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Abstract

We prove results concerning the existence and multiplicity of positive solutions for the quasilinear equa-
tion

−div
(
a(εx)|∇u|p−2∇u

) + |u|p−2u = f (u) in R
N, u ∈ W1,p

(
R

N
)
,

where 2 � p < N , a is a positive potential and f is a superlinear function. We relate the number of solutions
with the topology of the set where a attains its minimum. The results are proved by using minimax theorems
and Ljusternik–Schnirelmann theory.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this article is to investigate the existence and multiplicity of solutions of the
following quasilinear problem:{−div(a(εx)|∇u|p−2∇u) + |u|p−2u = f (u) in R

N,

u ∈ W 1,p(RN), u(x) > 0 for all x ∈ R
N,

(Pε)
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where ε > 0, 2 � p < N , f : R → R is a C1-function and the potential a satisfies

(a1) a : RN → R is continuous and

0 < a0 := inf
x∈RN

a(x) < a∞ := lim inf|x|→∞ a(x).

This kind of hypothesis was introduced by Rabinowitz [23] in the study of a nonlinear
Schrödinger equation.

Since we are looking for positive solutions, we suppose that

(f1) f (s) = 0 for all s < 0.

Moreover, we assume the following growth conditions at the origin and at infinity:

(f2) f (s) = o(sp−1) as s → 0+,
(f3) there exists p < q < p∗ = Np/(N − p) such that

lim
s→∞

f (s)

sq−1
= 0.

We call u ∈ W 1,p(RN) a weak solution of the equation in (Pε) if it verifies∫
RN

(
a(εx)|∇u|p−2∇u · ∇ϕ + |u|p−2uϕ

)
dx =

∫
RN

f (u)ϕ dx,

for all ϕ ∈ W 1,p(RN). If we denote by F(t) = ∫ t

0 f (s)ds the primitive of f , conditions (f1)–
(f3) imply that the functional Iε :W 1,p(RN) → R given by

Iε(u) = 1

p

∫
RN

(
a(εx)|∇u|p + |u|p)

dx −
∫

RN

F (u)dx

is well defined. Moreover, Iε ∈ C2(W 1,p(RN),R) and the weak solutions of (Pε) are precisely
the positive critical points of Iε .

In order to obtain such critical points, we use minimax theorems and Ljusternik–Schnirelmann
theory. As it is known, this kind of theory is based on the existence of a linking structure and on
deformation lemmas [6]. In general, to derive such deformation results, it is supposed that the
functional Iε satisfies some compactness condition. In this article, we use the classical Palais–
Smale condition (see Section 2). Related with this condition we suppose that f verifies the well-
known Ambrosetti–Rabinowitz superlinear condition, that is,

(f4) there exists θ > p such that

0 < θF(s) � sf (s) for all s > 0.

Finally, in order to localize the minimax levels of the functional Iε , we suppose the following
monotonicity condition for f :

(f5) the function s �→ f (s)/sp−1 is increasing for s > 0.
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We recall that a solution u0 of (Pε) is called ground state solution if it possesses minimum
energy between all solutions, that is,

Iε(u0) = min
{
Iε(u): u is a solution of (Pε)

}
.

In our first result we obtain, for ε > 0 small enough, the existence of a ground state solution
of (Pε).

Theorem 1.1. Suppose that 2 � p < N , a satisfies (a1) and the function f satisfies (f1)–(f5).
Then there exists ε0 > 0 such that, for any ε ∈ (0, ε0), the problem (Pε) has a ground state
solution.

In the paper we also relate the number of solutions of (Pε) with the topology of the set of
minima of the potential a. In order to present our result, we introduce the set of global minima
of a, given by

M = {
x ∈ R

N : a(x) = a0
}
.

Note that, in view of (a1), the set M is compact. For any δ > 0, let us denote by Mδ =
{x ∈ R

N : dist(x,M) � δ} the closed δ-neighborhood of M .
We recall that, if Y is a closed set of a topological space X, catX(Y ) is the Ljusternik–

Schnirelmann category of Y in X, namely the least number of closed and contractible sets in
X which cover Y . In our multiplicity result we assume a condition stronger than (f5) and prove
the following theorem.

Theorem 1.2. Suppose that 2 � p < N , a satisfies (a1), the function f satisfies (f1)–(f4) and

(f̂5) there exist σ ∈ (p,p∗) and Cσ > 0 such that

f ′(s)s − (p − 1)f (s) � Cσ sσ−1 for all s > 0.

Then, for any δ > 0 given, there exists εδ > 0 such that, for any ε ∈ (0, εδ), the problem (Pε) has
at least catMδ(M) solutions.

In the proof of Theorem 1.2 we apply a technique which was introduced by Benci and Cerami
in [8]. It consists in making a comparison between the category of some sublevel sets of the
energy functional Iε , constrained on some appropriated manifold, and the category of the set M .

Several physical phenomena related to equilibrium of continuous media are modeled by the
problem

−div
(
c(x)∇u

) = g(x,u) in Ω, u = 0 on ∂Ω, (1.1)

where Ω is a domain of R
N , g is a regular function and c is a nonnegative weight. In order

to be able to deal with media which possibly are somewhere “perfect” insulators or “perfect”
conductors (see [16]) the coefficient c is allowed to vanish somewhere or to be unbounded.

