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Abstract
We deal with the quasilinear Schrddinger equation
—div(IVul?"2Vu) + (ra(x) + D) |ulP"2u = ul""2u, ueWwhP(RN),

where 2< p < N, 1 >0, andp <q < p*= Np/(N — p). The potentiak > 0 has a potential well

and is invariant under an orthogonal involution®¥ . We apply variational methods to obtain, for

A large, existence of solutions which change sign exactly once. We study the concentration behavior
of these solutions as — co. By takingg close p*, we also relate the number of solutions which
change sign exactly once with the equivariant topology of the set where the potevdiaikhes.
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1. Introduction and statement of results

The goal of this article is to study the number of solutions of the quasilinear Schrédinger
equation

—Apu~+ (ra(x) 4+ Dlul?2u=ul9"% inRY,
{ o (S)»,q)

ue Whr(@®M),

whereA ,u = div(|Vu|P~2Vu) is the p-Laplacian operator and p < N. We will im-
pose some symmetry properties and look for nodal solutioris;of). The parameters
andq are such that > 0 andp < ¢ < p*, wherep* = Np/(N — p) is the critical Sobolev
exponent. For the potentialwe assume that

(A1) ac€ C(Rli’, RR) is nonnegatives2 = inta—1(0) is a nonempty set with smooth bound-
ary and2 = a~1(0),
(A2) there existaVfp > 0 such that

E({x eRY: ax) < Mo}) < 00,

where£ denotes the Lebesgue measur&ih.

The above hypotheses were introduced by Bartsch and Wang in [3], where they consid-
ered the problents; ,) for the particular casg = 2. They showed that, for large values
of 1, the problem(S,. ,) has a positive least energy solution. Moreover) as oo, these
solutions concentrate at a positive solution of the Dirichlet problem

—Apu 4 [P = (w92, ue Wy (82). (D,)

Recalling that Benci and Cerami [4] showed that, foe= 2, ¢ close to 2 and £2
bounded, the problemiD,) has at least caf) positive solutions, Bartsch and Wang
proved in [3] that the same holds for the problei) ,), where cai2) stands the
Ljusternik—Schnirelmann category of the s2t

Recently, using ideas from [6] and assuming tflahas some symmetry, the author
showed [11] that there is also an effect of the domain topology in the number of solutions
u of (D4) which change sign exactly once; that is, the get u~1(0) has exactly two
connected componentisjs positive in one of them and negative in the other. It is natural to
ask if the same holds for the probleis, ;). The aim of this work is to give an affirmative
answer to this question.

More specifically, we deal with the problem

—Apu+ (ra(x) +Dul’2u=ul?"2u inRV,
u(tx) = —u(x) forall x e RV, (Si’q)
ue Wwhtr@®RN),

wherexr > 0,2< p < N, p <q < p*, andr : RY — R is an orthogonal linear function

such thatr # Id andz? = Id, with Id being the identity ofR". The potential: satisfies
(A1), (A2), and



172 M.F. Furtado / J. Math. Anal. Appl. 304 (2005) 170-188

(A3) a(tx)=a(x) forallx e RV.

Our first result concerns the existence of solutions(ﬁqtq) and can be stated as fol-
lows.

Theorem 1.1. Supposd&A1)—(A3z) hold. Then there exist&g = Ap(g) > 0 such that, for
everyi > Ag, the probIem(S;q) has at least one pair of solutions which change sign
exactly once.

The proof of the above result relies in minimizing the associated functional

1 1
Dogu) = — /(|Vu|” + (Aa(x) + l)|u|”) dx — — / |u|? dx
PRN CIRN
in some appropriated manifold of

X = {u € Wl’p(RN): /a(x)|u|”dx < oo},
RN
and relating the number of nodal regions of a critical pegvith its energyr), , (uo). Sim-

ilarly to [3], the T-version of(D,) acts as a limit problem fo(rS{yq). Thus, the following
concentration result holds.

Theorem 1.2. Let A, — co asn — oo and (u,,) be a sequence of nontrivial solutions of
(S;mq) such that/;, ,(u,) is bounded. Then, up to a subsequenge u strongly in

wLP(RN) with u being a nontrivial solution of the Dirichlet problem

—Apu+ |ulP"%u = ul""%u in £,
u=0 onas, (D;)
u(tx) = —u(x) forall x € £2.

By taking advantage of the symmetry and the arguments contained in [11], we can
obtain, forg close top* andA large enough, the following multiplicity result.

Theorem 1.3. Supposd&A1)—(A3) hold ands2 is bounded. Then there exists= (p, p*)
with the property that, for each € (g, p*), there is a numberi(¢) > 0 such that, for
everyl > A(qg), the problerT(S/{,q) has at least-catp (£2 \ £27) pairs of solutions which
change sign exactly once.

