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NODAL SOLUTIONS
FOR A NONHOMOGENEOUS ELLIPTIC

EQUATION WITH SYMMETRY

Marcelo F. Furtado

Abstract. We consider the semilinear problem −∆u + λu = |u|p−2u +
f(u) in Ω, u = 0 on ∂Ω where Ω ⊂ R

N is a bounded smooth domain,
2 < p < 2∗ = 2N/(N − 2) and f(t) behaves like tp−1−ε at infinity. We
show that if Ω is invariant by a nontrivial orthogonal involution then, for
λ > 0 sufficiently large, the equivariant topology of Ω is related with the
number of solutions which change sign exactly once. The results are proved
by using equivariant Lusternik–Schnirelmann theory.

1. Introduction

Consider the problem

(1.1)

{ −∆u+ λu = |u|p−2u+ f(u) in Ω,
u = 0 on ∂Ω,

where Ω ⊂ R
N is a bounded smooth domain, λ ≥ 0, 2 < p < 2∗ := 2N/(N − 2)

and the function f ∈ C1(R,R) satisfies
(f1) limt→∞ f(t)/tp−1 = 0;
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(f2) there exists γ > 0 such that

d

dt

(
f(t)
t1+γ

)
≥ 0 for any t > 0;

(f3) f(t) ≥ 0 for any t > 0.
We are interested in investigating the effect of the topology of Ω on the

number of solutions of (1.1). The starting point of our study is the paper of
Benci and Cerami [4], where the authors considered f ≡ 0 and proved that (1.1)
possesses at least cat(Ω) positive solutions provided λ is large enough or p is close
to 2∗. Here, cat(Ω) stands the usual Lusternik–Schnirelmann category of Ω in
itself. The result for λ large was extended for nonhomogeneous nonlinearities by
the same authors in [5]. Since the work [4], multiplicity results for problems like
(1.1) involving the category have been intensively studied (see [6], [7], [11] for
subcritical, and [16], [14], [2], [1] for critical nonlinearities).
In the aforementioned works, the authors obtained positive solutions. Castro,

Cossio and Neuberger considered in [10] a slightly different class of nonlinearities
and proved that the problem possesses a solution which changes sign exactly
once. This means that the solution u is such that Ω \ u−1(0) has exactly two
connected components, u is positive in one of them and negative in the other.
In [3], Bartsch obtained infinite nodal solutions for (1.1). Motivated by these
works and by a recent paper of Castro and Clapp [9], we are interested in relating
the topology of Ω with the number of solutions which change sign exactly once.
We deal with the problem

(Pτλ)



−∆u+ λu = |u|p−2u+ f(u) in Ω,
u = 0 on ∂Ω,

u(τx) = −u(x) for all x ∈ Ω,
where τ :RN → R

N is a linear orthogonal transformation such that τ �= id,
τ2 = id, and Ω ⊂ R

N is a bounded smooth domain such that τΩ = Ω. Since we
are looking for nodal solutions we suppose that f is odd, that is,

(f4) f(−t) = −f(t) for any t ∈ R.

Before to state our main results, we would like to quote the paper [8], where
Cao, Li and Zhong proved that, under (f1)–(f4), the problem without symmetry
(1.1) has at least cat(Ω) positive solutions. Quite recently, Furtado [13] consid-
ered the problem (Pτλ) for f ≡ 0 and proved that, if λ ≥ 0 is fixed and p is
sufficiently close to 2∗, then there exists an effect of the equivariant topology
of Ω on the number of solutions which change sign exactly once. In view of
this and the results of [4], [5], [8], it is natural to ask if the same kind of result
holds for the nonhomogeneous symmetric problem (Pτλ) when p is fixed and λ
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is large. In this paper we give an affirmative answer to this question by proving
the following result.

Theorem 1.1. Suppose p ∈ (2, 2∗) and f satisfies (f1)–(f4). Then there
exists λ(p) such that, for all λ ≥ λ(p), the problem (Pτλ) has at least τ -catΩ(Ω \
Ωτ ) pairs of solutions which change sign exactly once.

