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A note on the number of nodal solutions of an elliptic equation
with symmetry
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Abstract

We consider the semilinear problem−�u + λu = |u|p−2u in Ω , u = 0 on∂Ω , whereΩ ⊂ R
N is a bounded

smooth domain and 2< p < 2∗ = 2N/(N − 2). We show that if Ω is invariant under a nontrivial orthogonal
involution then, forλ > 0 sufficiently large, the equivariant topology ofΩ is related to the number of solutions
which change sign exactly once.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the problem

−�u + λu = |u|p−2u in Ω, u = 0 on∂Ω, (Pλ)

whereΩ ⊂ R
N is a bounded smooth domain and 2< p < 2∗ = 2N/(N − 2). It is well known

that it possesses infinitely many solutions. However, when we require some properties of the sign
of the solutions, the problem seems to be more complicated. In the paper [1], Benci and Cerami
showed that, ifλ is sufficiently large, then(Pλ) has at least cat(Ω) positive solutions, where cat(Ω)

denotes the Ljusternik–Schnirelmann category ofΩ in itself. Since the work [1], multiplicity results for
(Pλ) involving the category have been intensively studied (see [2–4] for subcritical, and [5–7] for critical
nonlinearities).
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In the aforementioned works, the authors considered positive solutions. In [8], Bartschobtained
infinite nodal solutions for(Pλ), that is,solutions which change sign. Motivated by this work and by
a recent paper of Castro and Clapp [9], we are interested in relating the topology ofΩ to the number of
solutions which change sign exactly once. This means that the solutionu is such thatΩ \ u−1(0) has
exactly two connected components;u is positive inone of them and negative in the other. We deal with
the problem


−�u + λu = |u|p−2u, in Ω,

u = 0, on∂Ω,

u(τx) = −u(x), for all x ∈ Ω,

(Pτ
λ )

whereτ : R
N → R

N is a linear orthogonal transformation such thatτ �= Id, τ2 = Id, andΩ ⊂ R
N is a

bounded smooth domain such thatτΩ = Ω . Our main result can be stated as follows.

Theorem 1.1. For any fixed p∈ (2, 2∗) there existsλ = λ(p) such that, for allλ > λ, theproblem
(Pτ

λ ) has at leastτ -catΩ (Ω \ Ωτ ) pairs of solutions which change sign exactly once.

Here,Ωτ = {x ∈ Ω : τx = x} andτ -cat is theGτ -equivariant Ljusternik–Schnirelmann category for
the groupGτ = {Id, τ }. There are several situations where the equivariant category turns out to be larger
than the nonequivariant one. The classical example is the unit sphereS

N−1 ⊂ R
N with τ = −Id. In this

case cat(SN−1) = 2 whereasτ -cat(SN−1) = N. Thus, as an easy consequence ofTheorem 1.1we have:

Corollary 1.2. LetΩ be symmetric with respect to the origin and such that0 �∈ Ω . Assume further that
there is an odd mapϕ : S

N−1 → Ω . Then, for any p∈ (2, 2∗) fixed there existsλ = λ(p) such that, for
all λ > λ, theproblem (Pλ) has at least N pairs of odd solutions which change sign exactly once.

The above results complement those of [9] where the authors considered the critical semilinear
problem

−�u = λu + |u|2∗−2u, u ∈ H1
0 (Ω), u(τx) = −u(x) in Ω,

and obtained the same results forλ > 0 small enough. They also complement the aforementioned works
that deal only with positive solutions. We finally note thatTheorem 1.1also holds ifλ ≥ 0 is fixed and
the exponentp is sufficiently close to 2∗ (seeRemark 3.2).

