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Multiple positive solutions for a quasilinear
system of Schrödinger equations

Giovany M. Figueiredo and Marcelo F. Furtado

Abstract. We consider the quasilinear system



−εpdiv(|∇u|p−2∇u) + V (z)up−1 = Qu(u, v) + γHu(u, v) in R
N ,

−εpdiv(|∇v|p−2∇v) + W (z)vp−1 = Qv(u, v) + γHv(u, v) in R
N ,

u, v ∈ W 1,p(RN ), u(z), v(z) > 0 for all z ∈ R
N ,

where ε > 0, 2 ≤ p < N , V and W are positive continuous potentials, Q is
an homogeneous function with subcritical growth, H(u, v) = |u|α|v|β with
α, β ≥ 1 satisfying α + β = Np/(N − p). We relate the number of solutions
with the topology of the set where V and W attain it minimum values. We
consider the subcritical case γ = 0 and the critical case γ = 1. In the proofs
we apply Ljusternik-Schnirelmann theory.
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1. Introduction

In the first part of this paper we are concerned with the existence of multiple
solutions for the quasilinear system

(Pε)


−εp∆pu+ V (z)up−1 = Qu(u, v) in R

N ,

−εp∆pv +W (z)vp−1 = Qv(u, v) in R
N ,

u, v ∈ W 1,p(RN ), u(z), v(z) > 0 for all z ∈ R
N ,

where ε > 0, 2 ≤ p < N and ∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator. In
order to make precise assumptions on the continuous potentials V andW we define

V0 := inf
x∈RN

V (x), W0 := inf
x∈RN

W (x),

V∞ := lim inf
|x|→+∞

V (x) and W∞ := lim inf
|x|→+∞

W (x).
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and suppose that V and W satisfy

(H0) V0 = W0 > 0 and the set

M := {x ∈ R
N : V (x) = W (x) = V0}

is nonempty.

(H1) V0 < max{V∞,W∞}.

Setting R2
+ := (0,∞)×(0,∞), we can state our hypothesis onQ ∈ C2(R2

+,R)
in the following way.

(Q0) there exits p < q < p∗ := Np/(N − p) such that

Q(tu, tv) = tqQ(u, v) for all t > 0, (u, v) ∈ R
2
+.

(Q1) there exists C > 0 such that

|Qu(u, v)| + |Qv(u, v)| ≤ C
(
uq−1 + vq−1) for all (u, v) ∈ R

2
+.

(Q2) Qu(0, 1) = 0, Qv(1, 0) = 0.

(Q3) Qu(1, 0) = 0, Qv(0, 1) = 0.

(Q4) Quv(u, v) > 0 for all (u, v) ∈ R
2
+.

We recall that, if Y is a closed set of a topological space X, catX(Y ) is the
Ljusternik-Schnirelmann category of Y in X, namely the least number of closed
and contractible sets in X which cover Y . We denote by

Mδ := {x ∈ R
N : dist(x,M) ≤ δ}

the closed δ-neighborhood of M , and we shall prove the following multiplicity
result.

Theorem 1.1. Suppose that (H0) − (H1) and (Q0) − (Q4) hold. Then, for any
δ > 0 given, there exists εδ > 0 such that, for any ε ∈ (0, εδ), the system (Pε) has
at least catMδ

(M) solutions.

Note that the system (Pε) has a variational structure and therefore the
solutions can be found as critical points of the functional

Iε(u, v) =
εp

p

∫
RN

(|∇u|p + |∇v|p + V (x)|u|p +W (x)|v|p) dx−
∫

RN

Q(u, v) dx

defined on an appropriated subspace of W 1,p(RN ) × W 1,p(RN ). In order to
obtain such critical points we use a technique introduced by Benci and Cerami
[7], which consists in making precise comparisons between the category of some
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sublevel sets of I and the category of the set M . This kind of argument for a
scalar Schrödinger equation has appeared in [11]. Since we are intending to apply
Ljusternik-Schnirelmann theory, we need to prove some compactness property for
the functional I. Following the ideas of [28, 11], we prove that the levels of com-
pactness are strongly related with the behavior of the potentials V (x) and W (x)
at infinity.

In the second part of the paper we deal with a critical version of (Pε), namely
the problem

(CPε),


−εp∆pu+ V (z)up−1 = Qu(u, v) + α|u|α−2u|v|β in R

N ,

−εp∆pv +W (z)vp−1 = Qv(u, v) + β|u|α|v|β−2v in R
N ,

u, v ∈ W 1,p(RN ), u(z), v(z) > 0 for all z ∈ R
N ,

where the coefficients α, β ≥ 1 are such that the sum α+β is equal to the critical
Sobolev exponent p∗. In order to deal with the critical growth of the nonlinearity
we assume the same technical condition of [25], namely

(Q5) Q(u, v) ≥ λuα̃vβ̃ for all (u, v) ∈ R
2
+, with 1 < α̃, β̃ < p∗, α̃+ β̃ = q1 ∈ (p, p∗)

and λ satisfying

(Q5a) λ > 0 if either N ≥ p2, or p < N < p2 and p∗ − p/(p− 1) < q1 < p∗,

(Q5b) λ is sufficiently large if p < N < p2 and p < q1 ≤ p∗ − p/(p− 1).

The critical version of Theorem 1.1 can be stated as follows.

Theorem 1.2. Suppose that (H0) − (H1) and (Q0) − (Q5) hold. If α, β ∈ [1, p∗)
satisfy α + β = p∗ then , for any δ > 0 given, there exists εδ > 0 such that, for
any ε ∈ (0, εδ), the system (CPε) has at least catMδ

(M) solutions.

The proof of Theorem 1.2 follows the same lines of the subcritical case. How-
ever, this new problem has an extra difficult when compared with the subcritical
one. This occurs because the level of non-compactness is affected by the critical
growth of the nonlinearity. This problem is overcame by using the ideas of Brezis
and Nirenberg [10], some adaptations of the calculations performed in [25], besides
the paper [2], where it is proved that the number

S̃(α, β) := inf
u,v∈W 1,p(RN )\{0}

∫
RN

|∇u|pdx+
∫

RN

|∇v|pdx(∫
RN

|u|α|v|βdx
)p/p∗

plays an important role when dealing with critical systems with coupled critical
part as in (CPε).
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The semilinear scalar case of the problems considered here are related with
the equation

− ε2

2m
∆u+ a(z)u = γ|u|r−2u in R

N , (1.1)

which naturally appears when we look for standing wave solutions ψ(z, t) :=
exp(−iε−1t)u(z) for the nonlinear Schrödinger equation

iε
∂ψ

∂t
= − ε2

2m
∆ψ + a(z)ψ − γ|u|r−2u in R

N ,

where ε,m and γ are positive constants and r > 1. There is vast literature
concerning the existence and multiplicity of solutions for the equation (1.1) (see
[19, 26, 27, 32, 13, 14, 4, 33, 15] and references there in). In particular, we would
like to cite the paper of Rabinowitz [28] where it is supposed that the potential a
verified

0 < inf
x∈RN

a(x) < lim inf
|x|→∞

a(x).

