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Abstract

We consider the semilinear problemAu + Au = |u|P~2uin 2, u = 0 ond 2, where”2 c RN is abounded
smooth domain and 2< p < 2* = 2N/(N — 2). We show hat if 2 is invariant under a nontrivial orthogonal
involution then, forA > 0 afficiently large, the equivariant topology of is related to the nubyer of solutions
which change sign exactly once.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the problem
—AU+AU=[uP2uin 2, u=00nd2, (P,)

where? ¢ RN is a bounded smooth domain and2 p < 2* = 2N/(N — 2). It is well known

that it posssses infinitely many solutions. However, when we require some properties of the sign
of the solutions, the problem seems to be more complicated. In the pHpéegnci and Cerami
showed that, ifA is sufficiently large, thenP;) has at least caf?) positive solutions, where od?)
denotes the Ljusternik—Schnirelmann category2adh itself. Since the workq], multiplicity results for

(Py) involving the catgory have been intensively studied (se4] for subcriticd, and [b—7] for critical
nonlineaities).
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In the aforementined works, the authors considered positive solutions8)nBartschobtained
infinite nodal solutions foK P, ), that is,solutions which change sign. Motivated by this work and by
a recent paper of Castro and Clafg, [we are interested in relating the topologyf@fto the nunier of
solutions which change sign exactly once. This means that the solui®such that? \ u=1(0) has
exactly two connected componentsis positive inone of them and negative in the other. We deal with
the poblem

—AU+ AU = |u|P2u, in 2,
u=0, onaf?, (PY)
u(tx) = —u(x), forall x € {2,

wherer : RN — RN is alinear orthogonal transformation such thag Id, 72 = Id, and2 c RN is a
bounded smooth domain such thd® = (2. Our main resli can be stated as follows.

Theorem 1.1. For any fixed pe (2, 2*) there &istsA = A(p) such that, for all. > A, the problem
(PY) has at least-catp ({2 \ £27) pairs of solutions which change sign exactly once.

Here, 2" = {x € {2 : Tx = x} andr-cat is theG,-equivariant Ljus¢rnik—Schnirelmann category for
the goupG; = {Id, t}. There are searal situations where the equivariant category turns out to be larger
than the nonequivariant one. The classical example is the unit sBNefec RN with = —Id. In this
case caSN~1) = 2 whaeasr-catSN 1) = N. Thus, as an easy consequenc&loforem 1..ve have:

Corollary 1.2. Let {2 be symmetric with respect to the origin and such tat (2. Assume further that
there is an odd mapy : SN=1 . 0. Then, for any pe (2, 2*) fixed there exists = A(p) such that, for
all » > A, theproblem (P,) has at least N pairs of odd solutions which change sign exactly once.

The above results complement those 8f \where the authors considered the critical semilinear
problem

—Au=iu+uF "2, ueHI(2), u(x)=-ux)in 2,

and obtained the same results fox 0 amall enough. They also complement the aforementioned works
that ceal only with positive solutions. We finally note thEheorem 1.Jalso holds ifx > 0 is fixed and
the exponentp is sufficiently close to 2 (seeRemark 3.2

2. Notation and sometechnical results

Throughout this work, we denote iy the Hilbat space Hol(()) endowed with the nornjju|| =

/o |Vu|2dx}1/2. The invdution 7 of {2 induces an involution o, which we aso denote by, in the
following way: for eactu € H we defineru € H by

(Tu)(X) = —u(TX). (2.2)

We denote byH™ = {u € H : Tu = u} the subspace ot -invariantfunctions.
LetE, : H — R be given by

1 1
E,(U) = éfn(wu|2+)\u2) dx——p/9|u|p dx,
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and its associated Nehari manifold
N, = {ue H\ {0} : (E}(u),u) =0} = {u e H\ {0} : lull + Ajul? = |u|2}

where|u|s denote theS(2)-norm fors > 1. In order to obtairr-invariant solutons, we will look for

critical points of E; restricted to the -invariant Nénari manifold
Ni={ueN,:tu=u} =N, NH,

by considering the following minimization problems:

m, = inf E,(u and m! = inf E,(u).
h = Jnt A (W) = N A (U)

For anyz-invariant bounded domai®® c RN we defineE; p, N p, N p, My p andmj , in the
same way B taking the abovéntegrals ove instead of(2. For simplicty, we use onlym; ; andm; |
to denotemy, g, (o) andm; B (0)’ resgectively.