There is a quite extensive literature about the regularity and spectral theory of the above
problem when g(x,u) ≡ g(u) is a linear function (see [5,7,10,15,20] and references therein).
Concerning the nonlinear problem we can cite the papers [11,12,21,22,25].

In [13], Chabrowski studied the problem

−div
(
c(x)∇u

) + λu = K(x)|u|q−2u in R
N (1.2)
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with λ > 0, 2 < q < 2∗ and c ∈ C(RN) ∩ L∞(RN) satisfying

0 � c(x) � lim|x|→∞ c(x),

and being positive in the exterior of some ball BR(0). By using minimization arguments he
obtained a nonzero solution of (1.2) belonging in some appropriated Sobolev space. In his result,
it was also supposed an integrability condition for c(x) and that K ∈ L∞(RN) verifies either
K(x) � lim|x|→∞ K(x) or K is periodic.

More recently, Lazzo [17] considered Eq. (1.2) with K ≡ 1 and the function c satisfying the
condition (a1) with a(x) replaced by c(x). She proved that, for any δ > 0 given, there exists
λδ > 0 such that (1.2) possesses at least catMδ(M) positive solutions for any λ > λδ .

The results of this paper extend those of [17] in two senses: first because we deal with
2 � p < N instead of p = 2, and second because, in general, our nonlinearity f is not a power.
The main problem in considering 2 < p < N is that we need to work in a Sobolev space without
Hilbertian structure. Thus, some calculations that involve the Brezis–Lieb lemma are more dif-
ficult. Since f (u) may be different from |u|q−2u, we cannot use the same arguments developed
in [17]. Thus, we adapt some ideas from [3,4] and make a detailed study of the behavior of the
functional Iε restricted to its Nehari manifold. However, we would like to emphasize that our
results seem to be new even in the semilinear case p = 2.

It is worthwhile to mention that our last result is closely related to those presented by Pom-
ponio and Secchi in [22]. There, the authors studied positive solutions for the problem

−div
(
J (εx)∇u

) + V (εx)u = f (u) in R
N,

where ε > 0, J is a symmetric uniformly elliptic matrix and V is a positive potential. They
proved some multiplicity results in the same spirit of Theorem 1.2 (see [22, Section 6]). We
finally mention the paper of Cingolani and Lazzo [14], where the authors considered positive
solutions for the Schrödinger equation

−Δu + a(εx)u = |u|q−2u in R
N

with ε > 0, 2 < q < 2∗ and a satisfying (a1), and obtained a multiplicity result similar to Theo-
rem 1.2.

The paper is organized as follows. In Section 2 we present the abstract framework of the
problem as well as some results about the autonomous problem. In Section 3 we obtain some
compactness properties of the functional Iε . Theorem 1.1 is proved in Section 4 and the final
Section 5 is devoted to the proof of Theorem 1.2.

2. The variational framework

Throughout the paper we suppose that the functions a and f satisfy the conditions (a1) and

(f1)–(f4), respectively. Since (f̂5) implies (f5), we also assume hereafter that the function s �→
f (s)/sp−1 is increasing for s > 0. We write only

∫
u instead of

∫
RN u(x)dx.

For any ε > 0, let Xε be the Sobolev space W 1,p(RN) endowed with the norm

‖u‖ε =
{∫ (

a(εx)|∇u|p + |u|p)}1/p

.

Since the potential a is bounded and positive, the above norm is equivalent to the standard norm
of W 1,p(RN).
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As stated in the introduction, we will look for critical points of the C2-functional Iε :Xε → R

given by

Iε(u) = 1

p

∫ (
a(εx)|∇u|p + |u|p) −

∫
F(u),

where F(t) = ∫ s

0 f (s)ds. We introduce the Nehari manifold of Iε by setting

Nε = {
u ∈ Xε \ {0}: 〈

I ′
ε(u),u

〉 = 0
} =

{
u ∈ Xε \ {0}: ‖u‖p

ε =
∫

f (u)u

}
and consider the following minimization problem:

cε = inf
u∈Nε

Iε(u).

We present now some properties of cε and Nε . For the proofs we refer to [27, Chapter 4].
First we observe that, for any u ∈ Xε \ {0} there exists a unique tu > 0 such that tuu ∈ Nε . The
maximum of the function t �→ Iε(tu) for t � 0 is achieved at t = tu and the function u �→ tu is
continuous from Xε \ {0} to (0,∞). Given δ > 0, we can use (f1)–(f3) to obtain Cδ > 0 such
that ∣∣f (s)

∣∣ � δ|s|p−1 + Cδ|s|q−1 for all s ∈ R. (2.1)

Since q > p, the above estimate and standard calculations imply that 0 is a local minimum of Iε .
Moreover, by (f1) and (f4), we have that

F(s) � C|s|θ for all s ∈ R, (2.2)

and some C > 0. Hence,

Iε(tu) � tp

p
‖u‖p

ε − Ctθ
∫

|u|θ ,
and we conclude that Iε(tu) → −∞ as t → ∞, for any u ∈ Xε \ {0}.

