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Multiplicity of nodal solutions for a critical
quasilinear equation with symmetry
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Abstract

We consider the quasilinear problem div(|∇u|p−2∇u) + �|u|q−2u + |u|p∗−2u = 0 in �, u = 0 on
��, where � ⊂ RN is a bounded smooth domain, N �p2, � > 0 and p < q < p∗ =Np/(N −p). We
show that if � is invariant under a nontrivial orthogonal involution then, for � sufficiently small, there
is an effect of the equivariant topology of � on the number of solutions which changes sign exactly
once.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction and statement of results

In this paper we consider the following critical problem:

(D�)

{−�pu = �|u|q−2u + |u|p∗−2u in �,

u = 0 on ��,

where � ⊂ RN is a bounded smooth domain, �pu = div(|∇u|p−2∇u) is the p-Laplacian
operator, N �p2, � > 0 and p�q < p∗ = Np/(N − p).
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The starting point on the study of the above problem is the pioneer work of Brezis and
Nirenberg [4], where the authors studied (D�) in the case p = q = 2 and showed that the
existence of positive solutions for (D�) is related with the interaction between the parameter
� and the first eigenvalue �1(�) of the operator −�p on W

1,p
0 (�), defined by

�1(�) = inf

{∫
�

|∇u|p dx : u ∈ W
1,p
0 (�),

∫
�

|u|p dx = 1

}
. (1.1)

Among other results, they showed that the problem (D�) has at least one positive solution
provided p = q = 2, N �4 and 0 < � < �1(�). In [10], Garcia Azorero and Peral Alonso
extended the results of [4] to the p-Laplacian operator. The same authors proved in [11]
that, if p2 �N , q ∈ (p, p∗) and � > 0, then (D�) has at least one nontrivial solution (see
also [12]). The main interest in (D�) is due to the lack of compactness of the embedding
W

1,p
0 (�) ↪→ Lp∗

(�), which makes that the associated functional does not satisfy the
Palais–Smale condition on some levels.

After the paper of Brezis and Nirenberg, a lot of papers concerning critical nonlinearities
have appeared. In particular, we recall that Rey [17] and Lazzo [13] proved, for p = q = 2,
that the problem (D�) has at least cat(�) positive solutions (see also the well-known paper
of Benci and Cerami [2] where the subcritical case was considered), provided � > 0 is
sufficiently close to 0. Here, cat(�) stands for the usual Ljusternik–Schnirelmann category
of � in itself. Recently, Alves and Ding [1] extended these last results for the p-Laplacian
operator and obtained a similar theorem.

We are interested here in nodal solutions of (D�), that is, solutions that change sign
in �. The first result in this direction is due to Cerami, Solimini and Struwe [6], who
considered the case p = q = 2 and obtained one pair of nodal solutions, provided N �6
and 0 < � < �1(�). Similar results were obtained by Zhang [24] and Tarantello [21]. The
question of multiplicity of nodal solutions was also discussed in [6], where the authors
proved the existence of infinitely many radial solutions when � is a ball centered at the
origin, p = q = 2, N �7 and 0 < � < �1(�). For domains with some kind of symmetry
Fortunato and Jannelli [9] showed the existence of solutions with arbitrarily large energy
for N �4 and � > 0. However, these solutions change sign many times.

In this paper we use a different approach which already appears in the work by Castro
and Clapp [5]. In order to obtain nodal solutions for (D�) we denote by O(N) the set of
orthogonal linear transformations of RN in RN and suppose that the domain � has the
following symmetry property:

(H) there exists � ∈ O(N) such that � �= Id, �2= Id and �(�) = �.

This includes, e.g., domains which are symmetric with respect to the origin, as well as
cylindrical or rotationally invariant domains as those considered by Fortunato and Jannelli.

We deal with the symmetric problem

(D�
�)

{−�pu = �|u|q−2u + |u|p∗−2u in �,

u(�x) = −u(x) for all x ∈ �,

u = 0 on ��,
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where � ⊂ RN is a bounded smooth domain satisfying (H) and the parameters are as
before. We say that a solution u of (D�

�) changes sign exactly once if the set �\u−1(0) has
exactly two connected components, u is positive in one of them and negative in the other.
We state below our main results.

Theorem 1.1. Suppose that (H) holds. Then, for any � ∈ (0, �1(�)), the problem (D�
�)

has at least one pair of solutions which change sign exactly once.

