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Abstract

We consider the quasilinear problem−div(|∇u|p−2∇u)+ |u|p−2u= |u|q−2u in �, u= 0 on��
where� ⊂ RN is a bounded smooth domain, 1<p<N andp<q <p∗ =Np/(N − p). We show
that if � is invariant by a non-trivial orthogonal involution then, forq close top∗, the equivariant
topology of� is related with the number of solutions which change sign exactly once. The results
complement thoseofCastro andClapp [Nonlinearity 16 (2003) 579–590] sinceweconsider subcritical
nonlinearities and the quasilinear case.Without any assumption of symmetry we also extend Theorem
B in Benci and Cerami [Arch. Rational. Mech. Anal. 114 (1991) 79–93] for the quasilinear case and
prove that the topology of� affects the number of positive solutions.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Consider the problem

(Pq)

{−�pu+ |u|p−2u= |u|q−2u in �,

u= 0 on ��,
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where� ⊂ RN is a bounded smooth domain,�pu = div(|∇u|p−2∇u) is thep-Laplacian
operator, 1<p<N andp<q <p∗ = Np/(N − p). It is well known that it possesses
infinitely many solutions. However, when we require some properties of the nodal regions
of the solutions, the problem seems to be more complicated. In the paper[2], Benci and
Cerami showed that the domain topology is related with the number of positive solutions of
(Pq). More specifically, they showed that ifp=2 andq is close to 2∗, then(Pq) has at least
cat(�) positive solutions, where cat(�) denotes the Ljusternik–Schnirelmann category of
� in itself. Since the work[2], multiplicity results of(Pq)with p=2 have been intensively
studied (see[4,7,3] for subcritical, and[17,13,21]for critical nonlinearities). To the best
of our knowledge, the only work that deals with the quasilinear problem is[1], where the
authors studied the critical case.
In the aforementioned works, the authors considered positive solutions. Here, motivated

byCastro andClapp[6], we are interested in solutions which change sign exactly once. This
means that the solutionu is such that�\u−1(0) has exactly two connected components,u
is positive in one of them and negative in the other. We deal with the problem

(P �
q )


−�pu+ |u|p−2u= |u|q−2u in �,

u= 0 on ��,

u(�x)=−u(x) for all x ∈ �,

where� : RN → RN is fixed,� ∈ O(N)\{Id}, �2= Id, and� ⊂ RN is a bounded smooth
domain such that��=�. It is clear that any non-trivial solution of(P �

q ) changes sign. We
call a nodal solution minimal if it changes sign exactly once. Our existence result can be
stated as

Theorem 1.1. For any q ∈ (p, p∗) the problem(P �
q ) has at least one pair of solutions

which change sign exactly once.

The proof of Theorem 1.1 relies in a minimization argument. As we will see, there is a
deep relation between the number of nodal regions of a solution and its energy. This relation
will able us to prove that the solutions have the desired property.
Theabove result complements[6,Theorem1]where theauthorsconsidered thesemilinear

problem

−�u= �u+ |u|2∗−2u, u ∈ H 1
0 (�), u(�x)=−u(x) in �

and obtain the same result for�>0 small enough (see also[8, TheoremA]for the existence
of nodal solutions without symmetry assumptions). By taking advantage of the symmetry,
the authors in[6] also studied the relation between the domain topology and the number of
minimal nodal solutions. We also are able to have precise statements about this relation if
we suppose thatq is sufficiently close top∗. More specifically, we prove

Theorem 1.2. There existsq0 ∈ (p, p∗) such that, for all q ∈ [q0, p∗), the problem(P �
q )

has at least�-cat�(�\��) pairs of solutions which change sign exactly once.

Here,�� = {x ∈ � : �x = x} and�-cat is theG�-equivariant Ljusternik–Schnirelmann
category for the groupG� = {Id, �}. There are several situations where the equivariant
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category turns out to be larger than the nonequivariant one. The classical example is the unit
sphereSN−1 ⊂ RN with �=−Id. In this case cat(SN−1)= 2 whereas�-cat(SN−1)=N .
As an easy consequence of Theorem 1.2 we have

Corollary 1.3. Let� be symmetric with respect to the origin and such that0 /∈�.Assume
further that there is an odd map� : SN−1 → �. Then there existsq0 ∈ (p, p∗) such that,
for all q ∈ [q0, p∗), the problem(Pq) has at least N pairs of odd solutions which change
sign exactly once.

