A note on the number of nodal solutions of an elliptic equation with symmetry

Marcelo F. Furtado

UNICAMP-IMECC, Cx. Postal 6065, 13083-790 Campinas-SP, Brazil
Received 9 March 2005; accepted 15 April 2005

Abstract

We consider the semilinear problem $-\Delta u+\lambda u=|u|^{p-2} u$ in $\Omega, u=0$ on $\partial \Omega$, where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain and $2<p<2^{*}=2 N /(N-2)$. We show that if Ω is invariant under a nontrivial orthogonal involution then, for $\lambda>0$ sufficiently large, the equivariant topology of Ω is related to the number of solutions which change sign exactly once.

© 2005 Elsevier Ltd. All rights reserved.
Keywords: Nodal solutions; Equivariant category; Symmetry

1. Introduction

Consider the problem

$$
-\Delta u+\lambda u=|u|^{p-2} u \text { in } \Omega, \quad u=0 \text { on } \partial \Omega,
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain and $2<p<2^{*}=2 N /(N-2)$. It is well known that it possesses infinitely many solutions. However, when we require some properties of the sign of the solutions, the problem seems to be more complicated. In the paper [1], Benci and Cerami showed that, if λ is sufficiently large, then $\left(P_{\lambda}\right)$ has at least $\operatorname{cat}(\Omega)$ positive solutions, where cat (Ω) denotes the Ljusternik-Schnirelmann category of Ω in itself. Since the work [1], multiplicity results for $\left(P_{\lambda}\right)$ involving the category have been intensively studied (see [2-4] for subcritical, and [5-7] for critical nonlinearities).

[^0]In the aforementioned works, the authors considered positive solutions. In [8], Bartsch obtained infinite nodal solutions for $\left(P_{\lambda}\right)$, that is, solutions which change sign. Motivated by this work and by a recent paper of Castro and Clapp [9], we are interested in relating the topology of Ω to the number of solutions which change sign exactly once. This means that the solution u is such that $\Omega \backslash u^{-1}(0)$ has exactly two connected components; u is positive in one of them and negative in the other. We deal with the problem

$$
\begin{cases}-\Delta u+\lambda u=|u|^{p-2} u, & \text { in } \Omega \\ u=0, & \text { on } \partial \Omega \\ u(\tau x)=-u(x), & \text { for all } x \in \Omega\end{cases}
$$

where $\tau: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a linear orthogonal transformation such that $\tau \neq \mathrm{Id}, \tau^{2}=\mathrm{Id}$, and $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain such that $\tau \Omega=\Omega$. Our main result can be stated as follows.

Theorem 1.1. For any fixed $p \in\left(2,2^{*}\right)$ there exists $\bar{\lambda}=\bar{\lambda}(p)$ such that, for all $\lambda>\bar{\lambda}$, the problem (P_{λ}^{τ}) has at least $\tau-\operatorname{cat}_{\Omega}\left(\Omega \backslash \Omega^{\tau}\right)$ pairs of solutions which change sign exactly once.

Here, $\Omega^{\tau}=\{x \in \Omega: \tau x=x\}$ and τ-cat is the G_{τ}-equivariant Ljusternik-Schnirelmann category for the group $G_{\tau}=\{\mathrm{Id}, \tau\}$. There are several situations where the equivariant category turns out to be larger than the nonequivariant one. The classical example is the unit sphere $\mathbb{S}^{N-1} \subset \mathbb{R}^{N}$ with $\tau=-\mathrm{Id}$. In this case $\operatorname{cat}\left(\mathbb{S}^{N-1}\right)=2$ whereas τ-cat $\left(\mathbb{S}^{N-1}\right)=N$. Thus, as an easy consequence of Theorem 1.1 we have:

Corollary 1.2. Let Ω be symmetric with respect to the origin and such that $0 \notin \Omega$. Assume further that there is an odd map $\varphi: \mathbb{S}^{N-1} \rightarrow \Omega$. Then, for any $p \in\left(2,2^{*}\right)$ fixed there exists $\bar{\lambda}=\bar{\lambda}(p)$ such that, for all $\lambda>\bar{\lambda}$, the problem $\left(P_{\lambda}\right)$ has at least N pairs of odd solutions which change sign exactly once.

