

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 321 (2006) 705-721

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

Multiplicity of positive solutions for a class of elliptic equations in divergence form

Giovany M. Figueiredo^a, Marcelo F. Furtado^{b,*,1}

^a Departamento de Matemática, Universidade Federal do Pará, 66075-110 Belém-PA, Brazil ^b IMECC–UNICAMP, Cx. Postal 6065, 13083-970 Campinas-SP, Brazil

> Received 8 June 2005 Available online 26 September 2005 Submitted by P.J. McKenna

Abstract

We prove results concerning the existence and multiplicity of positive solutions for the quasilinear equation

 $-\operatorname{div}(a(\varepsilon x)|\nabla u|^{p-2}\nabla u) + |u|^{p-2}u = f(u) \quad \text{in } \mathbb{R}^N, \qquad u \in W^{1,p}(\mathbb{R}^N),$

where $2 \le p < N$, *a* is a positive potential and *f* is a superlinear function. We relate the number of solutions with the topology of the set where *a* attains its minimum. The results are proved by using minimax theorems and Ljusternik–Schnirelmann theory.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Positive solutions; Ljusternik-Schnirelmann theory; Quasilinear problems

1. Introduction

The purpose of this article is to investigate the existence and multiplicity of solutions of the following quasilinear problem:

$$\begin{cases} -\operatorname{div}(a(\varepsilon x)|\nabla u|^{p-2}\nabla u) + |u|^{p-2}u = f(u) & \text{in } \mathbb{R}^N, \\ u \in W^{1,p}(\mathbb{R}^N), \quad u(x) > 0 & \text{for all } x \in \mathbb{R}^N, \end{cases}$$
(P_{\varepsilon})

E-mail addresses: giovany@ufpa.br (G.M. Figueiredo), furtado@ime.unicamp.br (M.F. Furtado).

¹ Supported by post-doctoral grant 04/09232-2 from FAPESP/Brazil.

0022-247X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2005.08.084

^{*} Corresponding author.

where $\varepsilon > 0, 2 \leq p < N, f : \mathbb{R} \to \mathbb{R}$ is a C^1 -function and the potential a satisfies

 $(a_1) \ a: \mathbb{R}^N \to \mathbb{R}$ is continuous and

$$0 < a_0 := \inf_{x \in \mathbb{R}^N} a(x) < a_\infty := \liminf_{|x| \to \infty} a(x).$$

This kind of hypothesis was introduced by Rabinowitz [23] in the study of a nonlinear Schrödinger equation.

Since we are looking for positive solutions, we suppose that

$$(f_1) f(s) = 0$$
 for all $s < 0$.

Moreover, we assume the following growth conditions at the origin and at infinity:

(f₂) $f(s) = o(s^{p-1})$ as $s \to 0^+$, (f₃) there exists $p < q < p^* = Np/(N-p)$ such that

$$\lim_{s \to \infty} \frac{f(s)}{s^{q-1}} = 0.$$

We call $u \in W^{1,p}(\mathbb{R}^N)$ a weak solution of the equation in (P_{ε}) if it verifies

$$\int_{\mathbb{R}^N} \left(a(\varepsilon x) |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi + |u|^{p-2} u\varphi \right) \mathrm{d}x = \int_{\mathbb{R}^N} f(u)\varphi \,\mathrm{d}x,$$

for all $\varphi \in W^{1,p}(\mathbb{R}^N)$. If we denote by $F(t) = \int_0^t f(s) ds$ the primitive of f, conditions $(f_1) - (f_3)$ imply that the functional $I_{\varepsilon} : W^{1,p}(\mathbb{R}^N) \to \mathbb{R}$ given by

$$I_{\varepsilon}(u) = \frac{1}{p} \int_{\mathbb{R}^{N}} \left(a(\varepsilon x) |\nabla u|^{p} + |u|^{p} \right) \mathrm{d}x - \int_{\mathbb{R}^{N}} F(u) \, \mathrm{d}x$$

is well defined. Moreover, $I_{\varepsilon} \in C^2(W^{1,p}(\mathbb{R}^N), \mathbb{R})$ and the weak solutions of (P_{ε}) are precisely the positive critical points of I_{ε} .

In order to obtain such critical points, we use minimax theorems and Ljusternik–Schnirelmann theory. As it is known, this kind of theory is based on the existence of a linking structure and on deformation lemmas [6]. In general, to derive such deformation results, it is supposed that the functional I_{ε} satisfies some compactness condition. In this article, we use the classical Palais–Smale condition (see Section 2). Related with this condition we suppose that f verifies the well-known Ambrosetti–Rabinowitz superlinear condition, that is,

 (f_4) there exists $\theta > p$ such that

$$0 < \theta F(s) \leq sf(s)$$
 for all $s > 0$.

Finally, in order to localize the minimax levels of the functional I_{ε} , we suppose the following monotonicity condition for f:

(f₅) the function $s \mapsto f(s)/s^{p-1}$ is increasing for s > 0.

We recall that a solution u_0 of (P_{ε}) is called ground state solution if it possesses minimum energy between all solutions, that is,

$$I_{\varepsilon}(u_0) = \min \{ I_{\varepsilon}(u) \colon u \text{ is a solution of } (P_{\varepsilon}) \}.$$

In our first result we obtain, for $\varepsilon > 0$ small enough, the existence of a ground state solution of (P_{ε}) .

Theorem 1.1. Suppose that $2 \le p < N$, a satisfies (a_1) and the function f satisfies $(f_1)-(f_5)$. Then there exists $\varepsilon_0 > 0$ such that, for any $\varepsilon \in (0, \varepsilon_0)$, the problem (P_{ε}) has a ground state solution.

In the paper we also relate the number of solutions of (P_{ε}) with the topology of the set of minima of the potential *a*. In order to present our result, we introduce the set of global minima of *a*, given by

$$M = \left\{ x \in \mathbb{R}^N \colon a(x) = a_0 \right\}.$$

Note that, in view of (a_1) , the set M is compact. For any $\delta > 0$, let us denote by $M_{\delta} = \{x \in \mathbb{R}^N : \operatorname{dist}(x, M) \leq \delta\}$ the closed δ -neighborhood of M.

We recall that, if Y is a closed set of a topological space X, $\operatorname{cat}_X(Y)$ is the Ljusternik– Schnirelmann category of Y in X, namely the least number of closed and contractible sets in X which cover Y. In our multiplicity result we assume a condition stronger than (f_5) and prove the following theorem.

Theorem 1.2. Suppose that $2 \le p < N$, a satisfies (a_1) , the function f satisfies $(f_1)-(f_4)$ and

 (\widehat{f}_5) there exist $\sigma \in (p, p^*)$ and $C_{\sigma} > 0$ such that

$$f'(s)s - (p-1)f(s) \ge C_{\sigma}s^{\sigma-1}$$
 for all $s > 0$.

Then, for any $\delta > 0$ given, there exists $\varepsilon_{\delta} > 0$ such that, for any $\varepsilon \in (0, \varepsilon_{\delta})$, the problem (P_{ε}) has at least $\operatorname{cat}_{M_{\delta}}(M)$ solutions.

In the proof of Theorem 1.2 we apply a technique which was introduced by Benci and Cerami in [8]. It consists in making a comparison between the category of some sublevel sets of the energy functional I_{ε} , constrained on some appropriated manifold, and the category of the set M.

Several physical phenomena related to equilibrium of continuous media are modeled by the problem

$$-\operatorname{div}(c(x)\nabla u) = g(x, u) \quad \text{in } \Omega, \qquad u = 0 \quad \text{on } \partial\Omega, \tag{1.1}$$

where Ω is a domain of \mathbb{R}^N , g is a regular function and c is a nonnegative weight. In order to be able to deal with media which possibly are somewhere "perfect" insulators or "perfect" conductors (see [16]) the coefficient c is allowed to vanish somewhere or to be unbounded.

There is a quite extensive literature about the regularity and spectral theory of the above problem when $g(x, u) \equiv g(u)$ is a linear function (see [5,7,10,15,20] and references therein). Concerning the nonlinear problem we can cite the papers [11,12,21,22,25].