It is worthwhile to mention that the above results seem to be new even forp=2.We also
note that the nonlinearity of thep-Laplacian, which makes the calculations more difficult,
is compensated here by the homogeneity of the problem.
Finally, without any assumption of symmetry, we can look for multiple positive so-

lutions of (Pq) and to extend[2, Theorem B]for the quasilinear case. Since we have
no symmetry in this context, we relate the number of positive solutions with the usual
Ljusternik–Schnirelmann category and prove

Theorem 1.4. There existsq0 ∈ (p, p∗) such that, for all q ∈ [q0, p∗), problem(Pq) has
at leastcat(�) positive solutions.

The paper is organized as follows. Section 2 is devoted to establish the notation as well
as to present some technical results. In Section 3, after recalling some basic facts about
the equivariant Ljusternik–Schnirelmann theory, we prove the results concerning nodal
solutions. In Section 4, we present the proof of Theorem 1.4.

2. Notations and some technical results

We start by considering the spaceW1,p
0 (�) endowed with the norm

‖u‖ =
(∫

�
(|∇u|p + |u|p)dx

)1/p
. (2.1)

The involution� of � induces an involution ofW1,p
0 (�), which we also denote by�, in the

following way: for eachu ∈ W1,p
0 (�) we define�u ∈ W1,p

0 (�) by

(�u)(x)=−u(�x). (2.2)

Thus, we can also consider the closed linear subspace ofW
1,p
0 (�) given by

W
1,p
0 (�)

� = {u ∈ W1,p
0 (�) : �u= u}.

LetEq : W1,p
0 (�)→ R be given by

Eq(u)= 1

p

∫
�
(|∇u|p + |u|p)dx − 1

q

∫
�
|u|q dx
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and its associated Nehari manifold

Nq = {u ∈ W1,p
0 (�)\{0} : 〈E′q(u), u〉 = 0}

= {u ∈ W1,p
0 (�)\{0} : ‖u‖p = |u|qq},

where|u|s denote theLs(�)-norm fors�1.
In order to obtain�-invariant solutions we will look for critical points of the restriction

of Eq to the�-invariant Nehari manifold

N�
q = {u ∈ Nq : �u= u} =Nq ∩W1,p

0 (�)
�.

We define the numbers

mq = inf
u∈Nq

Eq(u) and m�
q = inf

u∈N�
q

Eq(u).

For any bounded�-invariant domainD ⊂ RN we defineEq,D, Nq,D, N
�
q,D, mq,D and

m�
q,D in the same way by taking the above integrals overD instead of�. For simplicity

of notation we use onlymq,r andm�
q,r to denotemq,Br (0) andm

�
q,Br (0)

, respectively. Also

for simplicity we write
∫
D u to indicate

∫
D u(x)dx. For s�1, we denote by|u|s,D the

Ls(D)-norm of a functionu.

Lemma 2.1. For any bounded�-invariant domainD ⊂ RN we have that2mq,D�m�
q,D.

Proof. Givenu ∈ N�
q,D we can use (2.2) to conclude thatu+, u− ∈ Nq,D, whereu± =

max{±u,0}. Thus
Eq,D(u)= Eq,D(u+)+ Eq,D(u−)�2mq,D,

and the result follows. �

As usual, we denote bySthe best constant of the embeddingW1,p
0 (�) ↪→ Lp

∗
(�) given

by

S = inf
u∈W1,p

0 (�)\{0}
‖u‖p
|u|pp∗

.

It is well known thatS is independent of� and is never achieved in any proper subset
of RN .
Let V be a Banach space,M be aC1-manifold ofV andI : V → R aC1-functional.

We recall thatI |M satisfies the Palais–Smale condition at levelc ((PS)c for short) if any
sequence(un) ⊂ M such thatI (un) → c and ‖I ′(un)‖∗ → 0 contains a convergent
subsequence. Here we are denoting by‖I ′(u)‖∗ the norm of the derivative of the restriction
of I toM (see[21, Section 5.3]). The following technical result will be useful in the future:

Lemma 2.2. Let (vn) ⊂ W1,p
0 (�) be such that|vn|p∗ = 1 and ‖vn‖p → S. Then there

existsv ∈ W1,p
0 (�) such that, up to a subsequence, vn ⇀ v weakly inW1,p

0 (�) and
∇vn(x)→ ∇v(x) for a.e.x ∈ �.
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Proof. Since‖vn‖p → S wehave that(vn) is bounded.Thus, going to a subsequence if nec-
essary,vn ⇀ v weakly inW

