A relation between the domain topology and the number of minimal nodal solutions for a quasilinear elliptic problem

Marcelo F. Furtado ${ }^{1}$
IMECC-UNICAMP, Cx. Postal 6065, 13083-970 Campinas-SP, Brazil

Received 2 January 2004; accepted 8 March 2005

Abstract

We consider the quasilinear problem $-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+|u|^{p-2} u=|u|^{q-2} u$ in $\Omega, u=0$ on $\partial \Omega$ where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain, $1<p<N$ and $p<q<p^{*}=N p /(N-p)$. We show that if Ω is invariant by a non-trivial orthogonal involution then, for q close to p^{*}, the equivariant topology of Ω is related with the number of solutions which change sign exactly once. The results complement those of Castro and Clapp [Nonlinearity 16 (2003) 579-590] since we consider subcritical nonlinearities and the quasilinear case. Without any assumption of symmetry we also extend Theorem B in Benci and Cerami [Arch. Rational. Mech. Anal. 114 (1991) 79-93] for the quasilinear case and prove that the topology of Ω affects the number of positive solutions.

 © 2005 Elsevier Ltd. All rights reserved.Keywords: Nodal solutions; p-Laplace operator; Equivariant category; Symmetry

1. Introduction

Consider the problem

$$
\left(P_{q}\right) \begin{cases}-\Delta_{p} u+|u|^{p-2} u=|u|^{q-2} u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

[^0]where $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain, $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian operator, $1<p<N$ and $p<q<p^{*}=N p /(N-p)$. It is well known that it possesses infinitely many solutions. However, when we require some properties of the nodal regions of the solutions, the problem seems to be more complicated. In the paper [2], Benci and Cerami showed that the domain topology is related with the number of positive solutions of $\left(P_{q}\right)$. More specifically, they showed that if $p=2$ and q is close to 2^{*}, then $\left(P_{q}\right)$ has at least $\operatorname{cat}(\Omega)$ positive solutions, where $\operatorname{cat}(\Omega)$ denotes the Ljusternik-Schnirelmann category of Ω in itself. Since the work [2], multiplicity results of $\left(P_{q}\right)$ with $p=2$ have been intensively studied (see $[4,7,3]$ for subcritical, and [17,13,21] for critical nonlinearities). To the best of our knowledge, the only work that deals with the quasilinear problem is [1], where the authors studied the critical case.

In the aforementioned works, the authors considered positive solutions. Here, motivated by Castro and Clapp [6], we are interested in solutions which change sign exactly once. This means that the solution u is such that $\Omega \backslash u^{-1}(0)$ has exactly two connected components, u is positive in one of them and negative in the other. We deal with the problem

$$
\left(P_{q}^{\tau}\right) \begin{cases}-\Delta_{p} u+|u|^{p-2} u=|u|^{q-2} u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ u(\tau x)=-u(x) & \text { for all } x \in \Omega\end{cases}
$$

where $\tau: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is fixed, $\tau \in O(N) \backslash\{\mathrm{Id}\}, \tau^{2}=\mathrm{Id}$, and $\Omega \subset \mathbb{R}^{N}$ is a bounded smooth domain such that $\tau \Omega=\Omega$. It is clear that any non-trivial solution of $\left(P_{q}^{\tau}\right)$ changes sign. We call a nodal solution minimal if it changes sign exactly once. Our existence result can be stated as

Theorem 1.1. For any $q \in\left(p, p^{*}\right)$ the problem $\left(P_{q}^{\tau}\right)$ has at least one pair of solutions which change sign exactly once.

The proof of Theorem 1.1 relies in a minimization argument. As we will see, there is a deep relation between the number of nodal regions of a solution and its energy. This relation will able us to prove that the solutions have the desired property.

The above result complements [6, Theorem 1] where the authors considered the semilinear problem

$$
-\Delta u=\lambda u+|u|^{2^{*}-2} u, \quad u \in H_{0}^{1}(\Omega), \quad u(\tau x)=-u(x) \quad \text { in } \Omega
$$

and obtain the same result for $\lambda>0$ small enough (see also [8, Theorem A] for the existence of nodal solutions without symmetry assumptions). By taking advantage of the symmetry, the authors in [6] also studied the relation between the domain topology and the number of minimal nodal solutions. We also are able to have precise statements about this relation if we suppose that q is sufficiently close to p^{*}. More specifically, we prove

Theorem 1.2. There exists $q_{0} \in\left(p, p^{*}\right)$ such that, for all $q \in\left[q_{0}, p^{*}\right)$, the problem $\left(P_{q}^{\tau}\right)$ has at least τ-cat ${ }_{\Omega}\left(\Omega \backslash \Omega^{\tau}\right)$ pairs of solutions which change sign exactly once.

Here, $\Omega^{\tau}=\{x \in \Omega: \tau x=x\}$ and τ-cat is the G_{τ}-equivariant Ljusternik-Schnirelmann category for the group $G_{\tau}=\{\mathrm{Id}, \tau\}$. There are several situations where the equivariant
category turns out to be larger than the nonequivariant one. The classical example is the unit sphere $\mathbb{S}^{N-1} \subset \mathbb{R}^{N}$ with $\tau=-\mathrm{Id}$. In this case $\operatorname{cat}\left(\mathbb{S}^{N-1}\right)=2$ whereas τ-cat $\left(\mathbb{S}^{N-1}\right)=N$. As an easy consequence of Theorem 1.2 we have

Corollary 1.3. Let Ω be symmetric with respect to the origin and such that $0 \notin \Omega$. Assume further that there is an odd map $\varphi: \mathbb{S}^{N-1} \rightarrow \Omega$. Then there exists $q_{0} \in\left(p, p^{*}\right)$ such that, for all $q \in\left[q_{0}, p^{*}\right)$, the problem $\left(P_{q}\right)$ has at least N pairs of odd solutions which change sign exactly once.

It is worthwhile to mention that the above results seem to be new even for $p=2$. We also note that the nonlinearity of the p-Laplacian, which makes the calculations more difficult, is compensated here by the homogeneity of the problem.

Finally, without any assumption of symmetry, we can look for multiple positive solutions of $\left(P_{q}\right)$ and to extend [2, Theorem B] for the quasilinear case. Since we have no symmetry in this context, we relate the number of positive solutions with the usual Ljusternik-Schnirelmann category and prove

Theorem 1.4. There exists $q_{0} \in\left(p, p^{*}\right)$ such that, for all $q \in\left[q_{0}, p^{*}\right)$, problem $\left(P_{q}\right)$ has at least $\operatorname{cat}(\Omega)$ positive solutions.