Here, Ωτ = {x ∈ Ω : τx = x} and τ -cat is the Gτ -equivariant Lusternik–
Schnirelmann category for the group Gτ = {id, τ} (see Section 3). There are
several situations where the equivariant category turns out to be larger than the
nonequivariant one. The classical example is the unit sphere S

N−1 ⊂ R
N with

τ = −id. In this case cat(SN−1) = 2 whereas τ -cat(SN−1) = N . Thus, as a
consequence of Theorem 1.1 we have

Corollary 1.2. Suppose p ∈ (2, 2∗) and f satisfies (f1)–(f4). Assume fur-
ther that Ω is symmetric with respect to the origin, 0 �∈ Ω and there is an odd map
ϕ: SN−1 → Ω. Then there exists λ(p) such that, for all λ ≥ λ(p), the problem
(1.1) has at least N pairs of odd solutions which change sign exactly once.

The above results complement those of [9] where the authors considered the
critical semilinear problem

−∆u = λu+ |u|2∗−2u, u ∈ H10 (Ω), u(τx) = −u(x) in Ω,
and obtained the same results for λ > 0 small enough. They also complement
the results of [8] since we obtain nodal solutions under the same hypothesis on
f , as well the aforementioned works which deal only with positive solutions.
The paper is organized as follows. In Section 2 we present the abstract

framework of the problem and some technical results. Section 3 is devoted to
recalling some facts about equivariant Lusternik–Schnirelmann theory. The main
results are proved in Section 4.

2. Functional setting and some technical results

Throughout this paper, we denote by H the Sobolev space H10 (Ω) endowed
with the norm

‖u‖ =
{∫
Ω
|∇u|2dx

}1/2
and by |u|s the Ls(Ω)-norm of a function u ∈ Ls(Ω). For simplicity of notation,
we write only

∫
Ω u instead of

∫
Ω u(x) dx.

We start by noting that the involution τ of Ω induces an involution of H ,
which we also denote by τ , in the following way: for each u ∈ H we define
τu ∈ H by
(2.1) (τu)(x) = −u(τx).
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If we set Hτ = {u ∈ H : τu = u} as being the subspace of τ -invariant functions,
it follows from the above expression that any function u ∈ Hτ satisfies the
symmetry condition which appears in (Pτλ).

It is well known that the nontrivial weak solutions of the problem (1.1) are
precisely the nontrivial critical points of the C2-functional Eλ:H → R given by

Eλ(u) =
1
2

∫
Ω
(|∇u|2 + λu2)− 1

p

∫
Ω
|u|p −

∫
Ω
F (u),

where F (t) =
∫ t
0 f(s) ds is the primitive of f . All of them lie in the Nehari

manifold of Eλ given by

Nλ = {u ∈ H \ {0} : 〈E′λ(u), u〉 = 0}
=
{
u ∈ H \ {0} : ‖u‖2 + λ|u|22 = |u|pp +

∫
Ω
f(u)u

}
.

In order to obtain τ -invariant solutions, we will look for critical points of Eλ
restricted to the τ -invariant Nehari manifold

N τλ = {u ∈ Nλ : τu = u} = Nλ ∩Hτ .

By using conditions (f2)− (f4) we can check that

(2.2) 0 ≤ (2 + γ)F (t) ≤ f(t)t,

for any t ∈ R. Thus, if u ∈ Nλ, we have

Eλ(u) =
(
1
2
− 1
p

)∫
Ω
|u|p + 1

2

∫
Ω
f(u)u−

∫
Ω
F (u)

≥
(
1
2
− 1
p

)∫
Ω
|u|p +

(
1
2
− 1
2 + γ

)∫
Ω
f(u)u > 0,

and therefore the following minimization problems are well defined

mλ = inf
u∈Nλ

Eλ(u) and mτλ = inf
u∈N τλ

Eλ(u).

By using the symmetry of the problem (Pτλ) we can obtain the following
relation between the two minimizers defined above.

Lemma 2.1. For any λ ≥ 0, we have that 2mλ ≤ mτλ.
Proof. Let u ∈ N τλ and set u± = max{±u, 0}. Since u ∈ Hτ , we can use

(2.1) to conclude that u is negative in τ(A) whenever u is positive in some subset
A ⊂ Ω. We claim that

(2.3)
∫
Ω
f(u±)u± =

1
2

∫
Ω
f(u)u, ‖u±‖2 = 1

2
‖u‖2 and |u±|ss =

1
2
|u|ss,
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for any 2 ≤ s < 2∗. Indeed, if we set Ω+ = {x ∈ Ω : u(x) > 0}, we can use (2.1)
to verify that Ω− = {x ∈ Ω : u(x) < 0} = τ(Ω+). Recalling that u = u+ − u−
and f is an odd function, we obtain

(2.4)
∫
Ω
f(u)u =

∫
Ω+
f(u+)u+−

∫
Ω−
f(−u−)u− =

∫
Ω
f(u+)u++

∫
Ω
f(u−)u−.