1,p
0 (�) for somev ∈ W1,p

0 (�). DenotingM={u ∈ W1,p
0 (�) :∫

� |u|p∗ = 1}, by the Ekeland Variational Principle[11] (see also[21, Theorem 8.5]), we
may suppose that(vn) is a (PS)S sequence for� : M → R given by�(u) = ‖u‖p, i.e.,
there exits(�n) ⊂ R such that

−�pvn + |vn|p−2vn − �n|vn|p∗−2vn→ 0 in (W1,p
0 (�))

′,

where(W1,p
0 (�))

′ is the dual space ofW1,p
0 (�). The above expression imply that�(vn)−

�n→ 0 and�n→ S. Definingṽn = �(N−p)/p
2

n vn, an easy calculation shows that

Ep∗(ṽn)→ 1

N
SN/p and ‖E′p∗(ṽn)‖(W1,p

0 (�))
′ → 0.

Thusṽn is a (PS) sequence ofEp∗ . This fact,�n → S and standard calculations[22] (see
also[18, Corollary 3.7]) show that

∇ṽn(x)→ S(N−p)/p2∇v(x) a.e.x ∈ �.

The result follows from the definition of̃vn. �

We present below some useful relations betweenmq,D,m�
q,D andS.

Lemma 2.3. For any bounded�-invariant domainD ⊂ RN we have

(i) lim q→p∗ mq,D =mp∗,D = 1
N
SN/p,

(ii) lim q→p∗ m�
q,D =m�

p∗,D = 2
N
SN/p.

Proof. The first equalities in (i) and (ii) follow from[9, Proposition 5]. Denote by‖u‖D the
norm ofu ∈ W1,p

0 (D) and let�D be the unit sphere ofW1,p
0 (D). Since� : u �→ u|u|−N/p

p∗,D
defines a dipheomorphism between�D andNp∗,D, we have

Nmp∗,D = inf
u∈Np∗,D

‖u‖pD = inf
u∈�D

‖u‖pD
|u|N
p∗,D

= inf
u∈W1,p

0 (D)\{0}

(
‖u‖pD
|u|p
p∗,D

)N/p
= SN/p

and thereforemp∗,D = 1
N
SN/p. In [6, Proposition 5]is proved thatm�

p∗,D = 2
N
SN/p.

We observe that in[9,6] the authors consider only the semilinear casep = 2. However,
taking advantage of the homogeneity, it is not difficult to see that the arguments hold for
1<p<N . �
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In what follows we denote byM(RN) the Banach space of finite Radon measures over
RN equipped with the norm

‖	‖ = sup

∈C0(RN),|
|∞�1

|	(
)|.

A sequence(	n) ⊂ M(RN) is said to converge weakly to	 ∈ M(RN) provided	n(
)→
	(
) for all 
 ∈ C0(RN). By the Banach–Alaoglu theorem, every bounded sequence
(	n) ⊂ M(RN) contains a weakly convergent subsequence.
The next result is a version of the Second Concentration-Compactness Lemma of Li-

ons [14, Lemma I.1]. The proof can be found in[21, Lemma 1.40; 19, Lemma 2.1 and
Remark 2.2].

Lemma 2.4. Let (un) ⊂ D1,p(RN) be a sequence such that

un ⇀ u weakly inD1,p(RN),

|∇(un − u)|p ⇀ 	 weakly inM(RN),

|un − u|p∗ ⇀ � weakly inM(RN),

un(x)→ u(x) a.e.x ∈ RN ,

∇un(x)→ ∇u(x) a.e.x ∈ RN (2.3)

and define

	∞ = lim
R→∞ lim sup

n→∞

∫
|x|>R

|∇un|p, �∞ = lim
R→∞ lim sup

n→∞

∫
|x|>R

|un|p∗ .

Then

‖�‖p/p∗ �S−1‖	‖, (2.4)

lim sup
n→∞

|∇un|p
p,RN

= |∇u|p
p,RN

+ ‖	‖ + 	∞ (2.5)

and

lim sup
n→∞

|un|p
∗
p∗,RN = |u|p∗

p∗,RN + ‖�‖ + �∞ (2.6)

Moreover, if u= 0 and‖�‖p/p∗ = S−1‖	‖, then	 and� are concentrated at single points.