Lemma2.1. For any > 0, wehave tham; < m;.

Proof. Note that, ifu € HT is positive n some gbsetA C (2, we can used.1) to conclude thau is
negative int (A). Thus, for any giveru € N}, we have that™, u~ € N, whereu®™ = max+u, 0}.
HenceE, (u) = E; (u™) + E;(u™) > 2m,, and the esult follows. O

Lemma2.2. If u is a critical point of E, resticted to 7, then E (u) = 0in the dual space of H.
Proof. By the Lagrange mitiplier rule, there exist§ € R such that

(Ej.(u) — 63/ (u). ¢) =0,
forall ¢ € HT, whereJ; (u) = [lull®> + A|ul3 — |u|p. Sinceu € N7, we have

0 = (E{(u), u) — 6¢J (W), u) = 6(p — 2)|ulp.

Thisimpliesé = 0 and theefore(E; (u), ¢) = 0 for all¢ € H™. The resit follows from the principle
of symmetic criticality [10] (see also11, Theorem 1.28]). O

By standard regularity theory we know thatiiiis a solution of(P;), then it is of clas€Ct. We say it
changes sighk times if the se{x € (2 : u(x) # 0} hask + 1 connected components. B2.0), if uis a
nontrivial solution of the probleniP) then itchanges sign an odd number of times.

Lemma 2.3. If u is a solutio of theproblem (P;") which changes sigk — 1 times, then E(u) > km} .

Proof. The set{x € £ : u(x) > 0} hask connected componeniy, ..., Ax. Letuj(X) = u(x) if
X € Aj Ut A andu; (x) = 0, otherwise. We have that

0= (Ej(u), uj) = / (VUVU; + auu — [ulP~2uu) dx = [lu; |12 + AJuil3 — |uilp.
2

Thus,ui e N foralli =1,...,k andE,(u) = Ej(u1) + - - - + E; (ux) > km, as desired. O

We recall now some facts about equivariant Ljusternik—Schnirelmann theory. An involution on a
topological spaceX is a montinuous functiorcy : X — X such thatr)z( is the identity map ofX. A
subsetA of X is calledtx-invariant if tx (A) = A. If X andY are topological spaces equipped with
involutions Tx and ty respectively, then an equivariant map is a continuous funcfion X — Y
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such thatf o tx = 7y o f. Two ejuivariant mapsfo, f1 : X — Y are equivariantly homotopic
if there is ahomotopy® : X x [0,1] — Y such that®(x,0) = fo(X), O(x,1) = f1(x) and
O(tx(X), 1) = v (O(x, 1)), forall x € X, t € [0, 1].

Definition 2.4. The equivariant category of an equivariant mtapX — Y, denoted by(tx, ty)-caf( f),
is the smakkst numbek of open invariant subsets,, ..., Xk of X which cover X and which have the
property that, for each = 1, ...k, there isapointy; € Y and a homotopy; : Xj x [0,1] — Y
such thatd; (x, 0) = f(X), ©(X,1) € {yi, ty(¥i)} and ©; (tx (X), t) = 1y (65 (X, 1)) for everyx € X,
t € [0, 1]. If no such overing exiss we defindtx, ty)-cat( f) = oc.

If Alis atyx-invariantsubset ofX and: : A < X is the inclusion map, we write
x-Calx (A) = (tx, tx)-calt) and tx-cai(X) = tx-catx(X).
The following properties can be verified.
Lemma25. (i) If f : X - Yandh:Y — Z are equivariant maps then
(tx, tz)-catho f) < ry-caty).
(i) If fo, f1 : X — Y are @uivariantly homotopic, thefry, tvy)-cal fo) = (rx, ty)-cat( f1).

LetV be a Banach spachk| be aCl-submanifold ofV andl : V — R be aCl-functional. We recall
that| restricted toM satisfies the Palais—Smale condition at lev§(PS}. for short) if ary sequence
(up) € M such thatl (u,) — cand|1’(un)|l« — O contains a convergent subsequence. Here we are
denoting byj|1’(u) ||« thenorm of the derivative of the restriction bfto M (see [L1, Section5.3]).

Letta : V — V be the antipodal involutiona(u) = —u on the vector spac¥. Equivariant
Ljusternik—Schnirelmann category provides a lower bound for the number of {jpairsu} of critical
points of an even functional, as stated in the following abstract result {s2élheorem 1.1], L3,
Theoren 5.7).