The above considerations show that Iε satisfies the geometry of the mountain pass theorem.
By using (f5) and arguing as in [27, Theorem 4.2], we can prove that cε is positive, it coincides
with the mountain pass level of Iε and satisfies

cε = inf
γ∈Γε

max
t∈[0,1]

Iε

(
γ (t)

) = inf
u∈Xε\{0} max

t�0
Iε(tu) > 0, (2.3)

where Γε = {γ ∈ C([0,1],Xε): γ (0) = 0, Iε(γ (1)) < 0}.
As we will see, it is important to compare cε with the minimax level of the autonomous

problem{−μdiv(|∇u|p−2∇u) + |u|p−2u = f (u) in R
N,

u ∈ W 1,p(RN), u(x) > 0 for all x ∈ R
N.

(APμ)

Denote by ‖ · ‖Wμ the following norm in W 1,p(RN):

‖u‖Wμ =
{∫ (

μ|∇u|p + |u|p)}1/p

.

It is well defined and it is equivalent to the standard norm of W 1,p(RN). The solutions of (APμ)

are precisely the positive critical points of the functional Eμ :W 1,p(RN) → R given by

Eμ(u) = 1
∫ (

μ|∇u|p + |u|p) −
∫

F(u).

p
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Let Mμ be the Nehari manifold of Eμ given by

Mμ = {
u ∈ W 1,p

(
R

N
) \ {0}: 〈

E′
μ(u),u

〉 = 0
}

and define m(μ) by setting

m(μ) = inf
u∈Mμ

Eμ(u).

The number m(μ) and the manifold Mμ have properties similar to those of cε and Nε . We
devote the rest of this section to show that m(μ) is attained by a positive function.

We start by recalling the definition of the Palais–Smale condition. So, let V be a Banach
space, V be a C1-manifold of V and I :V → R a C1-functional. We say that I |V satisfies the
Palais–Smale condition at level c ((PS)c for short) if any sequence (un) ⊂ V such that I (un) → c

and ‖I ′(un)‖∗ → 0 contains a convergent subsequence. Here, we are denoting by ‖I ′(u)‖∗ the
norm of the derivative of I restricted to V at the point u (see [27, Section 5.3]).

Lemma 2.1. Let (un) ⊂ W 1,p(RN) be a (PS)c sequence for Eμ. Then we have either

(i) ‖un‖Wμ → 0, or
(ii) there exist a sequence (yn) ⊂ R

N and constants R, γ > 0 such that

lim inf
n→∞

∫
BR(yn)

|un|p � γ > 0.

Proof. Suppose that (ii) does not occur. Condition (f4) and standard calculations show that
(un) is bounded in W 1,p(RN). Thus, it follows from a result of P.L. Lions [19, Lemma I.1] that
un → 0 in Ls(RN) for all p < s < p∗. Given δ > 0, we can use (2.1) to get

0 �
∣∣∣∣
∫

f (un)un

∣∣∣∣ � δ

∫
|un|p + Cδ

∫
|un|q .

Since (un) is bounded in Lp(RN), un → 0 in Lq(RN) and δ is arbitrary, we conclude that∫
f (un)un → 0. Recalling that 〈E′

μ(un),un〉 → 0, we get

‖un‖p
Wμ

=
∫

f (un)un + on(1) → 0.

Hence (i) holds and the lemma is proved. �
Proposition 2.2. Suppose that 2 � p < N , a satisfies (a1) and the function f satisfies (f1)–(f5).
Then, for any μ > 0, the problem (APμ) has a ground state solution.

Proof. Conditions (f1)–(f4) imply that Eμ satisfies the mountain pass geometry. Thus, there
exists a sequence (un) ⊂ W 1,p(RN) such that

Eμ(un) → m(μ) and E′
μ(un) → 0.

Since (un) is bounded, up to a subsequence, un ⇀ u weakly in W 1,p(RN) and un(x) → u(x)

a.e. in R
N . By adapting standard calculations [28] (see also [24, Corollary 3.7]), we can obtain a

subsequence, still denoted by (un), such that
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∇un(x) → ∇u(x) a.e. x ∈ R
N,

|∇un|p−2 ∂un

∂xi

⇀ |∇u|p−2 ∂u

∂xi

weakly in
(
Lp

(
R

N
))∗

, 1 � i � N.

The weak convergence of (un), the above expression and the subcritical growth of f imply that
E′

μ(u) = 0.
Suppose that u �= 0. Then u ∈Mμ and, if we denote by u± = max{±u,0} the positive (nega-

tive) part of u, we get

0 = 〈
E′

μ(u),u−〉 = ‖u−‖p
Wμ

−
∫

f (u)u− = ‖u−‖p
Wμ

and therefore u � 0 in R
N . Adapting arguments from [18, Theorem 1.11], we conclude that

u ∈ L∞(RN) ∩ C
1,α
loc (RN) for some 0 < α < 1, and therefore it follows from Harnack’s inequal-

ity [26] that u(x) > 0 for all x ∈ R
N .