Remark 2.5. In [21, Lemma 1.40]the author proves the above lemma forp = 2 without
the assumption of pointwise convergence for the gradient. The proof for the general case
follows the same lines of casep= 2 except for Eq. (2.5). As noted in[19, Example 2.3], it
can fail forp �= 2 if we do not impose that∇un(x)→ ∇u(x) for a.e.x ∈ RN . However,
when this last assumption is assumed, Eq. (2.5) can be verified as in[19, Lemma 2.1 and
Remark 2.2].

For anyr >0 we define the set

�+
r = {x ∈ RN : dist(x,�)< r}. (2.7)
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We also define the barycenter map� : W1,p
0 (�)\{0} → RN by setting

�(u)=
∫

RN |u|p
∗
x dx∫

RN |u|p∗ dx
.

The following result is a version of[2, Lemma 4.2]:

Lemma 2.6. For anyr >0 there existq0= q0(r) ∈ (p, p∗) such that, for all q ∈ [q0, p∗),
we have

(i) m�
q,r <2m

�
q ,

(ii) if u ∈ N�
q andEq(u)�m�

q,r , then�(u+) ∈ �+
r .

Proof. We suppose, by contradiction, that (i) is false. Then there exists a sequenceqn ↑
p∗ such thatm�

qn,r
�2m�

qn
. Taking the limit and using Lemma 2.3(ii) we conclude that

SN/p�2SN/p, which does not make sense.
Arguing by contradiction once more, we suppose that (ii) is not true. Then there exist
qn ↑ p∗, (un) ∈ N�

qn
with Eqn(un)�m�

qn,r
and�(u+n ) /∈�+

r . We can use (2.2) to verify
thatu+n ∈ Nqn and 2Eqn(u

+
n )= Eqn(un). Thus,

mqn�Eqn(u+n )=
(
1

p
− 1

qn

)
‖u+n ‖p�2−1m�

qn,r
.

Taking the limit, using the definition ofN�
qn
and Lemma 2.3, we conclude that

lim
n→∞ |u+n |qnqn = lim

n→∞‖u+n ‖p = SN/p. (2.8)

By Hölder’s inequality we have∫
�
(u+n )qn�L(�)(p

∗−qn)/p∗
(∫

�
(u+n )p

∗
)qn/p∗

,

whereL denotes the Lebesgue measure inRN . The above expression and (2.8) imply that
lim inf n→∞|u+n |p

∗
p∗ �SN/p. On the other hand, recalling that|u+n |pp∗ �S−1‖u+n ‖p, we get

lim supn→∞|u+n |p
∗
p∗ �SN/p. Hence,

lim
n→∞ |u+n |p

∗
p∗ = SN/p. (2.9)

This and (2.8) imply thatvn := u+n
|u+n |p∗ satisfies the hypotheses of Lemma 2.2 and therefore,

up to subsequence, we have

∇u+n (x)→ ∇u(x) a.e.x ∈ �,

whereu is the weak limit ofu+n in W1,p
0 (�). By going if necessary to a subsequence, we

may assume that (2.3) holds with(un) replaced by(u+n ).Wemay also assume thatu+n → u
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in Lp(�). The Lemma 2.4, and Eqs. (2.8) and (2.9) provide

SN/p = ‖u‖p + ‖	‖, SN/p = |u|p∗p∗ + ‖�‖
and

‖�‖p/p∗ �S−1‖	‖, |u|pp∗ �S−1‖u‖p.
Note that, since� is bounded, the terms	∞ and�∞ do not appear in the above expressions.
The inequality(a + b)t < at + bt for a, b >0 and 0< t <1, and the above expressions

imply that‖�‖ and|u|p∗p∗ are equal either to 0 orSN/p. Indeed, if this is not the case, we get

S(N−p)/p = S−1(‖u‖p + ‖	‖)�(|u|p∗p∗)p/p
∗ + ‖�‖p/p∗

> (|u|p∗p∗ + ‖�‖)p/p∗ = S(N−p)/p,

which is absurd. Suppose|u|p∗p∗ = SN/p. Sinceu+n ⇀ u weakly inW1,p
0 (�), we have that

‖u‖p� lim inf n→∞‖u+n ‖p = SN/p. Hence
‖u‖p
|u|pp∗

� SN/p

S(N−p)/p
= S

and we conclude thatS is attained byu ∈ W1,p
0 (�), which does not make sense. This

shows thatu= 0 and therefore‖�‖ = SN/p and� is concentrated at a single pointy. Since
(u+n ) ⊂ W1,p