Here, 27 = {x € £2: tx = x} andt-cat is ther-equivariant Ljusternik—Schnirelmann
category (see Section 4). There are several situations where the equivariant category turns
out to be larger than the nonequivariant one. The classical example is the case of the unit
sphereSV—1 ¢ RN with v = —Id. In this case c&8" 1) = 2, whereag-catSV 1) = N.
Consequently, as an application of Theorem 1.3 we have the following corollary.

Corollary 1.4. Suppos€A1) and (A») hold, £2 is bounded and symmetric with respect to
the origin, and0 ¢ 2. Assume further that the potentiais even and there is an odd map
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¢ :S¥1 2. Then there exist§ € (p, p*) with the property that, for each € (g, p*),
there is a numberi(g) > 0 such that, for every > A(g), the problem

{ —Apu+ (ra(x) +DlulP%u=[ul?"2u inRV,
ue Whr(@®M),
has at leastV pairs of odd solutions which change sign exactly once.

We point out that, for a fixed € (p, p*) (or ¢ € (¢, p*) in Theorem 1.3), the energy
of the solutions obtained in Theorem 1.1 (or Theorem 1.3) is bounded independently of
Thus, the concentration result of Theorem 1.2 holds for such solutions. Moreover, in this
case, it can be proved that the limit solutimchanges sign exactly once §p.

It is worthwhile to mention that the above results seem to be new even in thp ea8e
In [8] Clapp and Ding considered the problem

—Au+ ra(x)u = pu + |u|2*72u inRY, u(tx)=—u(x) VxeRN

and proved, for positive and small valueggfresults concerning the existence and concen-
tration of solutions inW1-2(R"Y) as — 0. By takingu ~ 0, they also showed a relation
between the number of solutions of the above problem and the topolagy ©ifie results

we obtain in this paper complement those of [8] since we consider subcritical powers and
we deal with the quasilinear case. The nonlinearity of phleaplacian, which makes the
calculations more difficult, is compensated here by the homogeneity of the problem. We
also would like to mention the work [2] where the quasilinear critical case is studied for
positive solutions. Finally, in order to overcome the lack of compactness of the embedding
wbr(RN) — L2(RV), we use ideas introduced in [3] for the semilinear case?2.

The paper is organized as follows. In Section 2 we define the abstract framework and
prove Theorems 1.1 and 1.2. Section 3 is devoted to some technical results related to
the limit problem(D,). In Section 4, after recalling some basic facts about equivariant
Ljusternik—Schnirelmann theory, we present the proof of Theorem 1.3.

2. Proof of Theorems1.1and 1.2

Fors > 1 we denote byu|, the L’ (RY)-norm of a function:. For simplicity, we write
Jpu toindicate [, u(x)dx. Let X be the space

X = {u € Wl’p(RN): /a(x)|u|” <oo},
RN

endowed with the norm

llully = /(IWIP + (a(x) + 1)[ul?),
RN
which is clearly equivalent to each of the norms

||u||f=f(|Vu|P+(Aa(x)+1)|u|f’),
RN
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for A > 0. Conditions(A1), (A2) and Sobolev theorem imply that the embeddiig—>
L*(R") is continuous for allp < s < p*. Moreover, if p < s < p*, thenX is compactly

embedded irLfOC(RN). As stated in the introduction, we will look for critical points of

I, 4 : X — R defined by

1 1
L) == /(|W|P + (ha(x) + 1)u|?) — = / lul?.
PRN qRN
We recall thatl, , satisfies the Palais—Smale condition at levelR, (PS. for short, if
any sequencéu,) C X such thatl, ,(u,) — ¢ and I){)q(un) — 0 possesses a convergent

subsequence. In order to verify the Palais—Smale condition, fpr we follow [3], where
the authors deal with the cape= 2 and consider nonlinearities more general thafr2u.

Lemma2.1[3, Lemmas 2.2-2.4).et(u,) C X be a(PS) sequence fof, ,. Then

() (up) is bounded inX,

(i) 1im - 00 ||un||)lf =1lim, |un|z =cpq/(q — p),
(iii) if ¢ # 0, thenc > ¢o > 0, wherecg is independent of.

Lemma 2.2 [3, Lemma 2.5]Let Cg be fixed. Then, for any given> 0, there existA, > 0
and R, > 0 such that, if(x,) is a (PS). sequence for; , with ¢ < Co and A > A,, we
have

limsup lun|? < e,
n—oo
RN\ Bg, (0)

whereBg, (0) = {x e RV: |x| < R,}.
The next two results will overcome the lack of Hilbertian structure.

Lemma2.3[1, Lemma3]LetK >1,s > 2 andA(y) = |y|* 2y, for y e RK. Consider a
sequence of vector functiong : RN — RX such that(n,) c (L*(RY)X and#,(x) = 0
fora.e.x e RVN. Then, iflnn (s )& 1S bounded, we have

lim_ f |AG) + Aw) = Al +w)| "7 =0,
RN
for eachw e (LS (RM))X fixed.
Lemma 2.4. Let A > 0 be fixed and le{u,) be a(PS, sequence for, ,. Then, up to
a subsequence,, — u weakly inX with » being a weak solution ofS; ;). Moreover,
v, =u, —u is a(PS. sequence for, , withc’ =c — I 4 (u).