The paper is organized as follows. Section 2 is devoted to establish the notation as well as to present some technical results. In Section 3, after recalling some basic facts about the equivariant Ljusternik-Schnirelmann theory, we prove the results concerning nodal solutions. In Section 4, we present the proof of Theorem 1.4.

2. Notations and some technical results

We start by considering the space $W_{0}^{1, p}(\Omega)$ endowed with the norm

$$
\begin{equation*}
\|u\|=\left(\int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \mathrm{d} x\right)^{1 / p} \tag{2.1}
\end{equation*}
$$

The involution τ of Ω induces an involution of $W_{0}^{1, p}(\Omega)$, which we also denote by τ, in the following way: for each $u \in W_{0}^{1, p}(\Omega)$ we define $\tau u \in W_{0}^{1, p}(\Omega)$ by

$$
\begin{equation*}
(\tau u)(x)=-u(\tau x) \tag{2.2}
\end{equation*}
$$

Thus, we can also consider the closed linear subspace of $W_{0}^{1, p}(\Omega)$ given by

$$
W_{0}^{1, p}(\Omega)^{\tau}=\left\{u \in W_{0}^{1, p}(\Omega): \tau u=u\right\}
$$

Let $E_{q}: W_{0}^{1, p}(\Omega) \rightarrow \mathbb{R}$ be given by

$$
E_{q}(u)=\frac{1}{p} \int_{\Omega}\left(|\nabla u|^{p}+|u|^{p}\right) \mathrm{d} x-\frac{1}{q} \int_{\Omega}|u|^{q} \mathrm{~d} x
$$

and its associated Nehari manifold

$$
\begin{aligned}
\mathscr{N}_{q} & =\left\{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}:\left\langle E_{q}^{\prime}(u), u\right\rangle=0\right\} \\
& =\left\{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}:\|u\|^{p}=|u|_{q}^{q}\right\},
\end{aligned}
$$

where $|u|_{s}$ denote the $L^{s}(\Omega)$-norm for $s \geqslant 1$.
In order to obtain τ-invariant solutions we will look for critical points of the restriction of E_{q} to the τ-invariant Nehari manifold

$$
\mathscr{N}_{q}^{\tau}=\left\{u \in \mathscr{N}_{q}: \tau u=u\right\}=\mathscr{N}_{q} \cap W_{0}^{1, p}(\Omega)^{\tau} .
$$

We define the numbers

$$
m_{q}=\inf _{u \in \mathscr{N}_{q}} E_{q}(u) \quad \text { and } \quad m_{q}^{\tau}=\inf _{u \in \mathcal{N}_{q}^{\tau}} E_{q}(u)
$$

For any bounded τ-invariant domain $\mathscr{D} \subset \mathbb{R}^{N}$ we define $E_{q, \mathscr{D}}, \mathscr{N}_{q, \mathscr{D}}, \mathscr{N}_{q, \mathscr{D}}^{\tau}, m_{q, \mathscr{D}}$ and $m_{q, \mathscr{D}}^{\tau}$ in the same way by taking the above integrals over \mathscr{D} instead of Ω. For simplicity of notation we use only $m_{q, r}$ and $m_{q, r}^{\tau}$ to denote $m_{q, B_{r}(0)}$ and $m_{q, B_{r}(0)}^{\tau}$, respectively. Also for simplicity we write $\int_{\mathscr{D}} u$ to indicate $\int_{\mathscr{D}} u(x) \mathrm{d} x$. For $s \geqslant 1$, we denote by $|u|_{s, \mathscr{D}}$ the $L^{S}(\mathscr{D})$-norm of a function u.

Lemma 2.1. For any bounded τ-invariant domain $\mathscr{D} \subset \mathbb{R}^{N}$ we have that $2 m_{q, \mathscr{D}} \leqslant m_{q, \mathscr{D}}^{\tau}$.
Proof. Given $u \in \mathscr{N}_{q, \mathscr{D}}^{\tau}$ we can use (2.2) to conclude that $u^{+}, u^{-} \in \mathcal{N}_{q, \mathscr{D}}$, where $u^{ \pm}=$ $\max \{ \pm u, 0\}$. Thus

$$
E_{q, \mathscr{D}}(u)=E_{q, \mathscr{D}}\left(u^{+}\right)+E_{q, \mathscr{D}}\left(u^{-}\right) \geqslant 2 m_{q, \mathscr{D}},
$$

and the result follows.
As usual, we denote by S the best constant of the embedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{p^{*}}(\Omega)$ given by

$$
S=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\|u\|^{p}}{|u|_{p^{*}}^{p}} .
$$

It is well known that S is independent of Ω and is never achieved in any proper subset of \mathbb{R}^{N}.

Let V be a Banach space, M be a C^{1}-manifold of V and $I: V \rightarrow \mathbb{R}$ a C^{1}-functional. We recall that $\left.I\right|_{M}$ satisfies the Palais-Smale condition at level $c\left((\mathrm{PS})_{c}\right.$ for short) if any sequence $\left(u_{n}\right) \subset M$ such that $I\left(u_{n}\right) \rightarrow c$ and $\left\|I^{\prime}\left(u_{n}\right)\right\|_{*} \rightarrow 0$ contains a convergent subsequence. Here we are denoting by $\left\|I^{\prime}(u)\right\|_{*}$ the norm of the derivative of the restriction of I to M (see [21, Section 5.3]). The following technical result will be useful in the future:

Lemma 2.2. Let $\left(v_{n}\right) \subset W_{0}^{1, p}(\Omega)$ be such that $\left|v_{n}\right|_{p^{*}}=1$ and $\left\|v_{n}\right\|^{p} \rightarrow S$. Then there exists $v \in W_{0}^{1, p}(\Omega)$ such that, up to a subsequence, $v_{n} \rightharpoonup v$ weakly in $W_{0}^{1, p}(\Omega)$ and $\nabla v_{n}(x) \rightarrow \nabla v(x)$ for a.e. $x \in \Omega$.

