v_{n}\right)
$$

Since $s \mapsto f(s) / s^{p-1}$ is increasing, we can use the above equalities and (3.2) to get

$$
\begin{align*}
\int\left(a_{\infty}-a(\varepsilon x)\right)\left|\nabla v_{n}\right|^{p} & =\int\left(\frac{f\left(t_{n} v_{n}\right)}{\left(t_{n} v_{n}\right)^{p-1}}-\frac{f\left(v_{n}\right)}{\left(v_{n}\right)^{p-1}}\right)\left(v_{n}\right)^{p}+o_{n}(1) \\
& \geqslant \int\left(\frac{f\left((1+\delta) v_{n}\right)}{\left((1+\delta) v_{n}\right)^{p-1}}-\frac{f\left(v_{n}\right)}{\left(v_{n}\right)^{p-1}}\right)\left(v_{n}\right)^{p}+o_{n}(1) \tag{3.3}
\end{align*}
$$

Since $\left\|v_{n}\right\|_{\varepsilon} \nrightarrow 0$, we can argue as in the proof of Lemma 2.1 to obtain $\left(y_{n}\right) \subset \mathbb{R}^{N}$ and $R, \gamma>0$ such that

$$
\begin{equation*}
\int_{B_{R}\left(y_{n}\right)}\left|v_{n}\right|^{p} \geqslant \gamma>0 \tag{3.4}
\end{equation*}
$$

If $\tilde{v}_{n}(x)=v_{n}\left(x+y_{n}\right)$, then there exists a nonnegative function \tilde{v} such that, up to a subsequence, $\tilde{v}_{n} \rightharpoonup \tilde{v}$ weakly in $X_{\varepsilon}, \tilde{v}_{n} \rightarrow \tilde{v}$ in $L^{p}\left(B_{R}(0)\right)$ and $\tilde{v}_{n}(x) \rightarrow \tilde{v}(x)$ a.e. in \mathbb{R}^{N}. Moreover, in view of (3.4), there exists a subset $\Omega \subset B_{R}(0)$ with positive measure such that $\tilde{v}(x)>0$ for a.e. $x \in \Omega$.

On the other hand, by changing variables in (3.3), we can use Fatou's lemma and Lemma 3.1 to obtain

$$
\int\left(\frac{f((1+\delta) \tilde{v})}{((1+\delta) \tilde{v})^{p-1}}-\frac{f(\tilde{v})}{(\tilde{v})^{p-1}}\right) \tilde{v}^{p} \leqslant 0 .
$$

Since the integrand is nonnegative, the above expression contradicts the positiveness of \tilde{v} in Ω. This contradiction shows that $t_{0} \leqslant 1$, as claimed.

If $t_{0}<1$ we may suppose, without loss of generality, that $t_{n}<1$ for all $n \in \mathbb{N}$. Conditions (f_{1}) and (f_{5}) imply that the function $s \mapsto \frac{1}{p} f(s) s-F(s)$ is nondecreasing. Thus,

$$
\begin{aligned}
m\left(a_{\infty}\right) & \leqslant E_{a_{\infty}}\left(t_{n} v_{n}\right)-\frac{1}{p}\left\langle E_{a_{\infty}}^{\prime}\left(t_{n} v_{n}\right), t_{n} v_{n}\right\rangle=\int\left\{\frac{1}{p} f\left(t_{n} v_{n}\right)\left(t_{n} v_{n}\right)-F\left(t_{n} v_{n}\right)\right\} \\
& \leqslant \int\left\{\frac{1}{p} f\left(v_{n}\right)\left(v_{n}\right)-F\left(v_{n}\right)\right\}=I_{\varepsilon}\left(v_{n}\right)-\frac{1}{p}\left\langle I_{\varepsilon}^{\prime}\left(v_{n}\right), v_{n}\right\rangle=d+o_{n}(1)
\end{aligned}
$$

Taking the limit, we conclude that $m\left(a_{\infty}\right) \leqslant d$.
If $t_{0}=1$ then, up to a subsequence, we may suppose that $t_{n} \rightarrow 1$. Thus,

$$
\begin{aligned}
m\left(a_{\infty}\right) & \leqslant E_{a_{\infty}}\left(t_{n} v_{n}\right)-I_{\varepsilon}\left(v_{n}\right)+I_{\varepsilon}\left(v_{n}\right) \\
& =\frac{1}{p} \int\left(t_{n}^{p} a_{\infty}-a(\varepsilon x)\right)\left|\nabla v_{n}\right|^{p}+\int\left(F\left(v_{n}\right)-F\left(t_{n} v_{n}\right)\right)+d+o_{n}(1) .
\end{aligned}
$$

By using an straightforward application of the mean value theorem, (2.1) and the Lebesgue theorem we can check that $\int\left(F\left(v_{n}\right)-F\left(t_{n} v_{n}\right)\right)=o_{n}(1)$. Hence, the above expression and Lemma 3.1 imply that $m\left(a_{\infty}\right) \leqslant d$. The lemma is proved.

We present below the two compactness results which we will need for the proof of the main theorems.