Proof. Lemma 2.1(i) implies thaiu,,) is bounded inX and therefore, up to a subsequence,



M.F. Furtado / J. Math. Anal. Appl. 304 (2005) 170-188 175

u, ~u weaklyinX,

U, —u in LfOC(IRN) forall p <s < p*,

up(x) > u(x) fora.ex eRY. (2.1)
We claim that we may suppose that

Vu,(x) > Vu(x) fora.ex eRY,

ou
Vi |P~2 2

4|Vu|l’—2§—” weakly in(L”(RY)), 1<i <N, (2.2)
Xi

1

where(L? (RV))’ stands the dual space bf (R"). In order to verify the claim, we define
P, : RN — R by

Po(x) = (|Vita ()7 2Vt () — |Vu )| P 72Vu(x)) - V (un (x) — u(x)).

Let K c RY be a fixed compact set. Given> 0 we setk, = {x € R": dist(x, K) < ¢}
and choose a cut-off functiog € C*(R") suchthat 6< v < 1,¥ =1in K andy =0
in RV \ K,. Using the definition of?, and that the functioh : RY — R, h(x) = |x|? is
strictly convex, we have

0</Pn<fin=[|wn|f’x/f—/|wn|”—2<wn~w>x/f
K RN RN RN

+/|Vu|P*2(w SV — up)) . (2.3)
K,
Since(yu,) is bounded inX andli’q(un) — 0, we have

nli—>moo<l)/"q (un), 1/“@1) = nli—>moo<l)/"q(un)’ 1/’“) =0.
The above expression, (2.3),=0inR" \ K., and (2.1) give

OS/Pn<C1+C2+C3—C4+0(1), (2.4)
K
asn — oo, with

1= / Vit P2Vt - V)t — ),

Ke

Cz :=/ka(xw(lun|”’2unu— J1nl?),
Ke

C3 :=/w(|un|P*2unu—|un|”), and C4:=/w(|un|”*2unu— J1n|?).
K. Ke

Since(u,) is bounded inX andu, — u in LP(K,), we have that

—-1 -1
|cl|<|vw|oo/|wn|f’ = ] < 1V loollttn 17Nt — ulp.x, = 0(D),
K,
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asn — oo. Next we observe that, up to a subsequence,

/|un|p—>f|u|p, asn — oo. (2.5)

Moreover, sinceu,(x) — u(x) for a.e. x € K, and (Jun|?2u,) is bounded in
LP/(P=D(K,), we have thatu, |?~u, — |u|P~%u weakly in L?/(P~D(K,). Thus,

/|un|p_2u,,u—>/|u|p, asn — oo.
K, K.

The above expression, (2.5), and the boundedness(ofy in K. imply that
lim,_ o0 C2 = 0. In the same way we can show that Jinw, C3 =lim,_, o C4 = 0. There-
fore, we can rewrite (2.4) as

0< /(|wn|f’*2wn - |vu|1’*2w) -V(up, —u) — 0, asn— oo.
K

Considering that|a|?~2a — |b|P~2b) - (@ — b) > M,la — b|”, for everya, b € RN (see
[15, p. 210]), we get

lim f|Vu,, — Vu|? =0,
n—>oo
K

i.e., Vu, — Vu strongly in(L?(K))". SinceK is arbitrary andu,,) is bounded inx, we
may suppose that (2.2) holds.

By using (2.2) and (2.1), we conclude th@g (u) = 0. The boundedness ¢f,,), the
pointwise convergences and the Brezis and Lieb’s lemma [5] imply

Lign) = D g(un) — I g(u) + o(1),

asn — 00. Thus liM,— o0 11 4 (vn) = ¢ — I 4 ().
In order to verify thatl/{,q(vn) — 0, we note that, for ang € X, we have

(I ), 0) = (I}, (un), ¢) = (I} , (), $) + C5+ Ce — C7, (2.6)

where

Cs:= f(|Vv,l|p_2an + |V”|p_zvu - |V”n|p_2V””) Ve,

RN

Co:= / (ra(x) + 1) (joal? 200 + [u|?2u — [P ~%u,)$,  and
RN

Cri= f (lvnl? 2 + lul™2u — funl*~%un ).
RN

Using Holder's inequality and Lemma 2.3 with) = Vv, andw = Vu, we get
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p—1

_pP
|Cs|<< /!anv’Zan+|W|”2Vu—|wn|'72wn|pl) 61,
RN
<o) gl ,

asn — oo. In the same way we can see that the above estimate holds alSg émd C7.
Therefore, sincé;,q(un) -0 andli’q(u) = 0, we obtain from (2.6) that

(5.4 (Wa), )] <o) I8ll;., asn — oo,

forall ¢ € X. This implies tha'rlﬁ,q(v,,) — 0 and concludes the proof of the lemmaz
We are now ready to state the compactness condition we will need.