Theorem 1.2. Suppose that (H) holds. Then there exists �∗ ∈ (0, �1(�)) such that, for any
� ∈ (0, �∗), the problem (D�

�) has at least �-cat�(�\��) pairs of solutions which change
sign exactly once.

Here, �� = {x ∈ � : �x = x} and �-cat is the G�-equivariant Ljusternik–Schnirelmann
category for the group G� = {Id, �}. There are several situations where the equivariant
category turns out to be larger than the nonequivariant one. The classical example is the unit
sphere SN−1 ⊂ RN with � = −Id. In this case cat(SN−1) = 2, whereas �-cat(SN−1) = N .
Thus, as an easy consequence of Theorem 1.2 we have:

Corollary 1.3. Let � be symmetric with respect to the origin and such that 0 /∈ �. Assume
further that there is an odd map � : SN−1 → �. Then there exists �∗ ∈ (0, �1(�)) such
that, for all � ∈ (0, �∗), the problem (D�) has at least N pairs of odd solutions which change
sign exactly once.

The problem (D�
�) was introduced by Castro and Clapp [5] in the case p = q = 2.

They obtained existence and multiplicity of solutions which change sign exactly once. The
above results improve the paper [5] in two ways: first, because we consider the p-Laplacian
operator and second, because we also deal with the case p < q < p∗. Hence, our results
seem to be new even in the semilinear case p = 2. In order to deal with the difference of
homogeneity between �pu and �|u|q−2u, we adapt some ideas introduced in [1]. Our work
also complements the papers [6,24,9,21] that deal with nodal solutions and [17,13,1], where
only positive solutions were considered.

The paper is organized as follows: Section 2 is devoted to establish the varia-
tional framework as well as to present some technical results. In Section 3, after recall-
ing some facts about equivariant Ljusternik–Schnirelmann theory, we prove our main
results.

2. Variational framework and some technical results

Throughout this paper we will consider the space W
1,p
0 (�) endowed with the norm

‖u‖ =
(∫

�
|∇u|p dx

)1/p

.
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As usual, we denote by S the best constant of the Sobolev embedding W
1,p
0 (�) ↪→ Lp∗

(�)

given by

S = inf

{
‖u‖p : u ∈ W

1,p
0 (�),

∫
�

|u|p∗
dx = 1

}
. (2.1)

It is known that S does not depend on the set � and is never achieved except when �= RN .
We note that the involution � of � induces an involution of W

1,p
0 (�), which we also

denote by �, in the following way: for each u ∈ W
1,p
0 (�) we define �u ∈ W

1,p
0 (�) by

(�u)(x) = −u(�x). (2.2)

The weak solutions of the problem (D�) are the critical points of the C1-functional I� :
W

1,p
0 (�) → R given by

I�(u) = 1

p

∫
�

|∇u|p dx − �

q

∫
�

|u|q dx − 1

p∗

∫
�

|u|p∗
dx.

In order to obtain symmetric solutions, we will look for critical points that lie in the invariant
space W

1,p
0 (�)� defined as

W
1,p
0 (�)� = {u ∈ W

1,p
0 (�) : �u = u}.

Let us consider the Nehari manifold associated with the functional I�

N� = {u ∈ W
1,p
0 (�) : 〈I ′

�(u), u〉 = 0}
=

{
u ∈ W

1,p
0 (�) : ‖u‖p = �

∫
�

|u|q dx +
∫
�

|u|p∗
dx

}
and the �-invariant Nehari manifold

N�
� = {u ∈ N� : �u = u} = N� ∩ W

1,p
0 (�)�.

Note that, if u ∈ N�, then

I�(u) = �

(
1

p
− 1

q

) ∫
�

|u|q dx +
(

1

p
− 1

p∗

) ∫
�

|u|p∗
dx�0, (2.3)

and therefore the following minimization problems are well defined:

m� = inf
u∈N�

I�(u) and m�
� = inf

u∈N�
�

I�(u). (2.4)

For any �-invariant bounded domain D ⊂ RN we define ‖ · ‖D, I�,D, N�,D, N�
�,D, m�,D

and m�
�,D in the same way, by taking all the integrals over D instead of �. We denote by

|u|s,D the Ls(D)-norm of a function u ∈ Ls(D). In order to simplify the notation, whenever
we omit the subscript reference of the set in the above notation, we are assuming thatD=�.
Also, for simplicity, we write only

∫
D u instead of

∫
D u(x) dx.
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Lemma 2.1. Suppose either q =p and � ∈ (0, �1(�)) or p < q < p∗ and � > 0. Then there
exists r�,q > 0 such that

‖u‖�r�,q , (2.5)

for all u ∈ N�
�. In particular, m�

� > 0.