The above results complement those of [9] where the authors considered the critical semilinear problem

$$
-\Delta u=\lambda u+|u|^{2^{*}-2} u, \quad u \in H_{0}^{1}(\Omega), \quad u(\tau x)=-u(x) \text { in } \Omega,
$$

and obtained the same results for $\lambda>0$ small enough. They also complement the aforementioned works that deal only with positive solutions. We finally note that Theorem 1.1 also holds if $\lambda \geq 0$ is fixed and the exponent p is sufficiently close to 2^{*} (see Remark 3.2).

2. Notation and some technical results

Throughout this work, we denote by H the Hilbert space $H_{0}^{1}(\Omega)$ endowed with the norm $\|u\|=$ $\left\{\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right\}^{1 / 2}$. The involution τ of Ω induces an involution of H, which we also denote by τ, in the following way: for each $u \in H$ we define $\tau u \in H$ by

$$
\begin{equation*}
(\tau u)(x)=-u(\tau x) \tag{2.1}
\end{equation*}
$$

We denote by $H^{\tau}=\{u \in H: \tau u=u\}$ the subspace of τ-invariant functions.
Let $E_{\lambda}: H \rightarrow \mathbb{R}$ be given by

$$
E_{\lambda}(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) \mathrm{d} x-\frac{1}{p} \int_{\Omega}|u|^{p} \mathrm{~d} x,
$$

and its associated Nehari manifold

$$
\mathcal{N}_{\lambda}=\left\{u \in H \backslash\{0\}:\left\langle E_{\lambda}^{\prime}(u), u\right\rangle=0\right\}=\left\{u \in H \backslash\{0\}:\|u\|^{2}+\lambda|u|_{2}^{2}=|u|_{p}^{p}\right\}
$$

where $|u|_{s}$ denote the $L^{s}(\Omega)$-norm for $s \geq 1$. In order to obtain τ-invariant solutions, we will look for critical points of E_{λ} restricted to the τ-invariant Nehari manifold

$$
\mathcal{N}_{\lambda}^{\tau}=\left\{u \in \mathcal{N}_{\lambda}: \tau u=u\right\}=\mathcal{N}_{\lambda} \cap H^{\tau},
$$

by considering the following minimization problems:

$$
m_{\lambda}=\inf _{u \in \mathcal{N}_{\lambda}} E_{\lambda}(u) \quad \text { and } \quad m_{\lambda}^{\tau}=\inf _{u \in \mathcal{N}_{\lambda}^{\tau}} E_{\lambda}(u)
$$

For any τ-invariant bounded domain $\mathcal{D} \subset \mathbb{R}^{N}$ we define $E_{\lambda, \mathcal{D}}, \mathcal{N}_{\lambda, \mathcal{D}}, \mathcal{N}_{\lambda, \mathcal{D}}^{\tau}, m_{\lambda, \mathcal{D}}$ and $m_{\lambda, \mathcal{D}}^{\tau}$ in the same way by taking the above integrals over \mathcal{D} instead of Ω. For simplicity, we use only $m_{\lambda, r}$ and $m_{\lambda, r}^{\tau}$ to denote $m_{\lambda, B_{r}(0)}$ and $m_{\lambda, B_{r}(0)}^{\tau}$, respectively.
Lemma 2.1. For any $\lambda \geq 0$, we have that $2 m_{\lambda} \leq m_{\lambda}^{\tau}$.
Proof. Note that, if $u \in H^{\tau}$ is positive in some subset $A \subset \Omega$, we can use (2.1) to conclude that u is negative in $\tau(A)$. Thus, for any given $u \in \mathcal{N}_{\lambda}^{\tau}$, we have that $u^{+}, u^{-} \in \mathcal{N}_{\lambda}$, where $u^{ \pm}=\max \{ \pm u, 0\}$. Hence $E_{\lambda}(u)=E_{\lambda}\left(u^{+}\right)+E_{\lambda}\left(u^{-}\right) \geq 2 m_{\lambda}$, and the result follows.