The conditions (H0)−(H1) are clearly inspired by the above hypotheses. However,
in our multiplicity results, we allow the situation where V0 = min{V∞,W∞}
provided V0 < max{V∞,W∞}.

Some existence results about systems can be found in [17, 16, 9, 3, 21, 22, 23].
The hypothesis on Q used here have appeared in [17], where some properties and
examples of nonlinearities Q verifying (Q0) − (Q4) were presented. In [3] the
authors considered the subcritical problem (Pε) with p = 2. In order to explain
their results we define, for any fixed ξ ∈ R

N , the functional Iξ : H1(RN ) ×
H1(RN ) → R as

Iξ(u, v) =
1
2

∫
RN

(|∇u|2 + |∇v|2 + V (ξ)u2 +W (ξ)v2) dx−
∫

RN

Q(u, v) dx

and the ground state function C : R
N → R by setting

C(ξ) = inf
(u,v) �=(0,0)

max
t≥0

Iξ(tu, tv).

They proved results concerning the existence and concentration behavior, for ε > 0
small, of ground state solutions of (Pε) provided V0 > 0, W0 > 0 and

inf
ξ∈RN

C(ξ) < C∞.

Here C∞ denotes the ground state level of the functional I∞ obtained by replacing
V (ξ) and W (ξ) by V∞ and W∞, respectively, in the definition of Iξ. Note that the
above assumption is weaker than (H0)− (H1). We do not know if our multiplicity
results can be proved in this weaker setting.
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Some multiplicity results for scalar Schrödinger equations via Ljusternik-
Schnirelmann theory can be found in [6, 12, 11]. For systems, we can cite three
recent papers [5, 18, 31], which deal only with the semilinear case p = 2 and
subcritical nonlinearities. Among them, the most related with our results are
[18, 31]. In [18] it was supposed V ≡ W and that Q is a coupled power. In [31]
the authors studied a Hamiltonian version of the problem (Pε) with V ≡ W . Note
that our condition (H0) − (H1) are weaker than V ≡ W .

In view of the results presented in [9, 5, 3, 31], it is natural to ask if we
can obtain multiplicity results for the quasilinear systems (Pε) and (CPε). In this
paper, we present a positive answer for this question. Our results also complement
most of the aforementioned works, since we consider multiplicity of solutions, the
quasilinear problem and both, subcritical and critical growth. Finally we would
like to emphasize two points: first that, although we deal with the quasilinear case,
our result seem to be new even in the semilinear case p = 2; secondly that, to the
best of our knowledge, there is no results concerning multiplicity of solutions for
systems with critical growth via Ljusternik-Schnirelmann theory.

The paper is organized as follows. In Section 2 we present the abstract
framework of the subcritical case besides the compactness properties of the func-
tional associated to (Pε). Section 3 is devoted to the proof of Theorem 1.1, while
the multiplicity result in the critical case is proved in Section 4.

2. Variational framework

Since we are interested in positive solutions, we extend the function Q to the whole
R

2 by setting Q(u, v) = 0 if u ≤ 0 or v ≤ 0. For simplicity, we write only
∫
u

instead of
∫

RN u(x)dx. We also note that, since Q is q-homogeneous, the following
holds

qQ(s, t) = sQs(s, t) + tQt(s, t) for all (s, t) ∈ R
2. (2.1)

Hereafter, we will work with the following system equivalent to (Pε), which
is obtained under the change of variables z �→ εx

−∆pu+ V (εx)|u|p−2u = Qu(u, v) in R
N ,

−∆pv +W (εx)|v|p−2v = Qv(u, v) in R
N ,

u(x), v(x) > 0 for all x ∈ R
N .

(P̂ε)

For any ε > 0, we consider the Sobolev space

Xε :=
{

(u, v) ∈ W 1,p(RN ) ×W 1,p(RN ) :
∫

(V (εx)|u|p +W (εx)|v|p) < ∞
}

endowed with the norm

‖(u, v)‖ε :=
{∫

(|∇u|p + |∇v|p) +
∫

(V (εx)|u|p +W (εx)|v|p)
}1/p

.
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The growth condition (Q1) imply that, for some other constant C > 0,

|Q(u, v)| ≤ C(|u|q + |v|q) for all (u, v) ∈ R
2. (2.2)

Hence, the weak solutions of the system (P̂ε) are related with the critical points
of the functional Iε : Xε → R given by

Iε(u, v) :=
1
p
‖(u, v)‖p

ε −
∫
Q(u, v).

We introduce the Nehari manifold of Iε by setting

Nε := {(u, v) ∈ Xε \ {(0, 0)} : 〈I ′
ε(u, v), (u, v)〉 = 0}

and define the minimax cε as being

cε := inf
(u,v)∈Nε

Iε(u, v).

In what follows, we present some properties of cε and Nε. Its proofs can de done
as in [34, Chapter 4]. First of all, we note that there exists r > 0, independent of
ε, such that

‖(u, v)‖ε ≥ r > 0 for any ε > 0, (u, v) ∈ Nε. (2.3)

Since Iε satisfies Mountain Pass geometry, we can use the homogeneity of Q to
prove that cε can be alternatively characterized by

cε = inf
γ∈Γε

max
t∈[0,1]

Iε(γ(t)) = inf
(u,v)∈Xε\{(0,0)}

max
t≥0

Iε(tu, tv) > 0, (2.4)

where Γε := {γ ∈ C([0, 1], Xε) : γ(0) = 0, Iε(γ(1)) < 0}. Moreover, for any
(u, v) �= (0, 0), there exists a unique t > 0 such that (tu, tv) ∈ Nε. The maximum
of the function t �→ Iε(tu, tv) for t ≥ 0 is achieved at t = t.