Proof. If q = p and � ∈ (0, �1(�)), we can use the definition of �1(�) and the Sobolev
embedding W

1,p
0 (�) ↪→ Lp∗

(�) to get(
1 − �

�1(�)

)
‖u‖p �‖u‖p − �|u|pp = |u|p∗

p∗ �C1‖u‖p∗
,

for some C1 > 0. Thus,(
1 − �

�1(�)

)
�C1‖u‖p∗−p,

and (2.5) follows for r�,q = {(1/C1)(1 − (�/�1(�)))}1/(p∗−p). Consequently, if u ∈ N�
�,

we have

I�(u) =
(

1

p
− 1

p∗

)
(‖u‖p − �|u|pp)

�
(

1

p
− 1

p∗

) (
1 − �

�1(�)

)
r
p

�,q
,

and therefore m�
� > 0. Suppose now that p < q < p∗ and � > 0. Then there exists C2 > 0

such that

‖u‖p = �|u|qq + |u|p∗
p∗ ��C2‖u‖q + C1‖u‖p∗

,

that is,

1��C2‖u‖q−p + C1‖u‖p∗−p,

for all u ∈ N�
�. Since q > p and p∗ > p, the above expression shows there cannot exist

(un) ⊂ N�
� with ‖un‖ → 0 and (2.5) follows. To verify that m�

� > 0 we suppose, by
contradiction, that m�

� = 0. Then there exists (un) ⊂ N�
� such that I�(un) → 0. It follows

from (2.3) that |un|qq → 0 and |un|p
∗

p∗ → 0. Hence ‖un‖p → 0, contradicting (2.5). The
lemma is proved. �

In view of the definition of N�,D, a standard calculation shows that m0,D= (1/N)SN/p.
On the other hand, if N �p2, Garcia Azorero and Peral Alonso [10] showed that, for
0 < � < �1(D) and any bounded smooth domain D,

m�,D <
1

N
SN/p

and m�,D is achieved by I�,D on N�,D. Although the number m�,D depends on the set D
we have the following asymptotic property.
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Lemma 2.2. For any bounded smooth domain D ⊂ RN we have that

lim
�→0+ m�,D = m0,D = 1

N
SN/p.

Proof. This proof follows quite similar lines as the proof of [1, Lemma 2.4] and will be
omitted. �

The next auxiliary result establishes the relation between the numbers defined in (2.4)
and the constant S.

Lemma 2.3. For any � ∈ (0, �1(�)) we have that

2m� �m�
� <

2

N
SN/p.

Proof. We closely follow the arguments of [5, Proposition 5]. Given u ∈ N�
� we can use

(2.2) to conclude that u+, u− ∈ N�, where u± = max{±u, 0}. Thus

I�(u) = I�(u
+) + I�(u

−)�2m�,

and the first inequality follows. Next, we choose y ∈ �, and r > 0 such that y �= �y,
Br(y) ⊂ � and Br(y) ∩ Br(�y) = ∅. Since 0 < � < �1(�) < �1(Br(0)), we can take a
positive radial function v� ∈ N�,Br (0) such that I�,Br (0)(v�) = m�,Br (0). By the choice of
r > 0, we get

u� = v�(· − y) − v�(· − �y) ∈ N�
�,

and therefore, since m�,Br (0) < (1/N)SN/p, we conclude that

m�
� �I�(u�) = 2I�,Br (0)(v�) <

2

N
SN/p.

This concludes the proof of the lemma. �

Let D1,p(RN) = {u ∈ Lp∗
(RN) : |∇u| ∈ Lp(RN)} and denote by M(RN) the Banach

space of finite Radon measures over RN equipped with the norm

|�| = sup
�∈C0(R

N),|�|∞ �1

∣∣∣∣∫
RN

� d�

∣∣∣∣ .

We say that �n ⇀ � weakly in M(RN) if for all f ∈ C0(R
N),

∫
RN f d�n → ∫

RN f d�.
We state below a result that is a variant of the concentration-compactness lemma, see [14].