Proposition 3.3. The functional I_{ε} satisfies the $(\mathrm{PS})_{c}$ condition at any level $c<m\left(a_{\infty}\right)$.
Proof. Let $\left(u_{n}\right) \subset X_{\varepsilon}$ be such that $I_{\varepsilon}\left(u_{n}\right) \rightarrow c$ and $I_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0$ in X_{ε}^{*}. Up to a subsequence, $u_{n} \rightharpoonup u$ weakly in X_{ε} with u being a critical point of I_{ε}. Thus, we can use $\left(f_{4}\right)$ to get

$$
I_{\varepsilon}(u)=I_{\varepsilon}(u)-\frac{1}{p}\left\langle I_{\varepsilon}^{\prime}(u), u\right\rangle=\int\left(\frac{1}{p} f(u) u-F(u)\right) \geqslant 0 .
$$

Let $v_{n}=u_{n}-u$. Arguing as in [2, Lemma 3.3] we can show that $I_{\varepsilon}^{\prime}\left(v_{n}\right) \rightarrow 0$ and

$$
I_{\varepsilon}\left(v_{n}\right) \rightarrow c-I_{\varepsilon}(u)=d<m\left(a_{\infty}\right),
$$

where we used that $c<m\left(a_{\infty}\right)$ and $I_{\varepsilon}(u) \geqslant 0$. Since $v_{n} \rightharpoonup 0$ weakly in X_{ε} and $d<m\left(a_{\infty}\right)$, it follows from Lemma 3.2 that $v_{n} \rightarrow 0$, i.e., $u_{n} \rightarrow u$ in X_{ε}. This concludes the proof of the proposition.

Proposition 3.4. If f verifies $\left(\widehat{f}_{5}\right)$ then the functional I_{ε} restricted to $\mathcal{N}_{\varepsilon}$ satisfies the $(\mathrm{PS})_{c}$ condition at any level $c<m\left(a_{\infty}\right)$.

Proof. Let $\left(u_{n}\right) \subset \mathcal{N}_{\varepsilon}$ be such that $I_{\varepsilon}\left(u_{n}\right) \rightarrow c$ and $\left\|I_{\varepsilon}^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0$. Then there exists $\left(\lambda_{n}\right) \subset \mathbb{R}$ such that

$$
\begin{equation*}
I_{\varepsilon}^{\prime}\left(u_{n}\right)=\lambda_{n} J_{\varepsilon}^{\prime}\left(u_{n}\right)+o_{n}(1), \tag{3.5}
\end{equation*}
$$

where $J_{\varepsilon}: X_{\varepsilon} \rightarrow \mathbb{R}$ is defined as

$$
J_{\varepsilon}(u)=\|u\|_{\varepsilon}^{p}-\int f(u) u .
$$

$\operatorname{By}\left(\widehat{f_{5}}\right)$,

$$
\left\langle J_{\varepsilon}^{\prime}\left(u_{n}\right), u_{n}\right\rangle=\int\left((p-1) f\left(u_{n}\right) u_{n}-f^{\prime}\left(u_{n}\right) u_{n}^{2}\right) \leqslant-C_{\sigma} \int\left|u_{n}\right|^{\sigma}<0
$$

and therefore we may suppose that $\left\langle J_{\varepsilon}^{\prime}\left(u_{n}\right), u_{n}\right\rangle \rightarrow l \leqslant 0$. If $l=0$, it follows from $\left|\left\langle J_{\varepsilon}^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right| \geqslant$ $C_{\sigma} \int\left|u_{n}\right|^{\sigma}$ that $u_{n} \rightarrow 0$ in $L^{\sigma}\left(\mathbb{R}^{N}\right)$. Recalling that $\left(u_{n}\right)$ is bounded, we can use interpolation and argue as in the proof of Lemma 2.1 to get $\left\|u_{n}\right\|_{\varepsilon} \rightarrow 0$, which contradicts (2.4). Thus, $l<0$ and we have that $\lambda_{n} \rightarrow 0$. By using (3.5) we conclude that $I_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0$ in X_{ε}^{*}, that is, $\left(u_{n}\right)$ is a (PS) ${ }_{c}$ sequence for I_{ε}. The result follows from Proposition 3.3.

Remark 3.5. Arguing along the same lines of the above proof we can show that, if u is a critical point of I_{ε} restricted to $\mathcal{N}_{\varepsilon}$, then u is also a critical point of the unconstrained functional, that is, $I_{\varepsilon}^{\prime}(u)=0$ in X_{ε}^{*}.

4. Existence of a ground state solution

In order to prove our existence result, we need the following auxiliar result.
Lemma 4.1. There exists $\varepsilon_{0}>0$ such that $c_{\varepsilon}<m\left(a_{\infty}\right)$ for any $\varepsilon \in\left(0, \varepsilon_{0}\right)$.
Proof. Let us fix $\mu \in \mathbb{R}$ such that $a_{0}<\mu<a_{\infty}$. Denote by $\omega \equiv \omega_{\mu}$ a ground state solution of the problem $\left(A P_{\mu}\right)$. For any given $r>0$, let $\eta_{r} \in C_{0}^{\infty}\left(\mathbb{R}^{N},[0,1]\right)$ be such that $\eta_{r}(x)=1$ if $|x|<r$ and $\eta_{r}(x)=0$ if $|x| \geqslant 2 r$. We also define $v_{r}(x)=\eta_{r}(x) \omega(x)$ and take $t_{r}>0$ such that $\tilde{v}_{r} \equiv t_{r} v_{r} \in \mathcal{M}_{\mu}$.