2.1 The autonomous problem

As we will see, it is important to compare the number cε with other one, which is
related with the following autonomous problem

(A)


−∆pu+ V0|u|p−2u = Qu(u, v) in R

N ,

−∆pv +W0|v|p−2v = Qv(u, v) in R
N ,

u(x), v(x) > 0 for all x ∈ R
N .

If we denote by X0 the space W 1,p(RN ) ×W 1,p(RN ) endowed with the norm

‖(u, v)‖0 :=
{∫

(|∇u|p + |∇v|p) +
∫

(V0|u|p +W0|v|p)
}1/p
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we have an associated functional I0 : X0 → R given by

I0(u, v) := ‖(u, v)‖p
0 −

∫
Q(u, v),

and the minimax level

c0 := inf
(u,v)∈N0

I0(u, v) = inf
(u,v)∈X0\{(0,0)}

max
t≥0

I0(tu, tv) > 0,

where N0 := {(u, v) ∈ X0 \ {(0, 0)} : 〈I ′
0(u, v), (u, v)〉 = 0} is the Nehari manifold

of I0.
We shall prove that c0 is achieved. For that, we need the following technical

lemma, whose proof was inspired by [3].

Lemma 2.1. Let ((un, vn)) ⊂ X0 be a bounded sequence such that I ′
0(un, vn) → 0.

Then we have either

(i) ‖(un, vn)‖0 → 0, or

(ii) there exists a sequence (yn) ⊂ R
N and constants R, γ > 0 such that

lim inf
n→∞

∫
BR(yn)

(|un|p + |vn|p) ≥ γ > 0.

Proof. Suppose that (ii) does not hold. Then we have

lim
n→+∞ sup

y∈RN

∫
BR(y)

|un|p = 0 and lim
n→+∞ sup

y∈RN

∫
BR(y)

|vn|p = 0,

for any R > 0. This and [24, Lemma I.1] imply that

lim
n→∞

∫
|un|q = 0 and lim

n→∞

∫
|vn|q = 0.

Thus, we can use (2.2) to conclude that
∫
Q(un, vn) → 0. Since ((un, vn)) is

bounded we have that 〈I ′
0(un, vn), (un, vn)〉 → 0. This and (2.1) provide

‖(un, vn)‖p
0 = q

∫
Q(un, vn) = on(1),

where on(1) denotes a quantity approaching zero as n → ∞. Hence (i) holds and
we conclude the proof. �

Proposition 2.2. The problem (A) has a weak solution.
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Proof. Since I0 has the Mountain Pass geometry, there exits ((un, vn)) ⊂ X0 such
that

I0(un, vn) → c0 and I ′
0(un, vn) → 0.

In view of (2.1), we have that

c0 + on(1)‖(un, vn)‖0 = I0(un, vn) − 1
q
〈I ′

0(un, vn), (un, vn)〉

=
(

1
p

− 1
q

)
‖(un, vn)‖p

0.

Since p ≥ 2, it follows from the above expression that ((un, vn)) is bounded in X0.
Hence, up to a subsequence, (un, vn) ⇀ (u, v) weakly in X0 and un(x) → u(x),
vn(x) → v(x) a.e. in R

N . By adapting standard calculations [35] we can obtain a
subsequence, still denoted by ((un, vn)), such that

∇un(x) → ∇u(x), ∇vn(x) → ∇v(x) a.e. x ∈ R
N ,

|∇un|p−2 ∂un

∂xi
⇀ |∇u|p−2 ∂u

∂xi
weakly in (Lp(RN ))∗,

|∇vn|p−2 ∂vn

∂xi
⇀ |∇v|p−2 ∂v

∂xi
weakly in (Lp(RN ))∗,

for all 1 ≤ i ≤ N . The weak convergence of ((un, vn)), the above expression and
(Q1) imply that I ′

0(u, v) = 0.
Suppose first that u �≡ 0 and v �≡ 0. Then, if we denote by u− = max{−u, 0}

and v− = max{−v, 0} the negative part of u and v, respectively, we get

0 = 〈I ′
0(u, v), (u

−, v−)〉

= ‖(u−, v−)‖p
0 −

∫
(Qu(u, v)u− +Qv(u, v)v−) = ‖(u−, v−)‖p

0,

where we have used in the last equality that Qu ≡ 0 on (−∞, 0) × R and Qv ≡ 0
on R × (−∞, 0). It follows from the above expression that u, v ≥ 0 in R

N . Since
Q is q-homogeneous, we have that ∇Q is (q − 1)-homogeneous. Thus, we can
use conditions (Q3), (Q4) and the Mean Value Theorem to prove that Qu and
Qv are nonnegative functions. Moreover, adapting arguments from [20, Theorem
1.11] we conclude that u, v ∈ L∞(RN ) ∩ C1,α

loc (RN ) for some 0 < α < 1. Since we
already known that u, v ≥ 0, we can use Harnack’s inequality [30, Theorem 1.1]
to conclude that u and v are positive functions.

We claim that I0(u, v) = c0. Indeed, since (u, v) ∈ N0, we can use (2.1) and
Fatou’s lemma to get
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c0 ≤ I0(u, v) =
q − p

p

∫
Q(u, v)

≤ lim inf
n→∞

q − p

p

∫
Q(un, vn)

= lim inf
n→∞

(
I0(un, vn) − 1

p
〈I ′

0(un, vn), (un, vn)〉
)

= c0.

Thus, (u, v) is the required solution.
We now consider the case u ≡ 0 or v ≡ 0. If u ≡ 0 then we can use

〈I ′
0(u, v), (u, v)〉 = 0 and (2.1) to get

‖v‖p
0 =

∫
Qu(0, v)v = q

∫
Q(0, v) = 0

and therefore v ≡ 0. Analogously, v ≡ 0 implies u ≡ 0. Hence, if u ≡ 0 or
v ≡ 0, we must have (u, v) = (0, 0). Recalling that c0 > 0 and I0 is continuous,
we conclude that ‖(un, vn)‖0 cannot goes to zero. The above lemma provides a
sequence (yn) ⊂ R

N and constants R, γ > 0 such that

lim inf
n→∞

∫
BR(yn)

(|un|p + |vn|p) ≥ γ > 0.

If we define (ũn(x), ṽn(x)) := (un(x + yn), vn(x + yn)) we can use the invariance
of R

N by translations to conclude that I0(ũn, ṽn) → c0 and I ′
0(ũn, ṽn) → 0.