In order to prove that Eμ(u) = m(μ), it suffices to recall that u ∈ Mμ and apply Fatou’s
lemma to get

m(μ) � Eμ(u) = Eμ(u) − 1

p

〈
E′

μ(u),u
〉 = ∫ (

1

p
f (u) − F(u)

)

� lim inf
n→∞

∫ (
1

p
f (un) − F(un)

)

= lim inf
n→∞

(
Eμ(un) − 1

p

〈
E′

μ(un),un

〉) = m(μ).

We now consider the case u = 0. Since m(μ) > 0 and Eμ is continuous, we cannot have
‖un‖Wμ → 0. Thus, we obtain from Lemma 2.1 a sequence (yn) ⊂ R

N and constants R,γ > 0
such that

lim inf
n→∞

∫
BR(yn)

|un|p � γ > 0.

If we define vn(x) = un(x +yn) we can use the invariance of R
N by translations to conclude that

Eμ(vn) → m(μ) and E′
μ(vn) → 0. Moreover, up to a subsequence, vn ⇀ v weakly in W 1,p(RN)

and vn → v in Lp(BR(0)), with v being a critical point of Eμ. Since∫
BR(0)

|v|p = lim inf
n→∞

∫
BR(0)

|vn|p = lim inf
n→∞

∫
BR(yn)

|un|p � γ > 0,

we conclude that v �= 0, and the lemma follows as in the first part of the proof. �
Remark 2.3. The above proposition and the same argument employed in [4, Lemma 10] show
that the function μ �→ m(μ) is increasing for μ > 0.

We finish this section by noting that Iε(u) � Ea0(u) for all u ∈ W 1,p(RN). Hence, the char-
acterization of cε (and of m(a0)) given by (2.3) implies that cε � m(a0) > 0 for any ε > 0. Thus,
we can easily conclude that there exists r > 0, independent of ε, such that

‖u‖ε � r > 0 for any ε > 0, u ∈Nε. (2.4)
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3. A compactness condition

In this section we obtain some compactness properties of the functional Iε . We start by noting
that, if (un) is a (PS)c sequence for Iε then it is bounded in Xε . In view of (f1) we have〈

I ′
ε(un), u

−
n

〉 = ∥∥u−
n

∥∥p

ε
−

∫
f (un)u

−
n = ∥∥u−

n

∥∥p

ε
.

The boundedness of (u−
n ) and the above expression imply that ‖u−

n ‖ε → 0. Thus, we can
easily compute

Iε(un) = Iε

(
u+

n

) + on(1) and I ′
ε(un) = I ′

ε

(
u+

n

) + on(1),

where on(1) denotes a quantity that goes to 0 as n → ∞. This shows that (u+
n ) is also a (PS)c

sequence. Since we are always interested in the existence of convergent subsequence, we will as-
sume hereafter that un is nonnegative. The same will be done for the autonomous functional Eμ.

Lemma 3.1. Let (vn) ⊂ Xε be a (PS)d sequence for Iε such that vn ⇀ 0 weakly in Xε . Then,

lim sup
n→∞

∫ (
sna∞ − a(εx)

)|∇vn|p � 0

for any sequence (sn) ⊂ R satisfying sn → 1.

Proof. Let C > 0 be such that
∫ |∇vn|p � C. Since sn → 1 and∫ (

sna∞ − a(εx)
)|∇vn|p =

∫ (
a∞ − a(εx)

)|∇vn|p + a∞(sn − 1)

∫
|∇vn|p,

it suffices to consider the case sn ≡ 1.
Given δ > 0, we can use condition (a1) to obtain R = R(δ) > 0 such that a(εx) � a∞ − δ for

any |x| � R. We claim that
∫
BR(0)

|∇vn|p → 0 as n → ∞. Assuming the claim, we get∫ (
a∞ − a(εx)

)|∇vn|p �
∫

BR(0)

(
a∞ − a(εx)

)|∇vn|p + δC = on(1) + δC

for any δ > 0, and the lemma follows.
In order to prove the claim, we take ψ ∈ C∞

0 (RN, [0,1]) such that ψ ≡ 1 in BR(0) and
suppψ ⊂ B2R(0). By using condition (a1) and the definition of Iε and ψ , we get

a0

∫
BR(0)

|∇vn|p �
∫

BR(0)

a(εx)|∇vn|pψ �
∫

a(εx)|∇vn|pψ = An + Bn, (3.1)

where

An = −
∫

a(εx)|∇vn|p−2vn(∇vn · ∇ψ)

and

Bn = 〈
I ′
ε(vn), vnψ

〉 − ∫
|vn|pψ +

∫
f (vn)vnψ.

The boundedness of a and Hölder’s inequality imply that

|An| � C1

(∫
|∇vn|p

)(p−1)/p(∫
|vn|p|∇ψ |p

)1/p

� C2

( ∫
|vn|p|∇ψ |p

)1/p

.

B2R(0)
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Since vn → 0 in L
p

loc(R
N) and ψ is regular, we conclude that An → 0. Recalling that (vn)

is a Palais–Smale sequence, we can use the boundedness of (vnψ), the convergence of vn in
L

p

loc(R
N) and (2.1) as in the proof of Lemma 2.1 to conclude that Bn → 0. It follows from (3.1)

that
∫
BR(0)

|∇vn|p → 0. �
Lemma 3.2. Let (vn) ⊂ Xε be a (PS)d sequence for Iε such that vn ⇀ 0 weakly in Xε . If vn � 0
in Xε , then d � m(a∞).