We claim that there exists $r_{0}>0$ such that $\tilde{v} \equiv \tilde{v}_{r_{0}}$ satisfies $E_{\mu}(\tilde{v})<m\left(a_{\infty}\right)$. Indeed, if this were not true, then $E_{\mu}\left(t_{r} v_{r}\right) \geqslant m\left(a_{\infty}\right)$ for all $r>0$. Since $\omega \in \mathcal{M}_{\mu}$ and $v_{r} \rightarrow \omega$ in $W^{1, p}(\mathbb{R})$ as $r \rightarrow \infty$, we conclude that $t_{r} \rightarrow 1$. Hence, the monotonicity of the function $s \mapsto m(s)$ implies that

$$
m\left(a_{\infty}\right) \leqslant \liminf _{r \rightarrow \infty} E_{\mu}\left(t_{r} v_{r}\right)=E_{\mu}(\omega)=m(\mu)<m\left(a_{\infty}\right)
$$

which does not make sense.
Without loss of generality, we may suppose that $a(0)=a_{0}$. Recalling that a is continuous and the support of \tilde{v} is compact, we obtain ε_{0} such that $a(\varepsilon x) \leqslant \mu$ for any $\varepsilon \in\left(0, \varepsilon_{0}\right)$ and $x \in \operatorname{supp} \tilde{v}$. Thus,

$$
\int a(\varepsilon x)|\nabla \tilde{v}|^{p} \leqslant \int \mu|\nabla \tilde{v}|^{p} \quad \text { for any } \varepsilon \in\left(0, \varepsilon_{0}\right)
$$

and therefore

$$
I_{\varepsilon}(t \tilde{v}) \leqslant E_{\mu}(t \tilde{v}) \quad \text { for any } \varepsilon \in\left(0, \varepsilon_{0}\right), t \geqslant 0
$$

Hence

$$
\max _{t \geqslant 0} I_{\varepsilon}(t \tilde{v}) \leqslant \max _{t \geqslant 0} E_{\mu}(t \tilde{v})=E_{\mu}(\tilde{v})<m\left(a_{\infty}\right) \quad \text { for any } \varepsilon \in\left(0, \varepsilon_{0}\right)
$$

and it follows from (2.3) that $c_{\varepsilon}<m\left(a_{\infty}\right)$ for any $\varepsilon \in\left(0, \varepsilon_{0}\right)$, as desired.
We are now ready to present the proof of our existence theorem.

Proof of Theorem 1.1. Let ε_{0} be given by the above lemma and fix $\varepsilon \in\left(0, \varepsilon_{0}\right)$. Since I_{ε} has the mountain pass geometry, we can use (2.3) to obtain $\left(u_{n}\right) \subset X_{\varepsilon}$ such that

$$
I_{\varepsilon}\left(u_{n}\right) \rightarrow c_{\varepsilon} \quad \text { and } \quad I_{\varepsilon}^{\prime}\left(u_{n}\right) \rightarrow 0
$$

Recalling that $c_{\varepsilon}<m\left(a_{\infty}\right)$, we may invoke Proposition 3.3 to guarantee that, along a subsequence, $u_{n} \rightarrow u$ with u being such that $I_{\varepsilon}(u)=c_{\varepsilon}$ and $I_{\varepsilon}^{\prime}(u)=0$. Arguing as in the proof of Proposition 2.2 we can check that u is positive in \mathbb{R}^{N} and therefore it is a ground state solution of the problem $\left(P_{\varepsilon}\right)$. The theorem is proved.

5. Multiplicity of solutions

Let $\omega \equiv \omega_{a_{0}}$ be a ground state solution of the problem $\left(A P_{a_{0}}\right)$ and consider $\eta:[0, \infty) \rightarrow \mathbb{R}$ a cut-off function such that $0 \leqslant \eta \leqslant 1, \eta(s)=1$ if $0 \leqslant s \leqslant 1 / 2$ and $\eta(s)=0$ if $s \geqslant 1$. We recall that M denotes the set of global minima points of a and define, for each $y \in M, \psi_{\varepsilon, y}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ by setting

$$
\psi_{\varepsilon, y}(x)=\eta(|\varepsilon x-y|) \omega\left(\frac{\varepsilon x-y}{\varepsilon}\right)
$$

Let t_{ε} be the unique positive number satisfying

$$
\max _{t \geqslant 0} I_{\varepsilon}\left(t \psi_{\varepsilon, y}\right)=I_{\varepsilon}\left(t_{\varepsilon} \psi_{\varepsilon, y}\right)
$$

and define the map $\Phi_{\varepsilon}: M \rightarrow \mathcal{N}_{\varepsilon}$ in the following way:

$$
\begin{equation*}
\Phi_{\varepsilon}(y)=\Phi_{\varepsilon, y}=t_{\varepsilon} \psi_{\varepsilon, y} \tag{5.1}
\end{equation*}
$$

The definition of t_{ε} shows that Φ_{ε} is well defined. Moreover, the following holds.