Lemma 2.2. If u is a critical point of E_{λ} restricted to $\mathcal{N}_{\lambda}^{\tau}$, then $E_{\lambda}^{\prime}(u)=0$ in the dual space of H.
Proof. By the Lagrange multiplier rule, there exists $\theta \in \mathbb{R}$ such that

$$
\left\langle E_{\lambda}^{\prime}(u)-\theta J_{\lambda}^{\prime}(u), \phi\right\rangle=0,
$$

for all $\phi \in H^{\tau}$, where $J_{\lambda}(u)=\|u\|^{2}+\lambda|u|_{2}^{2}-|u|_{p}^{p}$. Since $u \in \mathcal{N}_{\lambda}^{\tau}$, we have

$$
0=\left\langle E_{\lambda}^{\prime}(u), u\right\rangle-\theta\left\langle J_{\lambda}^{\prime}(u), u\right\rangle=\theta(p-2)|u|_{p}^{p} .
$$

This implies $\theta=0$ and therefore $\left\langle E_{\lambda}^{\prime}(u), \phi\right\rangle=0$ for all $\phi \in H^{\tau}$. The result follows from the principle of symmetric criticality [10] (see also [11, Theorem 1.28]).

By standard regularity theory we know that if u is a solution of $\left(P_{\lambda}\right)$, then it is of class C^{1}. We say it changes sign k times if the set $\{x \in \Omega: u(x) \neq 0\}$ has $k+1$ connected components. By (2.1), if u is a nontrivial solution of the problem $\left(P_{\lambda}^{\tau}\right)$ then it changes sign an odd number of times.
Lemma 2.3. If u is a solution of the problem $\left(P_{\lambda}^{\tau}\right)$ which changes $\operatorname{sign} 2 k-1$ times, then $E_{\lambda}(u) \geq k m_{\lambda}^{\tau}$.
Proof. The set $\{x \in \Omega: u(x)>0\}$ has k connected components A_{1}, \ldots, A_{k}. Let $u_{i}(x)=u(x)$ if $x \in A_{i} \cup \tau A_{i}$ and $u_{i}(x)=0$, otherwise. We have that

$$
0=\left\langle E_{\lambda}^{\prime}(u), u_{i}\right\rangle=\int_{\Omega}\left(\nabla u \nabla u_{i}+\lambda u u_{i}-|u|^{p-2} u u_{i}\right) \mathrm{d} x=\left\|u_{i}\right\|^{2}+\lambda\left|u_{i}\right|_{2}^{2}-\left|u_{i}\right|_{p}^{p}
$$

Thus, $u_{i} \in \mathcal{N}_{\lambda}^{\tau}$ for all $i=1, \ldots, k$, and $E_{\lambda}(u)=E_{\lambda}\left(u_{1}\right)+\cdots+E_{\lambda}\left(u_{k}\right) \geq k m_{\lambda}^{\tau}$, as desired.
We recall now some facts about equivariant Ljusternik-Schnirelmann theory. An involution on a topological space X is a continuous function $\tau_{X}: X \rightarrow X$ such that τ_{X}^{2} is the identity map of X. A subset A of X is called τ_{X}-invariant if $\tau_{X}(A)=A$. If X and Y are topological spaces equipped with involutions τ_{X} and τ_{Y} respectively, then an equivariant map is a continuous function $f: X \rightarrow Y$
such that $f \circ \tau_{X}=\tau_{Y} \circ f$. Two equivariant maps $f_{0}, f_{1}: X \rightarrow Y$ are equivariantly homotopic if there is a homotopy $\Theta: X \times[0,1] \rightarrow Y$ such that $\Theta(x, 0)=f_{0}(x), \Theta(x, 1)=f_{1}(x)$ and $\Theta\left(\tau_{X}(x), t\right)=\tau_{Y}(\Theta(x, t))$, for all $x \in X, t \in[0,1]$.

Definition 2.4. The equivariant category of an equivariant map $f: X \rightarrow Y$, denoted by (τ_{X}, τ_{Y})-cat (f), is the smallest number k of open invariant subsets X_{1}, \ldots, X_{k} of X which cover X and which have the property that, for each $i=1, \ldots, k$, there is a point $y_{i} \in Y$ and a homotopy $\Theta_{i}: X_{i} \times[0,1] \rightarrow Y$ such that $\Theta_{i}(x, 0)=f(x), \Theta_{i}(x, 1) \in\left\{y_{i}, \tau_{Y}\left(y_{i}\right)\right\}$ and $\Theta_{i}\left(\tau_{X}(x), t\right)=\tau_{Y}\left(\Theta_{i}(x, t)\right)$ for every $x \in X_{i}$, $t \in[0,1]$. If no such covering exists we define $\left(\tau_{X}, \tau_{Y}\right)-\operatorname{cat}(f)=\infty$.