Lemma 2.4. Let (un) ⊂ D1,p(RN) be a sequence such that

un ⇀ u weakly in D1,p(RN),

|∇(un − u)|p ⇀ � weakly in M(RN),

|un − u|p∗
⇀ � weakly in M(RN),

un(x) → u(x) a.e. x ∈ RN,

∇un(x) → ∇u(x) a.e. x ∈ RN,

(2.6)
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and define

�∞ = lim
R→∞ lim sup

n→∞

∫
|x|>R

|∇un|p, �∞ = lim
R→∞ lim sup

n→∞

∫
|x|>R

|un|p∗
.

Then

|�|p/p∗ �S−1|�|, (2.7)

lim sup
n→∞

|∇un|p
p,RN = |∇u|p

p,RN + |�| + �∞, (2.8)

and

lim sup
n→∞

|un|p
∗

p∗,RN = |u|p∗
p∗,RN + |�| + �∞. (2.9)

Moreover, if u = 0 and |�|p/p∗ = S−1|�|, then � and � are concentrated at single points.

Remark 2.5. In [22, Lemma 1.40] the above lemma is proved for p = 2 without the
assumption of pointwise convergence for the gradient. The proof for the general case follows
the same lines of case p = 2 except for Eq. (2.8). As noted in [19, Example 2.3], it can fail
for p �= 2 if we do not assume that ∇un(x) → ∇u(x) for a.e. x ∈ RN . However, when this
last assumption is made, Eq. (2.8) can be verified as in [19, Lemma 2.1 and Remark 2.2].

For any r > 0 we define the set

�+
r = {x ∈ RN : dist(x, �) < r}. (2.10)

We also define the barycenter map � : W
1,p
0 (�)\{0} → RN by setting

�(u) =
∫

RN |u|p∗
x dx∫

RN |u|p∗ dx
.

For simplicity, we write m�,r instead of m�,Br (0).
The following result is a version of [5, Lemma 14]. As we will see, it is a key ingredient

for the proof of the multiplicity result. Our proof is based in some ideas contained in [22].

Lemma 2.6. For any r > 0 there exists �0 =�0(r) > 0 such that, for all 0 < � < �0, we have
that �(u) ∈ �+

r whenever u ∈ N� and I�(u)�m�,r .

Proof. Suppose, by contradiction, that the lemma is false. Then there exist �n → 0+,
un ∈ N�n

such that I�n
(un)�m�n,r but �(un) /∈ �+

r . Note that

m�n
�I�n

(un) = 1

p
‖un‖p − �n

q
|un|qq − 1

p∗ |un|p
∗

p∗ �m�n,r

and

0 = 〈I ′
�n

(un), un〉 = ‖un‖p − �n|un|qq − |un|p
∗

p∗ .
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Since I�n
(un) is bounded, we have that (un) is bounded in W

1,p
0 (�) (and also in Lq(�)).

Hence,

m�n
+ o(1)� 1

p
‖un‖p − 1

p∗ |un|p
∗

p∗ �m�n,r + o(1) (2.11)

and ‖un‖p − |un|p
∗

p∗ = o(1), as n → ∞. Thus,

‖un‖p = b + o(1) and |un|p
∗

p∗ = b + o(1), (2.12)

for some b�0. Taking the limit in (2.11) and using Lemma 2.2, we conclude that b=SN/p.
We claim that, up to a subsequence,

∇un(x) → ∇u(x) (2.13)

for a.e. x ∈ �. Indeed, by (2.12), we have that the sequence vn := un/|un|p∗ satisfies
|vn|p∗ = 1 and

‖vn‖p = ‖un‖p

|un|pp∗
→ SN/p

S(N/p)((N−p)/N)
= S(N/p)(1−((N−p)/N)) = S.

Hence, (vn) is a minimizing sequence for the best constant S defined in (2.1) and standard
calculations (see [23,18, Corollary 3.7]) show that ∇vn(x) → ∇v(x) for a.e. x ∈ �. This
convergence, (2.12) and the definition of vn imply that (2.13) holds.

By going if necessary to a subsequence, we may assume that (2.6) holds and un → u in
Lp(�). Lemma 2.4, b = SN/p and (2.12) provide

SN/p = ‖u‖p + |�|, SN/p = |u|p∗
p∗ + |�|

and

|�|p/p∗ �S−1|�|, |u|pp∗ �S−1‖u‖p.

