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Abstract

We establish results concerning the existence and multiplicity of positive solutions for the problem
—diva(ex)|Vul? " 2Vu) + u? ' = f) +uP "' inRY ue whr@®N),

where ¢ > 0 is a small parameter, 2 < p < N, p* = Np/(N — p), a is a positive potential and
f is a superlinear function. We obtain the existence of a ground state solution and relate the number of
positive solutions with the topology of the set where a attains its minimum. We also prove a multiplicity
result for a supercritical version of the above problem. In the proofs we use minimax theorems and
Ljusternik—Schnirelmann theory.
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1. Introduction

The aim of this paper is to study the number of solutions of some quasilinear problems. Before
we make precise statements, let us comment on some works which motivated this one. We start
by citing the paper [6], where Chabrowski studied the problem

—div(a(x)Vu) + Au = K(x)|u|q72u in RV, (1.1)
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with A > 0,2 < ¢ < 2N/(N —2) and a € CRN) N L®RY) satisfying 0 < a(x) <
lim|x| -0 @(x) and being positive in the exterior of some ball Bg(0). By using minimization
arguments he obtained a nonzero solution of (1.1) in some appropriated subspace of W!2(R").
In his result, he assumed an integrability condition for a(x) and required that K € L* (RM)
verify either a periodicity condition or K (x) > limy|— o K (x).

In [11] Lazzo considered equation (1.1) with K = 1 and the function a satisfying 0 <
inf, cgyv a(x) < liminfjy| o a(x). She proved that, for A sufficiently large, there is an effect
of the topology of the set {x € R" : a(x) = ag} on the number of positive solutions of (1.1).

In a recent work [9], the authors extended the results of [11] to the quasilinear case with
a nonlinearity f (1) more general than 19~ ! but also having subcritical growth. In the present
paper, we continue the study of [9] by considering critical and supercritical nonlinearities.

In the first part of the paper we deal with the problem

P
ueCp®MNWEPRY),  u(x) >0 forallx e RY, (Pe)

{—div(a ) |VulP2Vu) + uP~ = Fu) +u” "' inRY,

c

wheree > 0,2 < p < N, p*:= Np/(N — p),0 < o < 1 and the potential a satisfies
(a1) a € CRN R) and

0<ap:= inf a(x) < ax :=liminfa(x).
xeRN |x[—>00

We also suppose that f € C'(R*, R) satisfies

(f1) f(s) =o(sP~Hass — 0F,
(f2) there exists p < ¢ < p* such that f(s) = o(s? 1 as s — oo,
(f3) there exists p < 6 < g such that

0<OF(s) ::H/S f()dr <sf(s) foralls > 0,
0

(f4) the function s — f(s)/sP~! is increasing for s > 0,

(f5) f(s) > As91 =1 forall s > 0, with q1 € (p, p*) and A satisfying
(fsa) A > Oifeither N > p%,or p < N < p>and p* — p/(p — 1) < q1 < p*,
(fsb) A is sufficiently large if p < N < p*>and p < g1 < p* — p/(p — 1).

Under conditions (f1)—(f2) it is well known that the solutions of (P;) are precisely the
positive critical points of the functional I, : W7 (RV) — R given by

1 1 %
I (n) = —/ (a(ex)|Vul|? + |u|P)dx —/ F(u)dx — —*/ |ul? dx.
P JRN RN P RN

We recall that a solution ug of (P;) is called a ground state solution if it possesses minimum
energy among all solutions, that is,

I (ug) = min{/;(u) : u is a solution of (P;)}.

In our first result we obtain, for ¢ > 0 small enough, the existence of a ground state solution of
(Pe).

Theorem 1.1. Suppose that a satisfies (a1) and f satisfies (f1)—(fs). Then there exists g > 0
such that, for any ¢ € (0, &), the problem (P;) has a ground state solution.
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In our second result we relate the number of solutions of (P;) with the topology of the set of
minima of the potential a. In order to present our result we introduce the set of global minima of
a, given by

M ={x e RV . a(x) = ap}.

Note that, in view of (aj), the set M is compact. For any § > 0, let us denote by M; = {x €
RN : dist(x, M) < 8} the closed 8-neighborhood of M.

We recall that, if ¥ is a closed set of a topological space X, caty(Y) is the
Ljusternik—Schnirelmann category of Y in X, namely the least number of closed and contractible
sets in X which cover Y. We shall prove the following result.

Theorem 1.2. Suppose that a satisfies (a1) and f satisfies (f1)—(fs). Then, for any § > 0 given,
there exists e5 > 0 such that, for any ¢ € (0, &5), the problem (Ps) has at least caty; (M)
solutions.