If A is a τ_{X}-invariant subset of X and $\iota: A \hookrightarrow X$ is the inclusion map, we write

$$
\tau_{X}-\operatorname{cat}_{X}(A)=\left(\tau_{X}, \tau_{X}\right)-\operatorname{cat}(\iota) \quad \text { and } \quad \tau_{X}-\operatorname{cat}(X)=\tau_{X}-\operatorname{cat}_{X}(X)
$$

The following properties can be verified.
Lemma 2.5. (i) If $f: X \rightarrow Y$ and $h: Y \rightarrow Z$ are equivariant maps then

$$
\left(\tau_{X}, \tau_{Z}\right)-\operatorname{cat}(h \circ f) \leq \tau_{Y}-\operatorname{cat}(Y)
$$

(ii) If $f_{0}, f_{1}: X \rightarrow Y$ are equivariantly homotopic, then $\left(\tau_{X}, \tau_{Y}\right)-\operatorname{cat}\left(f_{0}\right)=\left(\tau_{X}, \tau_{Y}\right)-\operatorname{cat}\left(f_{1}\right)$.

Let V be a Banach space, M be a C^{1}-submanifold of V and $I: V \rightarrow \mathbb{R}$ be a C^{1}-functional. We recall that I restricted to M satisfies the Palais-Smale condition at level $c\left((\mathrm{PS})_{c}\right.$ for short) if any sequence $\left(u_{n}\right) \subset M$ such that $I\left(u_{n}\right) \rightarrow c$ and $\left\|I^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0$ contains a convergent subsequence. Here we are denoting by $\left\|I^{\prime}(u)\right\|_{*}$ the norm of the derivative of the restriction of I to M (see [11, Section 5.3]).

Let $\tau_{a}: V \rightarrow V$ be the antipodal involution $\tau_{a}(u)=-u$ on the vector space V. Equivariant Ljusternik-Schnirelmann category provides a lower bound for the number of pairs $\{u,-u\}$ of critical points of an even functional, as stated in the following abstract result (see [12, Theorem 1.1], [13, Theorem 5.7]).

Theorem 2.6. Let $I: M \rightarrow \mathbb{R}$ be an even C^{1}-functional on a complete symmetric $C^{1,1}$-submanifold M of some Banach space V. Assume that I is bounded below and satisfies (PS) ${ }_{c}$ for all $c \leq d$. Then, if $I^{d}=\{u \in M: I(u) \leq d\}$, the functional I has at least τ_{a}-cat ${ }_{I^{d}}\left(I^{d}\right)$ antipodal pairs $\{u,-u\}$ of critical points with $I(\pm u) \leq d$.

3. Proofs of the results

Given $r>0$, we define the sets

$$
\Omega_{r}^{+}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, \Omega)<r\right\} \quad \text { and } \quad \Omega_{r}^{-}=\left\{x \in \Omega: \operatorname{dist}\left(x, \partial \Omega \cup \Omega^{\tau}\right) \geq r\right\} .
$$

Throughout the rest of the work we fix $r>0$ sufficiently small in such way that the inclusion maps $\Omega_{r}^{-} \hookrightarrow \Omega \backslash \Omega^{\tau}$ and $\Omega \hookrightarrow \Omega_{r}^{+}$are equivariant homotopy equivalences.

We now note that, in [1], Benci and Cerami considered the minimization problem

$$
\tilde{m}_{\lambda}=\inf \left\{\int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) \mathrm{d} x: u \in H, \int_{\Omega}|u|^{p} \mathrm{~d} x=1\right\} .
$$