Moreover, since τ = τ−1, we can use a change of variables to conclude that∫
Ω
f(u+)u+ =

∫
Ω+
f(u(x))u(x) dx =

∫
τ−1(Ω+)

f(u(τy))u(τy) dy

=
∫
Ω−
f(−u(y))(−u(y)) dy =

∫
Ω
f(u−)u−.

This and (2.4) imply the first equality in (2.3). The other ones can be proved in
a similar way.

Since F is even and F (0) = 0, we can argue as above to conclude that∫
Ω
F (u) =

∫
Ω
F (u+ − u−) =

∫
Ω
F (u+) +

∫
Ω
F (u−).

Moreover, since u ∈ N τλ , it follows from (2.3) that u± ∈ Nλ. Thus, we can use
the above equation and (2.3) to get

Eλ(u) = Eλ(u+) + Eλ(u−) ≥ 2mλ,

which concludes the proof of the lemma. �

In what follows we denote by ‖E′λ(u)‖∗ the norm of the derivative of the
restriction of Eλ to N τλ at u, which is defined by (see [18, Section 5.3])

‖E′λ(u)‖∗ = min
θ∈R

‖E′λ(u)− θJ ′λ(u)‖(Hτ )∗ ,

where (Hτ )∗ is the dual space of Hτ and Jλ:Hτ → R is given by

Jλ(u) = ‖u‖2 + λ|u|22 − |u|pp −
∫
Ω
f(u)u.

Lemma 2.2. If u is a critical point of Eλ restricted to N τλ , then E′λ(u) = 0
in the dual space of H.

Proof. By definition, there exits θ ∈ R such that 〈E′λ(u)− θJ ′λ(u), φ〉 = 0,
for all φ ∈ Hτ . Since u ∈ N τλ , we can take φ = u to get θ〈J ′λ(u), u〉 = 0.
By using (f2)–(f4) we can check that

f(t)t− f ′(t)t2 ≤ −γf(t)t ≤ 0 for any t ∈ R.
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This and the definition of Jλ imply that

〈J ′λ(u), u〉 =2‖u‖2 + 2λ|u|22 − p|u|pp −
∫
Ω
{f ′(u)u2 + f(u)u}

=(2− p)|u|pp +
∫
Ω

{
f(u)u− f ′(u)u2} < 0.

Thus θ = 0 and therefore 〈E′λ(u), φ〉 = 0 for all φ ∈ Hτ . The result follows from
the principle of symmetric criticality [15] (see also [18, Theorem 1.28]). �
Let V be a Banach space, M be a C1-manifold of V and I:V → R a C1-

functional. We recall that I restricted to M satisfies de Palais–Smale condition
at level c ((PS)c for short) if any sequence (un) ⊂ M such that I(un) → c and
‖I ′(un)‖∗ → 0 contains a convergent subsequence. We end this section by stating
the compactness property satisfied by Eλ.

Lemma 2.3. The functional Eλ restricted to N τλ satisfies the Palais–Smale
condition at any level c ∈ R.

Proof. Since we are dealing with a subcritical nonlinearity, the proof follows
from the boundedness of Ω, the Ambrosetti–Rabinowitz condition in (2.2) and
standard arguments (see [5]). We omit the details. �

3. Equivariant Lusternik–Schnirelmann theory

We recall in this section some facts about equivariant Lusternik–Schnirel-
mann theory. An involution on a topological space X is a continuous function
τX :X → X such that τ2X is the identity map of X . A subset A of X is called
τX -invariant if τX(A) = A. If X and Y are topological spaces equipped with
involutions τX and τY , respectively, then an equivariant map is a continuous
function f :X → Y such that f ◦ τX = τY ◦f . Two equivariant maps f0, f1:X →
Y are equivariantly homotopic if there is an homotopy Θ:X × [0, 1] → Y such
that Θ(x, 0) = f0(x), Θ(x, 1) = f1(x) and Θ(τX(x), t) = τY (Θ(x, t)), for all
x ∈ X, t ∈ [0, 1].