Proof. Since $\left\|v_{n}\right\|^{p} \rightarrow S$ we have that $\left(v_{n}\right)$ is bounded. Thus, going to a subsequence if necessary, $v_{n} \rightharpoonup v$ weakly in $W_{0}^{1, p}(\Omega)$ for some $v \in W_{0}^{1, p}(\Omega)$. Denoting $M=\left\{u \in W_{0}^{1, p}(\Omega)\right.$: $\left.\int_{\Omega}|u|^{p^{*}}=1\right\}$, by the Ekeland Variational Principle [11] (see also [21, Theorem 8.5]), we may suppose that $\left(v_{n}\right)$ is a $(\mathrm{PS})_{S}$ sequence for $\varphi: M \rightarrow \mathbb{R}$ given by $\varphi(u)=\|u\|^{p}$, i.e., there exits $\left(\theta_{n}\right) \subset \mathbb{R}$ such that

$$
-\Delta_{p} v_{n}+\left|v_{n}\right|^{p-2} v_{n}-\theta_{n}\left|v_{n}\right|^{p^{*}-2} v_{n} \rightarrow 0 \quad \text { in }\left(W_{0}^{1, p}(\Omega)\right)^{\prime}
$$

where $\left(W_{0}^{1, p}(\Omega)\right)^{\prime}$ is the dual space of $W_{0}^{1, p}(\Omega)$. The above expression imply that $\varphi\left(v_{n}\right)-$ $\theta_{n} \rightarrow 0$ and $\theta_{n} \rightarrow S$. Defining $\tilde{v}_{n}=\theta_{n}^{(N-p) / p^{2}} v_{n}$, an easy calculation shows that

$$
E_{p^{*}}\left(\tilde{v}_{n}\right) \rightarrow \frac{1}{N} S^{N / p} \quad \text { and } \quad\left\|E_{p^{*}}^{\prime}\left(\tilde{v}_{n}\right)\right\|_{\left(W_{0}^{1, p}(\Omega)\right)^{\prime}} \rightarrow 0
$$

Thus \tilde{v}_{n} is a (PS) sequence of $E_{p^{*}}$. This fact, $\theta_{n} \rightarrow S$ and standard calculations [22] (see also [18, Corollary 3.7]) show that

$$
\nabla \tilde{v}_{n}(x) \rightarrow S^{(N-p) / p^{2}} \nabla v(x) \quad \text { a.e. } x \in \Omega
$$

The result follows from the definition of \tilde{v}_{n}.
We present below some useful relations between $m_{q, \mathscr{D}}, m_{q, \mathscr{D}}^{\tau}$ and S.
Lemma 2.3. For any bounded τ-invariant domain $\mathscr{D} \subset \mathbb{R}^{N}$ we have
(i) $\lim _{q \rightarrow p^{*}} m_{q, \mathscr{D}}=m_{p^{*}, \mathscr{D}}=\frac{1}{N} S^{N / p}$,
(ii) $\lim _{q \rightarrow p^{*}} m_{q, \mathscr{D}}^{\tau}=m_{p^{*}, \mathscr{D}}^{\tau}=\frac{2}{N} S^{N / p}$.

Proof. The first equalities in (i) and (ii) follow from [9, Proposition 5]. Denote by $\|u\|_{\mathscr{D}}$ the norm of $u \in W_{0}^{1, p}(\mathscr{D})$ and let $\Sigma_{\mathscr{D}}$ be the unit sphere of $W_{0}^{1, p}(\mathscr{D})$. Since $\psi: u \mapsto u|u|_{p^{*}, \mathscr{D}}^{-N / p}$ defines a dipheomorphism between $\Sigma_{\mathscr{D}}$ and $\mathscr{N}_{p^{*}, \mathscr{D}}$, we have

$$
\begin{aligned}
N m_{p^{*}, \mathscr{D}} & =\inf _{u \in \mathcal{N}_{p^{*}, \mathscr{D}}}\|u\|_{\mathscr{D}}^{p}=\inf _{u \in \Sigma_{\mathscr{D}}} \frac{\|u\|_{\mathscr{D}}^{p}}{|u|_{p^{*}, \mathscr{D}}^{N}} \\
& =\inf _{u \in W_{0}^{1, p}(\mathscr{D}) \backslash\{0\}}\left(\frac{\|u\|_{\mathscr{D}}^{p}}{|u|_{p^{*}, \mathscr{D}}^{p}}\right)^{N / p}=S^{N / p}
\end{aligned}
$$

and therefore $m_{p^{*}, \mathscr{D}}=\frac{1}{N} S^{N / p}$. In [6, Proposition 5] is proved that $m_{p^{*}, \mathscr{D}}^{\tau}=\frac{2}{N} S^{N / p}$. We observe that in $[9,6]$ the authors consider only the semilinear case $p=2$. However, taking advantage of the homogeneity, it is not difficult to see that the arguments hold for $1<p<N$.

In what follows we denote by $\mathscr{M}\left(\mathbb{R}^{N}\right)$ the Banach space of finite Radon measures over \mathbb{R}^{N} equipped with the norm

$$
\|\mu\|=\sup _{\phi \in C_{0}\left(\mathbb{R}^{N}\right),|\phi|_{\infty} \leqslant 1}|\mu(\phi)| .
$$

A sequence $\left(\mu_{n}\right) \subset \mathscr{M}\left(\mathbb{R}^{N}\right)$ is said to converge weakly to $\mu \in \mathscr{M}\left(\mathbb{R}^{N}\right)$ provided $\mu_{n}(\phi) \rightarrow$ $\mu(\phi)$ for all $\phi \in C_{0}\left(\mathbb{R}^{N}\right)$. By the Banach-Alaoglu theorem, every bounded sequence $\left(\mu_{n}\right) \subset \mathscr{M}\left(\mathbb{R}^{N}\right)$ contains a weakly convergent subsequence.

The next result is a version of the Second Concentration-Compactness Lemma of Lions [14, Lemma I.1]. The proof can be found in [21, Lemma 1.40; 19, Lemma 2.1 and Remark 2.2].

Lemma 2.4. Let $\left(u_{n}\right) \subset D^{1, p}\left(\mathbb{R}^{N}\right)$ be a sequence such that

$$
\begin{align*}
& u_{n} \rightharpoonup u \text { weakly in } D^{1, p}\left(\mathbb{R}^{N}\right), \\
& \left|\nabla\left(u_{n}-u\right)\right|^{p} \rightharpoonup \mu \text { weakly in } \mathscr{M}\left(\mathbb{R}^{N}\right) \text {, } \\
& \left|u_{n}-u\right|^{p^{*}} \rightharpoonup v \text { weakly in } \mathscr{M}\left(\mathbb{R}^{N}\right), \\
& u_{n}(x) \rightarrow u(x) \text { a.e. } x \in \mathbb{R}^{N}, \\
& \nabla u_{n}(x) \rightarrow \nabla u(x) \text { a.e. } x \in \mathbb{R}^{N} \tag{2.3}
\end{align*}
$$

and define

$$
\mu_{\infty}=\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{|x|>R}\left|\nabla u_{n}\right|^{p}, \quad v_{\infty}=\lim _{R \rightarrow \infty} \limsup _{n \rightarrow \infty} \int_{|x|>R}\left|u_{n}\right|^{p^{*}}
$$