The proof of the above theorem is done by applying a technique introduced by Benci and
Cerami in [3]. It consists in making a comparison between the category of some sublevel
sets of the energy functional I, and the category of the set M. Since we are considering
nonhomogeneous nonlinearities, some arguments developed in [6,11] do not apply. Thus, we
make a detailed study of the behavior of the functional I, restricted to its Nehari manifold (see
also [9]). Furthermore, since critical problems present some compactness problems, we use the
ideas of Brezis and Niremberg [5], (f4) and (fs), and some calculations from [15] in order to
obtain the required compactness property.

In the last part of the paper we study a supercritical version of problem (P;). In this case, we
deal with the sum of two homogeneous nonlinearities and add a new positive parameter A. More
specifically, we shall consider the following problem

—div(a(ex)|[VulP72Vu) + u?" ' = u? ' 4 27! in RV,
(Pk,s)

ue Cl,a(RN) AWLP@RY), u(x) >0 forallx € RV,

loc

where ¢, A > 0,2 < p < N and the powers satisfy p < ¢ < p* < t. Our multiplicity result for
the supercritical case can be stated as follows.

Theorem 1.3. Suppose that a satisfies (a1). Then there exists Lo > 0 with the following property:
for any & € (0, Ag) and § > O given, there exists €, 5 > 0 such that, for any € € (0, &, 5), the
problem (P;, ¢) has at least caty; (M) solutions.

For the proof of this theorem we follow Chabrowski and Yang [7], where a technique
introduced by Rabinowitz [17] was utilized. The main idea is, first, to consider a truncated
problem with subcritical growth and, then, to apply a result of [9] to get a multiplicity of solutions
for the truncated problem. After obtaining a priori bounds for these solutions, we use Moser’s
iteration method [16] to prove that, if A is small enough, the solutions of the truncated problem
also satisfy the original problem (P; ). To the best of our knowledge, in the literature there are
no multiplicity results for supercritical problems via Ljusternik—Schnirelmann theory.

The results of this paper complement those of [6,7,11] in several senses. First, because we
consider the quasilinear case 2 < p < N. Second, because we deal with critical and supercritical
growth. Finally, at least in the critical case, we consider nonhomogeneous nonlinearities. They
also complement the results of [9], where only the subcritical case is considered. We finish this
introduction by emphasizing that our results seem to be new even in the semilinear case p = 2.
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The paper is organized as follows. in the next section we present some results concerning the
autonomous problem associated to (P,). In Section 3 we obtain a local compactness property for
I.. Theorems 1.1 and 1.2 are proved in Section 4 and the final Section 5 is devoted to the proof
of Theorem 1.3.

2. The autonomous problem

Throughout the paper we suppose that the functions a and f satisfy (a;) and (f1)—(f5),
respectively. Since we are interested in positive solutions, we extend f to the whole real line
by setting f(s) := 0 for s < 0. To save notation, we write only [ u instead of fRN u(x)dx. For
any 1 < s < 00, |uls; denotes the L* (R™)-norm of a function u € L*(RV).

In this section we make a detailed study of the autonomous problem associated to (P, ), namely

—u div(IVulP72Vu) + uP " = Fu) +u? ! inRY,
{u (V| ~2Vu) f “p,)

ueCpt®MNWHPRY), u(x) >0 forallx e RV,

We denote by W, the Sobolev space WP (RN) endowed with the norm

l/p
lullw, = {/(MIWI” + Iul”)} .

The solutions of (AP,,) are precisely the positive critical points of the functional £, : W, — R
given by

1 1 .
Eu(u) = —f(uIWI”JrIuI”)—fF(u)— —*flulp .
p p
Let My, := {u € W, \ {0} : (E},(u), u) = 0} be the Nehari manifold of E,, and define m (1)
by setting

m = inf E, (u).
(w) uem,, /L()

In view of conditions (f1)—(f3), we can easily check that E, satisfies the Mountain Pass
geometry. Moreover, since f(s)/s”~! is increasing, we have the following characterization (see
[21, Chapter 4])

m = inf max E t)) = inf maxE, (tu) > 0,
() yel, tel0.1] Wy ) ueW,\(0} 1=0 ultue)

where I, := {y € C([0, 1], WP (RM)) : y(0) = 0, E,(y(1)) < O}.
We devote the rest of this section to show that m(u) is attained by a positive function. We
start by defining the best constant of the Sobolev embedding W!7 (RY) < LP “(RM) as

S::inf{/ [Vul? : u e whHrP(@RN), /|u|1’*=1}. 2.1)
RN

As in [5,10], we are able to compare the minimax level m(u) with a suitable number which
involves the constant S.