Lemma 5.1. $\lim _{\varepsilon \rightarrow 0} I_{\varepsilon}\left(\Phi_{\varepsilon, y}\right)=m\left(a_{0}\right)$ uniformly for $y \in M$.
Proof. Suppose, by contradiction, that the lemma is false. Then there exist $\delta>0,\left(y_{n}\right) \subset M$ and $\varepsilon_{n} \rightarrow 0$ such that

$$
\begin{equation*}
\left|I_{\varepsilon_{n}}\left(\Phi_{\varepsilon_{n}, y_{n}}\right)-m\left(a_{0}\right)\right| \geqslant \delta>0 \tag{5.2}
\end{equation*}
$$

In order to simplify the notation, we write only Φ_{n}, ψ_{n} and t_{n} to denote $\Phi_{\varepsilon_{n}, y_{n}}, \psi_{\varepsilon_{n}, y_{n}}$ and $t_{\varepsilon_{n}}$, respectively.

Since $\left\langle I_{\varepsilon_{n}}^{\prime}\left(\Phi_{n}\right), \Phi_{n}\right\rangle=0$, we have that $\left\|\Phi_{n}\right\|_{\varepsilon_{n}}^{p}=\int f\left(\Phi_{n}\right) \Phi_{n}$. Thus, we can use (5.1) and the change of variables $z=\left(\varepsilon_{n} x-y_{n}\right) / \varepsilon_{n}$, to get

$$
\begin{align*}
\left\|\psi_{n}\right\|_{\varepsilon_{n}}^{p} & =\int\left(a\left(\varepsilon_{n} z+y_{n}\right)\left|\nabla\left(\eta\left(\left|\varepsilon_{n} z\right|\right) w(z)\right)\right|^{p}+\left|\eta\left(\left|\varepsilon_{n} z\right|\right) w(z)\right|^{p}\right) \mathrm{d} z \\
& =\int \frac{f\left(t_{n} \eta\left(\left|\varepsilon_{n} z\right|\right) \omega(z)\right)}{\left(t_{n} \eta\left(\left|\varepsilon_{n} z\right|\right) \omega(z)\right)^{p-1}}\left|\eta\left(\left|\varepsilon_{n} z\right|\right) \omega(z)\right|^{p} \mathrm{~d} z \tag{5.3}
\end{align*}
$$

By using the Lebesgue theorem, we can check that

$$
\begin{equation*}
\left\|\psi_{n}\right\|_{\varepsilon_{n}}^{p} \rightarrow\|\omega\|_{W_{a_{0}}}^{p} \quad \int f\left(\psi_{n}\right) \psi_{n} \rightarrow \int f(\omega) \omega \quad \text { and } \quad \int F\left(\psi_{n}\right) \rightarrow \int F(\omega) \tag{5.4}
\end{equation*}
$$

For n large we have that $B_{1 / 2}(0) \subset B_{1 /\left(2 \varepsilon_{n}\right)}(0)$. Thus, if we set $\alpha=\min \{w(z):|z| \leqslant 1 / 2\}>0$, we infer from (5.3), the definition of η and (f_{5}) that

$$
\left\|\psi_{n}\right\|_{\varepsilon_{n}}^{p} \geqslant \int_{B_{1 / 2}(0)} \frac{f\left(t_{n} \omega(z)\right)}{\left(t_{n} \omega(z)\right)^{p-1}}|\omega(z)|^{p} \mathrm{~d} z \geqslant \frac{f\left(t_{n} \alpha\right)}{\left(t_{n} \alpha\right)^{p-1}} \int_{B_{1 / 2}(0)}|\omega(z)|^{p} \mathrm{~d} z .
$$

We claim that $\left(t_{n}\right)$ has a bounded subsequence. Indeed, if this is not true, then $\left|t_{n}\right| \rightarrow \infty$, and therefore we can use the last estimate, (2.2) and $\left(f_{4}\right)$ to conclude that $\left\|\psi_{n}\right\|_{\varepsilon_{n}}^{p} \rightarrow+\infty$, contradicting the first assertion in (5.4). Thus, up to a subsequence, we have $t_{n} \rightarrow t_{0} \geqslant 0$. If $t_{0}=0$, we conclude from (5.4) that $\left\|t_{n} \psi_{n}\right\|_{\varepsilon_{n}} \rightarrow 0$, contradicting (2.4). Thus we have that $t_{0}>0$.