Then

$$
\begin{align*}
& \|v\|^{p / p^{*}} \leqslant S^{-1}\|\mu\|, \tag{2.4}\\
& \limsup _{n \rightarrow \infty}\left|\nabla u_{n}\right|_{p, \mathbb{R}^{N}}^{p}=|\nabla u|_{p, \mathbb{R}^{N}}^{p}+\|\mu\|+\mu_{\infty} \tag{2.5}
\end{align*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|u_{n}\right|_{p^{*}, \mathbb{R}^{N}}^{p^{*}}=|u|_{p^{*}, \mathbb{R}^{N}}^{p^{*}}+\|v\|+v_{\infty} \tag{2.6}
\end{equation*}
$$

Moreover, if $u=0$ and $\|v\|^{p / p^{*}}=S^{-1}\|\mu\|$, then μ and v are concentrated at single points.
Remark 2.5. In [21, Lemma 1.40] the author proves the above lemma for $p=2$ without the assumption of pointwise convergence for the gradient. The proof for the general case follows the same lines of case $p=2$ except for Eq. (2.5). As noted in [19, Example 2.3], it can fail for $p \neq 2$ if we do not impose that $\nabla u_{n}(x) \rightarrow \nabla u(x)$ for a.e. $x \in \mathbb{R}^{N}$. However, when this last assumption is assumed, Eq. (2.5) can be verified as in [19, Lemma 2.1 and Remark 2.2].

For any $r>0$ we define the set

$$
\begin{equation*}
\Omega_{r}^{+}=\left\{x \in \mathbb{R}^{N}: \operatorname{dist}(x, \Omega)<r\right\} . \tag{2.7}
\end{equation*}
$$

We also define the barycenter map $\beta: W_{0}^{1, p}(\Omega) \backslash\{0\} \rightarrow \mathbb{R}^{N}$ by setting

$$
\beta(u)=\frac{\int_{\mathbb{R}^{N}}|u|^{p^{*}} x \mathrm{~d} x}{\int_{\mathbb{R}^{N}}|u|^{p^{*}} \mathrm{~d} x}
$$

The following result is a version of [2, Lemma 4.2]:
Lemma 2.6. For any $r>0$ there exist $q_{0}=q_{0}(r) \in\left(p, p^{*}\right)$ such that, for all $q \in\left[q_{0}, p^{*}\right)$, we have
(i) $m_{q, r}^{\tau}<2 m_{q}^{\tau}$,
(ii) if $u \in \mathscr{N}_{q}^{\tau}$ and $E_{q}(u) \leqslant m_{q, r}^{\tau}$, then $\beta\left(u^{+}\right) \in \Omega_{r}^{+}$.

Proof. We suppose, by contradiction, that (i) is false. Then there exists a sequence $q_{n} \uparrow$ p^{*} such that $m_{q_{n}, r}^{\tau} \geqslant 2 m_{q_{n}}^{\tau}$. Taking the limit and using Lemma 2.3(ii) we conclude that $S^{N / p} \geqslant 2 S^{N / p}$, which does not make sense.

Arguing by contradiction once more, we suppose that (ii) is not true. Then there exist $q_{n} \uparrow p^{*},\left(u_{n}\right) \in \mathcal{N}_{q_{n}}^{\tau}$ with $E_{q_{n}}\left(u_{n}\right) \leqslant m_{q_{n}, r}^{\tau}$ and $\beta\left(u_{n}^{+}\right) \notin \Omega_{r}^{+}$. We can use (2.2) to verify that $u_{n}^{+} \in \mathscr{N}_{q_{n}}$ and $2 E_{q_{n}}\left(u_{n}^{+}\right)=E_{q_{n}}\left(u_{n}\right)$. Thus,

$$
m_{q_{n}} \leqslant E_{q_{n}}\left(u_{n}^{+}\right)=\left(\frac{1}{p}-\frac{1}{q_{n}}\right)\left\|u_{n}^{+}\right\|^{p} \leqslant 2^{-1} m_{q_{n}, r}^{\tau}
$$

Taking the limit, using the definition of $\mathscr{N}_{q_{n}}^{\tau}$ and Lemma 2.3, we conclude that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|u_{n}^{+}\right| q_{n}^{q_{n}}=\lim _{n \rightarrow \infty}\left\|u_{n}^{+}\right\|^{p}=S^{N / p} \tag{2.8}
\end{equation*}
$$

By Hölder's inequality we have

$$
\int_{\Omega}\left(u_{n}^{+}\right)^{q_{n}} \leqslant \mathscr{L}(\Omega)^{\left(p^{*}-q_{n}\right) / p^{*}}\left(\int_{\Omega}\left(u_{n}^{+}\right)^{p^{*}}\right)^{q_{n} / p^{*}},
$$

where \mathscr{L} denotes the Lebesgue measure in \mathbb{R}^{N}. The above expression and (2.8) imply that $\lim \inf _{n \rightarrow \infty}\left|u_{n}^{+}\right|_{p^{*}}^{p^{*}} \geqslant S^{N / p}$. On the other hand, recalling that $\left|u_{n}^{+}\right|_{p^{*}}^{p} \leqslant S^{-1}\left\|u_{n}^{+}\right\|^{p}$, we get $\lim \sup _{n \rightarrow \infty}\left|u_{n}^{+}\right|_{p^{*}}^{p^{*}} \leqslant S^{N / p}$. Hence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|u_{n}^{+}\right|_{p^{*}}^{p^{*}}=S^{N / p} \tag{2.9}
\end{equation*}
$$

This and (2.8) imply that $v_{n}:=\frac{u_{n}^{+}}{\left|u_{n}^{+}\right|_{p^{*}}}$ satisfies the hypotheses of Lemma 2.2 and therefore, up to subsequence, we have

$$
\nabla u_{n}^{+}(x) \rightarrow \nabla u(x) \quad \text { a.e. } x \in \Omega,
$$

where u is the weak limit of u_{n}^{+}in $W_{0}^{1, p}(\Omega)$. By going if necessary to a subsequence, we may assume that (2.3) holds with $\left(u_{n}\right)$ replaced by $\left(u_{n}^{+}\right)$. We may also assume that $u_{n}^{+} \rightarrow u$
in $L^{p}(\Omega)$. The Lemma 2.4, and Eqs. (2.8) and (2.9) provide

$$
S^{N / p}=\|u\|^{p}+\|\mu\|, \quad S^{N / p}=|u|_{p^{*}}^{p^{*}}+\|v\|
$$

and

$$
\|v\|^{p / p^{*}} \leqslant S^{-1}\|\mu\|, \quad|u|_{p^{*}}^{p} \leqslant S^{-1}\|u\|^{p}
$$