2. Notation and some technical results

Throughout this work, we denote byH the Hilbert space H1
0 (Ω) endowed with the norm‖u‖ ={∫

Ω |∇u|2dx
}1/2

. The involution τ of Ω induces an involution ofH , which we also denote byτ , in the
following way: for eachu ∈ H we defineτu ∈ H by

(τu)(x) = −u(τx). (2.1)

We denote byH τ = {u ∈ H : τu = u} the subspace ofτ -invariantfunctions.
Let Eλ : H → R be given by

Eλ(u) = 1

2

∫
Ω

(|∇u|2 + λu2) dx − 1

p

∫
Ω

|u|p dx,
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and its associated Nehari manifold

Nλ = {
u ∈ H \ {0} : 〈E′

λ(u), u〉 = 0
} =

{
u ∈ H \ {0} : ‖u‖2 + λ|u|22 = |u|p

p

}
where|u|s denote theLs(Ω)-norm fors ≥ 1. In order to obtainτ -invariant solutions, we will look for
critical points ofEλ restricted to theτ -invariant Nehari manifold

N τ
λ = {u ∈ Nλ : τu = u} = Nλ ∩ H τ ,

by considering the following minimization problems:

mλ = inf
u∈Nλ

Eλ(u) and mτ
λ = inf

u∈N τ
λ

Eλ(u).

For anyτ -invariant bounded domainD ⊂ R
N we defineEλ,D, Nλ,D, N τ

λ,D, mλ,D andmτ
λ,D in the

same way by taking the aboveintegrals overD instead ofΩ . For simplicity, we use onlymλ,r andmτ
λ,r

to denotemλ,Br (0) andmτ
λ,Br (0)

, respectively.

Lemma 2.1. For anyλ ≥ 0, wehave that2mλ ≤ mτ
λ.

Proof. Note that, ifu ∈ H τ is positive in some subsetA ⊂ Ω , we can use (2.1) to conclude thatu is
negative inτ (A). Thus, for any givenu ∈ N τ

λ , we have thatu+, u− ∈ Nλ, whereu± = max{±u, 0}.
HenceEλ(u) = Eλ(u+) + Eλ(u−) ≥ 2mλ, and the result follows. �

Lemma 2.2. If u is a critical point of Eλ restricted toN τ
λ , then E′

λ(u) = 0 in thedual space of H.

Proof. By the Lagrange multiplier rule, there existsθ ∈ R such that

〈E′
λ(u) − θ J′

λ(u), φ〉 = 0,

for all φ ∈ H τ , whereJλ(u) = ‖u‖2 + λ|u|22 − |u|p
p. Sinceu ∈ N τ

λ , we have

0 = 〈E′
λ(u), u〉 − θ〈J′

λ(u), u〉 = θ(p − 2)|u|p
p.

This impliesθ = 0 and therefore〈E′
λ(u), φ〉 = 0 for all φ ∈ H τ . The result follows from the principle

of symmetric criticality [10] (see also [11, Theorem 1.28]). �

By standard regularity theory we know that ifu is a solution of(Pλ), then it is of classC1. We say it
changes signk times if the set{x ∈ Ω : u(x) �= 0} hask + 1 connected components. By (2.1), if u is a
nontrivial solution of the problem(Pτ

λ ) then itchanges sign an odd number of times.

Lemma 2.3. If u is a solution of theproblem (Pτ
λ ) which changes sign2k−1 times, then Eλ(u) ≥ kmτ

λ.

Proof. The set{x ∈ Ω : u(x) > 0} hask connected componentsA1, . . . , Ak. Let ui (x) = u(x) if
x ∈ Ai ∪ τ Ai andui (x) = 0, otherwise. We have that

0 = 〈E′
λ(u), ui 〉 =

∫
Ω

(∇u∇ui + λuui − |u|p−2uui ) dx = ‖ui ‖2 + λ|ui |22 − |ui |p
p.

Thus,ui ∈ N τ
λ for all i = 1, . . . , k, andEλ(u) = Eλ(u1) + · · · + Eλ(uk) ≥ kmτ

λ, as desired. �

We recall now some facts about equivariant Ljusternik–Schnirelmann theory. An involution on a
topological spaceX is a continuous functionτX : X → X such thatτ2