Proposition 2.5. For any Cp > 0 given, there existd o = Ag(g) > O such that/;, , satisfies
(P9, forall ¢ < Copandi > Aop.

Proof. The proof is similar to that of [3, Proposition 2.1] and will be presented here by
the sake of completeness. Legtbe given by Lemma 2.1(iii) and fix > 0 such that 2 <
copq/(g — p). For anyCp > 0 we takeA, and R, given by Lemma 2.2 and we will prove
that the proposition holds falg = A,. Let (u,,) be a (PS) sequence of;, , with ¢ < Cg
andi > Ag. By Lemma 2.4, we may suppose thgt— u weakly inX andv,, = u, —u is
a (PS) sequence for, 4, with ¢’ = ¢ — I, 4, (u). We claim that” = 0 and therefore Lem-
ma 2.1(ii) implies that lim_, « lva IY = ¢’pq/(p — q) =0, i.e.,u, — u strongly inX.

In order to verify thate’ = 0 we suppose, by contradiction, thet> 0. In view of
Lemma 2.1(jii) we have’ > cg > 0. Sincev, — 0in L{ (RY), we can use Lemmas 2.1(ii)
and 2.2 to conclude that

Pq

co gc’ﬂ: lim |v,|2
q
q—p q—p "o
. . c
< lim /|vn|‘1+llmsup |vn|‘/<—oﬂ.
n—00 N 00 2qg—p
Bg, RN\Bg, (0)

This is a contradiction and the proposition is proved

We are now ready to take advantage of the symmetry and present our variational frame-
work. We start by noting that induces an involution o, which we also denote by, in
the following way: for eaclx € X we defineru € X by

(tu)(x) = —u(tx). (2.7)

We denote byX® = {u € X: tu = u} the subspace of-invariant functions ofX and
consider the Nehari manifold

Vig = {1 € X\ {0 (I} ju),u)=0} = {ue X\ (O [lullf = lulh}.

Since we are looking fot -invariant solutions, we define theinvariant Nehari mani-
fold by setting

Vi =ueVig tu=u} =V, 4NX".
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The critical points we will obtain are related with the following minimizing problems:

crg= inf I 4w and c)\q— |nf L g(u).
ueV; .q Aq

Now we fix some notation in order to deal with the limit problem. Givertriavariant
domainD c RY we consider the spad@é”’(D) endowed with the norm

IIMII§3=/IVMIP+|M|”-
D

For anyp < g < p*, we defineE, p : W&”’(D) — R by setting

1 1
Eq,D(u)=—/(IVMIPJrIMI”)——/IMIq,
p qD

D
and the associated Nehari manifolds

Nyp={ueWg" D)\ (0} (E, pu).u)=0} and NIp=NypnX".

We also define the numbers

myp= uei/(]ff . E,p(u) and m;fD = I/(]/f E,pu). (2.8)
q, q.D

Before presenting the proof of Theorem 1.1, we note that i a solution of
(S;q), then it is necessarily of clags!. We say that: changes sigm times if the set

{x e RN: u(x) # 0} hasn + 1 connected components. Obviously ifs a nontrivial solu-
tion of problem(S){’q), then it changes sign an odd number of times. The relation between
the number of nodal regions of a solution and its energy is given by the result below.

Proposition 2.6. If u is a solution of problenQS{’q) which changes sigk — 1 times, then
Lg(u) > kc;’q.

Proof. The set{x e RV: u(x) > 0} hask connected components, ..., A;. Letu; (x) =

u(x) if x € A; UtA; andu;(x) =0, otherwise. Since is a critical point of7; ,, an

easy calculation show that9 (I){)q(u), u;) = ||ui||f — |ui|3. Thus,u; € V{’q foralli =
., k,and

Lg@) =Dqu1) + -+ L g (up) > kej 4,

as desired. O

Proof of Theorem 1.1. Let ¢ € (p, p*) be fixed andAg = Ao(g) be given by Proposi-
tion 2.5 withCo =m? o Leti> Ao and(u,,) cVs o be a minimizing sequence fo{
Slnce/\/r C Vi, we have that; < m] . Moreover, by the Ekeland variational
principle [10] (see also [18, Theorem 8. 5]3 we may suppose(thatis a Palais—Smale
sequence and therefore the infimum is achieved by some’; . The definition ofX™
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and the Proposition 2.6 show thathanges sign exactly once. In order to finish the proof,
we note that, by the Lagrange multiplier rule, there eXitsR such that

(I ) — 6] ;). ¢)=0, V$peX,

whereJ, (u) = ||ull} — |u|]. Takingg =u € VY _, we get

rq?
0=(I; , (), u)—6(J; (), u)=06(q — p)llull}.
This impliesé = 0 and therefore
(I ,),)=0, VpeXT.