Theorem 2.6. Let | : M — R be an even &functional on a complete symmetrid-&submanifold M
of some Banach space V. Assume that | is bounded below and satSjgdor all c < d. Then, if
19 ={ue M :I(u) < d} the functional | has at leasty-cata (| dy antipodal pairs{u, —u} of critical
points with 1(+u) < d.

3. Proofsof theresults
Givenr > 0, we define the sets
27 ={xeRN:dist(x,2) <r} and 2 ={xe 2:dist(x, 02U N7) >r}.

Throughout the rest of the work we fix > 0 sufficiently small in such way that the inclusion maps
Q7 < 2\ 27 and? — (" are equivariant homotopy equivalences.
We nownote that, in 1], Benci and Cerami considered the minimization problem

rﬁ,\=inf{f(|Vu|2+ku2)dx:ue H,/ |u|pdx=1}.
(0} 9
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An easy calculation shows that, = (pz;pZ) P (P2 Therdore, if we denote byg : H \ {0} — RN
the bargenter map given by

_ Jo X IVU|? dx
[ IVueodx
we can rephrasd| Lemma 3.4] as:

B(U)

Lemma 3.1. For any fixed pe (2, 2*) there &istA = A(p) such that:

(i) myr < 2my,
(ii) ifu e My and E.(u) < m;, r, theng(u) € 2,

forall A > A.
We are now eady to present the proof of our main result.

Proof of Theorem 1.1. Let p € (2,2*) and A be given by theLemma 3.1 For anyA > A, since

2 < p < 2% the evenidinctional E, satisfies the Palais—Smale condition at any level R. Thus,

we can applyrheorem 2.60 obtainta-catNy N Efm“) pairs=u; of critical points ofE, restricted to

N7 verifying
E,(fui) <2m,, < 4m, < 2m;,

where we have usedemma 3.1i)) and Lemma 2.1 1t follows from Lemmas 2.2and2.3 that +u; are
solutions of(P,) which change sign exactly once.
It suffices now to check that
Ta-catVy N Efm“) > r-catp (2 \ 27).
With this aim, weclaim that there exist two maps

_ o« 2m Vi
O = NINE; ™ 5 0of

such thaty; (TX) = —a, (X), ya(—U) = Ty;.(U), andy; o «; is equivariantly homotopic to the inclusion
map{~ < .

Assuming the claim and recalling that the mags — 2\ 27 and? — " are equivariant
homotopy equivalences, we can samma 2.50 get

Ta-calNy N Efmk'r) > t-caty+ () = r-catp(2\ £27).
In order to prove the claim we followd]. Let v, € N, g, (o) be a positive radial function such that
Ex.B (0 (va) = My r. We definey,, : 27 — N7 N Efm**r by
o, (X) = v (- = X) — v (- — TX). (3.1)

It is clear thata; (tX) = —a,(X). Furthermeoe, sincewv, is radal andt is an isometry, we have
thata, (x) € HT. Note hat, fa everyx € (2, we have|x — tx| > 2r (if this is not true, then
X = (X + tXx)/2 sdisfies|x — X| < r andtX = X, contradicting the definition of2~). Thus, we can

check thatE, (. (X)) = 2m, , anda;, (X) € Ny . All those considerations show thgtis well defined.

Givenu € N7 N Efm**r we can useZ.1) and ther-invariance off? to conclude thau® € N,
and E; (u™) = Ej(u) < 2my . Herce,u™ € N, N E;n“ and it folows from Lemma 3.1ii) that
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vt NN Efm“ — O given byy, (u) = B(ut) is well defined. A simple calculation shows that
v, (—u) = 7y, (u). Moreove, using 8.1 and the &ct thatv, is radialwe get

Jo,00 Y IV Y =) dy  [g o (y+X) - [Vuu(y)Pdy
Jooo V(Y =22dy — [g o [VauPPdy

for anyx e (2~. This concludes the proof. O

va(an (X)) =

’

Remark 3.2. Arguing along the same lines as the above proof and using a version of Lemma#.2 in |
instead ofLemma 3.1 we can check thaTheorem 1.%lso holds ifx. > 0 is fixed and the exponenp is
sufficiently close to 2.

Proof of Corollary 1.2. Lett : RN — RN be given byr (x) = —x. Itis proved in P, Comllary 3] that
our assumptions imply-cat({2) > N. Since 0¢ {2, 2 = &. It suffices now to applyrheorem 1.1 O
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