0 (�), we conclude thaty ∈ �. Hence

�(u+n )=
∫

RN (u
+
n )
p∗x dx∫

RN (u
+
n )
p∗ dx

→ S−N/p
∫
�
x d�= y ∈ �,

which contradicts�(u+n ) /∈�+
r . The lemma is proved.�

3. Minimal nodal solutions

We start this section by noting that, ifu is a solution of(Pq), then it is of classC1. We
say it changes signn times if the set{x ∈ � : u(x) �= 0} hasn+ 1 connected components.
Obviously, ifu is a non-trivial solution of problem(P �

q ), then it changes sign an odd number
of times. The relation between the nodal regions of a solution and its energy is given by the
result below (see[6] for p = 2).

Proposition 3.1. If u is a solution of problem(P �
q ) which changes sign2k − 1 times, then

Eq(u)�km�
q .

Proof. The set {x ∈ � : u(x)>0} has k connected componentsA1, . . . , Ak.
Let ui(x) = u(x) if x ∈ Ai ∪ �Ai and ui(x) = 0, otherwise. Sinceu is a critical
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point ofEq ,

0= 〈E′q(u), ui〉 =
∫
�
(|∇u|p−2∇u · ∇ui + |u|p−2uui − |u|q−2uui)

= ‖ui‖p − |ui |qq .
Thus,ui ∈ N�

q for all i = 1, . . . , k, and

Eq(u)= Eq(u1)+ · · · + Eq(uk)�km�
q ,

as desired. �

Proof of Theorem 1.1. The compactness of the embeddingW1,p
0 (�) ↪→ Lq(�) and stan-

dard calculations give the Palais–Smale condition forEq restricted toN
�
q . Let (un) ⊂ N�

q

be a minimizing sequence form�
q . We may suppose that(un) is a (PS) sequence at level

m�
q and therefore, by the (PS) condition, the infimum is achieved by someu ∈ N�

q . The

definition ofW1,p
0 (�)

� and Proposition 3.1 show thatuchanges sign exactly once. To finish
the proof we note that, by the Lagrange multiplier rule, there exits� ∈ R such that

〈E′q(u)− �J ′q(u),
〉 = 0, ∀
 ∈ W1,p
0 (�)

�,

whereJq(u)= ‖u‖p − |u|qq . Sinceu ∈ N�
q , we have

0= 〈E′q(u), u〉 − �〈J ′q(u), u〉 = �(q − p)‖u‖p.
This implies�= 0 and therefore

〈E′q(u),
〉 = 0, ∀
 ∈ W1,p
0 (�)

�.

Hence the principle of symmetric criticality[16] (see also[15, Proposition 1]) imply that
u (and also−u) is a solution of(P �

q ) which changes sign exactly once. The theorem is
proved. �

We recall some facts about equivariant theory. An involution on a topological spaceX is
a continuous function�X : X→ X such that�2X is the identity map ofX. A subsetAof X is
called�X-invariant if�X(A)=A. If XandYare topological spaces equippedwith involutions
�X and�Y , respectively, then an equivariant map is a continuous functionf : X→ Y such
thatf ◦ �X = �Y ◦ f . Two equivariant mapsf0, f1 : X→ Y are equivariantly homotopic
if there is a homotopy : X × [0,1] → Y such that(x,0) = f0(x), (x,1) = f1(x)
and(�X(x), t)= �Y ((x, t)), for all x ∈ X, t ∈ [0,1].

Definition 3.2. The equivariant category of an equivariant mapf : X → Y , denoted by
(�X, �Y )-cat(f ), is the smallest numberk of open invariant subsetsX1, . . . , Xk of Xwhich
coverX and which have the property that, for eachi = 1, . . . , k, there is a pointyi ∈ Y and
a homotopyi : Xi × [0,1] → Y such thati (x,0)= f (x),i (x,1) ∈ {yi, �Y (yi)} and
i (�X(x), t) = �Y (i (x, t)) for everyx ∈ Xi , t ∈ [0,1]. If no such covering exists we
define(�X, �Y )-cat(f )=∞.
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If A is a�X-invariant subset ofX and� : A ↪→ X is the inclusion map we write

�X-catX(A)= (�X, �X)-cat(�) and �X-cat(X)= �X-catX(X).