The above expression and the principle of symmetric criticality [14] (see also [13, Propo-
sition 1]) imply thatu (and also—u) is a solution of(S{gq) which changes sign exactly
once. The theorem is proved O

Using the above ideas and making no assumption of symmetry, we can extend the exis-
tence result in [3] for the quasilinear cas& 2 < N and prove:

Theorem 2.7. Suppos€Aj) and (Az) hold. Then there existdg = Ag(g) > 0 such that,
for everyi > Ag, the problem(S;, ,) has a positive least energy solution.

Proof. For anyq € (p, p*) fixed we takeAq = Ag(g) given by Proposition 2.5 with
Co=mg . FOrix > Ag, arguing as in the proof of Theorem 1.1, we conclude that

is achieved by some € V; , which is a solution of(S, ). By [3, Lemma 3.10]x does

not change sign and therefore, by the maximum principle, we may supposeishabsi-

tive. O

For the study of the concentration of solutions we need the following technical result.

Lemma 28. LetM > 0, 1, > 1, and (u,,) C X be such thai,, — oo and ||lu,|l,, < M.
Then there exists a functiane W&”’(.Q) such that, up to a subsequeneg,— u weakly
in X andu, — u in LS(RN), foranyp <s < p*.

Proof. Sincellu,|l1 < lluanllx, < M, there existst € X such that, up to a subsequence,
u, — u weakly in X. It is proved in [8, Lemma 4] (see also [2, Lemma 1]) that, in fact,
ue Wg’p(ﬂ) andu, — uin LP(RY). Let p < s < p* be fixed and choose > 0 such that
1/s=vy/p+ (1—y)/p*. By using the Holder’s inequality and the continuous embedding
X < LP"(R"), we obtain

. (I-y)s/p* ys/p
/l”n_u|5<< /|un_u|p> < /lun_”|p>
RN RN RN

(1—y)s s
< Clluy — w7y — ul}’,

and thereforer,, — u in L*(R"). The lemma is proved. O
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Proof of Theorem 1.2. Let (u,) be a sequence of nontrivial squtions(GﬁM) such that
Ay = 00 and pg 1y, 4 (u,) = (g — p)||un||fn is bounded. We will prove the theorem for

ue W(}’p(Q) given by Lemma 2.8. Sincl{n’q(un) =0 anda =0in £2, we can proceed
as in the proof of (2.2) and suppose that

Vu,(x) — Vu(x) fora.ex e £, (2.9)

1 1

3 9 .
|Vun|p’2% ~ |Vu|P*23—” weakly in(LP(2)), 1<i <N, (2.10)
X Xi
and

f (IVun|P"2Viuy - Vo + lun|P2und) = / unl92ungp, Vo € Wyl ().
22 2

In view of Lemma 2.8, (2.10), and Lemma 2.1(iii), we can take the limit in the above
expression and conclude tha# 0 satisfies the first equation {liD;). SinceX" is a closed

subspace ok, we need only to show that, — u strongly inw%?[RN).
By using (2.9)u € Wol’p((z), and Brezis and Liebs’ lemma, we get

/|V(un —w|'= / |Vu,,|p+/|V(u,, —wl’
RN RN\ Q

_ / |wn|f’+/|wn|f’—f|W|P+o<1>, (2.11)
2 2

RN\£2

asn — oo. Moreover, using: € Wol”’(sz) once more, we obtain

/a(x)|un—u|f’=/a<x)|un|f’.

RN RN

This, (2.11), Lemma 2.8, and the fact thgtandu lie on the Nehari manifoIdJA’M imply
that

||un—u||§’n=/|V(un>|”+fxna<x>|un|p—f|Vu|”+o(1>

RN RV RN
=fIunlq—/lunlp—/lvbtlp-FO(l)
RN RV RN

2/Iul"—/Iul”—/IVuI"JrO(l):O(l),
RN RN RN

asn — co. Thus,[lu, —u||§ < llu, — u||fn — 0, asn — oo and the theorem is proved .0

The next result gives the asymptotic behavior of positive solutioris;of). The proof
is equal to that of Theorem 1.2 and will be omitted.
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Theorem 2.9. Let A, — oo asn — oo and (u,,) be a sequence of nontrivial solutions of
(Sx,.q) such thatly, ,(u,) is bounded. Then, up to a subsequenge— u strongly in
wLP(RN) with u being a positive solution aD,,).

3. Thelimit problem (D)

In this section we present some technical results that are related with the limit prob-
lem (D,). As usual, we denote by the best constant of the embeddiﬁ{jp(.@) —
LP"(£2) given by

. Vul? + |u|?
= JelVH
julb,
ueWy" ($2)\{0} Pr.2

where u|; p stands theL*(D)-norm. It is well known thatS is independent of2 and
is never achieved in any proper subseffdf. We start with the relation between, 1
defined in (2.8) and.