Note that, since � is bounded, the terms �∞ and �∞ do not appear in the above expressions.
The inequality (a + b)t < at + bt for a, b > 0 and 0 < t < 1, and the above expressions

imply that |�| and |u|p∗
p∗ are equal either to 0 or SN/p. Indeed, if this is not the case, we get

S(N−p)/p = S−1(‖u‖p + |�|)�(|u|p∗
p∗)p/p∗ + |�|p/p∗

> (|u|p∗
p∗ + |�|)p/p∗ = S(N−p)/p,

which is absurd. Suppose |u|p∗
p∗ = SN/p. Since un ⇀ u weakly in W

1,p
0 (�), we have that

‖u‖p � lim infn→∞‖un‖p = SN/p. Hence

‖u‖p

|u|pp∗
� SN/p

S(N−p)/p
= S,
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and we conclude that S is attained by u ∈ W
1,p
0 (�), which does not make sense. This shows

that u = 0 and therefore |�| = SN/p and � is concentrated at a single point y ∈ �. Hence,

�(un) =
∫

RN |un|p∗
x dx∫

RN |un|p∗ dx
→ S−N/p

∫
�

x d� = y ∈ �,

which contradicts �(un) /∈ �+
r . The lemma is proved. �

3. Proof of the main results

We start this section by noting that, if u is a solution of (D�
�), then it is of class C1. We

say it changes sign n times if the set {x ∈ � : u(x) �= 0} has n + 1 connected components.
Obviously, if u is a nontrivial solution of problem (D�

�), then it changes sign an odd number
of times. The relation between the number of nodal regions of a solution and its energy
is given by the result below. The proof can be obtained by following the same arguments
contained in [5, Proposition 6] and will be omitted.

Lemma 3.1. If u is a solution of the problem (D�
�) which changes sign 2k − 1 times, then

I�(u)�km�
�.

Let V be a Banach space, M be a C1-manifold of V and I : V → R a C1-functional. We
recall that I |M satisfies the Palais–Smale condition at level c if any sequence (un) ⊂ M

such that I (un) → c and ‖I ′(un)‖∗ → 0 contains a convergent subsequence. Here we
are denoting by ‖I ′(u)‖∗ the norm of the derivative of the restriction of I to M (see [22,
Section 5.3]).

We establish below a local compactness condition for the functional I� on N�
�. Note that

the symmetry of the functions provides compactness below the critical level (2/N)SN/p,
which is exactly the double of the critical level for I� on W

1,p
0 (�).

Lemma 3.2. Suppose either q=p and � ∈ (0, �1(�)) or q < p < p∗ and � > 0. Let (un) ⊂
N�

� be such that ‖I ′
�(un)‖∗ → 0 and I�(un) → c < (2/N)SN/p. Then (un) possesses a

convergent subsequence.

Proof. Since (un) is a Palais–Smale sequence, standard arguments [10,12] show that (un)

is bounded in W
1,p
0 (�). Since ‖I ′

�(un)‖∗ → 0, there exits (	n) ⊂ R such that

I ′
�(un) − 	nJ

′
�(un) → 0 in (W

1,p
0 (�))∗, (3.1)

where

J�(u) = ‖u‖p − �|u|qq − |u|p∗
p∗ , (3.2)

for all u ∈ W
1,p
0 (�). Recalling that (un) ⊂ N�

�, we get

〈J ′
�(un), un〉 = �(p − q)|un|qq + (p − p∗)|un|p

∗
p∗ < 0.
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Thus, we can suppose that 〈J ′
�(un), un〉 → l�0. If l = 0 the above expression would imply

that ‖un‖ → 0, contradicting (2.5). Hence, l < 0 and we infer from (3.1) that 	n → 0, that
is, I ′

�(un) → 0 in (W
1,p
0 (�))∗.

Since (un) is bounded there exists u ∈ W
1,p
0 (�) such that, up to a subsequence,

un ⇀ u weakly W
1,p
0 (�),

un → u in L
p∗
loc(�) and Lq(�),

un(x) → u(x) a.e. x ∈ �.

Moreover, by applying the concentration compactness lemma of Lions as in [23], we can
also suppose that

∇un(x) → ∇u(x) a.e. x ∈ �,

|∇un|p−2 �un

�xi

⇀ |∇u|p−2 �u

�xi

weakly in (Lp(�))∗, 1� i�N,

from which follows that I ′
�(u) = 0.