Moreover, up to a subsequence, (ũn, ṽn) ⇀ (ũ, ṽ) weakly in X0 and ũn → ũ, ṽn →
ṽ strongly in Lp(BR(0)), with (ũ, ṽ) being a critical point of I0. Since∫

BR(0)
(|ũ|p + |ṽ|p) = lim inf

n→∞

∫
BR(yn)

(|un|p + |vn|p) ≥ γ > 0,

we conclude that ũ �≡ 0 or ṽ �≡ 0. Hence, as at the beginning of the paragraph, we
can conclude that both ũ and ṽ are nonzero. Arguing as in the first part of the
proof we conclude that (ũ, ṽ) is the desired solution. �

2.2 The Palais-Smale condition

We start this subsection by recalling the definition of the Palais-Smale condition.
So, let E be a Banach space, V be a C1-manifold of E and I : E → R a C1-
functional. We say that I|V satisfies the Palais-Smale condition at level d ((PS)d

for short) if any sequence (un) ⊂ V such that I(un) → d and ‖I ′(un)‖∗ → 0
contains a convergent subsequence. Here, we are denoting by ‖I ′(u)‖∗ the norm
of the derivative of I restricted to V at the point u

If max{V∞,W∞} < ∞, we define the limit functional I∞ : X0 → R as

I∞(u, v) :=
1
p

∫
(|∇u|p + |∇v|p + V∞|u|p +W∞|v|p) −

∫
Q(u, v),
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and denote by c∞ the ground state level of I∞, namely

c∞ := inf
(u,v)∈N∞

I∞(u, v) = inf
(u,v)X0\{(0,0)}

max
t≥0

I∞(tu, tv) > 0,

where N∞ := {(u, v) ∈ X0 \ {(0, 0)} : 〈I ′
∞(u, v), (u, v)〉 = 0}. If max{V∞,W∞} =

∞, we set c∞ := ∞.
We state below our compactness result for Iε.

Proposition 2.3. The functional Iε constrained to Nε satisfies the (PS)d condi-
tion at any level d < c∞.

For the proof of this proposition we need the following auxiliar result.

Lemma 2.4. Suppose that max{V∞,W∞} < ∞. Let ((un, vn)) ⊂ Xε be a (PS)d

sequence for Iε such that (un, vn) ⇀ (0, 0) weakly in Xε. If (un, vn) �→ (0, 0)
strongly in Xε, then d ≥ c∞.

Proof. Let (tn) ⊂ (0,+∞) be such that (tnun, tnvn) ∈ N∞. We start by proving
that

t0 := lim sup
n→∞

tn ≤ 1.

Arguing by contradiction, we suppose that there exists λ > 0 and a subsequence,
still denoted by (tn), such that

tn ≥ 1 + λ for all n ∈ N. (2.5)

Since ((un, vn)) is bounded in Xε, we have that 〈I ′
ε(un, vn), (un, vn)〉 → 0,

that is∫
(|∇un|p + |∇vn|p + V (εx)|un|p +W (εx)|vn|p) = q

∫
Q(un, vn) + on(1).

Moreover, recalling that (tn(un, vn)) ⊂ N∞, we get∫
(|∇un|p + |∇vn|p + V∞|un|p +W∞|vn|p) = qtq−p

n

∫
Q(un, vn).

These two equalities imply that

q(tq−p
n − 1)

∫
Q(un, vn) =

∫
(V∞ − V (εx))|un|p

+
∫

(W∞ −W (εx))|vn|p + on(1).
(2.6)

Given ζ > 0 we take R > 0 such that

V (εx) ≥ V∞ − ζ, W (εx) ≥ W∞ − ζ for all |x| ≥ R. (2.7)
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Since ((un, vn)) → (0, 0) in W 1,p(BR(0)) × W 1,p(BR(0)) we can use (2.5), (2.6)
and (2.7) to obtain

q((1 + λ)q−p − 1)
∫
Q(un, vn) ≤ q(tq−p

n − 1)
∫
Q(un, vn) ≤ ζC + on(1), (2.8)

where C > 0 is such that ‖(un, vn)‖ε ≤ C.
Since (un, vn) �→ (0, 0) we can argue as in the proof of Lemma 2.1 to obtain

(yn) ⊂ R
N and R, γ > 0 such that∫

BR(yn)
(|un|p + |vn|p) ≥ γ > 0. (2.9)

If we define (ũn(x), ṽn(x)) := (un(x + yn), vn(x + yn)) we may suppose that, up
to a subsequence,

(ũn, ṽn) ⇀ (u, v) weakly in Xε,

(ũn, ṽn) → (u, v) in Lp(BR(0)) × Lp(BR(0)),

(ũn(x), ṽn(x)) → (u(x), v(x)) for a.e. x ∈ R
N ,

for some nonnegative functions u, v with I ′
ε(u, v) = 0. In view of (2.9) we have

that u �= 0 or v �= 0. Hence, as in the proof of Proposition 2.2, u and v are positive
in R

N .
Letting n → ∞ in (2.8) and using Fatou’s lemma, we obtain

0 < q((1 + λ)q−p − 1)
∫
Q(u, v) ≤ ζC.

Since ζ > 0 is arbitrary, we obtain a contradiction by taking ζ → 0. Hence, t0 ≤ 1
as claimed.

Now, we divide the proof in two complementary cases.

Case 1 t0 < 1.

In this case we may suppose, without loss of generality, that tn < 1 for all n ∈ N.
Thus,

c∞ ≤ I∞((tnun, tnvn)) − 1
p
〈I ′

∞(tnun, tnvn), (tnun, tnvn)〉

= tqn

(
q − p

p

)∫
Q(un, vn) ≤

(
q − p

p

)∫
Q(un, vn)

= Iε(un, vn) − 1
p
〈I ′

ε(un, vn), (un, vn)〉 = d+ on(1).

Taking the limit we conclude that d ≥ c∞.

Case 2 t0 = 1.
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Up to a subsequence, we may suppose that tn → 1. We first note that

d+ on(1) ≥ c∞ + Iε(un, vn) − I∞(tnun, tnvn).

Given ζ > 0 we can use (H1) as in the beginning of the proof, the q-homogeneity
of Q, the boundedness of ((un, vn)) and tn → 1 to estimate

Iε(un, vn) − I∞(tnun, tnvn) =
(1 − tpn)

p

∫
(|∇un|p + |∇vn|p)

+
1
p

∫
(V (εx)|un|p +W (εx)|vn|p) − tpn

p

∫
(V∞|un|p +W∞|vn|p)

+ (tqn − 1)
∫
Q(un, vn)

≥ on(1) − ζC.