Proof. Let (tn) ⊂ (0,+∞) be such that (tnvn) ⊂ Ma∞ . We start by proving that

t0 = lim sup
n→∞

tn � 1.

Arguing by contradiction, we suppose that there exist δ > 0 and a subsequence, which we also
denote by (tn), such that

tn � 1 + δ for all n ∈ N. (3.2)

Since (vn) is bounded in Xε , 〈I ′
ε(vn), vn〉 → 0, that is,∫ (

a(εx)|∇vn|p + |vn|p
) =

∫
f (vn)vn + on(1).

Moreover, recalling that (tnvn) ⊂ Ma∞ , we get

t
p
n

∫ (
a∞|∇vn|p + |vn|p

) =
∫

f (tnvn)(tnvn).

Since s �→ f (s)/sp−1 is increasing, we can use the above equalities and (3.2) to get∫ (
a∞ − a(εx)

)|∇vn|p =
∫ (

f (tnvn)

(tnvn)p−1
− f (vn)

(vn)p−1

)
(vn)

p + on(1)

�
∫ (

f ((1 + δ)vn)

((1 + δ)vn)p−1
− f (vn)

(vn)p−1

)
(vn)

p + on(1). (3.3)

Since ‖vn‖ε � 0, we can argue as in the proof of Lemma 2.1 to obtain (yn) ⊂ R
N and

R,γ > 0 such that∫
BR(yn)

|vn|p � γ > 0. (3.4)

If ṽn(x) = vn(x + yn), then there exists a nonnegative function ṽ such that, up to a subse-
quence, ṽn ⇀ ṽ weakly in Xε , ṽn → ṽ in Lp(BR(0)) and ṽn(x) → ṽ(x) a.e. in R

N . Moreover,
in view of (3.4), there exists a subset Ω ⊂ BR(0) with positive measure such that ṽ(x) > 0 for
a.e. x ∈ Ω .

On the other hand, by changing variables in (3.3), we can use Fatou’s lemma and Lemma 3.1
to obtain∫ (

f ((1 + δ)ṽ)

((1 + δ)ṽ)p−1
− f (ṽ)

(ṽ)p−1

)
ṽp � 0.

Since the integrand is nonnegative, the above expression contradicts the positiveness of ṽ in Ω .
This contradiction shows that t0 � 1, as claimed.
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If t0 < 1 we may suppose, without loss of generality, that tn < 1 for all n ∈ N. Conditions (f1)

and (f5) imply that the function s �→ 1
p
f (s)s − F(s) is nondecreasing. Thus,

m(a∞) � Ea∞(tnvn) − 1

p

〈
E′

a∞(tnvn), tnvn

〉 = ∫ {
1

p
f (tnvn)(tnvn) − F(tnvn)

}

�
∫ {

1

p
f (vn)(vn) − F(vn)

}
= Iε(vn) − 1

p

〈
I ′
ε(vn), vn

〉 = d + on(1).

Taking the limit, we conclude that m(a∞) � d .
If t0 = 1 then, up to a subsequence, we may suppose that tn → 1. Thus,

m(a∞) � Ea∞(tnvn) − Iε(vn) + Iε(vn)

= 1

p

∫ (
t
p
n a∞ − a(εx)

)|∇vn|p +
∫ (

F(vn) − F(tnvn)
) + d + on(1).

By using an straightforward application of the mean value theorem, (2.1) and the Lebesgue theo-
rem we can check that

∫
(F (vn)−F(tnvn)) = on(1). Hence, the above expression and Lemma 3.1

imply that m(a∞) � d . The lemma is proved. �
We present below the two compactness results which we will need for the proof of the main

theorems.

Proposition 3.3. The functional Iε satisfies the (PS)c condition at any level c < m(a∞).

Proof. Let (un) ⊂ Xε be such that Iε(un) → c and I ′
ε(un) → 0 in X∗

ε . Up to a subsequence,
un ⇀ u weakly in Xε with u being a critical point of Iε . Thus, we can use (f4) to get

Iε(u) = Iε(u) − 1

p

〈
I ′
ε(u),u

〉 = ∫ (
1

p
f (u)u − F(u)

)
� 0.

Let vn = un − u. Arguing as in [2, Lemma 3.3] we can show that I ′
ε(vn) → 0 and

Iε(vn) → c − Iε(u) = d < m(a∞),

where we used that c < m(a∞) and Iε(u) � 0. Since vn ⇀ 0 weakly in Xε and d < m(a∞),
it follows from Lemma 3.2 that vn → 0, i.e., un → u in Xε . This concludes the proof of the
proposition. �
Proposition 3.4. If f verifies (f̂5) then the functional Iε restricted to Nε satisfies the (PS)c
condition at any level c < m(a∞).