Lemma 2.1. For any ju > 0 there exists v e WP (RN) \ {0} such that
1 N
max E, (¢ —(nS)r.
nax u(tv) < N(u )

In particular, m(u) < %(/,LS)N/]) for any u > 0.
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Proof. For each & > 0, consider the function

_1q(N=p)/p?
N — p\*~! (p=N)/p
we (x) = |:N ( = f) } (g n |x|p/(p71>> ‘

We recall that w; satisfies the problem
—div(|Vu|?2Vu) = u”" "' in RV,
ueWhP@®RY), u(x) >0 forall x e RV,

and by a result due to Talenti [19]

/RN |ng|p _ A{N |w§|P — sN/p.

Letn € CgO(RN, [0, 1]) be such that » = 1 on B{(0) and n = 0 on RV \ B,(0). By setting
vg = nwglnwgl;,*], we can use (f5) to get

*

17 tP 9 tP
Eyurvg) = —f uIVvel” + —/ Jvel” — —xf g9 = —.
P JBy0) P JBy0) g1 JBy0 p

Arguing as in [15], we obtain

tP tP 141 P 1
max —f Wl Ve [P + —/ lvg|? — —Af et — — ¢ < —(uS$)HN/P.
20 | p JB,0) P JBy0) a1 JB,0 p N

Thus max;>o E, (tvg) < % (uS)V/P, as desired. [

Let I : V — R be a C!-functional defined on a Banach space V. We say that I satisfies
the Palais—Smale condition at level ¢ ((PS). for short) if any sequence (#,) C V such that
I(uy) — c and I'(u,) — 0 contains a convergent subsequence. The following result presents
an interesting property of the Palais—Smale sequences of E,.

Lemma 2.2. Let (u,) C W, be a (PS)q sequence for E, with d < %(MS)N/P and u, — 0
weakly in W,. Then we have either

@) lunllw, — 0, or

(i) there exist a sequence (y,) C RY and constants R, y > 0 such that

liminff luy|P >y > 0.
Br(yn)

n—oo

Proof. Suppose that (ii) does not occur. Condition ( f1) and standard calculation show that (u,,)
is bounded in W7 (RN). It follows from [13, Lemma I.1] that u, — 0 in L*(R") for any
p <s < p* Given§ > 0, we can use (f1) and (f>) to get

ff(un)un §5f|un|p+c8flun|q,

for some constant Cs > 0. Since (u,) is bounded in L? (RV), u,, — 0in LY(RY) and § is
arbitrary, we conclude that f f(un)u, — 0. Thus, from (E;/L (uyn), u,) — 0, we obtain

0=<

p p*
””"”Wu = |un|p* +on(1),
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where 0, (1) denotes a quantity approaching zero as n — oo. Taking a subsequence, we obtain
[ > 0 such that

.
|u,,|ﬁ,u — 1 and |un|5* - 1.

By (f3), we get f F(u,) — 0. Since E, (u,) = d + 0,(1), the above expression implies that
l = Nd.
Recalling that

loen 1y, = “/ \Vin|P > puSlunlhs

and letting n — 00, we conclude that [ > uSl”/”*. If I # 0 we get
Nd =1z (uM?
which is a contradiction. Hence / = 0 and therefore u, — 0in W,,. [

As a consequence of the two above lemmas, we have the following existence result for the
autonomous problem.

Proposition 2.3. Suppose that a satisfies (ay) and f satisfies (f1)—(fs). Then, for any u > 0,
the problem (AP,,) has a ground state solution.

Proof. It suffices to argue as in the proof of [9, Proposition 2.2] by using Lemmas 2.1 and 2.2.
We omit the details. [

We end this section by noting that, in view of the above proposition, we can argue as in [2,
Lemma 10] and show that the function p — m(w) is increasing for u > 0.

3. The Palais—Smale condition for 7.

For any & > 0, let X, be the Sobolev space W7 (RV) endowed with the norm

l/p
lulle = {/ (a(ex)|Vu|? + Iul”)} .