In the literature�X-cat(X) is usually calledZ2-cat(X). Here it is more convenient to specify
the involution in the notation.
The following properties can be verified:

Lemma 3.3. (i) If f : X→ Y andh : Y → Z are equivariant maps then

(�X, �Z)-cat(h ◦ f )��Y -cat(Y ).

(ii) If f0, f1 : X → Y are equivariantly homotopic, then(�X, �Y )-cat(f0) = (�X, �Y )-
cat(f1).

We denote by�a : V → V the antipodal involution�a(u) = −u on the vector space
V. A �a-invariant subset ofV is usually called a symmetric subset. Equivariant Ljusternik–
Schnirelmann category provides a lower bound for the number of pairs{u,−u} of critical
points of an even functional, as stated in the following abstract result (see[10, Theorem
1.1; 20, Theorem 5.7; 12, Corollary 4.1]).

Theorem 3.4. Let I : M → R be an evenC1-functional on a complete symmetricC1-
submanifold M of some Banach spaceV. Assume that I is bounded below and satisfies(PS)c
for all c�d. Then, denotingI d = {u ∈ M : I (u)�d}, I has at least�a-cat(I d) antipodal
pairs {u,−u} of critical points withI (±u)�d.

Coming back to our problem we set, for any givenr >0,

�−
r = {x ∈ � : dist(x, �� ∪ ��)�r}.

Throughout the rest of this sectionr >0 sufficiently small is fixed in such way that the
inclusion maps�−

r ↪→ �\�� and� ↪→ �+
r are equivariant homotopy equivalences and

�+
r is as defined in (2.7).

Lemma 3.5. Letq0=q0(r) be given by Lemma2.6.Then, for anyq ∈ [q0, p∗), there exists
two maps

�−
r

�q−→N�
q ∩ E

m�
q,r
q

�q−→�+
r

such that�q(�x) = −�q(x), �q(−u) = ��q(u), and�q ◦ �q is equivariantly homotopic to
the inclusion map�−

r ↪→ �+
r .

Proof. We fix q ∈ [q0, p∗), take a non-negative radial functionvq ∈ Nq,Br (0) such that

Eq,Br (0)(vq)=mq,r (see[1, Lemma 3.2]) and define�q : �−
r → N�

q ∩ E
m�
q,r
q by setting

�q(x)= vq(· − x)− vq(· − �x). (3.1)

It is clear from the definition that�q(�x) = −�q(x). Furthermore, sincevq is radial and
� is an isometry, we have that�q(x) ∈ W1,p

0 (�)
�. Note that, for everyx ∈ �−

r , we have
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that|x − �x|�2r (if this is not true, thenx = (x + �x)/2 satisfies|x − x|<r and�x = x,
contradicting the definition of�−

r ). Thus, we can check thatEq(�q(x))=2mq,r�m�
q,r (by

Lemma 2.1) and

‖�q(x)‖p = 2‖vq‖pBr (0) = 2|vq |qq,Br (0) = |�q(x)|qq .
All the above considerations show that�q is well defined.

By Lemma 2.6(ii) it follows that�q : N�
q ∩ E

m�
q,r
q → �+

r given by�q(u) = �(u+) is
well defined. A simple calculation shows that�q(−u)= ��q(u). Moreover, using (3.1) and
the fact thatvq is radial, we get

�q(�q(x))=
∫
Br(x)

|vq(y − x)|p∗y dy∫
Br(x)

|vq(y − x)|p∗ dy =
∫
Br(0)

|vq(y)|p∗(y + x)dy∫
Br(0)

|vq(y)|p∗ dy = x,

for anyx ∈ �−
r . This concludes the proof of the lemma.�

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2.We will show that the theorem holds forq0 = q0(r) given by
Lemma 2.6. Forq ∈ [q0, p∗) fixed, the Palais–Smale condition forEq restricted toN�

q

follows as in the proof of Theorem1.1. SinceEq is evenwe can apply Theorem3.4 to obtain

�a-cat(N�
q ∩ E

m�
q,r
q ) pairs±ui of critical points withEq(±ui)�m�

q,r <2m
�
q (by Lemma

2.6(i)). The definition ofW1,p
0 (�)

�, Proposition 3.1 and the same argument employed in
the proof of Theorem 1.1 show thatui is a solution of(P �

q ) which changes sign exactly
once.
To conclude the proof we need only to verify that