Proof. Let (un) ⊂ Nε be such that Iε(un) → c and ‖I ′
ε(un)‖∗ → 0. Then there exists (λn) ⊂ R

such that

I ′
ε(un) = λnJ

′
ε(un) + on(1), (3.5)

where Jε :Xε → R is defined as

Jε(u) = ‖u‖p
ε −

∫
f (u)u.
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By (f̂5),〈
J ′

ε(un), un

〉 = ∫ (
(p − 1)f (un)un − f ′(un)u

2
n

)
� −Cσ

∫
|un|σ < 0

and therefore we may suppose that 〈J ′
ε(un), un〉 → l � 0. If l = 0, it follows from |〈J ′

ε(un), un〉| �
Cσ

∫ |un|σ that un → 0 in Lσ (RN). Recalling that (un) is bounded, we can use interpolation and
argue as in the proof of Lemma 2.1 to get ‖un‖ε → 0, which contradicts (2.4). Thus, l < 0 and
we have that λn → 0. By using (3.5) we conclude that I ′

ε(un) → 0 in X∗
ε , that is, (un) is a (PS)c

sequence for Iε . The result follows from Proposition 3.3. �
Remark 3.5. Arguing along the same lines of the above proof we can show that, if u is a critical
point of Iε restricted to Nε , then u is also a critical point of the unconstrained functional, that is,
I ′
ε(u) = 0 in X∗

ε .

4. Existence of a ground state solution

In order to prove our existence result, we need the following auxiliar result.

Lemma 4.1. There exists ε0 > 0 such that cε < m(a∞) for any ε ∈ (0, ε0).

Proof. Let us fix μ ∈ R such that a0 < μ < a∞. Denote by ω ≡ ωμ a ground state solution
of the problem (APμ). For any given r > 0, let ηr ∈ C∞

0 (RN, [0,1]) be such that ηr(x) = 1 if
|x| < r and ηr(x) = 0 if |x| � 2r . We also define vr(x) = ηr(x)ω(x) and take tr > 0 such that
ṽr ≡ trvr ∈ Mμ.

We claim that there exists r0 > 0 such that ṽ ≡ ṽr0 satisfies Eμ(ṽ) < m(a∞). Indeed, if this
were not true, then Eμ(trvr) � m(a∞) for all r > 0. Since ω ∈ Mμ and vr → ω in W 1,p(R) as
r → ∞, we conclude that tr → 1. Hence, the monotonicity of the function s �→ m(s) implies
that

m(a∞) � lim inf
r→∞ Eμ(trvr ) = Eμ(ω) = m(μ) < m(a∞),

which does not make sense.
Without loss of generality, we may suppose that a(0) = a0. Recalling that a is continuous and

the support of ṽ is compact, we obtain ε0 such that a(εx) � μ for any ε ∈ (0, ε0) and x ∈ supp ṽ.
Thus, ∫

a(εx)|∇ṽ|p �
∫

μ|∇ṽ|p for any ε ∈ (0, ε0)

and therefore

Iε(t ṽ) � Eμ(tṽ) for any ε ∈ (0, ε0), t � 0.

Hence

max
t�0

Iε(t ṽ) � max
t�0

Eμ(tṽ) = Eμ(ṽ) < m(a∞) for any ε ∈ (0, ε0)

and it follows from (2.3) that cε < m(a∞) for any ε ∈ (0, ε0), as desired. �
We are now ready to present the proof of our existence theorem.
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Proof of Theorem 1.1. Let ε0 be given by the above lemma and fix ε ∈ (0, ε0). Since Iε has the
mountain pass geometry, we can use (2.3) to obtain (un) ⊂ Xε such that

Iε(un) → cε and I ′
ε(un) → 0.

Recalling that cε < m(a∞), we may invoke Proposition 3.3 to guarantee that, along a subse-
quence, un → u with u being such that Iε(u) = cε and I ′

ε(u) = 0. Arguing as in the proof of
Proposition 2.2 we can check that u is positive in R

N and therefore it is a ground state solution
of the problem (Pε). The theorem is proved. �
5. Multiplicity of solutions

Let ω ≡ ωa0 be a ground state solution of the problem (APa0) and consider η : [0,∞) → R

a cut-off function such that 0 � η � 1, η(s) = 1 if 0 � s � 1/2 and η(s) = 0 if s � 1. We recall
that M denotes the set of global minima points of a and define, for each y ∈ M , ψε,y : RN → R

by setting

ψε,y(x) = η
(|εx − y|)ω(

εx − y

ε

)
.

Let tε be the unique positive number satisfying

max
t�0

Iε(tψε,y) = Iε(tεψε,y)

and define the map Φε :M →Nε in the following way:

Φε(y) = Φε,y = tεψε,y . (5.1)

The definition of tε shows that Φε is well defined. Moreover, the following holds.

Lemma 5.1. limε→0 Iε(Φε,y) = m(a0) uniformly for y ∈ M .

Proof. Suppose, by contradiction, that the lemma is false. Then there exist δ > 0, (yn) ⊂ M and
εn → 0 such that∣∣Iεn(Φεn,yn) − m(a0)

∣∣ � δ > 0. (5.2)

In order to simplify the notation, we write only Φn, ψn and tn to denote Φεn,yn , ψεn,yn and tεn ,
respectively.