As stated in the introduction, we will look for critical points of the C 2_functional I, : X, —» R
given by

1 1 "
I.(u) = —/(a(ax)qu|p+ Iulp) - / Fu) — —*/|u|” .
p P
We introduce the Nehari manifold of I, by setting
N = {u € X \ {0} : (I[(u), u) = 0}
and consider the following minimization problem

ce .= inf I (u).
ueNg

As in the previous section, the functional I satisfies the Mountain Pass geometry. Hence, we
can prove that ¢, verifies

ce = inf max L,(y(t)) = inf max /I (tu) > 0, 3.1
yel, tel0,1] ueX\{0} >0
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where I'; = {y € C([0, 1], X¢) : y(0) = 0, I (y(1)) < 0}. Moreover, since I (1) > Eq,(u)
for all u € WHP(RN), we have that ¢, > m(ag) > 0 for any ¢ > 0. Thus, we can easily obtain
r > 0, independent of &, such that

lulle >r >0 foranye >0, u € N,. (3.2)

From now on we are interested in establishing a compactness property for I,. We start with
two technical results. The first is in the same spirit of Lemma 2.2 and the second is a version of
[9, Lemma 3.1].

Lemma 3.1. Let (v,) C X¢ be a (PS)y sequence for I, with d < %(aoS)N/P and v, — 0
weakly in X .. Then we have either

(@) [lvplle = O, or
(i) there exists a sequence (y,) C RY and constants R, y > 0 such that

n—oo

liminff v |P >y > 0.
Br(yn)
Proof. It suffices to note that ||Jv, ||Z > ag f Vv, |P and argue as in the proof of Lemma 2.2. [

Lemma 3.2. Let (v,) C X¢ be a (PS)y sequence for I, with d < %(aoS)N/P and v, — 0
weakly in X,. Then, up to a subsequence,

limsup/(snaoo —a(sx))|Vu,|P <0,

n—oo

for any sequence (s,) C R satisfying s, — 1.

Proof. Let C > 0 be such that f [Vu,|? < C. Since s, — 1 and

/(Snaoo —a(ex))|Vu, | = /(aoo —a(ex))|Vua|? + doo(sn — l)fIanl”,

it suffices to consider the case s, = 1.
Given ¢ > 0, we can use condition (aj) to obtain R = R(0) > O such that a(ex) > asc — 0
for any |x| > R. We claim that fBR(O) [V, |P — 0 as n — oco. Assuming the claim, we get

/(aoo —a(ex))|Vu,|? < / (aco — a(ex))|Vun|” +0C = 0n(1) + oC,
Br(0)
for any o > 0, and the lemma follows.
It order to prove the claim we note that, taking a subsequence, we may suppose that
|Vv,|? — p and [va|P” — v (weak*-sense of measures).

Using the concentration compactness principle due to Lions (cf. [14, Lemma 1.2]), we obtain an
at most countable index set A, sequences (x;) C R¥, (u;), (v;) C (0, 00), such that

V= Zv,ﬁxi, uw > Zm&xi and Svip/p* < Ui, 3.3)
ic/A ieA

foralli € A, where §,; is the Dirac mass at x; € RN,
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Now, for every ¢ > 0, we set ¥, (x) := ¥ ((x — x;)/0) where y € CgO(RN, [0, 1]) is such
that ¥+ = 1 on B1(0), ¥ = 0 on R¥N \ B2(0) and |V{|oc < 2. Since (Y¥,v,) is bounded,
(I[(vn), Yovn) — 0, that is,

/d(SX)Ianlpfzvn(an'Vllfg) = —/a(swaIanlp —/llfglvnlp

+ /f(vn>wgvn+fwg|vn|"*+on<1>.

Since v, — 0 in LfOC(RN ) forall p < s < p*, f has subcritical growth and v/, has compact

support, we can let n — oo in the above expression to obtain

/wgdv = fa(axwgdu = aofllfgdlt-
Letting 0 — 0 we conclude that v; > agpu;. It follows from (3.3) that
vi > (apS)N'”P. (3.4)

Now we shall prove that the above expression cannot occur, and therefore the set A is empty.
Indeed, arguing by contradiction, let us suppose that v; > (aoS)"/? for some i € A. Thus,

1
d = I¢(vy) — ;(k’(vn% Un) + 0n(1)

1 1 *
= f <_f(vn)vn - F(vn)> + _f [va P 4 0n(1)
p N

1 *
> N/I/fdvnlp + o0,(1).

Letting n — o0, we get

1 1 1
d= > Yol =+ > vi = @)™,
ic/A ic/A

which does not make sense. Hence A is empty and it follows from the same arguments employed
in [18, Lemmas 3.5 and 3.6] that v, — 0in W,o”(RY). O

The following lemma is a keystone to our compactness result.

Lemma 3.3. Let (v,) C X¢ be a (PS)y sequence for I, with d < %(aoS)N/p and v, — 0
weakly in X¢. If v, /> 0 strongly in X, then d > m(aso).