Note that, since Ω is bounded, the terms μ_{∞} and v_{∞} do not appear in the above expressions.
The inequality $(a+b)^{t}<a^{t}+b^{t}$ for $a, b>0$ and $0<t<1$, and the above expressions imply that $\|v\|$ and $|u|_{p^{*}}^{p^{*}}$ are equal either to 0 or $S^{N / p}$. Indeed, if this is not the case, we get

$$
\begin{aligned}
S^{(N-p) / p} & =S^{-1}\left(\|u\|^{p}+\|\mu\|\right) \geqslant\left(|u|_{p^{*}}^{p^{*}} p^{p / p^{*}}+\|v\|^{p / p^{*}}\right. \\
& >\left(|u|_{p^{*}}^{p^{*}}+\|v\|\right)^{p / p^{*}}=S^{(N-p) / p}
\end{aligned}
$$

which is absurd. Suppose $|u|_{p^{*}}^{p^{*}}=S^{N / p}$. Since $u_{n}^{+} \rightharpoonup u$ weakly in $W_{0}^{1, p}(\Omega)$, we have that $\|u\|^{p} \leqslant \lim \inf _{n \rightarrow \infty}\left\|u_{n}^{+}\right\|^{p}=S^{N / p}$. Hence

$$
\frac{\|u\|^{p}}{|u|_{p^{*}}^{p}} \leqslant \frac{S^{N / p}}{S^{(N-p) / p}}=S
$$

and we conclude that S is attained by $u \in W_{0}^{1, p}(\Omega)$, which does not make sense. This shows that $u=0$ and therefore $\|v\|=S^{N / p}$ and v is concentrated at a single point y. Since $\left(u_{n}^{+}\right) \subset W_{0}^{1, p}(\Omega)$, we conclude that $y \in \bar{\Omega}$. Hence

$$
\beta\left(u_{n}^{+}\right)=\frac{\int_{\mathbb{R}^{N}}\left(u_{n}^{+}\right)^{p^{*}} x \mathrm{~d} x}{\int_{\mathbb{R}^{N}}\left(u_{n}^{+}\right)^{p^{*}} \mathrm{~d} x} \rightarrow S^{-N / p} \int_{\Omega} x \mathrm{~d} v=y \in \bar{\Omega},
$$

which contradicts $\beta\left(u_{n}^{+}\right) \notin \Omega_{r}^{+}$. The lemma is proved.

3. Minimal nodal solutions

We start this section by noting that, if u is a solution of $\left(P_{q}\right)$, then it is of class C^{1}. We say it changes sign n times if the set $\{x \in \Omega: u(x) \neq 0\}$ has $n+1$ connected components. Obviously, if u is a non-trivial solution of problem $\left(P_{q}^{\tau}\right)$, then it changes sign an odd number of times. The relation between the nodal regions of a solution and its energy is given by the result below (see [6] for $p=2$).

Proposition 3.1. If u is a solution of problem $\left(P_{q}^{\tau}\right)$ which changes sign $2 k-1$ times, then $E_{q}(u) \geqslant k m_{q}^{\tau}$.

Proof. The set $\{x \in \Omega: u(x)>0\}$ has k connected components A_{1}, \ldots, A_{k}. Let $u_{i}(x)=u(x)$ if $x \in A_{i} \cup \tau A_{i}$ and $u_{i}(x)=0$, otherwise. Since u is a critical
point of E_{q},

$$
\begin{aligned}
0 & =\left\langle E_{q}^{\prime}(u), u_{i}\right\rangle=\int_{\Omega}\left(|\nabla u|^{p-2} \nabla u \cdot \nabla u_{i}+|u|^{p-2} u u_{i}-|u|^{q-2} u u_{i}\right) \\
& =\left\|u_{i}\right\|^{p}-\left|u_{i}\right|_{q}^{q} .
\end{aligned}
$$

Thus, $u_{i} \in \mathscr{N}_{q}^{\tau}$ for all $i=1, \ldots, k$, and

$$
E_{q}(u)=E_{q}\left(u_{1}\right)+\cdots+E_{q}\left(u_{k}\right) \geqslant k m_{q}^{\tau},
$$

as desired.
Proof of Theorem 1.1. The compactness of the embedding $W_{0}^{1, p}(\Omega) \hookrightarrow L^{q}(\Omega)$ and standard calculations give the Palais-Smale condition for E_{q} restricted to \mathscr{N}_{q}^{τ}. Let $\left(u_{n}\right) \subset \mathscr{N}_{q}^{\tau}$ be a minimizing sequence for m_{q}^{τ}. We may suppose that $\left(u_{n}\right)$ is a (PS) sequence at level m_{q}^{τ} and therefore, by the (PS) condition, the infimum is achieved by some $u \in \mathscr{N}_{q}^{\tau}$. The definition of $W_{0}^{1, p}(\Omega)^{\tau}$ and Proposition 3.1 show that u changes sign exactly once. To finish the proof we note that, by the Lagrange multiplier rule, there exits $\theta \in \mathbb{R}$ such that

$$
\left\langle E_{q}^{\prime}(u)-\theta J_{q}^{\prime}(u), \phi\right\rangle=0, \quad \forall \phi \in W_{0}^{1, p}(\Omega)^{\tau},
$$

where $J_{q}(u)=\|u\|^{p}-|u|_{q}^{q}$. Since $u \in \mathscr{N}_{q}^{\tau}$, we have

$$
0=\left\langle E_{q}^{\prime}(u), u\right\rangle-\theta\left\langle J_{q}^{\prime}(u), u\right\rangle=\theta(q-p)\|u\|^{p}
$$

This implies $\theta=0$ and therefore

$$
\left\langle E_{q}^{\prime}(u), \phi\right\rangle=0, \quad \forall \phi \in W_{0}^{1, p}(\Omega)^{\tau}
$$

Hence the principle of symmetric criticality [16] (see also [15, Proposition 1]) imply that u (and also $-u$) is a solution of $\left(P_{q}^{\tau}\right)$ which changes sign exactly once. The theorem is proved.