Note that

c + o(1) = I�(un) − 1

p
〈I ′

�(un), un〉

= �

(
1

p
− 1

q

)
|un|qq +

(
1

p
− 1

p∗

)
|un|p

∗
p∗ ,

where o(1) → 0 as n → ∞. Recalling that un → u in Lq(�), we get

1

N
|un|p

∗
p∗ = c + �

(
1

q
− 1

p

)
|u|qq + o(1)�c + o(1). (3.3)

Defining wn = un − u, we can use the Brezis–Lieb lemma [3] to obtain

‖wn‖p − �|wn|qq = ‖un‖p − �|un|qq − ‖u‖p + �|u|qq + o(1),

|wn|p
∗

p∗ = |un|p
∗

p∗ − |u|p∗
p∗ + o(1).

Hence, recalling that (un) ⊂ N�
�, I ′

�(u) = 0, and wn → 0 in Lq(�), we get

‖wn‖p = b + o(1) and |wn|p
∗

p∗ = b + o(1) (3.4)

for some b ∈ R. Moreover, by (3.3),

b + o(1) = |wn|p
∗

p∗ = |un|p
∗

p∗ − |u|p∗
p∗ + o(1)�Nc + o(1),

and therefore

b�Nc < 2SN/p. (3.5)

Since (wn) ⊂ W
1,p
0 (�)�, we know that ‖wn‖p = 2‖w+

n ‖p and |wn|p
∗

p∗ = 2|w+
n |p∗

p∗ . Thus

S|w+
n |pp∗ �‖w+

n ‖p = b/2 + o(1).
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Taking the limit we conclude that S(b/2)p/p∗ �b/2. We have now two possibilities: b = 0
or b�2SN/p. The second case cannot occur by (3.5). Thus b = 0 and we infer from (3.4)
that un → u strongly in W

1,p
0 (�). The lemma is proved. �

We are now ready to present the proof of our existence result.

Proof of Theorem 1.1. Let (un) ⊂ N�
� be a minimizing sequence for m�

�. By Ekeland’s
variational principle [8], we may assume that it is a Palais–Smale sequence. In view of
Lemma 2.3, we have that m�

� < (2/N)SN/p and therefore, by Lemma 3.2, we obtain a
minimum u of I� on N�

�. Now, Lemma 3.1 and the principle of symmetric criticality [16]
(see also [15, Proposition 1]) imply that u (and also −u) is a solution of (D�

�) which changes
sign exactly once. �

Before presenting the proof of Theorem 1.2, we recall some facts about equivariant
Ljusternik–Schnirelmann theory. An involution on a topological space X is a continuous
function �X : X → X such that �2

X is the identity map of X. A subset A ⊂ X is called
�X-invariant if �X(A) = A. If X and Y are topological spaces equipped with involutions �X

and �Y , respectively, then an equivariant map is a continuous function f : X → Y such
that f ◦ �X = �Y ◦ f . Two equivariant maps f0, f1 : X → Y are equivariantly homotopic
if there is a homotopy 
 : X × [0, 1] → Y such that 
(x, 0) = f0(x), 
(x, 1) = f1(x)

and 
(�X(x), t) = �Y (
(x, t)), for all x ∈ X, t ∈ [0, 1].

Definition 3.3. The equivariant category of an equivariant map f : X → Y , denoted
by (�X, �Y )-cat(f ), is the smallest number k of open �X-invariant subsets X1, . . . , Xk of X
which cover X and which have the property that, for each i=1, . . . , k, there is a point yi ∈ Y

and a homotopy 
i : Xi × [0, 1] → Y such that 
i (x, 0) = f (x), 
i (x, 1) ∈ {yi, �Y (yi)}
and 
i (�X(x), t)= �Y (
i (x, t)) for every x ∈ Xi , t ∈ [0, 1]. If no such covering exists we
define (�X, �Y )-cat(f ) = ∞.

If A is a �X-invariant subset of X and � : A ↪→ X is the inclusion map we write

�X-catX(A) = (�X, �X)-cat(�) and �X-cat(X) = �X-catX(X).

The following properties can be verified.

Lemma 3.4. (i) If f : X → Y and h : Y → Z are equivariant maps, then

(�X, �Z)-cat(h ◦ f )��Y -cat(Y ).