Lemma 3.1. For any bounded domai® c R" we have

. 1 _y
— oy = —SN/P
q|l_)ﬁ;|?* My D=MpxD NS .
Proof. The first equality is proved in [7, Proposition 5]. L&p be the unit sphere of
Wol”’(D). Sincey : u u|u|[;N/p defines a dipheomorphism betwegh and s p,
we have ’

%,

Nmpp= inf |ull= inf = Iy \™7 _ g
mp*,D —ue./l\r/] ”M”D - ulenx | |N - 1p | |P - )
D Dl D ueWy"(D\O} N\ U] px D

and thereforen . p = £+ SV/7. O

In what follows we denote by (RY) the Banach space of finite Radon measures over
R equipped with the norm

il = sup  [w(@).
PeCoRN), |ploo <L
A sequencé,) C M(RY) is said to converge weakly 10 € M(RY) providedu, (¢) —
u(g) for all ¢ € Co(RY). By the Banach—Alaoglu theorem, every bounded sequence
(un) € M(RYM) contains a weakly convergent subsequence.
The next result is a version of [18, Lemma 1.40]. The proof is also inspired by [16,
Lemma 2.1 and Remark 2.2].

Lemma3.2. Let(g,) C R be such thap < ¢, < p* andg, 1 p*. Let(u,) c WHP(RV) be
such thatu, — u weakly inWL-?(RN), u, (x) — u(x) for a.e.x e RV, Vu, (x) - Vu(x)
fora.e.x e RV,
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|V, —uw)|” = weakly inM(RY),

lun —ul?" — v weakly inM(R"Y), (3.1)
and define

oo = I|m limsup |Vu,|?, Voo = I|m limsup e, |

R—>00 p—oo R—00 p—o0
|x|>R |x|>R

Then

1?7 < S el 82)

|imsoLOJp|w,,|§=|Vu|£+|m+uoo, and (3.3)

n—

lim suplu, [ = Jul% + V] + voo. (3.4)

n—o0

Moreover, ifu = 0 and |v|?/?" = S~1|u|, then the measurgs and v are concentrated at
single points.

Proof. We first assume that= 0. For any giverp € C>*(R") we denotek = suppp and
use Holder and Sobolev’'s inequalities to get

1/‘111 P*—an 1/P
( / |¢un|'f") <SYPL(K) mrt ( / |V<¢un>|”+|¢un|P) :
N N

Since|g|% — |¢|P" in C(RY) andu, — 0 in L{ (R"), we can take the limit in the
above expression and use (3.1) to obtain

. 1/p* 1/p
</|¢I” dv) <S‘1/”< flqblpdu) , Yo eC(RY),
RN RN

and (3.2) follows. Moreover, ifv|?/?" = §~1| |, then it follows from [12, Lemma 1.2]
thatv andu are concentrated measures.

Considering now the general case, we write= u, — u. SinceVu, (x) — Vu(x) for
a.e.x e RV, we can use Brezis and Lieb’s lemma to get

|Vuun|P = o+ |Vul?,  weakly in M (R"). (3.5)

Furthermore, using the boundednes$gf) and Vitalli's theorem, we can check that
lim ( /¢|un|qn — plun _u|qn> = /¢|u|”*, V¢€CSO(RN)
n—>oo
RV RN

and therefore
Jun | — v+ ul”",  weakly in M (RV).

Inequality (3.2) follows from the above expression, (3.5), and the corresponding inequality
for (vy).



M.F. Furtado / J. Math. Anal. Appl. 304 (2005) 170-188 183

ForR > 1, letyg € C*°(RY) be such thatyg =0 in Bg(0), yg =1 in RN \ Br,1(0)
and 0< ¥ (x) < 1 for all x e R, Using (3.5), we obtain

I|msup |Vun|”dx_llmsup (1/;R|Vun|”-|—(1—1pR)|Vu,,|”)dx

n—oo n—oo

= /(1— vwdut [ A=Vl s
RN RN
+limsup | ¥g|Vu,|? dx.
n—oo
RN
Taking R — oo and using the Lebesgue theorem, we obtain (3.3). The proof of (3.4) is
similar. O

Considerings2 given by(A1), we define, for any > 0, the set
f= {x e RV: dist(x, 2) < r} (3.6)
We also define the barycenter mgp: Wol”'(.Q) \ {0} = RY by setting
Jr lul9xdx
S lulddx

Hereafter we write onlyn, , to denoten, . (). Also for simplicity of notation, when
we omit the reference for the setin, p, N, p andE, p, we are assuming thd? = 2.
The following result is a version of [4, Lemma 4.2].

IBq () =

Lemma 3.3. For anyr > 0 there exisyg = qo(r) € (p, p*) such that, for ally € [go, p*),
we have thaB, (u) € $2;7 wheneveu e N, andE, (u) <myg ;.