We recall some facts about equivariant theory. An involution on a topological space X is a continuous function $\tau_{X}: X \rightarrow X$ such that τ_{X}^{2} is the identity map of X. A subset A of X is called τ_{X}-invariant if $\tau_{X}(A)=A$. If X and Y are topological spaces equipped with involutions τ_{X} and τ_{Y}, respectively, then an equivariant map is a continuous function $f: X \rightarrow Y$ such that $f \circ \tau_{X}=\tau_{Y} \circ f$. Two equivariant maps $f_{0}, f_{1}: X \rightarrow Y$ are equivariantly homotopic if there is a homotopy $\Theta: X \times[0,1] \rightarrow Y$ such that $\Theta(x, 0)=f_{0}(x), \Theta(x, 1)=f_{1}(x)$ and $\Theta\left(\tau_{X}(x), t\right)=\tau_{Y}(\Theta(x, t))$, for all $x \in X, t \in[0,1]$.

Definition 3.2. The equivariant category of an equivariant map $f: X \rightarrow Y$, denoted by (τ_{X}, τ_{Y})-cat (f), is the smallest number k of open invariant subsets X_{1}, \ldots, X_{k} of X which cover X and which have the property that, for each $i=1, \ldots, k$, there is a point $y_{i} \in Y$ and a homotopy $\Theta_{i}: X_{i} \times[0,1] \rightarrow Y$ such that $\Theta_{i}(x, 0)=f(x), \Theta_{i}(x, 1) \in\left\{y_{i}, \tau_{Y}\left(y_{i}\right)\right\}$ and $\Theta_{i}\left(\tau_{X}(x), t\right)=\tau_{Y}\left(\Theta_{i}(x, t)\right)$ for every $x \in X_{i}, t \in[0,1]$. If no such covering exists we define $\left(\tau_{X}, \tau_{Y}\right)-\operatorname{cat}(f)=\infty$.

If A is a τ_{X}-invariant subset of X and $l: A \hookrightarrow X$ is the inclusion map we write

$$
\tau_{X}-\operatorname{cat}_{X}(A)=\left(\tau_{X}, \tau_{X}\right)-\operatorname{cat}(\imath) \quad \text { and } \quad \tau_{X}-\operatorname{cat}(X)=\tau_{X}-\operatorname{cat}_{X}(X)
$$

In the literature $\tau_{X}-\operatorname{cat}(X)$ is usually called $\mathbb{Z}_{2}-\operatorname{cat}(X)$. Here it is more convenient to specify the involution in the notation.

The following properties can be verified:
Lemma 3.3. (i) If $f: X \rightarrow Y$ and $h: Y \rightarrow Z$ are equivariant maps then

$$
\left(\tau_{X}, \tau_{Z}\right)-\operatorname{cat}(h \circ f) \leqslant \tau_{Y}-\operatorname{cat}(Y)
$$

(ii) If $f_{0}, f_{1}: X \rightarrow Y$ are equivariantly homotopic, then $\left(\tau_{X}, \tau_{Y}\right)-\operatorname{cat}\left(f_{0}\right)=\left(\tau_{X}, \tau_{Y}\right)-$ $\operatorname{cat}\left(f_{1}\right)$.

We denote by $\tau_{a}: V \rightarrow V$ the antipodal involution $\tau_{a}(u)=-u$ on the vector space V. A τ_{a}-invariant subset of V is usually called a symmetric subset. Equivariant LjusternikSchnirelmann category provides a lower bound for the number of pairs $\{u,-u\}$ of critical points of an even functional, as stated in the following abstract result (see [10, Theorem 1.1; 20, Theorem 5.7; 12, Corollary 4.1]).

Theorem 3.4. Let $I: M \rightarrow \mathbb{R}$ be an even C^{1}-functional on a complete symmetric C^{1} submanifold M of some Banach space V. Assume that I is bounded below and satisfies (PS) c_{c} for all $c \leqslant d$. Then, denoting $I^{d}=\{u \in M: I(u) \leqslant d\}$, I has at least τ_{a}-cat $\left(I^{d}\right)$ antipodal pairs $\{u,-u\}$ of critical points with $I(\pm u) \leqslant d$.

Coming back to our problem we set, for any given $r>0$,

$$
\Omega_{r}^{-}=\left\{x \in \Omega: \operatorname{dist}\left(x, \partial \Omega \cup \Omega^{\tau}\right) \geqslant r\right\} .
$$

Throughout the rest of this section $r>0$ sufficiently small is fixed in such way that the inclusion maps $\Omega_{r}^{-} \hookrightarrow \Omega \backslash \Omega^{\tau}$ and $\Omega \hookrightarrow \Omega_{r}^{+}$are equivariant homotopy equivalences and Ω_{r}^{+}is as defined in (2.7).

Lemma 3.5. Let $q_{0}=q_{0}(r)$ be given by Lemma 2.6. Then, for any $q \in\left[q_{0}, p^{*}\right)$, there exists two maps

$$
\Omega_{r}^{-} \xrightarrow{\alpha_{q}} \mathscr{N}_{q}^{\tau} \cap E_{q}^{m_{q, r}^{\tau}} \xrightarrow{\gamma_{q}} \Omega_{r}^{+}
$$

such that $\alpha_{q}(\tau x)=-\alpha_{q}(x), \gamma_{q}(-u)=\tau \gamma_{q}(u)$, and $\gamma_{q} \circ \alpha_{q}$ is equivariantly homotopic to the inclusion map $\Omega_{r}^{-} \hookrightarrow \Omega_{r}^{+}$.

Proof. We fix $q \in\left[q_{0}, p^{*}\right)$, take a non-negative radial function $v_{q} \in \mathscr{N}_{q, B_{r}(0)}$ such that $E_{q, B_{r}(0)}\left(v_{q}\right)=m_{q, r}\left(\right.$ see [1, Lemma 3.2]) and define $\alpha_{q}: \Omega_{r}^{-} \rightarrow \mathcal{N}_{q}^{\tau} \cap E_{q}^{m_{q, r}^{\tau}}$ by setting

$$
\begin{equation*}
\alpha_{q}(x)=v_{q}(\cdot-x)-v_{q}(\cdot-\tau x) . \tag{3.1}
\end{equation*}
$$