Hence
d+ on(1) ≥ c∞ − ζC + on(1),

for any ζ > 0. By taking n → ∞ and ζ → 0, we conclude that d ≥ c∞. �

Corollary 2.5. Suppose that max{V∞,W∞} = ∞. If ((un, vn)) ⊂ Xε is a (PS)d

sequence for Iε such that (un, vn) ⇀ (0, 0) weakly in Xε, then (un, vn) → (0, 0)
strongly in Xε.

Proof. For any (a, b) ∈ R
2
+ we can define

c(a,b) := inf
(u,v)∈X0\{(0,0)}

max
t≥0

I(a,b)(tu, tv),

where

I(a,b)(u, v) :=
1
p

∫
(|∇u|p + |∇v|p + a|u|p + b|v|p) −

∫
Q(u, v).

The same calculations performed in Proposition 2.2 show that, for any fixed
(a, b) ∈ R

2
+, the number c(a,b) is achieved by a pair (u, v) of positive functions.

It is easy to check that, if a > a′, then c(a,b) > c(a′,b). Moreover, lima2+b2→∞
c(a,b) = ∞.

Since max{V∞,W∞} = ∞ we can take (a, b) ∈ R
2
+ in such way that c(a,b) > d

and, for any given ζ > 0, there exists R > 0 such that

V (εx) ≥ a− ζ, W (εx) ≥ b− ζ for all |x| ≥ R. (2.10)

For example, if W∞ < ∞, we take b = W∞ and a > 0 large. If V∞ = W∞ = ∞
we take both a and b large.

Now, suppose by contradiction that (un, vn) �→ (0, 0). Then we can use
(2.10) and argue as in the proof of Lemma 2.4 to conclude that d ≥ c(a,b), which
does not make sense. Hence (un, vn) → (0, 0) and the corollary is proved. �
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We are now able to prove our compactness result.

Proof of Proposition 2.3. Let ((un, vn)) ⊂ Nε be such that

Iε(un, vn) → d and ‖I ′
ε(un, vn)‖∗ → 0.

Then there exists a sequence (λn) ⊂ R such that

I ′
ε(un, vn) = λnF

′
ε(un, vn) + on(1),

where Fε : (u, v) �→ ‖(u, v)‖p
ε − q

∫
Q(u, v). Hence

0 = 〈I ′
ε(un, vn), (un, vn)〉 = λn〈F ′

ε(un, vn), (un, vn)〉 + on(1)

= λn(p− q)‖(un, vn)‖p
ε + on(1).

This expression and (2.3) imply that λn → 0, and therefore I ′
ε(un, vn) → 0 in the

dual space X∗
ε .

Since Palais-Smale sequences of Iε are bounded, up to a subsequence we
have that (un, vn) ⇀ (u, v) weakly in Xε with (u, v) being a critical point of Iε.
Moreover, we can show that I ′

ε(un − u, vn − v) → 0 and

lim
n→∞ Iε(un − u, vn − v) = d− Iε(u, v) = d̃.

Recalling that I ′
ε(u, v) = 0 we get

Iε(u, v) = Iε(u, v) − 1
p
〈I ′

ε(u, v), (u, v)〉 =
q − p

p

∫
Q(u, v) ≥ 0

and therefore d̃ < c∞. If max{V∞,W∞} < ∞, it follows from Lemma 2.4 that
(un − u, vn − v) → (0, 0), i.e., (un, vn) → (u, v) strongly in Xε. In view of
Corollary 2.5, the same occurs in the complementary case max{V∞,W∞} = ∞.
The proposition is proved. �

Corollary 2.6. The critical points of the functional Iε constrained to Nε are
critical points of Iε in Xε

Proof. It suffices to argue as in the second part of the above proof. We omit the
details. �

3. Proof of Theorem 1.1.

We commence with a technical result.

Lemma 3.1. Let εn → 0+ and ((un, vn)) ⊂ Nεn be such that Iεn(un, vn) → c0.
Then there exists (ỹn) ⊂ R

N such that the translated sequence

(ũn(x), ṽn(x)) := (un(x+ ỹn), vn(x+ ỹn))

has a subsequence which converges in X0. Moreover, up to a subsequence, (yn) :=
(εnỹn) is such that yn → y ∈ M .
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Proof. Since 〈I ′
εn

(un, vn), (un, vn)〉 = 0 and Iεn(un, vn) → c0, we can proceed as
in the proof of Proposition 2.2 to conclude that ((un, vn)) is bounded. Moreover,
since c0 > 0, we cannot have ‖(un, vn)‖εn

→ 0. Hence, arguing as in Lemma 2.1,
we obtain a sequence (ỹn) ⊂ R

N such that

(ũn, ṽn) ⇀ (ũ, ṽ) weakly in X0,

where (ũn(x), ṽn(x)) := (un(x+ ỹn), vn(x+ ỹn)) and (ũ, ṽ) �= (0, 0).
Let (tn) ⊂ (0,+∞) be such that (ûn, v̂n) := (tnũn, tnṽn) ∈ N0. If we set

yn := εnỹn we can use the change of variables z �→ x+ ỹn to get

I0(ûn, v̂n) ≤ tpn
p

∫
(|∇ũn|p + |∇ṽn|p) −

∫
Q(tnũn, tnṽn)

+
tpn
p

∫
(V (εn(x+ ỹn))|ũn|p +W (εn(x+ ỹn))|ṽn|p)

= Iεn
(tnun, tnun) ≤ Iεn

(un, vn) = c0 + on(1).

Since c0 ≤ I0(ûn, v̂n) we conclude that I0(ûn, v̂n) → c0.
Since ((ũn, ṽn)) and ((ûn, v̂n)) are bounded and (ũn, ṽn) �→ (0, 0), the

sequence (tn) is bounded. Thus, up to a subsequence, tn → t0 ≥ 0. If t0 = 0
we can use the boundedness of ((ũn, ṽn)) to get (ûn, v̂n) = tn(ũn, ṽn) → (0, 0).
Hence I0(ûn, v̂n) → 0, which contradicts c0 > 0. Thus, t0 > 0. We notice that,
up to a subsequence, (ûn, v̂n) ⇀ t0(ũ, ṽ) = (û, v̂) weakly in X0. Since t0 > 0 and
(ũ, ṽ) �= (0, 0), we have concluded that

I0(ûn, v̂n) → c0 and (ûn, v̂n) ⇀ (û, v̂) �= (0, 0) weakly in X0.