Proof. The proof is an adaptation of that presented in [9, Lemma 3.2]. For the reader’s
convenience, we sketch it here. Let #, € (0, +-00) be such that t,v, € M, . By using Lemma 3.1
and arguing as in [9, Lemma 3.2] we conclude that

to := limsupt, < 1.
n— oo

If p < 1 we may suppose, without loss of generality, that #, < 1 for all n € N. Thus

t,f* f |vn|”* < f |v,,|”* and we can argue exactly as in [9, Lemma 3.2] to conclude that
d > m(as).
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Let us now consider the complementary case o = 1. Taking a subsequence if necessary, we
may suppose that #,, — 1. Hence

d+o0,(1) = m(aso) + I (vy) — ano(tnvn)

= m(aoo) + L f(a(SX) — ty doo) | VUp|?
p

A i
- /(F(tnvn) ~ F(oa) + (”’p—*l)fwm : (35

Since (v,) is bounded in L (RV), we have that (t,f* - l)f [val?* = 0,(1). Moreover, a
straightforward application of the Mean Value theorem, (f1)—(f2) and the Lebesgue theorem
imply that f (F(tyvn) — F(vp)) = 0,(1). Recalling that , — 1, we can use these remarks, (3.5)
and Lemma 3.2 to obtain, for any § > 0, a number N5 > 0 such that

d+o0,(1) = m(ace) —8/p + on(1),

for any n > Ns. By taking n — oo and § — 0, we conclude that d > m(aso). This finishes the
proof of the lemma. [

We end this section by proving a local compactness condition for /.

Proposition 3.4. Let
1
¢* = min {m(aoo), ﬁ(aoS)N/p} . (3.6)

Then the functional I, satisfies the (PS). condition at any level ¢ < c*.

Proof. Let (#,) C X, be such that I, (u,) — c and I](u,) — 0. Since (u,) is bounded, up to a
subsequence, u,, — u weakly in X.. Moreover, u is a critical point of I, and it follows from ( f4)
that

Ic(u) = I (u) — l<Ig’(u),u> = / (lf(u)u - F(u)) + lf [ual?" > 0.
p p N

Setting v, := u, —u and arguing as in the proof of [1, Lemma 3.2] we can show that Ig’(vn) — 0
and

1
L) - c— L (u)=d < c* < N(doS)N/p,

where we have used ¢ < ¢* and I, (1) > 0. It follows from Lemma 3.3 that v, — 0,i.e., u, — u
in X,. The proposition is proved. [

Remark 3.5. For future reference we note that, since m(ag) < m(as), we can use Lemma 2.1
to conclude that m(ag) < c*.

4. Proof of Theorems 1.1 and 1.2

We start this section with the following auxiliary result.

Lemma 4.1. lim,_, o+ ¢, = m(ap).
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Proof. We follow the arguments of [2, Lemma 3]. Since ¢, > m(aop) for all ¢ > 0, it suffices to
check that limsup, _,+ c; < m(ag). Letn € C{°(RY, [0, 1]) be such that n = 1 on B;(0) and
n=0on RN \ B2(0). For any given r > 0 we define v, (x) := n(x/r)w(x), where w is a ground
state solution of the problem (AP,).

Let e, > 0 be such that z, ,v, € N and note that

p p*
t t *
ce < I(teyvy) = %f (a(gx)|Vv,|p + |vr|p) - / (F(ts,rvr) + %lv”p ) .

It is easy to check that, for r fixed, t, , — ¢, > 0 as ¢ — 0. Moreover, without loss of generality,
we may suppose that a(0) = ag. Hence, since v, has compact support, we can use Lebesgue’s
theorem to get

e—07t

j2 p*
. 4 t *
limsupc, < jf (ao|er|1’ + Iv,|”) — / (F(t,v,) + #|vr|l’ ) = Eq4,(trv,).

Since w € Mg, and v, — @ in WHP(RV) as r — oo, we can check that £, — 1 asr — 0.
Thus, it follows from the above expression that

limsupc, < lim E4(tv,) = Eqy(w) = m(aop).
6*)0+ r—0o0

The lemma is proved. [
We are now ready to present the proof of our existence theorem.

Proof of Theorem 1.1. Let ¢* be the critical level defined in (3.6). Since m(ag) < c*, we can
use Lemma 4.1 to obtain &9 > 0 such that ¢, < ¢* for any ¢ € (0, g9). For these values of ¢,
since I has the Mountain Pass geometry, we can take a sequence (u#,) C X, such that

Ie(up) > ¢ and  I[(uy) — 0.