It is clear from the definition that $\alpha_{q}(\tau x)=-\alpha_{q}(x)$. Furthermore, since v_{q} is radial and τ is an isometry, we have that $\alpha_{q}(x) \in W_{0}^{1, p}(\Omega)^{\tau}$. Note that, for every $x \in \Omega_{r}^{-}$, we have
that $|x-\tau x| \geqslant 2 r$ (if this is not true, then $\bar{x}=(x+\tau x) / 2$ satisfies $|x-\bar{x}|<r$ and $\tau \bar{x}=\bar{x}$, contradicting the definition of Ω_{r}^{-}). Thus, we can check that $E_{q}\left(\alpha_{q}(x)\right)=2 m_{q, r} \leqslant m_{q, r}^{\tau}$ (by Lemma 2.1) and

$$
\left\|\alpha_{q}(x)\right\|^{p}=2\left\|v_{q}\right\|_{B_{r}(0)}^{p}=2\left|v_{q}\right|_{q, B_{r}(0)}^{q}=\left|\alpha_{q}(x)\right|_{q}^{q} .
$$

All the above considerations show that α_{q} is well defined.
By Lemma 2.6(ii) it follows that $\gamma_{q}: \mathcal{N}_{q}^{\tau} \cap E_{q}^{m_{q, r}^{\tau}} \rightarrow \Omega_{r}^{+}$given by $\gamma_{q}(u)=\beta\left(u^{+}\right)$is well defined. A simple calculation shows that $\gamma_{q}(-u)=\tau \gamma_{q}(u)$. Moreover, using (3.1) and the fact that v_{q} is radial, we get

$$
\gamma_{q}\left(\alpha_{q}(x)\right)=\frac{\int_{B_{r}(x)}\left|v_{q}(y-x)\right|^{p^{*}} y \mathrm{~d} y}{\int_{B_{r}(x)}\left|v_{q}(y-x)\right|^{p^{*}} \mathrm{~d} y}=\frac{\int_{B_{r}(0)}\left|v_{q}(y)\right|^{p^{*}}(y+x) \mathrm{d} y}{\int_{B_{r}(0)}\left|v_{q}(y)\right|^{p^{*}} \mathrm{~d} y}=x
$$

for any $x \in \Omega_{r}^{-}$. This concludes the proof of the lemma.
We are now ready to prove Theorem 1.2.
Proof of Theorem 1.2. We will show that the theorem holds for $q_{0}=q_{0}(r)$ given by Lemma 2.6. For $q \in\left[q_{0}, p^{*}\right)$ fixed, the Palais-Smale condition for E_{q} restricted to \mathcal{N}_{q}^{τ} follows as in the proof of Theorem 1.1. Since E_{q} is even we can apply Theorem 3.4 to obtain τ_{a}-cat $\left(\mathscr{N}_{q}^{\tau} \cap E_{q}^{m_{q, r}^{\tau}}\right)$ pairs $\pm u_{i}$ of critical points with $E_{q}\left(\pm u_{i}\right) \leqslant m_{q, r}^{\tau}<2 m_{q}^{\tau}$ (by Lemma 2.6(i)). The definition of $W_{0}^{1, p}(\Omega)^{\tau}$, Proposition 3.1 and the same argument employed in the proof of Theorem 1.1 show that u_{i} is a solution of $\left(P_{q}^{\tau}\right)$ which changes sign exactly once.

To conclude the proof we need only to verify that

$$
\begin{equation*}
\tau_{a}-\operatorname{cat}\left(\mathcal{N}_{q}^{\tau} \cap E_{q}^{m_{q, r}^{\tau}}\right) \geqslant \tau-\operatorname{cat}_{\Omega}\left(\Omega \backslash \Omega^{\tau}\right) \tag{3.2}
\end{equation*}
$$

With this aim we recall that r was chosen so that the inclusion maps $\Omega_{r}^{-} \hookrightarrow \Omega \backslash \Omega^{\tau}$ and $\Omega \hookrightarrow \Omega_{r}^{+}$are equivariant homotopy equivalences. Thus, (3.2) follows from Lemma 3.5 and the properties given by Lemma 3.3. The theorem is proved.

Proof of Corollary 1.3. Let $\tau: \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ be given by $\tau(x)=-x$. It is proved in [6, Corollary 3] that our assumptions imply $\tau-\operatorname{cat}(\Omega) \geqslant N$. Since $0 \notin \Omega, \Omega^{\tau}=\emptyset$. It suffices now to apply Theorem 1.2.

Remark 3.6. For any $\lambda \geqslant 0$ we know that

$$
S_{\lambda}=\inf _{u \in W_{0}^{1, p}(\Omega) \backslash\{0\}} \frac{\int_{\Omega}|\nabla u|^{p}+\lambda|u|^{p}}{|u|_{p^{*}}^{p}}
$$

its equal to S, independent of Ω and is never achieved in any proper subset of \mathbb{R}^{N}. Thus, a simple inspection of our proofs shows that Theorems 1.1 and 1.2, and Corollary 1.3 also
hold for the problem

$$
\left(P_{q, \lambda}^{\tau}\right) \begin{cases}-\Delta_{p} u+\lambda|u|^{p-2} u=|u|^{q-2} u & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega \\ u(\tau x)=-u(x) & \text { for all } x \in \Omega\end{cases}
$$

4. Positive solutions

In this section we will obtain multiple positive solutions for the problem $\left(P_{q}\right)$. Since Theorem 1.4 does not require symmetry for the domain Ω we will consider the functional E_{q} restricted to the usual Nehari manifold \mathscr{N}_{q}. We fix $r>0$ such that the sets Ω_{r}^{+}and

$$
\widetilde{\Omega}_{r}^{-}=\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \geqslant r\}
$$

are homotopically equivalent to Ω and $B_{r}(0) \subset \Omega$. We start with a version of Lemma 2.6.
Lemma 4.1. There exists $q_{0} \in\left(p, p^{*}\right)$ such that, for all $q \in\left[q_{0}, p^{*}\right)$, we have
(i) $m_{q, r}<2 m_{q}$,
(ii) if $u \in \mathcal{N}_{q}$ and $E_{q}(u) \leqslant m_{q, r}$, then $\beta(u) \in \Omega_{r}^{+}$.