Since $t_{n} \rightarrow t_{0}>0$, we can take the limit in (5.3) to obtain

$$
\int\left(a_{0}|\nabla \omega|^{p}+|\omega|^{p}\right)=\int \frac{f\left(t_{0} \omega\right) \omega}{t_{0}^{p-1}}
$$

from which follows that $t_{0} \omega \in \mathcal{M}_{a_{0}}$. Since ω also belongs in $\mathcal{M}_{a_{0}}$, we conclude that $t_{0}=1$.
Now we note that

$$
\begin{aligned}
I_{\varepsilon_{n}}\left(\Phi_{n}\right)= & \frac{t_{n}^{p}}{p} \int\left(a\left(\varepsilon_{n} z+y_{n}\right)\left|\nabla\left(\eta\left(\left|\varepsilon_{n} z\right|\right)\right) \omega(z)\right|^{p}+\left|\eta\left(\left|\varepsilon_{n} z\right|\right) \omega(z)\right|^{p}\right) \mathrm{d} z \\
& -\int F\left(t_{n} \eta\left(\left|\varepsilon_{n} z\right|\right) \omega(z)\right) \mathrm{d} z
\end{aligned}
$$

Letting $n \rightarrow \infty$, recalling that $t_{n} \rightarrow 1$, using (5.4) and recovering the original notation, we get

$$
\lim _{n \rightarrow \infty} I_{\varepsilon_{n}}\left(\Phi_{\varepsilon_{n}, y_{n}}\right)=E_{a_{0}}(\omega)=m\left(a_{0}\right)
$$

which contradicts (5.2) and proves the lemma.
Lemma 5.2. Let $\left(u_{n}\right) \subset \mathcal{M}_{\mu}$ be such that $E_{\mu}\left(u_{n}\right) \rightarrow m(\mu)$ and $u_{n} \rightharpoonup u \neq 0$ weakly in $W^{1, p}\left(\mathbb{R}^{N}\right)$. Then, up to a subsequence, $u_{n} \rightarrow u$ in $W^{1, p}\left(\mathbb{R}^{N}\right)$.

Proof. This proof follows quite similar lines as the proof of [1, Theorem 3.1]. We omit the details.

Lemma 5.3. Let $\left(\varepsilon_{n}\right) \subset \mathbb{R}^{+}$and $\left(u_{n}\right) \subset \mathcal{N}_{\varepsilon_{n}}$ be such that $\varepsilon_{n} \rightarrow 0$ and $I_{\varepsilon_{n}}\left(u_{n}\right) \rightarrow m\left(a_{0}\right)$. Then there exists a sequence $\left(\tilde{y}_{n}\right) \subset \mathbb{R}^{N}$ such that $v_{n}(x)=u_{n}\left(x+\tilde{y}_{n}\right)$ has a convergent subsequence in $W^{1, p}\left(\mathbb{R}^{N}\right)$. Moreover, up to a subsequence, $\left(y_{n}\right)=\left(\varepsilon_{n} \tilde{y}_{n}\right)$ is such that $y_{n} \rightarrow y \in M$.

Proof. By standard arguments we have that $\left(u_{n}\right)$ is bounded in $W^{1, p}\left(\mathbb{R}^{N}\right)$. Since $m\left(a_{0}\right)>0$, and since $\left\|u_{n}\right\|_{\varepsilon_{n}} \rightarrow 0$ would imply $I_{\varepsilon_{n}}\left(u_{n}\right) \rightarrow 0$, we can argue as in the proof of Lemma 2.1 to obtain a sequence $\left(\tilde{y}_{n}\right) \subset \mathbb{R}^{N}$ and constants $R, \gamma>0$ such that

$$
\liminf _{n \rightarrow \infty} \int_{B_{R}\left(\tilde{y}_{n}\right)}\left|u_{n}\right|^{p} \geqslant \gamma>0 .
$$

If we define $v_{n}(x)=u_{n}\left(x+\tilde{y}_{n}\right)$ we have that, up to a subsequence, $v_{n} \rightharpoonup v \neq 0$ weakly in $W^{1, p}\left(\mathbb{R}^{N}\right)$.

Let $\left(t_{n}\right) \subset(0,+\infty)$ be such that $w_{n}=t_{n} v_{n} \in \mathcal{M}_{a_{0}}$. Defining $y_{n}=\varepsilon_{n} \tilde{y}_{n}$, changing variables and recalling that $u_{n} \in \mathcal{N}_{\varepsilon_{n}}$, we get

$$
\begin{aligned}
m\left(a_{0}\right) \leqslant E_{a_{0}}\left(w_{n}\right) & \leqslant \frac{1}{p} \int\left(a\left(\varepsilon_{n}\left(x+\tilde{y}_{n}\right)\right)\left|\nabla w_{n}\right|^{p}+\left|w_{n}\right|^{p}\right)-\int F\left(w_{n}\right) \\
& =\frac{t_{n}^{p}}{p} \int\left(a\left(\varepsilon_{n} z\right)\left|\nabla u_{n}\right|^{p}+\left|u_{n}\right|^{p}\right) \mathrm{d} z-\int F\left(t_{n} u_{n}\right) \mathrm{d} z \\
& =I_{\varepsilon_{n}}\left(t_{n} u_{n}\right) \leqslant I_{\varepsilon_{n}}\left(u_{n}\right)=m\left(a_{0}\right)+o_{n}(1),
\end{aligned}
$$

from which follows that $E_{a_{0}}\left(w_{n}\right) \rightarrow m\left(a_{0}\right)$.
We claim that, up to a subsequence, $t_{n} \rightarrow t_{0}>0$. Indeed, since $v_{n} \rightarrow 0$, there exists $\delta>0$ such that $0<\delta \leqslant\left\|v_{n}\right\|_{W_{1}}$. Hence, $0<\tilde{\delta} \leqslant\left\|v_{n}\right\|_{W_{a_{0}}}$, for $\tilde{\delta}=\delta \min \left\{1, a_{0}\right\}$. It follows that