X is the identity map ofX. A
subsetA of X is calledτX-invariant if τX(A) = A. If X andY are topological spaces equipped with
involutions τX and τY respectively, then an equivariant map is a continuous functionf : X → Y
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such that f ◦ τX = τY ◦ f . Two equivariant mapsf0, f1 : X → Y are equivariantly homotopic
if there is ahomotopyΘ : X × [0, 1] → Y such thatΘ(x, 0) = f0(x), Θ(x, 1) = f1(x) and
Θ(τX(x), t) = τY(Θ(x, t)), for all x ∈ X, t ∈ [0, 1].
Definition 2.4. The equivariant category of an equivariant mapf : X → Y, denoted by(τX, τY)-cat( f ),
is the smallest numberk of open invariant subsetsX1, . . . , Xk of X which cover X and which have the
property that, for eachi = 1, . . . , k, there isa point yi ∈ Y and a homotopyΘi : Xi × [0, 1] → Y
such thatΘi (x, 0) = f (x), Θi (x, 1) ∈ {yi , τY(yi )} andΘi (τX(x), t) = τY(Θi (x, t)) for everyx ∈ Xi ,
t ∈ [0, 1]. If no such covering exists we define(τX, τY)-cat( f ) = ∞.

If A is aτX-invariantsubset ofX andι : A ↪→ X is the inclusion map, we write

τX-catX(A) = (τX, τX)-cat(ι) and τX-cat(X) = τX-catX(X).

The following properties can be verified.

Lemma 2.5. (i) If f : X → Y and h : Y → Z are equivariant maps then

(τX, τZ)-cat(h ◦ f ) ≤ τY-cat(Y).

(ii) If f0, f1 : X → Y are equivariantly homotopic, then(τX, τY)-cat( f0) = (τX, τY)-cat( f1).

Let V be a Banach space,M be aC1-submanifold ofV andI : V → R be aC1-functional. We recall
that I restricted toM satisfies the Palais–Smale condition at levelc ((PS)c for short) if any sequence
(un) ⊂ M such thatI (un) → c and‖I ′(un)‖∗ → 0 contains a convergent subsequence. Here we are
denoting by‖I ′(u)‖∗ thenorm of the derivative of the restriction ofI to M (see [11, Section5.3]).

Let τa : V → V be the antipodal involutionτa(u) = −u on the vector spaceV . Equivariant
Ljusternik–Schnirelmann category provides a lower bound for the number of pairs{u,−u} of critical
points of an even functional, as stated in the following abstract result (see [12, Theorem 1.1], [13,
Theorem 5.7]).

Theorem 2.6. Let I : M → R be an even C1-functional on a complete symmetric C1,1-submanifold M
of some Banach space V . Assume that I is bounded below and satisfies(PS)c for all c ≤ d. Then, if
I d = {u ∈ M : I (u) ≤ d}, the functional I has at leastτa-catI d (I d) antipodal pairs{u,−u} of critical
points with I(±u) ≤ d.

3. Proofs of the results

Givenr > 0, we define the sets

Ω+
r = {x ∈ R

N : dist(x,Ω) < r } and Ω−
r = {x ∈ Ω : dist(x, ∂Ω ∪ Ωτ ) ≥ r }.

Throughout the rest of the work we fixr > 0 sufficiently small in such way that the inclusion maps
Ω−

r ↪→ Ω \ Ωτ andΩ ↪→ Ω+
r are equivariant homotopy equivalences.

We nownote that, in [1], Benci and Cerami considered the minimization problem

m̃λ = inf

{∫
Ω

(|∇u|2 + λu2) dx : u ∈ H,

∫
Ω

|u|p dx = 1

}
.
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An easy calculation shows thatmλ =
(

p−2
2p

)
m̃p/(p−2)

λ . Therefore, if we denote byβ : H \ {0} → R
N

the barycenter map given by

β(u) =
∫
Ω x · |∇u(x)|2 dx∫

Ω |∇u(x)|2 dx
,

we can rephrase [1, Lemma 3.4] as:

Lemma 3.1. For any fixed p∈ (2, 2∗) there existλ = λ(p) such that:

(i) mλ,r < 2mλ,
(ii) if u ∈ Nλ and Eλ(u) ≤ mλ,r , thenβ(u) ∈ Ω+

r ,

for all λ > λ.

We are now ready to present the proof of our main result.