By using Proposition 3.4 we guarantee that, along a subsequence, u#,, — u with u being such that
I (u) = ¢e and I[(u) = 0. It remains to show that u is positive. So, let u® = max{4u, 0} be the
positive (negative) part of . We have that

0= (IL(u),u™) = lu”||? —/f(u)u——f|u|"*—2uu— = ||u—||g’+f|u—|"*,

and therefore u > 0 in RV . By adapting arguments from [12, Theorem 1.11] we conclude that
uel*RYYncC ]’a(RN ) for some 0 < o < 1. It follows from Harnack’s inequality [20] that

loc
u(x) > 0 forall x € RV, The theorem is proved. [

From now on we will denote by w a ground state solution of the problem (AP,)). Let
n € C®(RT, [0, 1]) be a cut-off function such that n(s) = 1 on [0, 1/2] and n = 0 on [1, co).
We recall that M is the set of global minima of the potential a and define, for each y € M,
Vey : RV — R by setting

ex —y
Vey () = nllex — yheo | — .
Let ¢; be the unique positive number satisfying

max [e(“/fe,y) = [e(tel/fe,y)
t>0
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and define the map &, : M — N, in the following way

Pe(y) = tee,y = Qse,y 4.1

In view of the definition of z, we have that the above map is well defined. Moreover, the following
holds.

Lemma 4.2. lim,_, g+ 1. (D¢ y) = m(ap) uniformly for y € M.

Proof. Since the proof is quite similar to that of [9, Lemma 5.1] we only sketch it. Arguing
by contradiction, we suppose that the lemma is false. Then there exist 6 > 0, (y,) C M and
&, — 07T such that

e, (De,..y,) —m(ao)| = 8 > 0. (4.2)
Recall that &, y, = t., Ve, y,. By using the Lebesgue theorem, we can check that

Ve, yullE, — IIwIIPaO, [Wenyulpe = l@lh., (4.3)

ff(l/fen,yn)xlfen,yn - ff(w)w and /F(xlfen,yn)—> /F(w). (4.4)

The above expressions and the same calculations made in [9, Lemma 5.1] show that, up to a
subsequence, f;, — 1. Thus, taking the limit in

p
Ie,(De, y,) = %f (a(enz + y)IV(lenz)@(@)IP + In(lenz)@(2)|7) dz

p*
!/ *
—/F(tnn(lsnzl))w(Z)) dz — #fln(lenZI)w(Z)l” dz
and using (4.3) and (4.4) we get
lim I, (Pg,.y,) = Eqy(@) = m(ao),
n— o0
which contradicts (4.2) and proves the lemma. [l

For any § > 0, let p = ps > 0 be such that Ms C B,(0). Let x : RY — R¥ be defined as
x(x) = x for |x| < p and x(x) := px/|x| for |x| > p. Finally, let us consider the barycenter
map B : Ny — R given by

[ xE0lu@)]? dx
ﬂE(u) L f|u(x)|1’dx

Since M C B, (0), we can use the definition of x and the Lebesgue theorem to conclude that
lim+ Be(Dey) =y uniformly for y € M. 4.5)
e—0 :
Following [8], we introduce a subset of A, which will be useful in the future. We take a
function & : [0, c0) — [0, co) such that i(g) — 0as & — 0T and set
Yo ={u e N; : I, (u) <m(ag) + h(e)}.

Given y € M, we can use Lemma 4.2 to conclude that (e) = |I:(P¢ y) — m(ap)| is such that
h(e) - 0as e — 0%, Thus, &,y € X, and therefore X # @ for any ¢ > 0. By arguing as in
[9, Lemma 5.4] we can obtain the following property of the manifold X..
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Lemma 4.3. For any § > 0 we have that

lim sup dist(Bs(u), Ms) = 0.

e—0 uex,

Since we intend to apply Ljusternik—Shcnirelmann theory for the functional I, constrained to
N, we will denote by ||/ (u)||« the norm of the derivative of I, restricted to NV, at the point u.
The following result is a version of Proposition 3.4 for the constrained functional.

Proposition 4.4. The functional I, restricted to N satisfies the (PS). condition at any level
¢ < c*, where c* is defined in (3.6).