Proof. Suppose, by contradiction, that the lemma is false. Then thereggxisp*, (u,) €
NG, with Eg, (u,) < myg, , andBy, (u,) ¢ £2,7. Thus,

1 1 p
mg, < Eq, (up) = ; = — Jllunllg < mg, r.

qn
Taking the limit, using the definition o¥/,,, and Lemma 3.1, we conclude that
i lanlf = i,k = 7. @7

By Hélder’s inequality, we have

qn/P*
/|un|(1n gﬁ(‘g)(l? —qn)/ P < /|un|l7 ) )
2 2

The above expression and (3.7) imply that liminfe |un|Z* 2> > SN/ On other hand,

recalling thaﬂun|p* 1||u,1||9,we get Ilmsup_)oo|un|p o < < SN/P. Hence,

lim_ |un|P Q_SN/P (3.8)
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This and (3.7) imply thafu,,) is a minimizing sequence fdt. Thus, up to a subsequence,
Vu,(x) - Vu(x) for a.e.x € £2, whereu is the weak limit ofu,, in Wé”’(sz). We may
also suppose that (3.1) holds amgd— u in L?(£2). Lemma 3.2 and Eqgs. (3.7) and (3.8)
provide

N N *
SVIP = Nullfy +1ul, SMP=ulby o+ v
and
* -1 -1
WIP/P < STl fulh. o < STHulG.

Note that, since? is bounded, the termg., andv., do not appear in the above expres-
sions.
The inequality(a + b)' < a’ + b' for a, b > 0 and O< ¢ < 1, and the above expressions

imply that|v| and|u|§:’52 are equal either to 0 &8V/7. In fact, if this is not the case, we
get

SN2 = s (lullly + 1ual) = (1ul2e )7+ WIP/P" > (lull g + Iv])™'"
=sN=n/p,
which is absurd. Suppoﬂe|§:,9 = SN/ Sinceu,, — u weakly in W&”’(.Q), we have
that [lu|5, <liminf,_ o lua |5, = S¥/P. Hence

lullg SN/p _g
S SW-p/p T 7

P
|u|p*79

and we conclude thaf is attained byu € Wol”’(Q), which does not make sense. This
shows thai: = 0 and thereforgv| = S¥/7 andv is concentrated at a single poink 2.
Hence,

fRN |un|qn-de
S lunl9n dx

By, (un) = —>SiN/P/xdv=y€S_2,

2

which contradict$,, (u,) ¢ $2;F. The lemma is proved. O
Finally, we present below the relation betwegn, andm, .

Lemma 3.4. For anyq € (p, p*) we havdim; o ¢, g =my.

Proof. Since W&”’(Q) C X, we know that 0< ¢; 4 < m, for all 2 > 0. Suppose, by
contradiction, that the lemma is false. Then there exist a sequgnee oo such that

Ci,,g — ¢ <mgy. By Theorem 2.7¢; . is achieved by large values of So Theorem 2.9
implies thatc is achieved byE, on N,. Hence,c > m,. This contradiction proves the
lemma. O
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4, Proof of Theorem 1.3

We recall some facts about equivariant theory. An involution on a topological space
is a continuous functiomy : X — X such thatr)z( is the identity map of. A subsetA of
X is calledry-invariant if tx (A) = A. If X andY are topological spaces equipped with
involutionsty andty, respectively, then an equivariant map is a continuous fungtion
X — Y such thatf o tx = ty o f. Two equivariant mapgo, f1: X — Y are equivariantly
homotopic if there is a homoto@ : X x [0, 1] — Y suchthat (x, 0) = fo(x), O (x, 1) =
fi(x), and® (tx (x), 1) =ty (O(x, 1)), forall x € X, t € [0, 1].

Definition 4.1. The equivariant category of an equivariant map X — Y, denoted by
(tx, Ty)-cat(f), is the smallest numberof open invariant subsefgy, . .., X; of X which
cover X and which have the property that, for eack 1,...,k, there is a pointy; € Y
and a homotopw); : X; x [0, 1] — Y such that®; (x,0) = f(x), O;(x, 1) € {y;, Ty (i)}
ando®; (tx (x), 1) = 1y (O, (x, 1)) for everyx € X;, t € [0, 1]. If no such covering exists, we
define(ry, ty)-cat( f) = oo.

If Aisary-invariant subset ok and:: A — X is the inclusion map, we write

tx-caty (A) = (1x, Tx)-catt) and tx-cat(X) = tx-caty(X).

In the literaturery-cat(X) is usually calledZ,-cat(X). Here it is more convenient to spec-
ify the involution in the notation.
The following properties can be verified.

Lemma4.2.

@) If f:X— Y andh:Y — Z are equivariant maps, then
(tx, 1z)-catth o f) < Ty-caly).
(iiy If fo, f1: X — Y are equivariantly homotopic, then

(tx, ty)-cat( fo) = (rx, Tv)-Cal( f1).

We denote byr, : V — V the antipodal involutiorr, (1) = —u on a vector spac¥.
A t,-invariant subset o¥ is usually called a symmetric subset. Equivariant Ljusternik—
Schnirelmann category provides a lower bound for the number of fpairsu} of critical
points of an even functional. The following well-known result (see [9, Theorem 1.1], [17,
Theorem 5.7]) will be used in the proof of Theorem 1.3.