In [13], Chabrowski studied the problem

$$-\operatorname{div}(c(x)\nabla u) + \lambda u = K(x)|u|^{q-2}u \quad \text{in } \mathbb{R}^N$$
(1.2)

with $\lambda > 0$, $2 < q < 2^*$ and $c \in C(\mathbb{R}^N) \cap L^{\infty}(\mathbb{R}^N)$ satisfying

$$0 \leqslant c(x) \leqslant \lim_{|x| \to \infty} c(x)$$

and being positive in the exterior of some ball $B_R(0)$. By using minimization arguments he obtained a nonzero solution of (1.2) belonging in some appropriated Sobolev space. In his result, it was also supposed an integrability condition for c(x) and that $K \in L^{\infty}(\mathbb{R}^N)$ verifies either $K(x) \ge \lim_{|x|\to\infty} K(x)$ or K is periodic.

More recently, Lazzo [17] considered Eq. (1.2) with $K \equiv 1$ and the function *c* satisfying the condition (a_1) with a(x) replaced by c(x). She proved that, for any $\delta > 0$ given, there exists $\lambda_{\delta} > 0$ such that (1.2) possesses at least $\operatorname{cat}_{M_{\delta}}(M)$ positive solutions for any $\lambda > \lambda_{\delta}$.

The results of this paper extend those of [17] in two senses: first because we deal with $2 \le p < N$ instead of p = 2, and second because, in general, our nonlinearity f is not a power. The main problem in considering 2 is that we need to work in a Sobolev space without Hilbertian structure. Thus, some calculations that involve the Brezis–Lieb lemma are more difficult. Since <math>f(u) may be different from $|u|^{q-2}u$, we cannot use the same arguments developed in [17]. Thus, we adapt some ideas from [3,4] and make a detailed study of the behavior of the functional I_{ε} restricted to its Nehari manifold. However, we would like to emphasize that our results seem to be new even in the semilinear case p = 2.

It is worthwhile to mention that our last result is closely related to those presented by Pomponio and Secchi in [22]. There, the authors studied positive solutions for the problem

$$-\operatorname{div}(J(\varepsilon x)\nabla u) + V(\varepsilon x)u = f(u) \quad \text{in } \mathbb{R}^N,$$

where $\varepsilon > 0$, J is a symmetric uniformly elliptic matrix and V is a positive potential. They proved some multiplicity results in the same spirit of Theorem 1.2 (see [22, Section 6]). We finally mention the paper of Cingolani and Lazzo [14], where the authors considered positive solutions for the Schrödinger equation

$$-\Delta u + a(\varepsilon x)u = |u|^{q-2}u \quad \text{in } \mathbb{R}^N$$

with $\varepsilon > 0$, $2 < q < 2^*$ and *a* satisfying (a_1) , and obtained a multiplicity result similar to Theorem 1.2.

The paper is organized as follows. In Section 2 we present the abstract framework of the problem as well as some results about the autonomous problem. In Section 3 we obtain some compactness properties of the functional I_{ε} . Theorem 1.1 is proved in Section 4 and the final Section 5 is devoted to the proof of Theorem 1.2.

2. The variational framework

Throughout the paper we suppose that the functions a and f satisfy the conditions (a_1) and $(f_1)-(f_4)$, respectively. Since $(\widehat{f_5})$ implies (f_5) , we also assume hereafter that the function $s \mapsto f(s)/s^{p-1}$ is increasing for s > 0. We write only $\int u$ instead of $\int_{\mathbb{R}^N} u(x) dx$.

For any $\varepsilon > 0$, let X_{ε} be the Sobolev space $W^{1,p}(\mathbb{R}^N)$ endowed with the norm

$$\|u\|_{\varepsilon} = \left\{ \int \left(a(\varepsilon x) |\nabla u|^p + |u|^p \right) \right\}^{1/p}$$

Since the potential *a* is bounded and positive, the above norm is equivalent to the standard norm of $W^{1,p}(\mathbb{R}^N)$.

As stated in the introduction, we will look for critical points of the C^2 -functional $I_{\varepsilon}: X_{\varepsilon} \to \mathbb{R}$ given by

$$I_{\varepsilon}(u) = \frac{1}{p} \int \left(a(\varepsilon x) |\nabla u|^p + |u|^p \right) - \int F(u),$$

where $F(t) = \int_0^s f(s) ds$. We introduce the Nehari manifold of I_{ε} by setting

$$\mathcal{N}_{\varepsilon} = \left\{ u \in X_{\varepsilon} \setminus \{0\} \colon \left\langle I_{\varepsilon}'(u), u \right\rangle = 0 \right\} = \left\{ u \in X_{\varepsilon} \setminus \{0\} \colon \|u\|_{\varepsilon}^{p} = \int f(u)u \right\}$$

and consider the following minimization problem:

$$c_{\varepsilon} = \inf_{u \in \mathcal{N}_{\varepsilon}} I_{\varepsilon}(u).$$

We present now some properties of c_{ε} and $\mathcal{N}_{\varepsilon}$. For the proofs we refer to [27, Chapter 4]. First we observe that, for any $u \in X_{\varepsilon} \setminus \{0\}$ there exists a unique $t_u > 0$ such that $t_u u \in \mathcal{N}_{\varepsilon}$. The maximum of the function $t \mapsto I_{\varepsilon}(tu)$ for $t \ge 0$ is achieved at $t = t_u$ and the function $u \mapsto t_u$ is continuous from $X_{\varepsilon} \setminus \{0\}$ to $(0, \infty)$. Given $\delta > 0$, we can use $(f_1)-(f_3)$ to obtain $C_{\delta} > 0$ such that

$$\left|f(s)\right| \leq \delta |s|^{p-1} + C_{\delta} |s|^{q-1} \quad \text{for all } s \in \mathbb{R}.$$
(2.1)

Since q > p, the above estimate and standard calculations imply that 0 is a local minimum of I_{ε} . Moreover, by (f_1) and (f_4) , we have that

$$F(s) \ge C|s|^{\theta} \quad \text{for all } s \in \mathbb{R}, \tag{2.2}$$

and some C > 0. Hence,

$$I_{\varepsilon}(tu) \leqslant \frac{t^{p}}{p} \|u\|_{\varepsilon}^{p} - Ct^{\theta} \int |u|^{\theta}$$

and we conclude that $I_{\varepsilon}(tu) \to -\infty$ as $t \to \infty$, for any $u \in X_{\varepsilon} \setminus \{0\}$.

The above considerations show that I_{ε} satisfies the geometry of the mountain pass theorem. By using (f_5) and arguing as in [27, Theorem 4.2], we can prove that c_{ε} is positive, it coincides with the mountain pass level of I_{ε} and satisfies

$$c_{\varepsilon} = \inf_{\gamma \in \Gamma_{\varepsilon}} \max_{t \in [0,1]} I_{\varepsilon}(\gamma(t)) = \inf_{u \in X_{\varepsilon} \setminus \{0\}} \max_{t \ge 0} I_{\varepsilon}(tu) > 0,$$
(2.3)

where $\Gamma_{\varepsilon} = \{ \gamma \in C([0, 1], X_{\varepsilon}) : \gamma(0) = 0, I_{\varepsilon}(\gamma(1)) < 0 \}.$

As we will see, it is important to compare c_{ε} with the minimax level of the autonomous problem

$$\begin{cases} -\mu \operatorname{div}(|\nabla u|^{p-2}\nabla u) + |u|^{p-2}u = f(u) \quad \text{in } \mathbb{R}^N, \\ u \in W^{1,p}(\mathbb{R}^N), \quad u(x) > 0 \quad \text{for all } x \in \mathbb{R}^N. \end{cases}$$
(AP_µ)

Denote by $\|\cdot\|_{W_{\mu}}$ the following norm in $W^{1,p}(\mathbb{R}^N)$:

$$||u||_{W_{\mu}} = \left\{ \int \left(\mu |\nabla u|^{p} + |u|^{p} \right) \right\}^{1/p}$$

It is well defined and it is equivalent to the standard norm of $W^{1,p}(\mathbb{R}^N)$. The solutions of (AP_μ) are precisely the positive critical points of the functional $E_\mu: W^{1,p}(\mathbb{R}^N) \to \mathbb{R}$ given by

$$E_{\mu}(u) = \frac{1}{p} \int \left(\mu |\nabla u|^p + |u|^p \right) - \int F(u)$$

Let \mathcal{M}_{μ} be the Nehari manifold of E_{μ} given by

$$\mathcal{M}_{\mu} = \left\{ u \in W^{1,p}(\mathbb{R}^N) \setminus \{0\} \colon \left\langle E'_{\mu}(u), u \right\rangle = 0 \right\}$$

and define $m(\mu)$ by setting

$$m(\mu) = \inf_{u \in \mathcal{M}_{\mu}} E_{\mu}(u).$$

The number $m(\mu)$ and the manifold \mathcal{M}_{μ} have properties similar to those of c_{ε} and $\mathcal{N}_{\varepsilon}$. We devote the rest of this section to show that $m(\mu)$ is attained by a positive function.