Since 〈I ′
εn

(Φn),Φn〉 = 0, we have that ‖Φn‖p
εn = ∫

f (Φn)Φn. Thus, we can use (5.1) and the
change of variables z = (εnx − yn)/εn, to get

‖ψn‖p
εn

=
∫ (

a(εnz + yn)
∣∣∇(

η
(|εnz|

)
w(z)

)∣∣p + ∣∣η(|εnz|
)
w(z)

∣∣p)
dz

=
∫

f (tnη(|εnz|)ω(z))

(tnη(|εnz|)ω(z))p−1

∣∣η(|εnz|
)
ω(z)

∣∣p dz. (5.3)

By using the Lebesgue theorem, we can check that

‖ψn‖p
εn

→ ‖ω‖p
Wa

,

∫
f (ψn)ψn →

∫
f (ω)ω and

∫
F(ψn) →

∫
F(ω). (5.4)
0
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For n large we have that B1/2(0) ⊂ B1/(2εn)(0). Thus, if we set α = min{w(z): |z| � 1/2} > 0,
we infer from (5.3), the definition of η and (f5) that

‖ψn‖p
εn

�
∫

B1/2(0)

f (tnω(z))

(tnω(z))p−1

∣∣ω(z)
∣∣p dz � f (tnα)

(tnα)p−1

∫
B1/2(0)

∣∣ω(z)
∣∣p dz.

We claim that (tn) has a bounded subsequence. Indeed, if this is not true, then |tn| → ∞,
and therefore we can use the last estimate, (2.2) and (f4) to conclude that ‖ψn‖p

εn → +∞,
contradicting the first assertion in (5.4). Thus, up to a subsequence, we have tn → t0 � 0. If
t0 = 0, we conclude from (5.4) that ‖tnψn‖εn → 0, contradicting (2.4). Thus we have that t0 > 0.

Since tn → t0 > 0, we can take the limit in (5.3) to obtain∫ (
a0|∇ω|p + |ω|p) =

∫
f (t0ω)ω

t
p−1
0

,

from which follows that t0ω ∈Ma0 . Since ω also belongs in Ma0 , we conclude that t0 = 1.
Now we note that

Iεn(Φn) = t
p
n

p

∫ (
a(εnz + yn)

∣∣∇(
η
(|εnz|

))
ω(z)

∣∣p + ∣∣η(|εnz|
)
ω(z)

∣∣p)
dz

−
∫

F
(
tnη

(|εnz|
)
ω(z)

)
dz.

Letting n → ∞, recalling that tn → 1, using (5.4) and recovering the original notation, we get

lim
n→∞ Iεn(Φεn,yn) = Ea0(ω) = m(a0),

which contradicts (5.2) and proves the lemma. �
Lemma 5.2. Let (un) ⊂ Mμ be such that Eμ(un) → m(μ) and un ⇀ u �= 0 weakly in
W 1,p(RN). Then, up to a subsequence, un → u in W 1,p(RN).

Proof. This proof follows quite similar lines as the proof of [1, Theorem 3.1]. We omit the
details. �
Lemma 5.3. Let (εn) ⊂ R

+ and (un) ⊂ Nεn be such that εn → 0 and Iεn(un) → m(a0). Then
there exists a sequence (ỹn) ⊂ R

N such that vn(x) = un(x + ỹn) has a convergent subsequence
in W 1,p(RN). Moreover, up to a subsequence, (yn) = (εnỹn) is such that yn → y ∈ M .

Proof. By standard arguments we have that (un) is bounded in W 1,p(RN). Since m(a0) > 0,
and since ‖un‖εn → 0 would imply Iεn(un) → 0, we can argue as in the proof of Lemma 2.1 to
obtain a sequence (ỹn) ⊂ R

N and constants R,γ > 0 such that

lim inf
n→∞

∫
BR(ỹn)

|un|p � γ > 0.

If we define vn(x) = un(x + ỹn) we have that, up to a subsequence, vn ⇀ v �= 0 weakly in
W 1,p(RN).

Let (tn) ⊂ (0,+∞) be such that wn = tnvn ∈ Ma0 . Defining yn = εnỹn, changing variables
and recalling that un ∈Nεn , we get
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m(a0) � Ea0(wn) � 1

p

∫ (
a
(
εn(x + ỹn)

)|∇wn|p + |wn|p
) −

∫
F(wn)

= t
p
n

p

∫ (
a(εnz)|∇un|p + |un|p

)
dz −

∫
F(tnun)dz

= Iεn(tnun) � Iεn(un) = m(a0) + on(1),

from which follows that Ea0(wn) → m(a0).
We claim that, up to a subsequence, tn → t0 > 0. Indeed, since vn � 0, there exists δ > 0 such

that 0 < δ � ‖vn‖W1 . Hence, 0 < δ̃ � ‖vn‖Wa0
, for δ̃ = δ min{1, a0}. It follows that

0 � tnδ̃ � ‖tnvn‖Wa0
= ‖wn‖Wa0

� C

for some C > 0. Thus (tn) is bounded and we can suppose that tn → t0 � 0. If t0 = 0 then,
since (vn) is bounded, we conclude that wn = tnvn → 0. Hence Ea0(wn) → 0, which contradicts
m(a0) > 0.