Theorem 4.3. Let I : M — R be an everC-functional on a complete symmetid!-1-
submanifoldM of some Banach spadé. Assume thaf is bounded below and satisfies
(P9, for all ¢ <d. Then, denoting? = {u € M: I(u) <d}, I has at leastrg-cat(/¢)
antipodal pairs{u, —u} of critical points withI (+u) <d.

Coming back to our problem, we set, for any gives O,
27 ={xe: dist(x,02U Q%) >r}.
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Throughout the rest of this section> 0 sufficiently small is fixed in such way that the
inclusion maps2,” < 2\ 227 and$2 — 2+ are equivariant homotopy equivalences and
2,7 is as defined in (3.6). Without loss of generality we supposeBhd) C 2.

Now we follow [3] and choos& > 0 with £2 ¢ Bz (0) and set

1, if0 <r <R,
§0) = { R/t, ift>R.

We also define, for €V, 4, a truncated barycenter map
Jrw [l9E(|x])x dx
fRN lul?dx
The following results will be useful in the proof of Theorem 1.3.

By ) =

Lemma 4.4 [3, Lemmas 3.7 and 3.8There existg € (p, p*) with the property that, for
eachqg € [g, p*), there is a numbert; = A1(q) such that, for every > A1, we have

(i) my,, <24, .
(i) ifueVygandl () <mgy,, thenBy(u) € 2;F.

Lemma 4.5. For any bounded -invariant domair® c RN we haveZe, , < ci’q.

Proof. Givenu € Vi we can use (2.7) to conclude that,u™ € V; 4, whereu® =
max{£u, 0}. Thus

Logw)=5qu) + L.g(u™) = 2c5.4.
and the result follows. O
Proof of Theorem 1.3. Let g be given by Lemma 4.4 and fixe (g, p*). We will show
that the theorem holds fot (g) = max{Ao(q), A1(q)}, whereAo(q) is given by applying

Proposition 2.5 withCo = 2m,, , and A1(q) is given by Lemma 4.4.
For anyA > A(g) we can use Theorem 4.3 for

I)»,q . V;,q - R
and obtaing,-cat(Vy , N IAZ"Z"") pairs=u; of critical points with

I;hq(:l:u,') < qu,r < 4C)L,q < ZCX’L]

(by Lemmas 4.4(i) and 4.5). The same argument employed in the proof of Theorem 1.1
show thattu; are solutions otS){,q) which change sign exactly once.
In order to finish the proof, we need only to verify that

-cat(Vy , N IAZ)'Z’“) > r-calp (2 \ £27). (4.1)
With this purpose we take a nonnegative radial functigne N, p ) such that
Eq.5,(0)(vg) =mg, and definey, : 27 — Vi N Ii";‘“ by setting

ag(x) =vy(- —x) — vy (- — TX). (4.2)
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We claim that|x — vx| > 2r for everyx € 2. Indeed, if this is not the case, thén=

(x + tx)/2 satisfiedx — x| <r andtx = x, contradicting the definition of2~. Sincey,

is radial andr is an isometry, we can use the last claim to verify thats well-defined.
We note that ifu € V; , thenu™ €V, , and ;4 (u) = 21, 4(u™). Thus, Lemma 3.3

implies thatf, (u™) € 2,7 forallu e Vi N1 " and therefore the diagram

o, (4.3)

r

Q7 L Vi, N Iffzf’
where y, (1) = ,Bq(u+), is well-defined. A direct computation shows thaj(rx) =
—ay (x) andy, (—u) = vy, (u). Moreover, using (4.2) and the fact that is radial, we
get
fB,(x) |Uq(y —x)|9ydy _ fB,(O) qu(y)l"(y +x)dy _
fB,(x)qu(y—x)quy fgr(0)|vq(y)|qdy

Yq (O‘q (x)) =

for any x € 2. Now, recalling that- was chosen so that the inclusion maps —
2\ 27 and2 — 2,7 are equivariant homotopy equivalences, the inequality (4.1) follows
from (4.3) and the properties given by Lemma 4.2. The theorem is proved.

Proof of Corollary 1.4. Let  : RY — R be given byr(x) = —x. It is proved in [6,
Corollary 3] that our assumptions imptycat(£2) > N. Since 0¢ 2, 27 = @. It suffices
now to apply Theorem 1.3.0

Remark. Suppose., — oo and(u,,) is a sequence of solutions ofx ) given by The-

orem 1.1, Theorem 1.3 or Corollary 1.4. Then the limit solutuognven by Theorem 1.2
changes sign exactly once. Indeed, in order to verify this assertion, it suffices to use the
same notation of the proof of Theorem 1.3 and note that

0<COSCL < by, (un) <2mg < 4cy,, SZC}W < ;Q

Taking the limit we conclude that # 0 andE, o (1) < 2mI . The same argument em-
ployed in the proof of Proposition 2.6 shows that a m|n|mal nodal solution ofDy).
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