We start by recalling the definition of the Palais–Smale condition. So, let V be a Banach space, V be a C^1 -manifold of V and $I: V \to \mathbb{R}$ a C^1 -functional. We say that $I|_{\mathcal{V}}$ satisfies the Palais–Smale condition at level c ((PS)_c for short) if any sequence $(u_n) \subset \mathcal{V}$ such that $I(u_n) \to c$ and $||I'(u_n)||_* \to 0$ contains a convergent subsequence. Here, we are denoting by $||I'(u)||_*$ the norm of the derivative of I restricted to V at the point u (see [27, Section 5.3]).

Lemma 2.1. Let $(u_n) \subset W^{1,p}(\mathbb{R}^N)$ be a (PS)_c sequence for E_u . Then we have either

- (i) $||u_n||_{W_u} \to 0$, or
- (ii) there exist a sequence $(y_n) \subset \mathbb{R}^N$ and constants $R, \gamma > 0$ such that

$$\liminf_{n\to\infty}\int_{B_R(y_n)}|u_n|^p\geqslant\gamma>0.$$

Proof. Suppose that (ii) does not occur. Condition (f_4) and standard calculations show that (u_n) is bounded in $W^{1,p}(\mathbb{R}^N)$. Thus, it follows from a result of P.L. Lions [19, Lemma I.1] that $u_n \to 0$ in $L^s(\mathbb{R}^N)$ for all $p < s < p^*$. Given $\delta > 0$, we can use (2.1) to get

$$0 \leq \left| \int f(u_n) u_n \right| \leq \delta \int |u_n|^p + C_\delta \int |u_n|^q$$

Since (u_n) is bounded in $L^p(\mathbb{R}^N)$, $u_n \to 0$ in $L^q(\mathbb{R}^N)$ and δ is arbitrary, we conclude that $\int f(u_n)u_n \to 0$. Recalling that $\langle E'_{\mu}(u_n), u_n \rangle \to 0$, we get

$$||u_n||_{W_{\mu}}^p = \int f(u_n)u_n + o_n(1) \to 0.$$

Hence (i) holds and the lemma is proved. \Box

Proposition 2.2. Suppose that $2 \le p < N$, a satisfies (a_1) and the function f satisfies $(f_1)-(f_5)$. Then, for any $\mu > 0$, the problem (AP_{μ}) has a ground state solution.

Proof. Conditions $(f_1)-(f_4)$ imply that E_{μ} satisfies the mountain pass geometry. Thus, there exists a sequence $(u_n) \subset W^{1,p}(\mathbb{R}^N)$ such that

$$E_{\mu}(u_n) \to m(\mu)$$
 and $E'_{\mu}(u_n) \to 0$.

Since (u_n) is bounded, up to a subsequence, $u_n \rightarrow u$ weakly in $W^{1,p}(\mathbb{R}^N)$ and $u_n(x) \rightarrow u(x)$ a.e. in \mathbb{R}^N . By adapting standard calculations [28] (see also [24, Corollary 3.7]), we can obtain a subsequence, still denoted by (u_n) , such that

$$\nabla u_n(x) \to \nabla u(x) \quad \text{a.e. } x \in \mathbb{R}^N,$$

$$|\nabla u_n|^{p-2} \frac{\partial u_n}{\partial x_i} \to |\nabla u|^{p-2} \frac{\partial u}{\partial x_i} \quad \text{weakly in } \left(L^p(\mathbb{R}^N)\right)^*, \quad 1 \le i \le N.$$

The weak convergence of (u_n) , the above expression and the subcritical growth of f imply that $E'_{\mu}(u) = 0$.

Suppose that $u \neq 0$. Then $u \in \mathcal{M}_{\mu}$ and, if we denote by $u^{\pm} = \max\{\pm u, 0\}$ the positive (negative) part of u, we get

$$0 = \left\langle E'_{\mu}(u), u^{-} \right\rangle = \|u^{-}\|_{W_{\mu}}^{p} - \int f(u)u^{-} = \|u^{-}\|_{W_{\mu}}^{p}$$

and therefore $u \ge 0$ in \mathbb{R}^N . Adapting arguments from [18, Theorem 1.11], we conclude that $u \in L^{\infty}(\mathbb{R}^N) \cap C^{1,\alpha}_{\text{loc}}(\mathbb{R}^N)$ for some $0 < \alpha < 1$, and therefore it follows from Harnack's inequality [26] that u(x) > 0 for all $x \in \mathbb{R}^N$.

In order to prove that $E_{\mu}(u) = m(\mu)$, it suffices to recall that $u \in \mathcal{M}_{\mu}$ and apply Fatou's lemma to get

$$m(\mu) \leqslant E_{\mu}(u) = E_{\mu}(u) - \frac{1}{p} \langle E'_{\mu}(u), u \rangle = \int \left(\frac{1}{p} f(u) - F(u)\right)$$
$$\leqslant \liminf_{n \to \infty} \int \left(\frac{1}{p} f(u_n) - F(u_n)\right)$$
$$= \liminf_{n \to \infty} \left(E_{\mu}(u_n) - \frac{1}{p} \langle E'_{\mu}(u_n), u_n \rangle\right) = m(\mu).$$

We now consider the case u = 0. Since $m(\mu) > 0$ and E_{μ} is continuous, we cannot have $||u_n||_{W_{\mu}} \to 0$. Thus, we obtain from Lemma 2.1 a sequence $(y_n) \subset \mathbb{R}^N$ and constants $R, \gamma > 0$ such that

$$\liminf_{n\to\infty}\int_{B_R(y_n)}|u_n|^p\geqslant\gamma>0.$$

If we define $v_n(x) = u_n(x + y_n)$ we can use the invariance of \mathbb{R}^N by translations to conclude that $E_{\mu}(v_n) \to m(\mu)$ and $E'_{\mu}(v_n) \to 0$. Moreover, up to a subsequence, $v_n \rightharpoonup v$ weakly in $W^{1,p}(\mathbb{R}^N)$ and $v_n \to v$ in $L^p(B_R(0))$, with v being a critical point of E_{μ} . Since

$$\int_{\mathcal{B}_R(0)} |v|^p = \liminf_{n \to \infty} \int_{\mathcal{B}_R(0)} |v_n|^p = \liminf_{n \to \infty} \int_{\mathcal{B}_R(y_n)} |u_n|^p \ge \gamma > 0,$$

we conclude that $v \neq 0$, and the lemma follows as in the first part of the proof. \Box

Remark 2.3. The above proposition and the same argument employed in [4, Lemma 10] show that the function $\mu \mapsto m(\mu)$ is increasing for $\mu > 0$.