Definition 3.1. The equivariant category of an equivariant map f :X → Y ,
denoted by (τX , τY )-cat(f), is the smallest number k of open invariant subsets
X1, . . . , Xk of X which cover X and which have the property that, for each
i = 1, . . . , k, there is a point yi ∈ Y and a homotopy Θi:Xi × [0, 1] → Y such
that Θi(x, 0) = f(x), Θi(x, 1) ∈ {yi, τY (yi)} and Θi(τX(x), t) = τY (Θi(x, t)) for
every x ∈ Xi, t ∈ [0, 1]. If no such covering exists we define (τX , τY )-cat(f) =∞.
If A is a τX -invariant subset of X and ι : A ↪→ X is the inclusion map we

write

τX -catX(A) = (τX , τX)-cat(ι) and τX -cat(X) = τX -catX(X).

The following properties can be verified.
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Lemma 3.2.

(a) If f :X → Y and h:Y → Z are equivariant maps then
(τX , τZ)-cat(h ◦ f) ≤ τY -cat(Y ).

(b) If f0, f1:X → Y are equivariantly homotopic then
(τX , τY )-cat(f0) = (τX , τY )-cat(f1).

Let τa:V → V be the antipodal involution τa(u) = −u on the vector space
V . Equivariant Lusternik–Schnirelmann category provides a lower bound for the
number of pairs {u,−u} of critical points of an even functional, as stated in the
following abstract result (see [12, Theorem 1.1], [17, Theorem 5.7]).

Theorem 3.3. Let I:M → R be an even C1-functional on a complete sym-
metric C1,1-submanifold M of some Banach space V . Assume that I is bounded
below and satisfies (PS)c for all c ≤ d. Then, if Id = {u ∈ M : I(u) ≤ d}, the
functional I has at least τa-catId(Id) antipodal pairs {u,−u} of critical points
with I(±u) ≤ d.

4. Proofs of the main results

By standard regularity theory we know that if u is a solution of (Pτλ), then
it is of class C1. We say it changes sign k times if the set {x ∈ Ω : u(x) �= 0} has
k + 1 connected components. By (2.1), if u is a nontrivial solution of problem
(Pτλ) then it changes sign an odd number of times. More specifically, we have
the following relation between the number of nodal regions of a solution and its
energy.

Lemma 4.1. If u is a solution of problem (Pτλ) which changes sign 2k − 1
times, then Eλ(u) ≥ kmτλ. In particular, if u is a nontrivial solution of (Pτλ)
such that Eλ(u) < 2mτλ, then u changes sign exactly once.

Proof. The set {x ∈ Ω : u(x)>0} has k connected components A1, . . . , Ak.
Let ui(x) = u(x) if x ∈ Ai ∪ τAi and ui(x) = 0, otherwise. We have that

0 =〈E′λ(u), ui〉 =
∫
Ω
(∇u · ∇ui + λuui − |u|p−2uui − f(u)ui)

=‖ui‖2 + λ|ui|22 − |ui|pp −
∫
Ω
f(ui)ui.

Thus, ui ∈ N τλ for all i = 1, . . . , k, and Eλ(u) = Eλ(u1) + . . .+ Eλ(uk) ≥ kmτλ,
as desired. �

Given r > 0, we define the sets

Ω+r = {x ∈ R
N : dist(x,Ω) < r} and Ω−r = {x ∈ Ω : dist(x, ∂Ω ∪ Ωτ ) ≥ r}.
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From now on we fix r > 0 sufficiently small in such way that the inclusion maps
Ω−r ↪→ Ω \ Ωτ and Ω ↪→ Ω+r are equivariant homotopy equivalences. We also
define the barycenter map β : H \ {0} → R

N by setting

β(u) =

∫
Ω x · |∇u(x)|2 dx∫
Ω |∇u(x)|2 dx

.