An easy calculation shows that $m_{\lambda}=\left(\frac{p-2}{2 p}\right) \widetilde{m}_{\lambda}^{p /(p-2)}$. Therefore, if we denote by $\beta: H \backslash\{0\} \rightarrow \mathbb{R}^{N}$ the barycenter map given by

$$
\beta(u)=\frac{\int_{\Omega} x \cdot|\nabla u(x)|^{2} \mathrm{~d} x}{\int_{\Omega}|\nabla u(x)|^{2} \mathrm{~d} x},
$$

we can rephrase [1, Lemma 3.4] as:
Lemma 3.1. For any fixed $p \in\left(2,2^{*}\right)$ there exist $\bar{\lambda}=\bar{\lambda}(p)$ such that:
(i) $m_{\lambda, r}<2 m_{\lambda}$,
(ii) if $u \in \mathcal{N}_{\lambda}$ and $E_{\lambda}(u) \leq m_{\lambda, r}$, then $\beta(u) \in \Omega_{r}^{+}$,
for all $\lambda>\bar{\lambda}$.
We are now ready to present the proof of our main result.
Proof of Theorem 1.1. Let $p \in\left(2,2^{*}\right)$ and $\bar{\lambda}$ be given by the Lemma 3.1. For any $\lambda>\bar{\lambda}$, since $2<p<2^{*}$, the even functional E_{λ} satisfies the Palais-Smale condition at any level $c \in \mathbb{R}$. Thus, we can apply Theorem 2.6 to obtain $\tau_{a}-\operatorname{cat}\left(\mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2 m_{\lambda, r}}\right)$ pairs $\pm u_{i}$ of critical points of E_{λ} restricted to $\mathcal{N}_{\lambda}^{\tau}$ verifying

$$
E_{\lambda}\left(\pm u_{i}\right) \leq 2 m_{\lambda, r}<4 m_{\lambda} \leq 2 m_{\lambda}^{\tau},
$$

where we have used Lemma 3.1(i) and Lemma 2.1. It follows from Lemmas 2.2 and 2.3 that $\pm u_{i}$ are solutions of $\left(P_{\lambda}^{\tau}\right)$ which change sign exactly once.

It suffices now to check that

$$
\tau_{a}-\operatorname{cat}\left(\mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2 m_{\lambda, r}}\right) \geq \tau-\operatorname{cat}_{\Omega}\left(\Omega \backslash \Omega^{\tau}\right)
$$

With this aim, we claim that there exist two maps

$$
\Omega_{r}^{-} \xrightarrow{\alpha_{\lambda}} \mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2 m_{\lambda, r}} \xrightarrow{\gamma_{\lambda}} \Omega_{r}^{+}
$$

such that $\alpha_{\lambda}(\tau x)=-\alpha_{\lambda}(x), \gamma_{\lambda}(-u)=\tau \gamma_{\lambda}(u)$, and $\gamma_{\lambda} \circ \alpha_{\lambda}$ is equivariantly homotopic to the inclusion $\operatorname{map} \Omega_{r}^{-} \hookrightarrow \Omega_{r}^{+}$.

Assuming the claim and recalling that the maps $\Omega_{r}^{-} \hookrightarrow \Omega \backslash \Omega^{\tau}$ and $\Omega \hookrightarrow \Omega_{r}^{+}$are equivariant homotopy equivalences, we can use Lemma 2.5 to get

$$
\tau_{a}-\operatorname{cat}\left(\mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2 m_{\lambda, r}}\right) \geq \tau-\operatorname{cat}_{\Omega_{r}^{+}}\left(\Omega_{r}^{-}\right)=\tau-\operatorname{cat}_{\Omega}\left(\Omega \backslash \Omega^{\tau}\right)
$$

In order to prove the claim we follow [9]. Let $v_{\lambda} \in \mathcal{N}_{\lambda, B_{r}(0)}$ be a positive radial function such that $E_{\lambda, B_{r}(0)}\left(v_{\lambda}\right)=m_{\lambda, r}$. We define $\alpha_{\lambda}: \Omega_{r}^{-} \rightarrow \mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2 m_{\lambda, r}}$ by

$$
\begin{equation*}
\alpha_{\lambda}(x)=v_{\lambda}(\cdot-x)-v_{\lambda}(\cdot-\tau x) \tag{3.1}
\end{equation*}
$$

It is clear that $\alpha_{\lambda}(\tau x)=-\alpha_{\lambda}(x)$. Furthermore, since v_{λ} is radial and τ is an isometry, we have that $\alpha_{\lambda}(x) \in H^{\tau}$. Note that, for every $x \in \Omega_{r}^{-}$, we have $|x-\tau x| \geq 2 r$ (if this is not true, then $\bar{x}=(x+\tau x) / 2$ satisfies $|x-\bar{x}|<r$ and $\tau \bar{x}=\bar{x}$, contradicting the definition of $\left.\Omega_{r}^{-}\right)$. Thus, we can check that $E_{\lambda}\left(\alpha_{\lambda}(x)\right)=2 m_{\lambda, r}$ and $\alpha_{\lambda}(x) \in \mathcal{N}_{\lambda}^{\tau}$. All those considerations show that α_{λ} is well defined.