$$
0 \leqslant t_{n} \tilde{\delta} \leqslant\left\|t_{n} v_{n}\right\|_{W_{a_{0}}}=\left\|w_{n}\right\|_{W_{a_{0}}} \leqslant C
$$

for some $C>0$. Thus $\left(t_{n}\right)$ is bounded and we can suppose that $t_{n} \rightarrow t_{0} \geqslant 0$. If $t_{0}=0$ then, since $\left(v_{n}\right)$ is bounded, we conclude that $w_{n}=t_{n} v_{n} \rightarrow 0$. Hence $E_{a_{0}}\left(w_{n}\right) \rightarrow 0$, which contradicts $m\left(a_{0}\right)>0$.

Let w be the weak limit of $\left(w_{n}\right)$ in $W^{1, p}\left(\mathbb{R}^{N}\right)$. Since $t_{n} \rightarrow t_{0}>0$ and $v_{n} \rightharpoonup v \neq 0$, it follows from the uniqueness of the weak limit that $w=t_{0} v \neq 0$. Hence, we conclude from Lemma 5.2 that $w_{n} \rightarrow w$, or equivalently, $v_{n} \rightarrow v$ in $W^{1, p}\left(\mathbb{R}^{N}\right)$.

Let us verify that $\left(y_{n}\right)$ has a bounded subsequence. By using conditions $\left(f_{1}\right)-\left(f_{3}\right)$ and the Lebesgue theorem, we can easily see that

$$
\int F\left(w_{n}\right) \rightarrow \int F(w) \quad \text { and } \quad \int\left|w_{n}\right|^{p} \rightarrow \int|w|^{p}
$$

If $\left|y_{n}\right| \rightarrow \infty$, it follows from condition (a_{1}) and Fatou's lemma that

$$
\int a_{\infty}|\nabla w|^{p} \leqslant \liminf _{n \rightarrow \infty} \int a\left(\varepsilon_{n} x+y_{n}\right)\left|\nabla w_{n}\right|^{p}
$$

Since $a_{0}<a_{\infty}$, we infer from the above expressions that

$$
\begin{aligned}
m\left(a_{0}\right) & =E_{0}(w)<\frac{1}{p}\|w\|_{W_{a_{\infty}}}^{p}-\int F(w) \\
& \leqslant \liminf _{n \rightarrow \infty}\left\{\frac{1}{p} \int\left(a\left(\varepsilon_{n} x+y_{n}\right)\left|\nabla w_{n}\right|^{p}+\left|w_{n}\right|^{p}\right)-\int F\left(w_{n}\right)\right\} \\
& =\liminf _{n \rightarrow \infty}\left\{\frac{t_{n}^{p}}{p} \int\left(a\left(\varepsilon_{n} z\right)\left|\nabla u_{n}\right|^{p}+\left|u_{n}\right|^{p}\right) \mathrm{d} z-\int F\left(t_{n} u_{n}\right) \mathrm{d} z\right\} \\
& =\liminf _{n \rightarrow \infty} I_{\varepsilon_{n}}\left(t_{n} u_{n}\right) \leqslant \liminf _{n \rightarrow \infty} I_{\varepsilon_{n}}\left(u_{n}\right)=m\left(a_{0}\right),
\end{aligned}
$$

which does not make sense. Hence, up to a subsequence, $y_{n} \rightarrow y \in \mathbb{R}^{N}$. If $y \notin M$ then $a(y)>a_{0}$ and we obtain a contradiction arguing as above. Thus, $y \in M$ and the lemma is proved.

For any $\delta>0$, let $\rho=\rho_{\delta}>0$ be such that $M_{\delta} \subset B_{\rho}(0)$. Let $\chi: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be defined as $\chi(x)=x$ for $|x|<\rho$ and $\chi(x)=\rho x /|x|$ for $|x| \geqslant \rho$. Finally, let us consider the barycenter map $\beta_{\varepsilon}: \mathcal{N}_{\varepsilon} \rightarrow \mathbb{R}^{N}$ given by

$$
\beta_{\varepsilon}(u)=\frac{\int \chi(\varepsilon x)|u(x)|^{p} \mathrm{~d} x}{\int|u(x)|^{p} \mathrm{~d} x} .
$$

Since $M \subset B_{\rho}(0)$, we can use the definition of χ and the Lebesgue theorem to conclude that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \beta_{\varepsilon}\left(\Phi_{\varepsilon, y}\right)=y \quad \text { uniformly for } y \in M . \tag{5.5}
\end{equation*}
$$

Following [14], we introduce a subset of $\mathcal{N}_{\varepsilon}$ which will be useful in the future. We take a function $h:[0, \infty) \rightarrow[0, \infty)$ such that $h(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$and set

$$
\Sigma_{\varepsilon}=\left\{u \in \mathcal{N}_{\varepsilon}: I_{\varepsilon}(u) \leqslant m\left(a_{0}\right)+h(\varepsilon)\right\} .
$$

Given $y \in M$, we can use Lemma 5.1 to conclude that $h(\varepsilon)=\left|I_{\varepsilon}\left(\Phi_{\varepsilon, y}\right)-m\left(a_{0}\right)\right|$ is such that $h(\varepsilon) \rightarrow 0$ as $\varepsilon \rightarrow 0^{+}$. Thus, $\Phi_{\varepsilon, y} \in \Sigma_{\varepsilon}$ and we have that $\Sigma_{\varepsilon} \neq \emptyset$ for any $\varepsilon>0$.