We finish this section by noting that $I_{\varepsilon}(u) \ge E_{a_0}(u)$ for all $u \in W^{1,p}(\mathbb{R}^N)$. Hence, the characterization of c_{ε} (and of $m(a_0)$) given by (2.3) implies that $c_{\varepsilon} \ge m(a_0) > 0$ for any $\varepsilon > 0$. Thus, we can easily conclude that there exists r > 0, independent of ε , such that

$$\|u\|_{\varepsilon} \ge r > 0 \quad \text{for any } \varepsilon > 0, \ u \in \mathcal{N}_{\varepsilon}.$$
(2.4)

3. A compactness condition

In this section we obtain some compactness properties of the functional I_{ε} . We start by noting that, if (u_n) is a (PS)_c sequence for I_{ε} then it is bounded in X_{ε} . In view of (f_1) we have

$$\left\langle I_{\varepsilon}'(u_n), u_n^{-} \right\rangle = \left\| u_n^{-} \right\|_{\varepsilon}^p - \int f(u_n) u_n^{-} = \left\| u_n^{-} \right\|_{\varepsilon}^p$$

The boundedness of (u_n^-) and the above expression imply that $||u_n^-||_{\varepsilon} \to 0$. Thus, we can easily compute

$$I_{\varepsilon}(u_n) = I_{\varepsilon}(u_n^+) + o_n(1)$$
 and $I'_{\varepsilon}(u_n) = I'_{\varepsilon}(u_n^+) + o_n(1)$,

where $o_n(1)$ denotes a quantity that goes to 0 as $n \to \infty$. This shows that (u_n^+) is also a $(PS)_c$ sequence. Since we are always interested in the existence of convergent subsequence, we will assume hereafter that u_n is nonnegative. The same will be done for the autonomous functional E_{μ} .

Lemma 3.1. Let $(v_n) \subset X_{\varepsilon}$ be a (PS)_d sequence for I_{ε} such that $v_n \rightharpoonup 0$ weakly in X_{ε} . Then,

$$\limsup_{n\to\infty}\int (s_n a_\infty - a(\varepsilon x)) |\nabla v_n|^p \leqslant 0$$

for any sequence $(s_n) \subset \mathbb{R}$ satisfying $s_n \to 1$.

Proof. Let C > 0 be such that $\int |\nabla v_n|^p \leq C$. Since $s_n \to 1$ and

$$\int (s_n a_\infty - a(\varepsilon x)) |\nabla v_n|^p = \int (a_\infty - a(\varepsilon x)) |\nabla v_n|^p + a_\infty (s_n - 1) \int |\nabla v_n|^p,$$

it suffices to consider the case $s_n \equiv 1$.

Given $\delta > 0$, we can use condition (a_1) to obtain $R = R(\delta) > 0$ such that $a(\varepsilon x) \ge a_{\infty} - \delta$ for any $|x| \ge R$. We claim that $\int_{B_R(0)} |\nabla v_n|^p \to 0$ as $n \to \infty$. Assuming the claim, we get

$$\int (a_{\infty} - a(\varepsilon x)) |\nabla v_n|^p \leq \int_{B_R(0)} (a_{\infty} - a(\varepsilon x)) |\nabla v_n|^p + \delta C = o_n(1) + \delta C$$

for any $\delta > 0$, and the lemma follows.

In order to prove the claim, we take $\psi \in C_0^{\infty}(\mathbb{R}^N, [0, 1])$ such that $\psi \equiv 1$ in $B_R(0)$ and supp $\psi \subset B_{2R}(0)$. By using condition (a_1) and the definition of I_{ε} and ψ , we get

$$a_0 \int_{B_R(0)} |\nabla v_n|^p \leqslant \int_{B_R(0)} a(\varepsilon x) |\nabla v_n|^p \psi \leqslant \int a(\varepsilon x) |\nabla v_n|^p \psi = A_n + B_n,$$
(3.1)

where

$$A_n = -\int a(\varepsilon x) |\nabla v_n|^{p-2} v_n (\nabla v_n \cdot \nabla \psi)$$

and

$$B_n = \langle I_{\varepsilon}'(v_n), v_n \psi \rangle - \int |v_n|^p \psi + \int f(v_n) v_n \psi.$$

The boundedness of *a* and Hölder's inequality imply that

$$|A_{n}| \leq C_{1} \left(\int |\nabla v_{n}|^{p} \right)^{(p-1)/p} \left(\int |v_{n}|^{p} |\nabla \psi|^{p} \right)^{1/p} \leq C_{2} \left(\int_{B_{2R}(0)} |v_{n}|^{p} |\nabla \psi|^{p} \right)^{1/p}$$

Since $v_n \to 0$ in $L^p_{loc}(\mathbb{R}^N)$ and ψ is regular, we conclude that $A_n \to 0$. Recalling that (v_n) is a Palais–Smale sequence, we can use the boundedness of $(v_n\psi)$, the convergence of v_n in $L^p_{loc}(\mathbb{R}^N)$ and (2.1) as in the proof of Lemma 2.1 to conclude that $B_n \to 0$. It follows from (3.1) that $\int_{B_p(0)} |\nabla v_n|^p \to 0$. \Box

Lemma 3.2. Let $(v_n) \subset X_{\varepsilon}$ be a (PS)_d sequence for I_{ε} such that $v_n \rightharpoonup 0$ weakly in X_{ε} . If $v_n \not\rightarrow 0$ in X_{ε} , then $d \ge m(a_{\infty})$.

Proof. Let $(t_n) \subset (0, +\infty)$ be such that $(t_n v_n) \subset \mathcal{M}_{a_{\infty}}$. We start by proving that

$$t_0 = \limsup_{n \to \infty} t_n \leqslant 1.$$

Arguing by contradiction, we suppose that there exist $\delta > 0$ and a subsequence, which we also denote by (t_n) , such that

$$t_n \ge 1 + \delta \quad \text{for all } n \in \mathbb{N}.$$
 (3.2)

Since (v_n) is bounded in X_{ε} , $\langle I'_{\varepsilon}(v_n), v_n \rangle \to 0$, that is,

$$\int \left(a(\varepsilon x) |\nabla v_n|^p + |v_n|^p \right) = \int f(v_n) v_n + o_n(1)$$

Moreover, recalling that $(t_n v_n) \subset \mathcal{M}_{a_{\infty}}$, we get

$$t_n^p \int \left(a_\infty |\nabla v_n|^p + |v_n|^p \right) = \int f(t_n v_n)(t_n v_n).$$

Since $s \mapsto f(s)/s^{p-1}$ is increasing, we can use the above equalities and (3.2) to get

$$\int (a_{\infty} - a(\varepsilon x)) |\nabla v_n|^p = \int \left(\frac{f(t_n v_n)}{(t_n v_n)^{p-1}} - \frac{f(v_n)}{(v_n)^{p-1}} \right) (v_n)^p + o_n(1)$$

$$\geq \int \left(\frac{f((1+\delta)v_n)}{((1+\delta)v_n)^{p-1}} - \frac{f(v_n)}{(v_n)^{p-1}} \right) (v_n)^p + o_n(1).$$
(3.3)

Since $||v_n||_{\varepsilon} \to 0$, we can argue as in the proof of Lemma 2.1 to obtain $(y_n) \subset \mathbb{R}^N$ and $R, \gamma > 0$ such that

$$\int_{B_R(y_n)} |v_n|^p \ge \gamma > 0.$$
(3.4)

If $\tilde{v}_n(x) = v_n(x + y_n)$, then there exists a nonnegative function \tilde{v} such that, up to a subsequence, $\tilde{v}_n \to \tilde{v}$ weakly in X_{ε} , $\tilde{v}_n \to \tilde{v}$ in $L^p(B_R(0))$ and $\tilde{v}_n(x) \to \tilde{v}(x)$ a.e. in \mathbb{R}^N . Moreover, in view of (3.4), there exists a subset $\Omega \subset B_R(0)$ with positive measure such that $\tilde{v}(x) > 0$ for a.e. $x \in \Omega$.