Proof of Theorem 1.1. Let p ∈ (2, 2∗) and λ be given by theLemma 3.1. For anyλ > λ, since
2 < p < 2∗, the even functionalEλ satisfies the Palais–Smale condition at any levelc ∈ R. Thus,

we can applyTheorem 2.6to obtainτa-cat(N τ
λ ∩ E

2mλ,r
λ ) pairs±ui of critical points ofEλ restricted to

N τ
λ verifying

Eλ(±ui ) ≤ 2mλ,r < 4mλ ≤ 2mτ
λ,

where we have usedLemma 3.1(i) and Lemma 2.1. It follows from Lemmas 2.2and2.3 that ±ui are
solutions of(Pτ

λ ) which change sign exactly once.
It suffices now to check that

τa-cat(N τ
λ ∩ E

2mλ,r
λ ) ≥ τ -catΩ (Ω \ Ωτ ).

With this aim, weclaim that there exist two maps

Ω−
r

αλ−→ N τ
λ ∩ E

2mλ,r
λ

γλ−→ Ω+
r

such thatαλ(τx) = −αλ(x), γλ(−u) = τγλ(u), andγλ ◦ αλ is equivariantly homotopic to the inclusion
mapΩ−

r ↪→ Ω+
r .

Assuming the claim and recalling that the mapsΩ−
r ↪→ Ω \ Ωτ andΩ ↪→ Ω+

r are equivariant
homotopy equivalences, we can useLemma 2.5to get

τa-cat(N τ
λ ∩ E

2mλ,r
λ ) ≥ τ -catΩ+

r
(Ω−

r ) = τ -catΩ (Ω \ Ωτ ).

In order to prove the claim we follow [9]. Let vλ ∈ Nλ,Br (0) be a positive radial function such that

Eλ,Br (0)(vλ) = mλ,r . We defineαλ : Ω−
r → N τ

λ ∩ E
2mλ,r
λ by

αλ(x) = vλ(· − x) − vλ(· − τx). (3.1)

It is clear thatαλ(τx) = −αλ(x). Furthermore, sincevλ is radial and τ is an isometry, we have
that αλ(x) ∈ H τ . Note that, for every x ∈ Ω−

r , we have|x − τx| ≥ 2r (if this is not true, then
x = (x + τx)/2 satisfies|x − x| < r andτx = x, contradicting the definition ofΩ−

r ). Thus, we can
check thatEλ(αλ(x)) = 2mλ,r andαλ(x) ∈ N τ

λ . All those considerations show thatαλ is well defined.

Given u ∈ N τ
λ ∩ E

2mλ,r
λ we can use (2.1) and theτ -invariance ofΩ to conclude thatu+ ∈ Nλ

and 2Eλ(u+) = Eλ(u) ≤ 2mλ,r . Hence, u+ ∈ Nλ ∩ E
mλ,r
λ and it follows from Lemma 3.1(ii) that
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γλ : N τ
λ ∩ E

2mλ,r
λ → Ω+

r given byγλ(u) = β(u+) is well defined. A simple calculation shows that
γλ(−u) = τγλ(u). Moreover, using (3.1) and the fact thatvλ is radialwe get

γλ(αλ(x)) =
∫

Br (x)
y · |∇vλ(y − x)|2 dy∫

Br (x)
|∇vλ(y − x)|2 dy

=
∫

Br (0)
(y + x) · |∇vλ(y)|2 dy∫
Br (0)

|∇vλ(y)|2 dy
= x,

for anyx ∈ Ω−
r . This concludes the proof. �

Remark 3.2. Arguing along the same lines as the above proof and using a version of Lemma 4.2 in [1]
instead ofLemma 3.1, wecan check thatTheorem 1.1also holds ifλ ≥ 0 is fixed and the exponentp is
sufficiently close to 2∗.

Proof of Corollary 1.2. Let τ : R
N → R

N be given byτ (x) = −x. It is proved in [9, Corollary 3] that
our assumptions implyτ -cat(Ω) ≥ N. Since 0�∈ Ω , Ωτ = ∅. It suffices now to applyTheorem 1.1. �
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