We can now use (2.1) and the same calculations performed in [1, Theorem 3.1] to
conclude that (ûn, v̂n) → (û, v̂) in X0, which implies that (ũn, ṽn) → (ũ, ṽ) in X0.

It remains to show that (yn) has a subsequence such that yn → y ∈ M .
We start by proving that (yn) is bounded. Indeed, suppose by contradiction that
there exists a subsequence, still denoted by (yn), such that |yn| → +∞. We will
obtain a contradiction by considering two cases.

Case 1 max{V∞,W∞} = ∞.

Since (un, vn) ∈ Nεn
we have that

q

∫
Q(un(x+ ỹn), vn(x+ ỹn)) ≥

∫
V (εnx+ yn)|un(x+ ỹn)|p

+
∫
W (εnx+ yn)|vn(x+ ỹn)|p.

Applying Fatou’s lemma we obtain

lim inf
n→∞

∫
Q(un(x+ ỹn), vn(x+ ỹn)) ≥ ∞.
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On the other hand, the boundedness of ((un, vn)) and (2.2), imply that the left
hand side in the above expression is bounded. Thus, we obtain a contradiction.

Case 2 max{V∞,W∞} < ∞.

In this case, since (ûn, v̂n) → (û, v̂) strongly in X0 and V0 < max{V∞,W∞} we
have

c0 = I0(û, v̂) < I∞(û, v̂)

≤ lim inf
n→∞

{
1
p

∫
(|∇ûn|p + |∇v̂n|p) −

∫
Q(ûn, v̂n)

+
1
p

∫
(V (εnx+ yn)|ûn|p +W (εnx+ yn)|v̂n|p)

}
= lim inf

n→∞ Iεn
(tnun, tnvn) ≤ lim inf

n→∞ Iεn
(un, vn) = c0,

(3.1)

which does not make sense.
We then conclude that (yn) is bounded and therefore, up to a subsequence,

yn → y. If y �∈ M then V0 < max{V (y),W (y)} and we have that

c0 <
1
p

∫
(|∇û|p + |∇v̂|p + V (y)|û|p +W (y)|û|p) −

∫
Q(û, v̂).

This inequality and the same kind of calculations performed in (3.1) provide a
contradiction. Thus, y ∈ M and the lemma is proved. �

Fix δ > 0 and choose a cut-off function η ∈ C∞
0 (R, [0, 1]) such that η(s) = 1

if 0 ≤ s ≤ δ/2 and η(s) = 0 if s ≥ δ. Let (ω1, ω2) ∈ X0 be the solution of (A)
given by Proposition 2.2. For each y ∈ M we define

Ψi,ε,y(x) := η(|εx− y|)ωi

(
εx− y

ε

)
, i = 1, 2.

If tε denotes the unique positive number satisfying

max
t≥0

Iε(tΨ1,ε,y, tΨ2,ε,y) = Iε(tεΨ1,ε,y, tεΨ2,ε,y),

we introduce the map Φε : M → Nε by setting

Φε(y) := (tεΨ1,ε,y, tεΨ2,ε,y).

Since I0(ω1, ω2) = c0 we can use the Lebesgue’s theorem and the compactness of
M to check that

lim
ε→0+

Iε(Φε(y)) = c0, uniformly for y ∈ M. (3.2)
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We take now ρ = ρδ > 0 such that Mδ ⊂ Bρ(0) and consider Υ : R
N → R

N

defined as Υ(x) := x for |x| < ρ and Υ(x) := ρx/|x| for |x| ≥ ρ. We define the
barycenter map βε : Nε → R

N as being

βε(u, v) :=

∫
Υ(εx) (|u(x)|p + |v(x)|p) dx∫

(|u(x)|p + |v(x)|p) dx
.

Lemma 3.2. The function Φε satisfies

lim
ε→0+

βε(Φε(y)) = y uniformly for y ∈ M. (3.3)

Proof. Suppose, by contradiction, that the lemma is false. Then, there exist
δ0 > 0, (yn) ⊂ M and εn → 0 such that

|βεn
(Φεn

(yn)) − yn| ≥ δ0.

By using the change of variables z := (εnx− yn)/εn, we can write

βεn(Φεn(yn)) = yn +

∫
RN

(Υ(εnz + yn) − yn) |η(|εnz|)|p (|ω1(z)|p + |ω2(z)|p) dz∫
RN

|η(|εnz|)|p (|ω1(z)|p + |ω2(z)|p) dz
.

Since M ⊂ Bρ(0) and Υ|Bρ(0) ≡ Id, we can use the above expression and the
Lebesgue’s theorem to conclude that

|βεn
(Φεn

(yn)) − yn| = on(1),

which is a contradiction. The lemma is proved. �

Following [11], we take a function h : [0,∞) → [0,∞) such that h(ε) → 0 as
ε → 0+ and set

Σε := {(u, v) ∈ Nε : Iε(u, v) ≤ c0 + h(ε)}.

Given y ∈ M , we can use (3.2) to conclude that h(ε) = |Iε(Φε(y)) − c0| is such
that h(ε) → 0 as ε → 0. Thus, Φε(y) ∈ Σε and we have that Σε �= ∅ for any
ε > 0. Moreover, the following holds

Lemma 3.3. For any δ > 0 we have that

lim
ε→0+

sup
(u,v)∈Σε

dist(βε(u, v),Mδ) = 0.
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Proof. Let (εn) ⊂ R be such that εn → 0+. By definition, there exists ((un, vn)) ⊂
Σεn

such that

dist(βεn(un, vn),Mδ) = sup
(u,v)∈Σεn

dist(βεn(u, v),Mδ) + on(1).

Thus, it suffices to find a sequence (yn) ⊂ Mδ such that

|βεn(un, vn) − yn| = on(1). (3.4)

Since ((un, vn)) ⊂ Σεn
⊂ Nεn

, we have that

c0 ≤ cεn
≤ Iεn

(un, vn) ≤ c0 + h(εn),

and therefore Iεn
(un, vn) → c0. We may now invoke Lemma 3.1 to obtain a

sequence (ỹn) ⊂ R
N such that (yn) := (εnỹn) ⊂ Mδ. We set

(ũn(x), ṽn(x)) := (un(εnx+ yn), vn(εnx+ yn))

and observe that, since (ũn, ṽn) → (u, v) in X0 and εnx + yn → y ∈ M , a direct
calculation shows that βεn(un, vn) = yn + on(1). The lemma is proved. �

We are now ready to present the proof of the multiplicity result in the
subcritical case.