Let Eλ,r:H10 (Br(0))→ R be defined as

Eλ,r(u) =
1
2

∫
Br(0)
(|∇u|2 + λu2)− 1

p

∫
Br(0)
|u|p −

∫
Br(0)
F (u),

and set
mλ,r = inf

u∈Nλ,r
Eλ,r(u),

where Nλ,r stands the Nehari manifold of Eλ,r. The following lemma is an
important tool for the proof of Theorem 1.1.

Lemma 4.2. For any fixed p ∈ (2, 2∗) there exists λ(p) such that, for any
λ ≥ λ(p), there hold
(a) mλ,r < 2mλ,
(b) if u ∈ Nλ and Eλ(u) ≤ mλ,r, then β(u) ∈ Ω+r .

Proof. See [8, Corollary 3.20 and Lemma 3.24]. �

For any given d > 0 we set Edλ = {u ∈ N τλ : Eλ(u) ≤ d}. By using the second
statement of the above lemma we are able to prove the following result.

Lemma 4.3. For any fixed p ∈ (2, 2∗), let λ(p) be given by Lemma 4.2. Then
τa-cat(E

2mλ,r
λ ) ≥ τ -catΩ(Ω \Ωτ ), for any λ ≥ λ(p).

Proof. We claim that, for any λ ≥ λ(p) fixed, there exist two maps
Ω−r

αλ−→ E2mλ,rλ

γλ−→ Ω+r
such that αλ(τx) = −αλ(x), γλ(−u) = τγλ(u), and γλ ◦ αλ is equivariantly
homotopic to the inclusion map Ω−r ↪→ Ω+r . Assuming the claim and recalling
that the maps Ω−r ↪→ Ω\Ωτ and Ω ↪→ Ω+r are equivariant homotopy equivalences,
we can use Lemma 3.2 to get

τa-cat(E
2mλ,r
λ ) ≥ τ -catΩ+r (Ω−r ) = τ -catΩ(Ω \ Ωτ ).

In order to prove the claim we follow [9]. Let vλ ∈ Nλ,r be a positive radial
function such that Eλ,r(vλ) = mλ,r. We define αλ: Ω−r → E2mλ,rλ by

(4.1) αλ(x) = vλ( · − x) − vλ( · − τx).
It is clear that αλ(τx) = −αλ(x). Furthermore, since vλ is radial and τ is
an isometry, we have that αλ(x) ∈ Hτ . The definition of Ω−r implies that
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|x− τx| ≥ 2r for any x ∈ Ω−r . Thus, we can check that Eλ(αλ(x)) = 2mλ,r and
αλ(x) ∈ N τλ . All this considerations show that αλ is well defined.
Given u ∈ E2mλ,rλ we can proceed as in the proof of Lemma 2.1 to conclude

that u+ ∈ Nλ and 2Eλ(u+) = Eλ(u) ≤ 2mλ,r. It follows from Lemma 4.2(b) that
γλ:E

2mλ,r
λ → Ω+r given by γλ(u) = β(u+) is well defined. A simple calculation

shows that γλ(−u) = τγλ(u). Moreover, using (4.1) and the fact that vλ is radial
we get

γλ(αλ(x)) =

∫
Br(x)

y · |∇vλ(y − x)|2 dy∫
Br(x)

|∇vλ(y − x)|2 dy =
∫
Br(0)
(y + x) · |∇vλ(y)|2 dy∫
Br(0)
|∇vλ(y)|2 dy = x,

for any x ∈ Ω−r . This concludes the proof. �

We are now ready to present the proof of our main results.

Proof of Theorem 1.1. Let p ∈ (2, 2∗) and λ(p) be given by the Lem-
ma 4.2. For any λ ≥ λ(p), we can apply Theorem 3.3 and Lemma 4.3 to obtain
τ -catΩ(Ω \ Ωτ ) pairs ±ui of critical points of the even functional Eλ restricted
to N τλ verifying

Eλ(±ui) ≤ 2mλ,r < 4mλ ≤ 2mτλ,
where we have used Lemma 4.2(a) and Lemma 2.1. It follows from Lemmas 2.2
and 4.1 that ±ui are solutions of (Pτλ) which change sign exactly once. �

Proof of Corollary 1.2. Let τ :RN → R
N be given by τ(x) = −x. It

is proved in [9, Corollary 3] that our assumptions imply τ -cat(Ω) ≥ N . Since
0 �∈ Ω, Ωτ = ∅. It suffices now to apply Theorem 1.1. �
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