Lemma 5.4. For any $\delta>0$ we have that

$$
\lim _{\varepsilon \rightarrow 0^{+}} \sup _{u \in \Sigma_{\varepsilon}} \operatorname{dist}\left(\beta_{\varepsilon}(u), M_{\delta}\right)=0
$$

Proof. Let $\left(\varepsilon_{n}\right) \subset \mathbb{R}^{+}$be such that $\varepsilon_{n} \rightarrow 0$. By definition, there exists $\left(u_{n}\right) \subset \Sigma_{\varepsilon_{n}}$ such that

$$
\operatorname{dist}\left(\beta_{\varepsilon_{n}}\left(u_{n}\right), M_{\delta}\right)=\sup _{u \in \Sigma_{\varepsilon_{n}}} \operatorname{dist}\left(\beta_{\varepsilon_{n}}(u), M_{\delta}\right)+o_{n}(1)
$$

Thus, it suffices to find a sequence $\left(y_{n}\right) \subset M_{\delta}$ such that

$$
\begin{equation*}
\left|\beta_{\varepsilon_{n}}\left(u_{n}\right)-y_{n}\right|=o_{n}(1) \tag{5.6}
\end{equation*}
$$

In order to obtain such sequence, we note that $\left(u_{n}\right) \subset \Sigma_{\varepsilon_{n}} \subset \mathcal{N}_{\varepsilon_{n}}$. Thus

$$
c_{\varepsilon_{n}} \leqslant I_{\varepsilon_{n}}\left(u_{n}\right) \leqslant m\left(a_{0}\right)+h\left(\varepsilon_{n}\right),
$$

from which follows that $\lim \sup _{n \rightarrow \infty} c_{\varepsilon_{n}} \leqslant m\left(a_{0}\right)$. On the other hand, since $m\left(a_{0}\right) \leqslant c_{\varepsilon_{n}}$, we also have $m\left(a_{0}\right) \leqslant \liminf _{n \rightarrow \infty} c_{\varepsilon_{n}}$. Hence, taking the limit in the above expression, we conclude that $I_{\varepsilon_{n}}\left(u_{n}\right) \rightarrow m\left(a_{0}\right)$. We may now invoke Lemma 5.3 to obtain a sequence $\left(\tilde{y}_{n}\right) \subset \mathbb{R}^{N}$ such that $\left(y_{n}\right)=\left(\varepsilon_{n} \tilde{y}_{n}\right) \subset M_{\delta}$ for n sufficiently large. Thus,

$$
\begin{aligned}
\beta_{\varepsilon_{n}}\left(u_{n}\right) & =\frac{\int \chi\left(\varepsilon_{n} x\right)\left|u_{n}\right|^{p} \mathrm{~d} x}{\int\left|u_{n}\right|^{p} \mathrm{~d} x}=\frac{\int \chi\left(\varepsilon_{n} z+y_{n}\right)\left|u_{n}\left(z+\tilde{y}_{n}\right)\right|^{p} \mathrm{~d} z}{\int\left|u_{n}\left(z+\tilde{y}_{n}\right)\right|^{p} \mathrm{~d} z} \\
& =y_{n}+\frac{\int\left(\chi\left(\varepsilon_{n} z+y_{n}\right)-y_{n}\right)\left|u_{n}\left(z+\tilde{y}_{n}\right)\right|^{p} \mathrm{~d} z}{\int\left|u_{n}\left(z+\tilde{y}_{n}\right)\right|^{p} \mathrm{~d} z}
\end{aligned}
$$

Since $\varepsilon_{n} z+y_{n} \rightarrow y \in M$, we have that $\beta_{\varepsilon_{n}}\left(u_{n}\right)=y_{n}+o_{n}(1)$ and therefore the sequence $\left(y_{n}\right)$ verifies (5.6). The lemma is proved.