Proof of Theorem 1.1. Given δ > 0 we can use (3.2), (3.3), Lemma 3.3, and argue
as in [11, Section 6] to obtain εδ > 0 such that, for any ε ∈ (0, εδ), the diagram

M
Φε−→ Σε

βε−→ Mδ

is well defined and βε ◦ Φε is homotopically equivalent to the embedding ι : M →
Mδ. Using the definition of Σε and taking εδ small if necessary, we may sup-
pose that Iε satisfies the Palais-Smale condition in Σε. Standard Ljusternik-
Schnirelmann theory provides at least catΣε(Σε) critical points (ui, vi) of Iε
restricted to Nε. The same ideas contained in the proof of [8, Lemma 4.3] show
that catΣε(Σε) ≥ catMδ

(M). By using Corollary 2.6 and the arguments of the
proof of Proposition 2.2 we conclude that ui > 0, vi > 0 and (ui, vi) is a solution
of (P̂ε). The theorem is proved. �

4. The critical case

In this section we present the proof of Theorem 1.2. Since many calculations are
adaptations to that presented in the two early sections, we will emphasize only
the differences between the subcritical and the critical case.
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We first consider the critical version of the problem (A), namely

(CA)


−∆pu+ V0|u|p−2u = Qu(u, v) + α|u|α−2u|v|β in R

N ,

−∆pv +W0|v|p−2v = Qv(u, v) + β|u|α|v|β−2v in R
N ,

u(x), v(x) > 0 for all x ∈ R
N ,

whose solutions are related with the critical points of J0 : X0 → R defined as

J0(u, v) := ‖(u, v)‖p
0 −

∫
Q(u, v) −

∫
(u+)α(v+)β .

We denote by m0 the ground state level of J0, that is,

m0 := inf
(u,v)∈X0\{(0,0)}

max
t≥0

J0(tu, tv) > 0.

As usual, we denote by S the best constant of the embedding W 1,p(RN ) ↪→
Lp∗

(RN ), that is

S := inf
u∈W 1,p(RN )\{0}

∫
|∇u|p(∫

|u|p∗
)p/p∗ .

We also consider

S̃ = S̃(α, β) := inf
u,v∈W 1,p(RN )\{0}

∫
|∇u|p +

∫
|∇v|p(∫

|u|α|v|β
)p/p∗ .

The above number was introduced in [2], where the authors proved an interesting
relation between S and S̃, namely

Lemma 4.1. The constants S and S̃ satisfies

S̃ =

[(
α

β

)β/p∗

+
(
β

α

)α/p∗]
S.

Moreover, if ω realizes S, then (Aω,Bω) realizes S̃ for any constants A and B
such that (A/B) = (α/β)1/p.

Proof. The proof is similar to that presented in [2, Theorem 5]. �

Lemma 4.2. Let ((un, vn)) ⊂ X0 be a (PS)d sequence for the functional J0 with

d <
1
N
S̃N/p. Then we have either
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(i) ‖(un, vn)‖0 → 0, or

(ii) there exists a sequence (yn) ⊂ R
N and constants R, γ > 0 such that

lim inf
n→∞

∫
BR(yn)

(|un|p + |vn|p) ≥ γ > 0.

Proof. Suppose that (ii) does not hold. Then, as in Lemma 2.1, we can prove that∫
Q(un, vn) → 0. Since ((un, vn)) is bounded, 〈J ′

0(un, vn), (un, vn)〉 → 0. Taking
a subsequence, we obtain l ≥ 0 such that

‖(un, vn)‖p
0 → l and p∗

∫
(u+

n )α(v+
n )β → l. (4.1)

Since J0(un, vn) → d, we can use (4.1) to conclude that l = Nd. Recalling the
definition of S̃ we get

‖(un, vn)‖p
0 ≥ S̃

(∫
|un|α|vn|β

)p/p∗

≥ S̃

(∫
(u+

n )α(v+
n )β

)p/p∗

.

Taking the limit we conclude that l ≥ S̃lp/p∗
. If l > 0 we obtain

Nd = l ≥ S̃N/p,

which does not make sense. Hence l = 0 and therefore (i) holds. �

Proposition 4.3. The problem (CA) has a weak solution.

Proof. Since J0 has the Mountain Pass geometry, there exits ((un, vn)) ⊂ X0 such
that

J0(un, vn) → m0 and J ′
0(un, vn) → 0.

We claim that the number m0 satisfies

m0 <
1
N
S̃N/p.

Assuming for a moment that this is true, we can use Lemma 4.2 and argue as in
the proof of Proposition 2.2 to obtain the desired solution.

It remains to prove the claim. In view of the definition of m0 it suffices to
obtain (u, v) ∈ X0 such that

max
t≥0

J0(tu, tv) <
1
N
S̃N/p.

We proceed as in [16, Lemma 3] and firstly recall (see [29]) that, for any δ > 0,
the instanton

wδ(x) :=

[
δN

(
N − p

p− 1

)p−1
](N−p)/p2 (

δ + |x|p/(p−1)
)(p−N)/p

,
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satisfies the problem{ −∆pw = wp∗−1 in R
N ,

w ∈ W 1,p(RN ), w(x) > 0 for all x ∈ R
N ,

and ∫
|∇wδ|p =

∫
|wδ|p∗

= SN/p.

Let A,B be positive constants such that (A/B) = (α/β)1/p. By Lemma 4.1
we know that (Awδ, Bwδ) realizes S̃. Hence, we can easily obtain the following
relation between S and S̃

S̃ = S
(Ap +Bp)

(AαBβ)p/p∗ . (4.2)

Let η ∈ C∞
0 (RN , [0, 1]) be such that η ≡ 1 on B1(0) and η ≡ 0 on R

N \B2(0).
Setting

ψδ(x) :=
η(x)wδ(x)
|ηwδ|p∗

,

we can use the definition of ψδ and (Q5) to get

J0(tAψδ, tBψδ) ≤ tp

p
Dδ(Ap +Bp) − tp

∗

p∗ A
αBβ − λtq1Aq1Bq1

∫
B2(0)

|ψδ|q1 ,

where q1 ∈ (p, p∗) is given by condition (Q5) and

Dδ =
∫

|∇ψδ|p + V0|ψδ|p.