�a-cat(N�
q ∩ E

m�
q,r
q )��-cat�(�\��). (3.2)

With this aim we recall thatr was chosen so that the inclusion maps�−
r ↪→ �\�� and

� ↪→ �+
r are equivariant homotopy equivalences. Thus, (3.2) follows from Lemma 3.5 and

the properties given by Lemma 3.3. The theorem is proved.�

Proof of Corollary 1.3. Let � : RN → RN be given by�(x) = −x. It is proved in
[6, Corollary 3] that our assumptions imply�-cat(�)�N . Since 0/∈�, �� = ∅. It suf-
fices now to apply Theorem 1.2.�

Remark 3.6. For any��0 we know that

S� = inf
u∈W1,p

0 (�)\{0}

∫
� |∇u|p + �|u|p

|u|pp∗

its equal toS, independent of� and is never achieved in any proper subset ofRN . Thus,
a simple inspection of our proofs shows that Theorems 1.1 and 1.2, and Corollary 1.3 also
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hold for the problem

(P �
q,�)


−�pu+ �|u|p−2u= |u|q−2u in �,

u= 0 on ��,

u(�x)=−u(x) for all x ∈ �.

4. Positive solutions

In this section we will obtain multiple positive solutions for the problem(Pq). Since
Theorem 1.4 does not require symmetry for the domain� we will consider the functional
Eq restricted to the usual Nehari manifoldNq . We fix r >0 such that the sets�+

r and

�̃
−
r = {x ∈ � : dist(x, ��)�r}

are homotopically equivalent to� andBr(0) ⊂ �. We start with a version of Lemma 2.6.

Lemma 4.1. There existsq0 ∈ (p, p∗) such that, for all q ∈ [q0, p∗), we have

(i) mq,r <2mq ,
(ii) if u ∈ Nq andEq(u)�mq,r , then�(u) ∈ �+

r .

Proof. Since the proof is analogous to that presented in Lemma 2.6 we only sketch the
main steps of (ii). Suppose, by contradiction, that there existqn ↑ p∗, (un) ∈ Nqn with
Eqn(un)�mqn,r and�(un) /∈�+

r . Then we have that

lim
n→∞‖un‖p = lim

n→∞ |un|p
∗
p∗ = SN/p

and∇un(x) → ∇u(x) a.e.x ∈ �, whereu is the weak limit of(un) in W
1,p
0 (�). Using

Lemma 2.4 and arguing as in the proof of Lemma 2.6 we conclude thatu = 0 and the
measure� in (2.3) is concentrated at a single pointy ∈ �. Thus,

�(un)=
∫

RN |un|p
∗
x dx∫

RN |un|p∗ dx
→ y ∈ �,

which contradicts�(un) /∈�+
r . �

Following Benci and Cerami[2] one can easily show that

Lemma 4.2. If u is a solution of(Pq) withEq(u)<2mq , then u does not change sign.

Proof. Sinceu is a critical point ofEq we have∫
�
|∇u|p−2∇u · ∇
+ |u|p−2u
=

∫
�
|u|q−2u
 ∀
 ∈ W1,p

0 (�).

In particular for
 = u±. So, if bothu+ andu− are nonzero, thenu± ∈ Nq andEq(u)=
Eq(u

+)+ Eq(u−)�2mq . This is a contradiction. �
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We are now able to prove Theorem 1.4.

Proof of Theorem 1.4. Let q0 be given by Lemma 4.1. Forq ∈ [q0, p∗) fixed, standard
calculations show that the restriction of the functionalEq toNq satisfies the Palais–Smale
condition.
Take a non-negative radial functionvq ∈ Nq,Br (0) such thatEq,Br (0)(vq) = mq,r and

consider the diagram

�̃
−
r

�q−→Nq ∩ Emq,rq

�q−→�+
r ,

where�q(x)=vq(·−x) and�q(u)=�(u). Arguing as in the proof of Lemma 3.5 and using
Lemma 4.1 we can verify that the diagram is well defined. Furthermore, since�q(�q(x))=x
for everyx ∈ �̃

−
r , we can proceed as in the proof of Theorem 1.2 and obtain cat�+

r
(�̃

−
r )=

cat(�) pairs±ui of critical points ofEq such thatEq(±ui)�mq,r <2mq . By Lemma 4.2
none of these critical points changes sign. Thus we may supposeui >0 and the theorem is
proved. �
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