On the other hand, by changing variables in (3.3), we can use Fatou's lemma and Lemma 3.1 to obtain

$$\int \left(\frac{f((1+\delta)\tilde{v})}{((1+\delta)\tilde{v})^{p-1}} - \frac{f(\tilde{v})}{(\tilde{v})^{p-1}} \right) \tilde{v}^p \leqslant 0.$$

Since the integrand is nonnegative, the above expression contradicts the positiveness of \tilde{v} in Ω . This contradiction shows that $t_0 \leq 1$, as claimed. If $t_0 < 1$ we may suppose, without loss of generality, that $t_n < 1$ for all $n \in \mathbb{N}$. Conditions (f_1) and (f_5) imply that the function $s \mapsto \frac{1}{p} f(s)s - F(s)$ is nondecreasing. Thus,

$$m(a_{\infty}) \leqslant E_{a_{\infty}}(t_n v_n) - \frac{1}{p} \langle E'_{a_{\infty}}(t_n v_n), t_n v_n \rangle = \int \left\{ \frac{1}{p} f(t_n v_n)(t_n v_n) - F(t_n v_n) \right\}$$
$$\leqslant \int \left\{ \frac{1}{p} f(v_n)(v_n) - F(v_n) \right\} = I_{\varepsilon}(v_n) - \frac{1}{p} \langle I'_{\varepsilon}(v_n), v_n \rangle = d + o_n(1).$$

Taking the limit, we conclude that $m(a_{\infty}) \leq d$.

If $t_0 = 1$ then, up to a subsequence, we may suppose that $t_n \rightarrow 1$. Thus,

$$m(a_{\infty}) \leq E_{a_{\infty}}(t_n v_n) - I_{\varepsilon}(v_n) + I_{\varepsilon}(v_n)$$

= $\frac{1}{p} \int (t_n^p a_{\infty} - a(\varepsilon x)) |\nabla v_n|^p + \int (F(v_n) - F(t_n v_n)) + d + o_n(1).$

By using an straightforward application of the mean value theorem, (2.1) and the Lebesgue theorem we can check that $\int (F(v_n) - F(t_n v_n)) = o_n(1)$. Hence, the above expression and Lemma 3.1 imply that $m(a_{\infty}) \leq d$. The lemma is proved. \Box

We present below the two compactness results which we will need for the proof of the main theorems.

Proposition 3.3. The functional I_{ε} satisfies the (PS)_c condition at any level $c < m(a_{\infty})$.

Proof. Let $(u_n) \subset X_{\varepsilon}$ be such that $I_{\varepsilon}(u_n) \to c$ and $I'_{\varepsilon}(u_n) \to 0$ in X^*_{ε} . Up to a subsequence, $u_n \to u$ weakly in X_{ε} with u being a critical point of I_{ε} . Thus, we can use (f_4) to get

$$I_{\varepsilon}(u) = I_{\varepsilon}(u) - \frac{1}{p} \langle I'_{\varepsilon}(u), u \rangle = \int \left(\frac{1}{p} f(u) u - F(u) \right) \ge 0.$$

Let $v_n = u_n - u$. Arguing as in [2, Lemma 3.3] we can show that $I'_{\varepsilon}(v_n) \to 0$ and

$$I_{\varepsilon}(v_n) \to c - I_{\varepsilon}(u) = d < m(a_{\infty}),$$

where we used that $c < m(a_{\infty})$ and $I_{\varepsilon}(u) \ge 0$. Since $v_n \to 0$ weakly in X_{ε} and $d < m(a_{\infty})$, it follows from Lemma 3.2 that $v_n \to 0$, i.e., $u_n \to u$ in X_{ε} . This concludes the proof of the proposition. \Box

Proposition 3.4. If f verifies (\hat{f}_5) then the functional I_{ε} restricted to $\mathcal{N}_{\varepsilon}$ satisfies the $(PS)_c$ condition at any level $c < m(a_{\infty})$.

Proof. Let $(u_n) \subset \mathcal{N}_{\varepsilon}$ be such that $I_{\varepsilon}(u_n) \to c$ and $||I'_{\varepsilon}(u_n)||_* \to 0$. Then there exists $(\lambda_n) \subset \mathbb{R}$ such that

$$I_{\varepsilon}'(u_n) = \lambda_n J_{\varepsilon}'(u_n) + o_n(1), \tag{3.5}$$

where $J_{\varepsilon}: X_{\varepsilon} \to \mathbb{R}$ is defined as

$$J_{\varepsilon}(u) = \|u\|_{\varepsilon}^{p} - \int f(u)u$$

By (\widehat{f}_5) ,

$$\left\langle J_{\varepsilon}'(u_n), u_n \right\rangle = \int \left((p-1)f(u_n)u_n - f'(u_n)u_n^2 \right) \leqslant -C_{\sigma} \int |u_n|^{\sigma} < 0$$

and therefore we may suppose that $\langle J'_{\varepsilon}(u_n), u_n \rangle \to l \leq 0$. If l = 0, it follows from $|\langle J'_{\varepsilon}(u_n), u_n \rangle| \geq C_{\sigma} \int |u_n|^{\sigma}$ that $u_n \to 0$ in $L^{\sigma}(\mathbb{R}^N)$. Recalling that (u_n) is bounded, we can use interpolation and argue as in the proof of Lemma 2.1 to get $||u_n||_{\varepsilon} \to 0$, which contradicts (2.4). Thus, l < 0 and we have that $\lambda_n \to 0$. By using (3.5) we conclude that $I'_{\varepsilon}(u_n) \to 0$ in X^*_{ε} , that is, (u_n) is a (PS)_c sequence for I_{ε} . The result follows from Proposition 3.3. \Box

Remark 3.5. Arguing along the same lines of the above proof we can show that, if *u* is a critical point of I_{ε} restricted to $\mathcal{N}_{\varepsilon}$, then *u* is also a critical point of the unconstrained functional, that is, $I'_{\varepsilon}(u) = 0$ in X^*_{ε} .

4. Existence of a ground state solution

In order to prove our existence result, we need the following auxiliar result.

Lemma 4.1. There exists $\varepsilon_0 > 0$ such that $c_{\varepsilon} < m(a_{\infty})$ for any $\varepsilon \in (0, \varepsilon_0)$.

Proof. Let us fix $\mu \in \mathbb{R}$ such that $a_0 < \mu < a_\infty$. Denote by $\omega \equiv \omega_\mu$ a ground state solution of the problem (AP_μ) . For any given r > 0, let $\eta_r \in C_0^\infty(\mathbb{R}^N, [0, 1])$ be such that $\eta_r(x) = 1$ if |x| < r and $\eta_r(x) = 0$ if $|x| \ge 2r$. We also define $v_r(x) = \eta_r(x)\omega(x)$ and take $t_r > 0$ such that $\tilde{v}_r \equiv t_r v_r \in \mathcal{M}_\mu$.

We claim that there exists $r_0 > 0$ such that $\tilde{v} \equiv \tilde{v}_{r_0}$ satisfies $E_{\mu}(\tilde{v}) < m(a_{\infty})$. Indeed, if this were not true, then $E_{\mu}(t_r v_r) \ge m(a_{\infty})$ for all r > 0. Since $\omega \in \mathcal{M}_{\mu}$ and $v_r \to \omega$ in $W^{1,p}(\mathbb{R})$ as $r \to \infty$, we conclude that $t_r \to 1$. Hence, the monotonicity of the function $s \mapsto m(s)$ implies that

$$m(a_{\infty}) \leq \liminf_{r \to \infty} E_{\mu}(t_r v_r) = E_{\mu}(\omega) = m(\mu) < m(a_{\infty}),$$

which does not make sense.

Without loss of generality, we may suppose that $a(0) = a_0$. Recalling that a is continuous and the support of \tilde{v} is compact, we obtain ε_0 such that $a(\varepsilon x) \leq \mu$ for any $\varepsilon \in (0, \varepsilon_0)$ and $x \in \text{supp } \tilde{v}$. Thus,

$$\int a(\varepsilon x) |\nabla \tilde{v}|^p \leqslant \int \mu |\nabla \tilde{v}|^p \quad \text{for any } \varepsilon \in (0, \varepsilon_0)$$

and therefore

$$I_{\varepsilon}(t\tilde{v}) \leq E_{\mu}(t\tilde{v}) \text{ for any } \varepsilon \in (0, \varepsilon_0), \ t \geq 0.$$

Hence

$$\max_{t \ge 0} I_{\varepsilon}(t\tilde{v}) \le \max_{t \ge 0} E_{\mu}(t\tilde{v}) = E_{\mu}(\tilde{v}) < m(a_{\infty}) \quad \text{for any } \varepsilon \in (0, \varepsilon_0)$$

and it follows from (2.3) that $c_{\varepsilon} < m(a_{\infty})$ for any $\varepsilon \in (0, \varepsilon_0)$, as desired. \Box

We are now ready to present the proof of our existence theorem.