Let w be the weak limit of (wn) in W 1,p(RN). Since tn → t0 > 0 and vn ⇀ v �= 0, it follows
from the uniqueness of the weak limit that w = t0v �= 0. Hence, we conclude from Lemma 5.2
that wn → w, or equivalently, vn → v in W 1,p(RN).

Let us verify that (yn) has a bounded subsequence. By using conditions (f1)–(f3) and the
Lebesgue theorem, we can easily see that∫

F(wn) →
∫

F(w) and
∫

|wn|p →
∫

|w|p.

If |yn| → ∞, it follows from condition (a1) and Fatou’s lemma that∫
a∞|∇w|p � lim inf

n→∞

∫
a(εnx + yn)|∇wn|p.

Since a0 < a∞, we infer from the above expressions that

m(a0) = E0(w) <
1

p
‖w‖p

Wa∞ −
∫

F(w)

� lim inf
n→∞

{
1

p

∫ (
a(εnx + yn)|∇wn|p + |wn|p

) −
∫

F(wn)

}

= lim inf
n→∞

{
t
p
n

p

∫ (
a(εnz)|∇un|p + |un|p

)
dz −

∫
F(tnun)dz

}
= lim inf

n→∞ Iεn(tnun) � lim inf
n→∞ Iεn(un) = m(a0),

which does not make sense. Hence, up to a subsequence, yn → y ∈ R
N . If y /∈ M then a(y) > a0

and we obtain a contradiction arguing as above. Thus, y ∈ M and the lemma is proved. �
For any δ > 0, let ρ = ρδ > 0 be such that Mδ ⊂ Bρ(0). Let χ : RN → R

N be defined as
χ(x) = x for |x| < ρ and χ(x) = ρx/|x| for |x| � ρ. Finally, let us consider the barycenter map
βε :Nε → R

N given by

βε(u) =
∫

χ(εx)|u(x)|p dx∫ |u(x)|p dx
.

Since M ⊂ Bρ(0), we can use the definition of χ and the Lebesgue theorem to conclude that

lim βε(Φε,y) = y uniformly for y ∈ M. (5.5)

ε→0
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Following [14], we introduce a subset of Nε which will be useful in the future. We take a
function h : [0,∞) → [0,∞) such that h(ε) → 0 as ε → 0+ and set

Σε = {
u ∈ Nε: Iε(u) � m(a0) + h(ε)

}
.

Given y ∈ M , we can use Lemma 5.1 to conclude that h(ε) = |Iε(Φε,y) − m(a0)| is such that
h(ε) → 0 as ε → 0+. Thus, Φε,y ∈ Σε and we have that Σε �= ∅ for any ε > 0.

Lemma 5.4. For any δ > 0 we have that

lim
ε→0+ sup

u∈Σε

dist
(
βε(u),Mδ

) = 0.

Proof. Let (εn) ⊂ R
+ be such that εn → 0. By definition, there exists (un) ⊂ Σεn such that

dist
(
βεn(un),Mδ

) = sup
u∈Σεn

dist
(
βεn(u),Mδ

) + on(1).

Thus, it suffices to find a sequence (yn) ⊂ Mδ such that∣∣βεn(un) − yn

∣∣ = on(1). (5.6)

In order to obtain such sequence, we note that (un) ⊂ Σεn ⊂ Nεn . Thus

cεn � Iεn(un) � m(a0) + h(εn),

from which follows that lim supn→∞ cεn � m(a0). On the other hand, since m(a0) � cεn , we also
have m(a0) � lim infn→∞ cεn . Hence, taking the limit in the above expression, we conclude that
Iεn(un) → m(a0). We may now invoke Lemma 5.3 to obtain a sequence (ỹn) ⊂ R

N such that
(yn) = (εnỹn) ⊂ Mδ for n sufficiently large. Thus,

βεn(un) =
∫

χ(εnx)|un|p dx∫ |un|p dx
=

∫
χ(εnz + yn)|un(z + ỹn)|p dz∫ |un(z + ỹn)|p dz

= yn +
∫
(χ(εnz + yn) − yn)|un(z + ỹn)|p dz∫ |un(z + ỹn)|p dz

.

Since εnz + yn → y ∈ M , we have that βεn(un) = yn + on(1) and therefore the sequence (yn)

verifies (5.6). The lemma is proved. �
We are now ready to present the proof of the multiplicity result.

Proof of Theorem 1.2. Given δ > 0 we can use (5.5), Lemmas 5.1 and 5.4, and argue as in [14,
Section 6] to obtain εδ > 0 such that, for any ε ∈ (0, εδ), the diagram

M
Φε−→ Σε

βε−→ Mδ

is well defined and βε ◦Φε is homotopically equivalent to the embedding ι : M → Mδ . Moreover,
using the definition of Σε and taking εδ small if necessary, we may suppose that Iε satisfies
the Palais–Smale condition in Σε . Standard Ljusternik–Schnirelmann theory provides at least
catΣε(Σε) critical points ui of Iε restricted to Nε . The same ideas contained in the proof of
[9, Lemma 4.3] show that catΣε(Σε) � catMδ(M). By using Remark 3.5 and the arguments of
the proof of Proposition 2.2, we conclude that each ui is a solution of (Pε). The theorem is
proved. �
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