Let hδ(t) be the t-function on the right hand side of the above expression
and denote by tδ the maximum point of hδ on (0,∞). Since h′

δ(tδ) = 0 we have
that

tδ :=
[
Dδ(Ap +Bp)

AαBβ

]1/(p∗−p)

≥ tδ > 0.

Since the function t �→ tpDδ(Ap +Bp)/p− tp
∗
AαBβ/p∗ is increasing in (0, tδ), we

can use the definition of hδ to get

hδ(tδ) ≤ 1
N

[
Dδ(Ap +Bp)
(AαBβ)p/p∗

]N/p

− λtq1Aq1Bq1

∫
B2(0)

|ψδ|q1 . (4.3)

If a, b ≥ 0 and s ≥ 1, then (a + b)s ≤ as + s(a + b)s−1b. Therefore, there
exists C1 > 0 such that

D
N/p
δ ≤ SN/p +O(δ(N−p)/p) + C1

∫
B2(0)

|ψδ|p.



Vol. 15 (2008) Multiple solutions for a system of Schrödinger equations 329

Moreover, we can obtain ρ > 0 such that tδ > ρ for any δ small. Hence, it follows
from the above inequality, (4.3) and (4.2) that

hδ(tδ) ≤ 1
N
S̃N/p + δ(N−p)/p

[
C2 +

C3

δ(N−p)/p

(∫
B2(0)

|ψδ|p − λC4|ψδ|q1

)]
,

for positive constants C2, C3 and C4. In view of the hypotheses on λ > 0 given in
(Q5), we can argue as in the proof of [25, Claim 2] to check that, if δ is sufficiently
small, the second term in the right hand side above is negative. Thus,

max
t≥0

J0(tAψδ, tBψδ) ≤ max
t≥0

hδ(t) = hδ(tδ) <
1
N
S̃N/p

and the proposition is proved. �

In order to obtain solutions for (CPε) we will consider the system
−∆pu+ V (εx)|u|p−2u = Qu(u, v) + α|u|α−2u|v|β in R

N ,

−∆pv +W (εx)|v|p−2v = Qv(u, v) + β|u|α|v|β−2v in R
N ,

u(x), v(x) > 0 for all x ∈ R
N

(ĈP ε)

and to look for critical points of the functional Jε : Xε → R given by

Jε(u, v) :=
1
p
‖(u, v)‖p

ε −
∫
Q(u, v) −

∫
(u+)α(v+)β ,

where Xε is the same space defined at the beginning of Section 2.
The critical points of Jε belong to the Nehari manifold

Mε := {(u, v) ∈ Xε \ {(0, 0)} : 〈J ′
ε(u, v), (u, v)〉 = 0}

and the ground state level is given by

mε := inf
(u,v)∈Mε

Jε(u, v) = inf
(u,v)∈Xε\{(0,0)}

max
t≥0

Jε(tu, tv) > 0.

As before, the Palais-Smale condition for the functional Jε is related with
V∞ and W∞. When these two quantities are finite we define the limit functional
J∞ : X0 → R as being

J∞(u, v) :=
1
p

∫
(|∇u|p + |∇v|p + V∞|u|p +W∞|v|p)−

∫
Q(u, v)−

∫
(u+)α(v+)β ,

and its ground state level

m∞ := inf
(u,v)∈X0\{(0,0)}

max
t≥0

J∞(tu, tv) > 0.
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If max{V∞,W∞} = ∞, we set m∞ := ∞.
Since the function (u, v) �→ ∫

(u+)α(v+)β is positively p∗-homogeneous, we
can argue as in Subsection 2.2 to get a compactness result for the functional Jε.
We only notice that, in this new setting, we need to use Lemma 4.2 instead of
Lemma 2.1. Hence, the following result holds.

Proposition 4.4. The functional Jε constrained to Mε satisfies the (PS)d

condition at any level d < min{m∞, S̃N/p/N}. Moreover, critical points of Jε

constrained to Mε are critical points of Jε in Xε.

We are now ready to prove our second multiplicity result.

Proof of Theorem 1.2. Since the proof is very similar to that presented for
Theorem 1.1, we only sketch it. Fix δ > 0 and choose η ∈ C∞

0 (R, [0, 1]) such
that η(s) = 1 if 0 ≤ s ≤ δ/2 and η(s) = 0 if s ≥ δ. Let (ω̃1, ω̃2) ∈ X0 be the
solution of (CA) given by Proposition 4.3 and define, for each y ∈ M ,

Ψ̃i,ε,y(x) := η(|εx− y|)ω̃i

(
εx− y

ε

)
, i = 1, 2.

We introduce the map Φ̃ε : M → Mε by setting

Φ̃ε(y) := (t̃εΨ̃1,ε,y, t̃εΨ̃2,ε,y),

where t̃ε is the unique positive number satisfying

max
t≥0

Jε(tΨ̃1,ε,y, tΨ̃2,ε,y) = Jε(t̃εΨ̃1,ε,y, t̃εΨ̃2,ε,y).

The following holds

lim
ε→0+

Jε(Φ̃ε(y)) = m0 uniformly for y ∈ M.

Let Υ : R
N → R

N be the function defined in Section 3 and consider the
barycenter map β̃ε : Mε → R

N given by

β̃ε(u, v) :=

∫
Υ(εx) (|u(x)|p + |v(x)|p) dx∫

(|u(x)|p + |v(x)|p) dx
.

As before we can check that

lim
ε→0+

β̃ε(Φε(y)) = y uniformly for y ∈ M

and
lim

ε→0+
sup

(u,v)∈Σ̃ε

dist(β̃ε(u, v),Mδ) = 0,
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where
Σ̃ε := {(u, v) ∈ Mε : Jε(u, v) ≤ m0 + h̃(ε)}

and h : [0,∞) → [0,∞) satisfies h(ε) → 0 as ε → 0+.
The above equations provide εδ > 0 such that, for any ε ∈ (0, εδ), the

diagram

M
Φ̃ε−→ Σ̃ε

β̃ε−→ Mδ

is well defined and β̃ε ◦ Φ̃ε is homotopically equivalent to the embedding ι : M →
Mδ. Hence we conclude that catΣ̃ε

(Σ̃ε) ≥ catMδ
(M). In view of Proposition 4.4

and recalling that

m0 <
1
N
S̃N/p,

we may suppose that εδ is small in such way that Jε satisfies the Palais-Smale
condition in Σ̃ε. The proof now follows from Ljusternik-Schnirelmann theory and
the same arguments used in the subcritical case. �
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