Proof of Theorem 1.1. Let ε_0 be given by the above lemma and fix $\varepsilon \in (0, \varepsilon_0)$. Since I_{ε} has the mountain pass geometry, we can use (2.3) to obtain $(u_n) \subset X_{\varepsilon}$ such that

$$I_{\varepsilon}(u_n) \to c_{\varepsilon}$$
 and $I'_{\varepsilon}(u_n) \to 0$.

Recalling that $c_{\varepsilon} < m(a_{\infty})$, we may invoke Proposition 3.3 to guarantee that, along a subsequence, $u_n \to u$ with u being such that $I_{\varepsilon}(u) = c_{\varepsilon}$ and $I'_{\varepsilon}(u) = 0$. Arguing as in the proof of Proposition 2.2 we can check that u is positive in \mathbb{R}^N and therefore it is a ground state solution of the problem (P_{ε}) . The theorem is proved. \Box

5. Multiplicity of solutions

Let $\omega \equiv \omega_{a_0}$ be a ground state solution of the problem (AP_{a_0}) and consider $\eta : [0, \infty) \to \mathbb{R}$ a cut-off function such that $0 \leq \eta \leq 1$, $\eta(s) = 1$ if $0 \leq s \leq 1/2$ and $\eta(s) = 0$ if $s \geq 1$. We recall that *M* denotes the set of global minima points of *a* and define, for each $y \in M$, $\psi_{\varepsilon,y} : \mathbb{R}^N \to \mathbb{R}$ by setting

$$\psi_{\varepsilon,y}(x) = \eta (|\varepsilon x - y|) \omega \left(\frac{\varepsilon x - y}{\varepsilon}\right).$$

Let t_{ε} be the unique positive number satisfying

 $\max_{t \ge 0} I_{\varepsilon}(t\psi_{\varepsilon,y}) = I_{\varepsilon}(t_{\varepsilon}\psi_{\varepsilon,y})$

and define the map $\Phi_{\varepsilon}: M \to \mathcal{N}_{\varepsilon}$ in the following way:

$$\Phi_{\varepsilon}(y) = \Phi_{\varepsilon,y} = t_{\varepsilon} \psi_{\varepsilon,y}. \tag{5.1}$$

The definition of t_{ε} shows that Φ_{ε} is well defined. Moreover, the following holds.

Lemma 5.1. $\lim_{\varepsilon \to 0} I_{\varepsilon}(\Phi_{\varepsilon, y}) = m(a_0)$ uniformly for $y \in M$.

Proof. Suppose, by contradiction, that the lemma is false. Then there exist $\delta > 0$, $(y_n) \subset M$ and $\varepsilon_n \to 0$ such that

$$\left|I_{\varepsilon_n}(\Phi_{\varepsilon_n,y_n}) - m(a_0)\right| \ge \delta > 0.$$
(5.2)

In order to simplify the notation, we write only Φ_n , ψ_n and t_n to denote $\Phi_{\varepsilon_n, y_n}$, $\psi_{\varepsilon_n, y_n}$ and t_{ε_n} , respectively.

Since $\langle I'_{\varepsilon_n}(\Phi_n), \Phi_n \rangle = 0$, we have that $\|\Phi_n\|_{\varepsilon_n}^p = \int f(\Phi_n)\Phi_n$. Thus, we can use (5.1) and the change of variables $z = (\varepsilon_n x - y_n)/\varepsilon_n$, to get

$$\|\psi_n\|_{\varepsilon_n}^p = \int \left(a(\varepsilon_n z + y_n) \left| \nabla \left(\eta \left(|\varepsilon_n z| \right) w(z) \right) \right|^p + \left| \eta \left(|\varepsilon_n z| \right) w(z) \right|^p \right) dz$$

$$= \int \frac{f(t_n \eta (|\varepsilon_n z|) \omega(z))}{(t_n \eta (|\varepsilon_n z|) \omega(z))^{p-1}} \left| \eta \left(|\varepsilon_n z| \right) \omega(z) \right|^p dz.$$
(5.3)

By using the Lebesgue theorem, we can check that

$$\|\psi_n\|_{\varepsilon_n}^p \to \|\omega\|_{W_{a_0}}^p, \quad \int f(\psi_n)\psi_n \to \int f(\omega)\omega \quad \text{and} \quad \int F(\psi_n) \to \int F(\omega).$$
 (5.4)

For *n* large we have that $B_{1/2}(0) \subset B_{1/(2\varepsilon_n)}(0)$. Thus, if we set $\alpha = \min\{w(z): |z| \leq 1/2\} > 0$, we infer from (5.3), the definition of η and (f_5) that

$$\|\psi_n\|_{\varepsilon_n}^p \ge \int\limits_{B_{1/2}(0)} \frac{f(t_n\omega(z))}{(t_n\omega(z))^{p-1}} |\omega(z)|^p \,\mathrm{d}z \ge \frac{f(t_n\alpha)}{(t_n\alpha)^{p-1}} \int\limits_{B_{1/2}(0)} |\omega(z)|^p \,\mathrm{d}z.$$

We claim that (t_n) has a bounded subsequence. Indeed, if this is not true, then $|t_n| \to \infty$, and therefore we can use the last estimate, (2.2) and (f_4) to conclude that $\|\psi_n\|_{\varepsilon_n}^p \to +\infty$, contradicting the first assertion in (5.4). Thus, up to a subsequence, we have $t_n \to t_0 \ge 0$. If $t_0 = 0$, we conclude from (5.4) that $\|t_n\psi_n\|_{\varepsilon_n} \to 0$, contradicting (2.4). Thus we have that $t_0 > 0$. Since $t_n \to t_0 \ge 0$, we can take the limit in (5.3) to obtain

Since $t_n \rightarrow t_0 > 0$, we can take the limit in (5.3) to obtain

$$\int \left(a_0 |\nabla \omega|^p + |\omega|^p \right) = \int \frac{f(t_0 \omega) \omega}{t_0^{p-1}},$$

from which follows that $t_0 \omega \in \mathcal{M}_{a_0}$. Since ω also belongs in \mathcal{M}_{a_0} , we conclude that $t_0 = 1$. Now we note that

$$I_{\varepsilon_n}(\Phi_n) = \frac{t_n^p}{p} \int \left(a(\varepsilon_n z + y_n) \left| \nabla \left(\eta \left(|\varepsilon_n z| \right) \right) \omega(z) \right|^p + \left| \eta \left(|\varepsilon_n z| \right) \omega(z) \right|^p \right) dz \\ - \int F \left(t_n \eta \left(|\varepsilon_n z| \right) \omega(z) \right) dz.$$

Letting $n \to \infty$, recalling that $t_n \to 1$, using (5.4) and recovering the original notation, we get

$$\lim_{n\to\infty} I_{\varepsilon_n}(\Phi_{\varepsilon_n,y_n}) = E_{a_0}(\omega) = m(a_0),$$

which contradicts (5.2) and proves the lemma. \Box

Lemma 5.2. Let $(u_n) \subset \mathcal{M}_{\mu}$ be such that $E_{\mu}(u_n) \to m(\mu)$ and $u_n \rightharpoonup u \neq 0$ weakly in $W^{1,p}(\mathbb{R}^N)$. Then, up to a subsequence, $u_n \to u$ in $W^{1,p}(\mathbb{R}^N)$.