Proof. Let (u,) C N, be such that I, (u,) — ¢ and ||1](u,)|l« — 0. Then there exists (A,) C R
such that

L (un) = AnJ; (n) + 0n(1), (4.6)

where J; : X — R is given by

Je(u) = Jlull? —/f(u)u—/mv’*.
By (f4)
Gt = [ (= DF @ = £ ) = 0" = py [ 1’

—(p* —p>/|vn|"* <0,

and therefore we may suppose that (J/(u,),un,) — [ < 0.If [ = 0, it follows from
[(J[(un), un)| = (p* — p) fRN lun|?* > 0 that u, — 0 in LP"(RYN). Recalling that (u,) is
bounded in X, we can use interpolation and argue as in the proof of Lemma 2.2 to conclude that
[ f@up)u, — 0and [ F(u,) — 0. Thus, since (u,) C N, we get

1 1 « 1
c= lim I (u,) = lim {<_ - _> |Mn|p* + — / Sun)uy — / F(un)} =0,
n—00 n—00 p p* p p
which contradicts ¢ > ¢, > 0. Hence, [ # 0 and therefore A, = 0,(1). By using (4.6), we

conclude that I/ (u,) = 0,(1), that is, (u,) is a (PS). sequence for the unconstrained functional
I;. The result now follows from Proposition 3.4. [

IA

We are now ready to present the proof of the multiplicity result.

Proof of Theorem 1.2. Given § > 0 we can use (4.5), Lemmas 4.2 and 4.3, and argue as in [8,
Section 6] to obtain ¢5 > 0 such that, for any ¢ € (0, &s), the diagram

M &) pIA ﬁ) Ms
is well defined and B, o &, is homotopically equivalent to the embedding ¢ : M — Mj;.
Since m(ag) < c*, we can use the definition of Y, and Proposition 4.4 to guarantee that
I; satisfies the Palais—Smale condition in Y (taking &5 smaller if necessary). Standard
Ljusternik—Schnirelmann theory provides at least caty; (X;) critical points u; of I, restricted
to NVe. Arguing along the same lines of the proof of Proposition 4.4 we can check that u; is a
critical point of the unconstrained functional /.. As before, each u; is positive in RY . Finally, the



1612 G.M. Figueiredo, M.F. Furtado / Nonlinear Analysis 66 (2007) 1600-1616

same ideas contained in the proof of [4, Lemma 4.3] show that caty; (X;) > caty; (M), which
concludes the proof. [J

5. Proof of Theorem 1.3

Let K > 0 to be determined later and let f:\ € C(R, R) be given by

0 ifs <0,
Fls) =597 4 o't if 0<s <K,
s97 k95971 if 5> K.

Consider «, y € Rsuchthata < 1 < y and n € C' (R, R) satisfying

(m) n(s) < fuls) forall s € [aK, y K], R R
(m2) n@K) = fi(@K), n(yK) = fi(yK),n'(@K) = f;(@K) and n'(y K) = f, (v K),
(n73) the map s — 77(s)/s”_l is increasing for all s € [ K, Yy K].

Now, if we define f; € C!(R, R) as

fis) ifs ¢ [aK,yK],

fils) = {n(s) if s € [aK, yK],

we have that
Hes) < +/\K’_‘1)s‘1_1 forall s > 0. 5.1

Thus, we can easily conclude that fj satisfies

(fH fuls) =o(sPHass — 0F,
(f/\z) fi(s) = o(s9 1) as s — oo, for some ¢ € (¢, p*),
(ff) 0<#6 fos f(r)dr < sf,(s) for some 6 € (p, g1) and for all s > O,
(f) F$)s = (p = Dfils) = (g — p)s?~! forall s > 0.
Hence, f; is a superlinear function with subcritical growth. By directly applying [9, Theorem
1.2] we obtain the following multiplicity result for a truncated version of (P ).

Proposition 5.1. Let 1 > 0 be fixed. Then, for any § > 0 given, there exists €) s > 0 such that,
forany e € (0, €y 5), the truncated problem

—div(a(ex)|Vul?2Vu) + u? ™' = fiw) in RV,
La N 1,p N N (TP¢,5.)
ueCyo RYYNWHPMRY), u(x) >0 forallx € RY,
has at least caty; (M) solutions.
Let u be a solution of (TP, ;) which verifies
u(x) <ak forallx e RV, (5.2)

Then, in view of the definition of f;, we have that f5(u) = u?~" + Au’~! and therefore u is also
a solution of the original problem (P ). Thus, in order to prove Theorem 1.3, it suffices to show
that, for A small enough, the solutions obtained by Proposition 5.1 verify the above inequality.