Proof. Since the proof is analogous to that presented in Lemma 2.6 we only sketch the main steps of (ii). Suppose, by contradiction, that there exist $q_{n} \uparrow p^{*},\left(u_{n}\right) \in \mathscr{N}_{q_{n}}$ with $E_{q_{n}}\left(u_{n}\right) \leqslant m_{q_{n}, r}$ and $\beta\left(u_{n}\right) \notin \Omega_{r}^{+}$. Then we have that

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|^{p}=\lim _{n \rightarrow \infty}\left|u_{n}\right|_{p^{*}}^{p^{*}}=S^{N / p}
$$

and $\nabla u_{n}(x) \rightarrow \nabla u(x)$ a.e. $x \in \Omega$, where u is the weak limit of $\left(u_{n}\right)$ in $W_{0}^{1, p}(\Omega)$. Using Lemma 2.4 and arguing as in the proof of Lemma 2.6 we conclude that $u=0$ and the measure v in (2.3) is concentrated at a single point $y \in \bar{\Omega}$. Thus,

$$
\beta\left(u_{n}\right)=\frac{\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p^{*}} x \mathrm{~d} x}{\int_{\mathbb{R}^{N}}\left|u_{n}\right|^{p^{*}} \mathrm{~d} x} \rightarrow y \in \bar{\Omega}
$$

which contradicts $\beta\left(u_{n}\right) \notin \Omega_{r}^{+}$.
Following Benci and Cerami [2] one can easily show that
Lemma 4.2. If u is a solution of $\left(P_{q}\right)$ with $E_{q}(u)<2 m_{q}$, then u does not change sign.
Proof. Since u is a critical point of E_{q} we have

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u \cdot \nabla \phi+|u|^{p-2} u \phi=\int_{\Omega}|u|^{q-2} u \phi \quad \forall \phi \in W_{0}^{1, p}(\Omega) .
$$

In particular for $\phi=u^{ \pm}$. So, if both u^{+}and u^{-}are nonzero, then $u^{ \pm} \in \mathscr{N}_{q}$ and $E_{q}(u)=$ $E_{q}\left(u^{+}\right)+E_{q}\left(u^{-}\right) \geqslant 2 m_{q}$. This is a contradiction.

We are now able to prove Theorem 1.4.
Proof of Theorem 1.4. Let q_{0} be given by Lemma 4.1. For $q \in\left[q_{0}, p^{*}\right)$ fixed, standard calculations show that the restriction of the functional E_{q} to \mathscr{N}_{q} satisfies the Palais-Smale condition.

Take a non-negative radial function $v_{q} \in \mathscr{N}_{q, B_{r}(0)}$ such that $E_{q, B_{r}(0)}\left(v_{q}\right)=m_{q, r}$ and consider the diagram

$$
\tilde{\Omega}_{r}^{-} \xrightarrow{\alpha_{q}} \mathscr{N}_{q} \cap E_{q}^{m_{q, r}} \xrightarrow{\gamma_{q}} \Omega_{r}^{+},
$$

where $\alpha_{q}(x)=v_{q}(\cdot-x)$ and $\gamma_{q}(u)=\beta(u)$. Arguing as in the proof of Lemma 3.5 and using Lemma 4.1 we can verify that the diagram is well defined. Furthermore, since $\gamma_{q}\left(\alpha_{q}(x)\right)=x$ for every $x \in \widetilde{\Omega}_{r}^{-}$, we can proceed as in the proof of Theorem 1.2 and obtain cat ${ }_{\Omega_{r}^{+}}\left(\widetilde{\Omega}_{r}^{-}\right)=$ $\operatorname{cat}(\Omega)$ pairs $\pm u_{i}$ of critical points of E_{q} such that $E_{q}\left(\pm u_{i}\right) \leqslant m_{q, r}<2 m_{q}$. By Lemma 4.2 none of these critical points changes sign. Thus we may suppose $u_{i}>0$ and the theorem is proved.

Acknowledgements

This paper is a part of my Ph.D. thesis which was done under the supervision of Professor Djairo G. de Figueiredo to whom I express my sincere thanks for the stimulating guidance. I should also thank the referee for his/her useful suggestions and comments.

References

[1] C.O. Alves, Y.H. Ding, Multiplicity of positive solutions to a p-Laplacian equation involving critical nonlinearity, J. Math. Anal. Appl. 279 (2003) 508-521.
[2] V. Benci, G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems, Arch. Rational Mech. Anal. 114 (1991) 79-93.
[3] V. Benci, G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Cal. Var. Partial Differential Equations 2 (1994) 29-48.
[4] V. Benci, G. Cerami, D. Passaseo, On the number of positive solutions of some nonlinear elliptic problems, Nonlinear Analysis, A tribute in honour of G. Prodi, Quaderno Scuola Norm. Sup., Pisa, 1991, pp. 93-107.
[6] A. Castro, M. Clapp, The effect of the domain topology on the number of minimal nodal solutions of an elliptic equation at critical growth in a symmetric domain, Nonlinearity 16 (2003) 579-590.
[7] G. Cerami, D. Passaseo, Existence and multiplicity of positive solutions for nonlinear elliptic problems in exterior domains with "rich" topology, Nonlinear Anal. 18 (1992) 109-119.
[8] G. Cerami, S. Solimini, M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents, J. Funct. Anal. 69 (1986) 289-306.
[9] M. Clapp, On the number of positive symmetric solutions of a nonautonomous semilinear elliptic problem, Nonlinear Anal. 42 (2000) 405-422.
[10] M. Clapp, D. Puppe, Critical point theory with symmetries, J. Reine. Angew. Math. 418 (1991) 1-29.
[11] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974) 324-353.
[12] I. Ekeland, N. Ghoussoub, Selected new aspects of the calculus of variations in the large, Bull. Amer. Math. Soc. 39 (2002) 207-265.
[13] M. Lazzo, Solutions positives multiples pour une équation elliptique non linéaire avec léxposant critique de Sobolev, C. R. Acad. Sci. Paris 314 (1992) 61-64.
[14] P.L. Lions, The concentration compactness principle in the calculus of variations. The limit case. I., Rev. Mat. Iberoamericana 1 (1985) 145-201.
[15] D.C. de Morais Filho, M.A.S. Souto, J.M. do Ó, A compactness embedding lemma, a principle of symmetric criticality and applications to elliptic problems, Proyecciones 19 (2000) 1-17.
[16] R.S. Palais, The principle of symmetric criticality, Comm. Math. Phys. 69 (1979) 19-30.
[17] O. Rey, A multiplicity result for a variational problem with lack of compactness, Nonlinear Anal. 13 (1989) 1241-1249.
[18] E.A.B. Silva, S.H.M. Soares, Quasilinear Dirichlet problems in \mathbb{R}^{N} with critical growth, Nonlinear Anal. 43 (2001) 1-20.
[19] D. Smets, A concentration-compactness lemma with applications to singular eigenvalues problems, J. Funct. Anal. 167 (1999) 463-480.
[20] M. Struwe, Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1990.
[21] M. Willem, Minimax Theorems, Birkhäuser, Basel, 1996.
[22] J. Yang, Positive solutions of quasilinear elliptic obstacle problems with critical exponents, Nonlinear Anal. 25 (1995) 1283-1306.

[^0]: ${ }^{1}$ Supported by CAPES/Brazil.
 E-mail address: furtado@ime.unicamp.br.