Proof. This proof follows quite similar lines as the proof of [1, Theorem 3.1]. We omit the details. \Box

Lemma 5.3. Let $(\varepsilon_n) \subset \mathbb{R}^+$ and $(u_n) \subset \mathcal{N}_{\varepsilon_n}$ be such that $\varepsilon_n \to 0$ and $I_{\varepsilon_n}(u_n) \to m(a_0)$. Then there exists a sequence $(\tilde{y}_n) \subset \mathbb{R}^N$ such that $v_n(x) = u_n(x + \tilde{y}_n)$ has a convergent subsequence in $W^{1,p}(\mathbb{R}^N)$. Moreover, up to a subsequence, $(y_n) = (\varepsilon_n \tilde{y}_n)$ is such that $y_n \to y \in M$.

Proof. By standard arguments we have that (u_n) is bounded in $W^{1,p}(\mathbb{R}^N)$. Since $m(a_0) > 0$, and since $||u_n||_{\varepsilon_n} \to 0$ would imply $I_{\varepsilon_n}(u_n) \to 0$, we can argue as in the proof of Lemma 2.1 to obtain a sequence $(\tilde{y}_n) \subset \mathbb{R}^N$ and constants $R, \gamma > 0$ such that

$$\liminf_{n\to\infty}\int_{B_R(\tilde{y}_n)}|u_n|^p\geqslant\gamma>0.$$

If we define $v_n(x) = u_n(x + \tilde{y}_n)$ we have that, up to a subsequence, $v_n \rightarrow v \neq 0$ weakly in $W^{1,p}(\mathbb{R}^N)$.

Let $(t_n) \subset (0, +\infty)$ be such that $w_n = t_n v_n \in \mathcal{M}_{a_0}$. Defining $y_n = \varepsilon_n \tilde{y}_n$, changing variables and recalling that $u_n \in \mathcal{N}_{\varepsilon_n}$, we get

G.M. Figueiredo, M.F. Furtado / J. Math. Anal. Appl. 321 (2006) 705-721

$$m(a_0) \leqslant E_{a_0}(w_n) \leqslant \frac{1}{p} \int \left(a \left(\varepsilon_n (x + \tilde{y}_n) \right) |\nabla w_n|^p + |w_n|^p \right) - \int F(w_n) \\ = \frac{t_n^p}{p} \int \left(a (\varepsilon_n z) |\nabla u_n|^p + |u_n|^p \right) dz - \int F(t_n u_n) dz \\ = I_{\varepsilon_n}(t_n u_n) \leqslant I_{\varepsilon_n}(u_n) = m(a_0) + o_n(1),$$

from which follows that $E_{a_0}(w_n) \rightarrow m(a_0)$.

We claim that, up to a subsequence, $t_n \to t_0 > 0$. Indeed, since $v_n \to 0$, there exists $\delta > 0$ such that $0 < \delta \leq ||v_n||_{W_1}$. Hence, $0 < \tilde{\delta} \leq ||v_n||_{W_{a_n}}$, for $\tilde{\delta} = \delta \min\{1, a_0\}$. It follows that

$$0 \leqslant t_n \tilde{\delta} \leqslant \|t_n v_n\|_{W_{a_0}} = \|w_n\|_{W_{a_0}} \leqslant C$$

for some C > 0. Thus (t_n) is bounded and we can suppose that $t_n \to t_0 \ge 0$. If $t_0 = 0$ then, since (v_n) is bounded, we conclude that $w_n = t_n v_n \to 0$. Hence $E_{a_0}(w_n) \to 0$, which contradicts $m(a_0) > 0$.

Let w be the weak limit of (w_n) in $W^{1,p}(\mathbb{R}^N)$. Since $t_n \to t_0 > 0$ and $v_n \rightharpoonup v \neq 0$, it follows from the uniqueness of the weak limit that $w = t_0 v \neq 0$. Hence, we conclude from Lemma 5.2 that $w_n \to w$, or equivalently, $v_n \to v$ in $W^{1,p}(\mathbb{R}^N)$.

Let us verify that (y_n) has a bounded subsequence. By using conditions $(f_1)-(f_3)$ and the Lebesgue theorem, we can easily see that

$$\int F(w_n) \to \int F(w)$$
 and $\int |w_n|^p \to \int |w|^p$.

If $|y_n| \to \infty$, it follows from condition (a_1) and Fatou's lemma that

$$\int a_{\infty} |\nabla w|^p \leq \liminf_{n \to \infty} \int a(\varepsilon_n x + y_n) |\nabla w_n|^p.$$

Since $a_0 < a_\infty$, we infer from the above expressions that

$$\begin{split} m(a_0) &= E_0(w) < \frac{1}{p} \|w\|_{W_{a_\infty}}^p - \int F(w) \\ &\leq \liminf_{n \to \infty} \left\{ \frac{1}{p} \int \left(a(\varepsilon_n x + y_n) |\nabla w_n|^p + |w_n|^p \right) - \int F(w_n) \right\} \\ &= \liminf_{n \to \infty} \left\{ \frac{t_n^p}{p} \int \left(a(\varepsilon_n z) |\nabla u_n|^p + |u_n|^p \right) dz - \int F(t_n u_n) dz \right\} \\ &= \liminf_{n \to \infty} I_{\varepsilon_n}(t_n u_n) \leqslant \liminf_{n \to \infty} I_{\varepsilon_n}(u_n) = m(a_0), \end{split}$$

which does not make sense. Hence, up to a subsequence, $y_n \to y \in \mathbb{R}^N$. If $y \notin M$ then $a(y) > a_0$ and we obtain a contradiction arguing as above. Thus, $y \in M$ and the lemma is proved. \Box

For any $\delta > 0$, let $\rho = \rho_{\delta} > 0$ be such that $M_{\delta} \subset B_{\rho}(0)$. Let $\chi : \mathbb{R}^{N} \to \mathbb{R}^{N}$ be defined as $\chi(x) = x$ for $|x| < \rho$ and $\chi(x) = \rho x/|x|$ for $|x| \ge \rho$. Finally, let us consider the barycenter map $\beta_{\varepsilon} : \mathcal{N}_{\varepsilon} \to \mathbb{R}^{N}$ given by

$$\beta_{\varepsilon}(u) = \frac{\int \chi(\varepsilon x) |u(x)|^p \, \mathrm{d}x}{\int |u(x)|^p \, \mathrm{d}x}$$

Since $M \subset B_{\rho}(0)$, we can use the definition of χ and the Lebesgue theorem to conclude that

$$\lim_{\varepsilon \to 0} \beta_{\varepsilon}(\Phi_{\varepsilon, y}) = y \quad \text{uniformly for } y \in M.$$
(5.5)

718

Following [14], we introduce a subset of $\mathcal{N}_{\varepsilon}$ which will be useful in the future. We take a function $h: [0, \infty) \to [0, \infty)$ such that $h(\varepsilon) \to 0$ as $\varepsilon \to 0^+$ and set

$$\Sigma_{\varepsilon} = \left\{ u \in \mathcal{N}_{\varepsilon} \colon I_{\varepsilon}(u) \leqslant m(a_0) + h(\varepsilon) \right\}.$$

Given $y \in M$, we can use Lemma 5.1 to conclude that $h(\varepsilon) = |I_{\varepsilon}(\Phi_{\varepsilon,y}) - m(a_0)|$ is such that $h(\varepsilon) \to 0$ as $\varepsilon \to 0^+$. Thus, $\Phi_{\varepsilon,y} \in \Sigma_{\varepsilon}$ and we have that $\Sigma_{\varepsilon} \neq \emptyset$ for any $\varepsilon > 0$.