(ii) If f0, f1 : X→Y are equivariantly homotopic, then (�X, �Y )-cat(f0)=(�X, �Y )-cat(f1).

We denote by �a : V → V the antipodal involution �a(u)=−u on the vector spaceV.A �a-
invariant subset of V is usually called a symmetric subset. Equivariant Ljusternik–Schnirel-
mann category provides a lower bound for the number of pairs {u, −u} of critical points
of an even functional, as stated in the following abstract result (see [7, Theorem 1.1], [20,
Theorem 5.7]).
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Theorem 3.5. Let M ⊂ V be a complete symmetric C1,1-submanifold of some Banach
space V. Suppose I ∈ C1(V , R) is even, bounded below on M and satisfies (PS)c for all
c�d. Then the functional I has at least �a-cat({u ∈ M : I (u)�d}) antipodal pairs {u, −u}
of critical points with I (±u)�d .

Coming back to our problem we set, for any given r > 0,

�−
r = {x ∈ � : dist(x, �� ∪ ��)�r}.

From now on we fix r > 0 small in such a way that the inclusion maps �−
r ↪→ �\�� and

� ↪→ �+
r are equivariant homotopy equivalences. In order to simplify the notation we

denote by I d
� the set {u ∈ N�

� : I�(u)�d}.

Lemma 3.6. Let �0 > 0 be given by Lemma 2.6. Then, for any � ∈ (0, �0), we have

�a-cat(I
2m�,r

� )��-cat�(�\��).

Proof. Let � ∈ (0, �0) be fixed. We claim that there exist two maps

�−
r

��−→ I
2m�,r

�
�−→ �+

r

such that ��(�y)=−��(y), �(−u)= ��(u), and � ◦�� is equivariantly homotopic to the
inclusion map �−

r ↪→ �+
r . If the claim is true, it follows from Lemma 3.4 and the choice

of r that

�a-cat(I
2m�,r

� )��-cat�+
r
(�−

r ) = �-cat�(�\��).

In order to prove the claim we take v� ∈ N�,Br (0) a positive radial function such that
I�,Br (0) = m�,r and define, for y ∈ �−

r ,

��(y) = v�(· − y) − v�(· − �y).

It is clear that ��(�y)=−��(y). Furthermore, since v� is radial and � is an isometry, we have
that ��(y) ∈ W

1,p
0 (�)�. Note that, for every y ∈ �−

r , we have |y − �y|�2r (if this is not
true, then y=(y+�y)/2 satisfies |y−y| < r and �y=y, contradicting the definition of �−

r ).

Thus, we can check that ��(y) ∈ N� and I�(��(y))= 2m�,r , and therefore ��(y) ∈ I
2m�,r

� .

If u ∈ I
2m�,r

� , we can use (2.2) to conclude that u+ ∈ N� and I�(u
+) = I�(u)/2�m�,r .

Hence, by Lemma 2.6, we conclude that �(u)=��(u
+) ∈ �+

r . A simple calculation shows
that �(−u) = ��(u) and �(��(y)) = y, for every y ∈ �−

r . The lemma is proved. �

We are now ready to present the proof of Theorem 1.2.

Proof of Theorem 1.2. Since m� and m�,r have the same limit as � → 0+, there exists
�̃0 > 0 such that

m�,r < 2m� (3.6)

for all 0 < � < �̃0. We will prove that the theorem holds for �∗ = min{�0, �̃0}, where �0 is
given by Lemma 2.6.
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Let 0 < � < �∗ be fixed. By Lemma 2.3 we have that 2m�,r < (2/N)SN/p and therefore
I� restricted to N�

� satisfies (PS)c for any c ∈ [m�
�, 2m�,r ]. It follows from Theorem 3.5,

Lemma 3.6 and the principle of symmetric criticality that I� has at least �-cat�(�\��) pairs
±ui of critical points such that I�(±ui)�2m�,r . By using (3.6) and Lemma 2.3, we get

I�(±ui)�2m�,r < 4m� �2m�
�.

Hence, we conclude from Lemma 3.1 that the solutions ±ui change sign exactly once. The
theorem is proved. �

Proof of Corollary 1.3. Let � : RN → RN be given by �(x) = −x. It is proved in [5,
Corollary 3] that our assumptions imply �-cat(�)�N . Since 0 /∈ �, �� = ∅. It suffices now
to apply Theorem 1.2. �
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