We are now ready to present the proof of the multiplicity result.
Proof of Theorem 1.2. Given $\delta>0$ we can use (5.5), Lemmas 5.1 and 5.4, and argue as in [14, Section 6] to obtain $\varepsilon_{\delta}>0$ such that, for any $\varepsilon \in\left(0, \varepsilon_{\delta}\right)$, the diagram

$$
M \xrightarrow{\Phi_{\varepsilon}} \Sigma_{\varepsilon} \xrightarrow{\beta_{\varepsilon}} M_{\delta}
$$

is well defined and $\beta_{\varepsilon} \circ \Phi_{\varepsilon}$ is homotopically equivalent to the embedding $\iota: M \rightarrow M_{\delta}$. Moreover, using the definition of Σ_{ε} and taking ε_{δ} small if necessary, we may suppose that I_{ε} satisfies the Palais-Smale condition in Σ_{ε}. Standard Ljusternik-Schnirelmann theory provides at least ${ }^{\text {cat }}{ }_{\Sigma_{\varepsilon}}\left(\Sigma_{\varepsilon}\right)$ critical points u_{i} of I_{ε} restricted to $\mathcal{N}_{\varepsilon}$. The same ideas contained in the proof of [9, Lemma 4.3] show that $\operatorname{cat}_{\Sigma_{\varepsilon}}\left(\Sigma_{\varepsilon}\right) \geqslant \operatorname{cat}_{M_{\delta}}(M)$. By using Remark 3.5 and the arguments of the proof of Proposition 2.2, we conclude that each u_{i} is a solution of $\left(P_{\varepsilon}\right)$. The theorem is proved.

Acknowledgment

The authors are grateful to the referee for his/her useful suggestions.

References

[1] C.O. Alves, Existence and multiplicity of solutions for a class of quasilinear equations, Adv. Non. Studies 5 (2005) 73-87.
[2] C.O. Alves, P.C. Carrião, E.S. Medeiros, Multiplicity of solutions for a class of quasilinear problems in exterior domains with Neumann conditions, Abstr. Appl. Anal. 3 (2004) 251-268.
[3] C.O. Alves, G.M. Figueiredo, Existence and multiplicity of positive solutions to a p-Laplacian equation in \mathbb{R}^{N}, preprint.
[4] C.O. Alves, M.A.S. Souto, On existence and concentration behavior of ground state solutions for a class of problems with critical growth, Comm. Pure Appl. Anal. 1 (2002) 417-431.
[5] A. Alvino, P.L. Lions, G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989) 185-220.
[6] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349-381.
[7] M.S. Baouendi, C. Goulaouic, Régularité et théorie spectrale pour une classe d'opérateurs elliptiques dégénérés, Arch. Ration. Mech. Anal. 34 (1969) 361-379.
[8] V. Benci, G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Ration. Mech. Anal. 114 (1991) 79-93.
[9] V. Benci, G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations 2 (1994) 29-48.
[10] H. Berestycki, J.P. Dias, M.J. Esteban, M. Figueira, Eigenvalue problem for some nonlinear Wheeler-DeWitt operators, J. Math. Pures Appl. 72 (1993) 493-515.
[11] P. Caldiroli, R. Musina, On the existence of extremal functions for a weighted Sobolev embedding with critical exponent, Calc. Var. Partial Differential Equations 8 (1999) 365-387.
[12] P. Caldiroli, R. Musina, On a variational degenerate elliptic problem, Nonlinear Differential Equations Appl. 7 (2000) 187-199.
[13] J. Chabrowski, Degenerate elliptic equation involving a subcritical Sobolev exponent, Port. Math. 53 (1996) 167177.
[14] S. Cingolani, M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal. 10 (1997) 1-13.
[15] G.R. Cirmi, M.M. Porzio, L^{∞}-Solutions for some nonlinear degenerate elliptic and parabolic equations, Ann. Mat. Pura Appl. 169 (1995) 67-86.
[16] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1: Physical Origins and Classical Methods, Springer-Verlag, Berlin, 1985.
[17] M. Lazzo, Existence and multiplicity results for a class of nonlinear elliptic problems on \mathbb{R}^{N}, Discrete Contin. Dynam. Systems (suppl) (2003) 526-535.
[18] G.B. Li, Some properties of weak solutions of nonlinear scalar fields equations, Ann. Acad. Sci. Fenn. Ser. AI Math. 15 (1990) 27-36.
[19] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincaré Non Linéaire 1 (1984) 223-283.
[20] M.K.V. Murthy, V. Stampacchia, Boundary problems for some degenerate elliptic operators, Ann. Mat. Pura Appl. (4) 80 (1968) 1-122.
[21] D. Passaseo, Some concentration phenomena in degenerate semilinear elliptic problems, Nonlinear Anal. 24 (1995) 1011-1025.
[22] A. Pomponio, S. Secchi, On a class of singularly perturbed elliptic equations in divergence form: Existence and multiplicity results, J. Differential Equations 207 (2004) 228-266.
[23] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992) 270-291.
[24] E.A.B. Silva, S.H.M. Soares, Quasilinear Dirichlet problems in \mathbb{R}^{N} with critical growth, Nonlinear Anal. 43 (2001) 1-20.
[25] M. Squassina, Spike solutions for a class of singularly perturbed quasilinear elliptic equations, Nonlinear Anal. 54 (2003) 1307-1336.
[26] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. XX (1967) 721-747.
[27] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
[28] J. Yang, Positive solutions of quasilinear elliptic obstacle problems with critical exponents, Nonlinear Anal. 25 (1995) 1283-1306.

[^0]: * Corresponding author.

 E-mail addresses: giovany@ufpa.br (G.M. Figueiredo), furtado@ime.unicamp.br (M.F. Furtado).
 ${ }^{1}$ Supported by post-doctoral grant 04/09232-2 from FAPESP/Brazil.