We start by noting that the solutions of (7P, ;) are critical points of the functional I, ; : X, —
R given by

1
Ly (u) = —|lull? —/ F;.(u),
p RN
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where Fj(s) = fOS f.(v)dt. As in the first part of the paper, it is important to consider the
autonomous problem

—ag div(|Vul??Vu) + u? ' = ) in RY,
ue Cﬂ;ﬁ’(RN) NAWLPRYY, u(x) >0 forall x € RV,

Let m(0, A) be the ground state level of the above problem. Since f; is nonnegative, for any
A > 0 there holds

m(0, L) = inf{o} sup o (tu) < info} sup lo,o(tu) = m(0, 0).

ue >0 ueX >0

Now, let u, ; be one of the solutions given by Proposition 5.1. A simple inspection of the proof
of [9, Theorem 1.2] (which is analogous to that of Theorem 1.2 in the present paper) shows that
ug. satisfies the following energy estimate

Ie 0 (ug,3) < m(0, 1) + hy(¢),
with h; (¢) — 0 as ¢ — 0. Thus, decreasing ¢, s if necessary, we may suppose that
IS,A(MS,A) <m(0,0)+1

for any ¢ € (0, €;,5). On the other hand, it follows from ( f/\3) that

1, 11 »
Lo e ) = Tep (e ) = 5 (175 (uep), uen) > >3 llue s 1I2,

and therefore we conclude that, for any ¢ € (0, &, _s),

P op
lugall? < m@©,00+1){ ——|. (5.3)
0—p
We are now able to use the above estimate and some ideas contained in [7] to prove
Theorem 1.3 as follows.

Proof of Theorem 1.3. For any A > 0 and 6 > 0 we can apply Proposition 5.1 to obtain, for any
e € (0, &x,5), catpy; (M) solutions of (TP 3). Let ug ; be one of these solutions. We shall assume
that &) s is small in such a way that (5.3) holds. Our aim is to show that, if A is small enough, the
solution u, j verifies the inequality in (5.2). To save notation, we will denote u := u, .

For each L > 0, we define

{u ifu<L,
uyp =

L ifu>1L,
7L = uulz(ﬂ_l) and wy = uu‘zfl,

where 8 > 1 is arbitrary. Taking z;, as a test function in (7" P, ) we obtain

/ui(ﬂ*”a(sxnvm” = —p(B - 1>fui<’3’”"u|Vu|"‘2Vu Vg

+/f,\(u)uui<ﬁ7]) —fu”ui<ﬁ7])

- p(B=1)
(1+AK' q)/uquL ,

IA
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where we have used u, u; > 0, (5.1) and the inequality below

/uz(ﬂ—l)—lmvmpfzvu Vu, 2/ uPED vyl > 0.
{u<L}

It follows from (a) that
/ ”le(ﬂq)lvulp <Gk [ Mq“i(ﬂﬂ),
where C), x = ao_l (1 + AK'~9). By using the Sobolev embedding and this inequality we get

el < clfW(wL)V’ =clf|V<uu‘Z*‘)|"

< Cap - 1)”[ uf P vupp + szu’z(ﬂ‘”wmp
{u<L}
< C3ﬁp/“i(ﬂil)|vulp < C3.BPCA,K/“q”1L)<ﬁ7])'
Let o™ := p*%q*_p). Since uqui(ﬂq) =ud=P wi, we can use the above expression, Holder’s

inequality and (5.3) to conclude that, whenever wy, € LY (RM), it holds

(g—p)/p* pla*
Ilei* < G3BPChk </ u? ) (/ w )

< C4BPCrxllullfPlwr|l. < CsPCr klwelhe,

g—p)/p
where Cs := C4(m(0, 0) + 1)(¢—P)/r (09_—”])) is independent of € and A.

Since uz < u, we conclude that wy € L* (RV), whenever u? € L% (RV). If this is the case,
it follows from the above inequality that

. p/p* N\ Pl
(f u ul ”) < CsBPCrk (f(uu’}f he ) < CsBCokulfh..

By Fatou’s lemma in the variable L, we get
1
lulgps < (C5Crx)"" P VP ul g, (5.4)

whenever uf?" e LI(RV).

We now set B := p*/a* > 1 and note that, since u € L?" (RV), the above inequality holds
for this choice of 8. Thus, since f2a* = Bp*, it follows that (5.4) also holds with 8 replaced by
,32. Hence,

2 2 L(5+5) o5+ 5
lul g2, < (C5Co k)PP B P U o < (C5Cak)” 7 B BP T g

By iterating this process and using that Sa™ = p*, we obtain
Py BT Y ip
lulgmps < (Cs5Crx) =1 B=t ulps.
Taking the limit as m — oo and using (5.3) again, we get
[uloo < (C6C k) B2,

withoy = p~ ' 3%, B and oy = Y 30, ip~".
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It remains to check that, for a suitable value of K and A small enough, we have
(C6Cr.x)”' B™ < aK,
or equivalently
1+ 2K < agCy ' g~/ 1a o1 g 1/or = cy Ve,

So, we choose K > 0 such that C7K /91 = 2 and take A > O such that A < A¢ := K97'. As
observed before, the theorem holds for this choice of A¢g. [
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