Lemma 5.4. For any $\delta > 0$ we have that

 $\lim_{\varepsilon \to 0^+} \sup_{u \in \Sigma_{\varepsilon}} \operatorname{dist} (\beta_{\varepsilon}(u), M_{\delta}) = 0.$

Proof. Let $(\varepsilon_n) \subset \mathbb{R}^+$ be such that $\varepsilon_n \to 0$. By definition, there exists $(u_n) \subset \Sigma_{\varepsilon_n}$ such that

$$\operatorname{dist}(\beta_{\varepsilon_n}(u_n), M_{\delta}) = \sup_{u \in \Sigma_{\varepsilon_n}} \operatorname{dist}(\beta_{\varepsilon_n}(u), M_{\delta}) + o_n(1)$$

Thus, it suffices to find a sequence $(y_n) \subset M_{\delta}$ such that

$$\left|\beta_{\varepsilon_n}(u_n) - y_n\right| = o_n(1). \tag{5.6}$$

In order to obtain such sequence, we note that $(u_n) \subset \Sigma_{\varepsilon_n} \subset \mathcal{N}_{\varepsilon_n}$. Thus

$$c_{\varepsilon_n} \leq I_{\varepsilon_n}(u_n) \leq m(a_0) + h(\varepsilon_n),$$

from which follows that $\limsup_{n\to\infty} c_{\varepsilon_n} \leq m(a_0)$. On the other hand, since $m(a_0) \leq c_{\varepsilon_n}$, we also have $m(a_0) \leq \liminf_{n\to\infty} c_{\varepsilon_n}$. Hence, taking the limit in the above expression, we conclude that $I_{\varepsilon_n}(u_n) \to m(a_0)$. We may now invoke Lemma 5.3 to obtain a sequence $(\tilde{y}_n) \subset \mathbb{R}^N$ such that $(y_n) = (\varepsilon_n \tilde{y}_n) \subset M_{\delta}$ for *n* sufficiently large. Thus,

$$\beta_{\varepsilon_n}(u_n) = \frac{\int \chi(\varepsilon_n x) |u_n|^p \, \mathrm{d}x}{\int |u_n|^p \, \mathrm{d}x} = \frac{\int \chi(\varepsilon_n z + y_n) |u_n(z + \tilde{y}_n)|^p \, \mathrm{d}z}{\int |u_n(z + \tilde{y}_n)|^p \, \mathrm{d}z}$$
$$= y_n + \frac{\int (\chi(\varepsilon_n z + y_n) - y_n) |u_n(z + \tilde{y}_n)|^p \, \mathrm{d}z}{\int |u_n(z + \tilde{y}_n)|^p \, \mathrm{d}z}.$$

Since $\varepsilon_n z + y_n \to y \in M$, we have that $\beta_{\varepsilon_n}(u_n) = y_n + o_n(1)$ and therefore the sequence (y_n) verifies (5.6). The lemma is proved. \Box

We are now ready to present the proof of the multiplicity result.

Proof of Theorem 1.2. Given $\delta > 0$ we can use (5.5), Lemmas 5.1 and 5.4, and argue as in [14, Section 6] to obtain $\varepsilon_{\delta} > 0$ such that, for any $\varepsilon \in (0, \varepsilon_{\delta})$, the diagram

$$M \xrightarrow{\Phi_{\varepsilon}} \Sigma_{\varepsilon} \xrightarrow{\beta_{\varepsilon}} M_{\delta}$$

is well defined and $\beta_{\varepsilon} \circ \Phi_{\varepsilon}$ is homotopically equivalent to the embedding $\iota : M \to M_{\delta}$. Moreover, using the definition of Σ_{ε} and taking ε_{δ} small if necessary, we may suppose that I_{ε} satisfies the Palais–Smale condition in Σ_{ε} . Standard Ljusternik–Schnirelmann theory provides at least $\operatorname{cat}_{\Sigma_{\varepsilon}}(\Sigma_{\varepsilon})$ critical points u_i of I_{ε} restricted to $\mathcal{N}_{\varepsilon}$. The same ideas contained in the proof of [9, Lemma 4.3] show that $\operatorname{cat}_{\Sigma_{\varepsilon}}(\Sigma_{\varepsilon}) \ge \operatorname{cat}_{M_{\delta}}(M)$. By using Remark 3.5 and the arguments of the proof of Proposition 2.2, we conclude that each u_i is a solution of (P_{ε}) . The theorem is proved. \Box

Acknowledgment

The authors are grateful to the referee for his/her useful suggestions.

References

- C.O. Alves, Existence and multiplicity of solutions for a class of quasilinear equations, Adv. Non. Studies 5 (2005) 73–87.
- [2] C.O. Alves, P.C. Carrião, E.S. Medeiros, Multiplicity of solutions for a class of quasilinear problems in exterior domains with Neumann conditions, Abstr. Appl. Anal. 3 (2004) 251–268.
- [3] C.O. Alves, G.M. Figueiredo, Existence and multiplicity of positive solutions to a *p*-Laplacian equation in ℝ^N, preprint.
- [4] C.O. Alves, M.A.S. Souto, On existence and concentration behavior of ground state solutions for a class of problems with critical growth, Comm. Pure Appl. Anal. 1 (2002) 417–431.
- [5] A. Alvino, P.L. Lions, G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Anal. 13 (1989) 185–220.
- [6] A. Ambrosetti, P.H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349–381.
- [7] M.S. Baouendi, C. Goulaouic, Régularité et théorie spectrale pour une classe d'opérateurs elliptiques dégénérés, Arch. Ration. Mech. Anal. 34 (1969) 361–379.
- [8] V. Benci, G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Ration. Mech. Anal. 114 (1991) 79–93.
- [9] V. Benci, G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations 2 (1994) 29–48.
- [10] H. Berestycki, J.P. Dias, M.J. Esteban, M. Figueira, Eigenvalue problem for some nonlinear Wheeler–DeWitt operators, J. Math. Pures Appl. 72 (1993) 493–515.
- [11] P. Caldiroli, R. Musina, On the existence of extremal functions for a weighted Sobolev embedding with critical exponent, Calc. Var. Partial Differential Equations 8 (1999) 365–387.
- [12] P. Caldiroli, R. Musina, On a variational degenerate elliptic problem, Nonlinear Differential Equations Appl. 7 (2000) 187–199.
- [13] J. Chabrowski, Degenerate elliptic equation involving a subcritical Sobolev exponent, Port. Math. 53 (1996) 167– 177.
- [14] S. Cingolani, M. Lazzo, Multiple semiclassical standing waves for a class of nonlinear Schrödinger equations, Topol. Methods Nonlinear Anal. 10 (1997) 1–13.
- [15] G.R. Cirmi, M.M. Porzio, L[∞]-Solutions for some nonlinear degenerate elliptic and parabolic equations, Ann. Mat. Pura Appl. 169 (1995) 67–86.
- [16] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1: Physical Origins and Classical Methods, Springer-Verlag, Berlin, 1985.
- [17] M. Lazzo, Existence and multiplicity results for a class of nonlinear elliptic problems on \mathbb{R}^N , Discrete Contin. Dynam. Systems (suppl.) (2003) 526–535.
- [18] G.B. Li, Some properties of weak solutions of nonlinear scalar fields equations, Ann. Acad. Sci. Fenn. Ser. AI Math. 15 (1990) 27–36.
- [19] P.L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Part II, Ann. Inst. H. Poincaré Non Linéaire 1 (1984) 223–283.
- [20] M.K.V. Murthy, V. Stampacchia, Boundary problems for some degenerate elliptic operators, Ann. Mat. Pura Appl. (4) 80 (1968) 1–122.
- [21] D. Passaseo, Some concentration phenomena in degenerate semilinear elliptic problems, Nonlinear Anal. 24 (1995) 1011–1025.
- [22] A. Pomponio, S. Secchi, On a class of singularly perturbed elliptic equations in divergence form: Existence and multiplicity results, J. Differential Equations 207 (2004) 228–266.
- [23] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992) 270-291.
- [24] E.A.B. Silva, S.H.M. Soares, Quasilinear Dirichlet problems in \mathbb{R}^N with critical growth, Nonlinear Anal. 43 (2001) 1–20.
- [25] M. Squassina, Spike solutions for a class of singularly perturbed quasilinear elliptic equations, Nonlinear Anal. 54 (2003) 1307–1336.

- [26] N.S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. XX (1967) 721–747.
- [27] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
- [28] J. Yang, Positive solutions of quasilinear elliptic obstacle problems with critical exponents, Nonlinear Anal. 25 (1995) 1283–1306.