Given $u \in \mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2 m_{\lambda, r}}$ we can use (2.1) and the τ-invariance of Ω to conclude that $u^{+} \in \mathcal{N}_{\lambda}$ and $2 E_{\lambda}\left(u^{+}\right)=E_{\lambda}(u) \leq 2 m_{\lambda, r}$. Hence, $u^{+} \in \mathcal{N}_{\lambda} \cap E_{\lambda}^{m_{\lambda, r}}$ and it follows from Lemma 3.1(ii) that
$\gamma_{\lambda}: \mathcal{N}_{\lambda}^{\tau} \cap E_{\lambda}^{2 m_{\lambda, r}} \rightarrow \Omega_{r}^{+}$given by $\gamma_{\lambda}(u)=\beta\left(u^{+}\right)$is well defined. A simple calculation shows that $\gamma_{\lambda}(-u)=\tau \gamma_{\lambda}(u)$. Moreover, using (3.1) and the fact that v_{λ} is radial we get

$$
\gamma_{\lambda}\left(\alpha_{\lambda}(x)\right)=\frac{\int_{B_{r}(x)} y \cdot\left|\nabla v_{\lambda}(y-x)\right|^{2} \mathrm{~d} y}{\int_{B_{r}(x)}\left|\nabla v_{\lambda}(y-x)\right|^{2} \mathrm{~d} y}=\frac{\int_{B_{r}(0)}(y+x) \cdot\left|\nabla v_{\lambda}(y)\right|^{2} \mathrm{~d} y}{\int_{B_{r}(0)}\left|\nabla v_{\lambda}(y)\right|^{2} \mathrm{~d} y}=x,
$$

for any $x \in \Omega_{r}^{-}$. This concludes the proof.
Remark 3.2. Arguing along the same lines as the above proof and using a version of Lemma 4.2 in [1] instead of Lemma 3.1, we can check that Theorem 1.1 also holds if $\lambda \geq 0$ is fixed and the exponent p is sufficiently close to 2^{*}.

Proof of Corollary 1.2. Let $\tau: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be given by $\tau(x)=-x$. It is proved in [9, Corollary 3] that our assumptions imply $\tau-\operatorname{cat}(\Omega) \geq N$. Since $0 \notin \Omega, \Omega^{\tau}=\varnothing$. It suffices now to apply Theorem 1.1.

Acknowledgement

The author was supported by CAPES/Brazil.

References

[1] V. Benci, G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Ration. Mech. Anal. 114 (1991) 79-93.
[2] V. Benci, G. Cerami, D. Passaseo, On the number of positive solutions of some nonlinear elliptic problems, Nonlinear Analysis, A tribute in honour of G. Prodi, Quaderno Scuola Norm. Sup., Pisa (1991) 93-107.
[3] V. Benci, G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations 2 (1994) 29-48.
[4] M. Clapp, On the number of positive symmetric solutions of a nonautonomous semilinear elliptic problem, Nonlinear Anal. 42 (2000) 405-422.
[5] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. 13 (1989) 1241-1249.
[6] M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec léxposant critique de Sobolev, C. R. Acad. Sci. Paris 314 (1992) 61-64.
[7] C.O. Alves, Y.H. Ding, Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, J. Math. Anal. Appl. 279 (2003) 508-521.
[8] T. Bartsch, Critical point theory in partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001) 117-152.
[9] A. Castro, M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity 16 (2003) 579-590.
[10] R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979) 19-30.
[11] M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
[12] M. Clapp, D. Puppe, Critical point theory with symmetries, J. Reine. Angew. Math. 418 (1991) 1-29.
[13] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990.

[^0]: E-mail address: furtado@ime.unicamp.br.

